JP6041424B2 - Vehicle capacitors - Google Patents

Vehicle capacitors Download PDF

Info

Publication number
JP6041424B2
JP6041424B2 JP2012145664A JP2012145664A JP6041424B2 JP 6041424 B2 JP6041424 B2 JP 6041424B2 JP 2012145664 A JP2012145664 A JP 2012145664A JP 2012145664 A JP2012145664 A JP 2012145664A JP 6041424 B2 JP6041424 B2 JP 6041424B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
unit
gas
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012145664A
Other languages
Japanese (ja)
Other versions
JP2013119382A (en
Inventor
載 然 金
載 然 金
完 濟 趙
完 濟 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2013119382A publication Critical patent/JP2013119382A/en
Application granted granted Critical
Publication of JP6041424B2 publication Critical patent/JP6041424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両用コンデンサに関し、より詳しくは、レシーバードライヤー部を一体に構成した積層式プレートタイプであり、冷却水を利用して冷媒を凝縮する水冷式車両用コンデンサに関する。   The present invention relates to a vehicle capacitor, and more particularly, to a laminated plate type in which a receiver dryer unit is integrally formed, and relates to a water-cooled vehicle capacitor that condenses a refrigerant using cooling water.

一般に自動車のエアコンシステムは、外部の温度変化に関係なく自動車室内の温度を適当な温度に維持して快適な室内環境を維持できるようにするものである。このようなエアコンシステムを概略的に述べれば、冷媒を圧縮する圧縮器と、圧縮器で圧縮された冷媒を凝縮して液化させるコンデンサと、コンデンサで凝縮されて液化した冷媒を急速に膨張させる膨張バルブと、膨張バルブで膨張された冷媒を蒸発させることで冷媒の蒸発潜熱を利用して空気を冷却する蒸発器とで構成されている。そして、冷却された空気を、対象の室内に送り込んでいる。   In general, an air conditioner system for an automobile can maintain a comfortable indoor environment by maintaining the temperature in the automobile room at an appropriate temperature regardless of external temperature changes. Briefly describing such an air conditioner system, a compressor for compressing refrigerant, a condenser for condensing and liquefying the refrigerant compressed by the compressor, and an expansion for rapidly expanding the refrigerant condensed and liquefied by the condenser It is comprised with the valve | bulb and the evaporator which cools air using the evaporation latent heat of a refrigerant | coolant by evaporating the refrigerant | coolant expanded with the expansion valve. Then, the cooled air is sent into the target room.

ここで、コンデンサは、圧縮された高温高圧の気体冷媒を、走行中の車両内部に流入させて、外部空気で冷却して低温の液体冷媒に凝縮する。このようなコンデンサは、通常、気液分離をして凝縮効率を上げ、冷媒中の水分を除去するレシーバードライヤーが備えられ、コンデンサとレシーバードライヤーを配管で結んでいる〔例えば、特許文献1〕。   Here, the condenser causes the compressed high-temperature and high-pressure gas refrigerant to flow into the running vehicle, cools with external air, and condenses into a low-temperature liquid refrigerant. Such a condenser is usually provided with a receiver dryer that performs gas-liquid separation to increase condensation efficiency and remove moisture in the refrigerant, and the condenser and the receiver dryer are connected by a pipe [for example, Patent Document 1].

車両用コンデンサは、外部空気により放熱される空冷式コンデンサが主に使用され、通常ピンチューブ構造を有するが、冷却性能を向上させるために全体的に大きくしなくてはならない。従って、空冷式コンデンサは、狭いエンジンルームに装着し難いという短所がある。   Air-cooled condensers that dissipate heat from outside air are mainly used as the condenser for vehicles, and usually has a pin tube structure, but it must be enlarged as a whole to improve the cooling performance. Therefore, the air-cooled condenser has a disadvantage that it is difficult to install it in a narrow engine room.

この短所を解決するために、最近は、冷却水を冷却流体として利用する水冷式コンデンサが車両に適用されている〔例えば、特許文献2〕。しかし、水冷式コンデンサは、空冷式と比較して冷却流体の凝縮温度が約5〜15℃低いため、外部気温との温度差が小さい。したがって、サブクール効果の不足で凝縮効率が低下し、これによって、全体的な冷却効率が低下する問題点がある。   In order to solve this disadvantage, a water-cooled condenser that uses cooling water as a cooling fluid has recently been applied to vehicles [for example, Patent Document 2]. However, the water-cooled condenser has a small temperature difference from the outside air temperature because the condensation temperature of the cooling fluid is lower by about 5 to 15 ° C. than the air-cooled condenser. Therefore, there is a problem that the condensation efficiency is lowered due to the lack of the subcool effect, and the overall cooling efficiency is thereby lowered.

また、このような水冷式車両用コンデンサは、凝縮効率を上げるためには、ラジエータのサイズを大きくしたり、冷却ファン容量を大きくしなければならない。従って、重量が増し、別途に構成されるレシーバードライヤーとの連結配管が複雑になり、製造コストが上がる問題点も有している。   In addition, in order to increase the condensation efficiency, such a water-cooled vehicle capacitor must increase the size of the radiator or the capacity of the cooling fan. Therefore, there is a problem that the weight increases, the connecting pipe with a separately configured receiver dryer becomes complicated, and the manufacturing cost increases.

この観点から、車両用コンデンサにレシーバドライヤを一体構成にした構造の提案がなされた〔特許文献1参照〕。本発明は、車両用コンデンサにレシーバドライヤを一体構成にしつつ、さらに、圧縮器から供給された冷媒と冷却水との熱交換を改良したものである。   From this viewpoint, a structure in which a receiver dryer is integrated with a vehicle capacitor has been proposed [see Patent Document 1]. In the present invention, a receiver dryer is integrated with a vehicle condenser, and further, heat exchange between a refrigerant supplied from a compressor and cooling water is improved.

特開平06−137726号公報Japanese Patent Laid-Open No. 06-137726 特開2006−069383号公報JP 2006-069383 A 特開2012−116462号公報JP 2012-116462 A

上記の問題点を解決するためになされた本発明の目的は、圧縮器から供給された冷媒と冷却水との熱交換を改善すると共に、レシーバードライヤーを一体に構成した車両用コンデンサ(以降、単に「コンデンサ」と記す)を提供することにある。   An object of the present invention made to solve the above problems is to improve the heat exchange between the refrigerant supplied from the compressor and the cooling water, and also to provide a vehicle condenser (hereinafter simply referred to as a receiver dryer). (Denoted as “capacitor”).

上記目的を達成するためになされた本発明の車両用コンデンサは、膨張バルブ、蒸発器、圧縮器を含むエアコンシステムに使用され、圧縮器と膨張バルブとの間に備えられ、圧縮器から流入した冷媒を、ラジエータから供給された冷却水と熱交換させて、凝縮させる車両用コンデンサであって、複数のプレートが積層されて、圧縮器からの冷媒を循環させ、ラジエータからの冷却水を循環させ、冷媒を冷却水と熱交換させて凝縮させるメイン放熱部と、メイン放熱部と一体に形成され、メイン放熱部と連通して、メイン放熱部で凝縮された冷媒を流入させて、冷媒の気液分離と水分除去を行うレシーバードライヤー部と、メイン放熱部の下部に一体に形成され、蒸発器から供給された低温低圧の気体冷媒を循環させ、レシーバードライヤー部から流入した冷媒を、低温低圧の気体冷媒と熱交換させて過冷させる過冷放熱部と、を有する構成であり、メイン放熱部は、メイン放熱部の中心部に長さ方向に沿って形成され、メイン放熱部の一端部に設けられた冷媒流入口を経て圧縮器から流入した冷媒が流れる第1冷媒流路、メイン放熱部の内部他端部に形成されて、第1冷媒流路を流れた冷媒を気体冷媒と液体冷媒に分離させる気液分離部、第1冷媒流路の上部に形成され、気液分離部で分離された気体冷媒が流れる少なくとも1つの第2冷媒流路、および第1冷媒流路の下部に形成され、気液分離部で分離された液体冷媒が流れる少なくとも1つの第3冷媒流路、を有して構成される。   The vehicle condenser of the present invention made to achieve the above object is used in an air conditioner system including an expansion valve, an evaporator, and a compressor, and is provided between the compressor and the expansion valve and flows from the compressor. This is a vehicle condenser that heat-exchanges and condenses the refrigerant with the cooling water supplied from the radiator, and a plurality of plates are stacked to circulate the refrigerant from the compressor and circulate the cooling water from the radiator. A main heat radiating part that condenses the refrigerant by exchanging heat with cooling water, and is formed integrally with the main heat radiating part, and communicates with the main heat radiating part to flow in the refrigerant condensed in the main heat radiating part. A receiver dryer unit that separates liquid and removes water, and a receiver dryer unit that is integrally formed under the main heat radiating unit and circulates low-temperature and low-pressure gas refrigerant supplied from the evaporator. And an undercooling heat radiating section that heat-cools the refrigerant flowing in from the low-temperature and low-pressure gas refrigerant and supercools, and the main heat radiating section is formed along the length direction at the center of the main heat radiating section. A first refrigerant flow path through which the refrigerant flowing from the compressor flows through a refrigerant inlet provided at one end of the main heat radiating section and an inner other end of the main heat radiating section. A gas-liquid separation unit that separates the flowed refrigerant into a gas refrigerant and a liquid refrigerant, at least one second refrigerant channel formed in an upper part of the first refrigerant channel and through which the gas refrigerant separated in the gas-liquid separation unit flows, and It has at least 1 3rd refrigerant | coolant flow path formed in the lower part of a 1st refrigerant | coolant flow path, and the liquid refrigerant isolate | separated by the gas-liquid separation part flows.

以下、本発明の車両用コンデンサの好ましい実施形態を挙げる。
気液分離部は、上部で第2冷媒流路の1つと連通し、下部で第3冷媒流路の1つと連通して、他の第2冷媒流路と第3冷媒流路とはプレートにより直接の連通がないよにする。
Hereinafter, preferred embodiments of the vehicle capacitor of the present invention will be given.
The gas-liquid separation unit communicates with one of the second refrigerant flow paths at the upper part, communicates with one of the third refrigerant flow paths at the lower part, and the other second refrigerant flow path and the third refrigerant flow path are formed by a plate. Avoid direct communication.

メイン放熱部は、冷媒と冷却水が対向流して熱交換するようにする。
メイン放熱部は、第2冷媒流路で凝縮された冷媒が第1連結流路によりレシーバードライヤー部に送られ、第3冷媒流路で温度が下げられた冷媒が第2連結流路にレシーバードライヤー部に送られる。
The main heat dissipating unit exchanges heat by causing the refrigerant and the cooling water to flow counter to each other.
In the main heat radiating section, the refrigerant condensed in the second refrigerant flow path is sent to the receiver dryer section through the first connection flow path, and the refrigerant whose temperature is lowered in the third refrigerant flow path is sent to the receiver dryer in the second connection flow path. Sent to the department.

過冷放熱部は、レシーバードライヤー部からの冷媒と、蒸発器からの低温低圧の気体冷媒とが対向流して、熱交換する。
過冷放熱部は、第3連結流路を通じてレシーバードライヤー部と連結され、レシーバードライヤー部から気液分離および水分が除去された冷媒が流入する。
過冷放熱部は、レシーバードライヤー部から第3連結流路を通じて流入した冷媒が流れる冷媒流路と、冷媒流路と交互に形成され、蒸発器から供給された低温低圧の気体冷媒が流れる気体冷媒流路とを有し、冷媒流路を流れる冷媒を、気体冷媒流路を流れる気体冷媒と熱交換して過冷させる。
In the supercooling heat radiating section, the refrigerant from the receiver dryer section and the low-temperature and low-pressure gas refrigerant from the evaporator flow oppositely to exchange heat.
The supercooling heat radiating section is connected to the receiver dryer section through the third connection flow path, and the refrigerant from which gas-liquid separation and moisture have been removed flows from the receiver dryer section.
The subcooling heat radiating section is formed by alternating the refrigerant flow path through which the refrigerant flowing in from the receiver dryer section through the third connection flow path and the refrigerant flow path, and the gaseous refrigerant through which the low-temperature and low-pressure gas refrigerant supplied from the evaporator flows. The refrigerant flowing through the refrigerant flow path is heat-exchanged with the gas refrigerant flowing through the gas refrigerant flow path to be supercooled.

メイン放熱部と過冷放熱部との間には、メイン放熱部を通過する冷媒と、過冷放熱部を通過する冷媒との熱伝達を防止するための熱伝達防止部が形成される。   Between the main heat radiating portion and the supercooling heat radiating portion, a heat transfer preventing portion for preventing heat transfer between the refrigerant passing through the main heat radiating portion and the refrigerant passing through the supercooling heat radiating portion is formed.

熱伝達防止部は、メイン放熱部と過冷放熱部との間で長さ方向に複数のブレイジングホールが形成され、ブレイジングホールを通して溶接時にその内部に窒素を注入できるようにしている。   The heat transfer preventing portion has a plurality of brazing holes formed in the length direction between the main heat dissipating portion and the subcooling heat dissipating portion, and allows nitrogen to be injected into the inside through the brazing hole during welding.

コンデンサは、メイン放熱部、レシーバードライヤー部、および過冷放熱部の上部に上部カバー、下部に下部カバーがそれぞれ装着される。
上部カバーは、その一端部に、ラジエータからの冷却水が入る冷却水流入口、他端部に、メイン放熱部から冷却水を排出するための冷却水排出口が形成され、さらに、冷却水排出口のある端部に、圧縮器からの冷媒が入る冷媒流入口が形成される。
下部カバーは、上部カバーに冷媒流入口が形成された端部に、膨張バルブと連結される冷媒排出口と、蒸発器と連結される気体冷媒流入口が形成され、その反対側端部には、圧縮器と連結される気体冷媒排出口が形成される。
The capacitor is provided with an upper cover on the upper part of the main heat radiating part, a receiver dryer part, and an undercooling heat radiating part, and a lower cover on the lower part.
The upper cover is formed with a cooling water inlet for receiving cooling water from the radiator at one end thereof, and a cooling water outlet for discharging cooling water from the main heat radiating portion at the other end. A refrigerant inflow port into which the refrigerant from the compressor enters is formed at the end where the refrigerant flows.
The lower cover is formed with a refrigerant outlet connected to the expansion valve and a gas refrigerant inlet connected to the evaporator at the end where the refrigerant inlet is formed in the upper cover, and at the opposite end thereof. A gas refrigerant discharge port connected to the compressor is formed.

第2冷媒流路を形成するプレートの一端部が折り曲げられて隔壁を形成する。
第3冷媒流路を形成するプレートのうち最上部に位置するプレートによって、第3冷媒流路は、冷媒流入口と直接的に連通しない。
One end of the plate forming the second refrigerant flow path is bent to form a partition wall.
The third refrigerant channel does not directly communicate with the refrigerant inlet by the plate located at the uppermost part of the plates forming the third refrigerant channel.

レシーバードライヤー部は、その内部に装着空間が形成され、装着空間に対応して下部カバーには挿入ホールが形成される。
装着空間には、挿入ホールを通じて乾燥剤が挿入される。
挿入ホールには、装着空間に挿入された乾燥剤の離脱を防止し、レシーバードライヤー部に流入された冷媒が外部に漏れ出ることを防止する固定キャップが装着される。
The receiver dryer section has a mounting space formed therein, and an insertion hole is formed in the lower cover corresponding to the mounting space.
A desiccant is inserted into the mounting space through the insertion hole.
A fixing cap for preventing the desiccant inserted into the mounting space from being detached and preventing the refrigerant flowing into the receiver dryer section from leaking to the outside is mounted in the insertion hole.

ラジエータは、リザーバタンクと連結され、後方には冷却ファンが備えられる。
コンデンサは、複数のプレートが積層されて形成される熱交換器を有している。
The radiator is connected to a reservoir tank, and a cooling fan is provided in the rear.
The capacitor has a heat exchanger formed by stacking a plurality of plates.

本発明の車両用コンデンサによれば、圧縮器から供給された冷媒と冷却水との熱交換効率を高くし、レシーバードライヤーの容積を小さく、放熱面積を大きくして冷却効率を上げることができる。また、冷却水を利用して冷媒を気体冷媒と液体冷媒に分離し、凝縮した液体冷媒を、蒸発器を通った後の比較的低温低圧の気体冷媒と熱交換して過冷させるので、凝縮された冷媒を追加的に過冷するための別途の装置をなくすことができ、構成部品を少なく、連結配管のレイアウトを簡素化することができ、さらに全体重量を減らし、原価低減に結びつけることができる。   According to the vehicle capacitor of the present invention, the heat exchange efficiency between the refrigerant supplied from the compressor and the cooling water can be increased, the volume of the receiver dryer can be reduced, the heat radiation area can be increased, and the cooling efficiency can be increased. Also, cooling water is used to separate the refrigerant into a gaseous refrigerant and a liquid refrigerant, and the condensed liquid refrigerant is supercooled by exchanging heat with the relatively low-temperature and low-pressure gaseous refrigerant after passing through the evaporator. It is possible to eliminate a separate device for additionally cooling the generated refrigerant, reduce the number of components, simplify the layout of the connecting piping, reduce the overall weight, and reduce the cost. it can.

本発明に係るコンデンサが適用された車両のエアコンシステムの構成図である。1 is a configuration diagram of a vehicle air conditioner system to which a capacitor according to the present invention is applied. 本発明に係るコンデンサの斜視図である。1 is a perspective view of a capacitor according to the present invention. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2.

以下、本発明に係るコンデンサについて、好ましい実施形態を挙げ、添付図面に基づいて説明する。
図1は、本発明のコンデンサが適用された車両のエアコンシステムの構成図であり、図2は、本発明の実施形態によるコンデンサの斜視図であり、図3は、図2のA−A線断面図であり、図4は、図2のB−B線断面図である。尚、車両のエアコンシステムにおいて、冷媒は、場所により気体状態が多くあり、あるいは液体状態が主としており、以下の説明では、説明の都合上、特に気体状態であることを強調するときにのみ「気体冷媒」とし、液体状態であることを強調するときにのみ「液体冷媒」とし、それ以外では単に「冷媒」として記載する。
Hereinafter, a capacitor according to the present invention will be described with reference to the accompanying drawings by giving preferred embodiments.
FIG. 1 is a configuration diagram of a vehicle air conditioner system to which a capacitor of the present invention is applied, FIG. 2 is a perspective view of a capacitor according to an embodiment of the present invention, and FIG. 3 is a line AA in FIG. FIG. 4 is a cross-sectional view taken along the line BB of FIG. In the air conditioner system of a vehicle, the refrigerant is mostly in a gas state or a liquid state depending on the location. For the convenience of explanation, the following description is given only when it is emphasized that the refrigerant is in a gas state. “Refrigerant”, which is described only as “liquid refrigerant” when emphasizing that it is in a liquid state, and is simply described as “refrigerant” otherwise.

コンデンサ100は、液体冷媒を膨張させる膨張バルブ101と、膨張バルブ101で膨張された冷媒を空気と熱交換して蒸発させる蒸発器103と、蒸発器103で気化して気体状態になった冷媒を圧縮する圧縮器105と共に、エアコンシステムに使用される。この中にあって、コンデンサ100は、圧縮器105と膨張バルブ101との間に設けられ、ラジエータ107から供給された冷却水により、圧縮器105からの冷媒を冷却して凝縮させている。   The capacitor 100 includes an expansion valve 101 that expands the liquid refrigerant, an evaporator 103 that evaporates the refrigerant expanded by the expansion valve 101 by heat exchange with air, and a refrigerant that is vaporized by the evaporator 103 into a gaseous state. Along with the compressor 105 for compression, it is used in an air conditioner system. In this, the condenser 100 is provided between the compressor 105 and the expansion valve 101, and the coolant from the compressor 105 is cooled and condensed by the cooling water supplied from the radiator 107.

ラジエータ107は、リザーバタンク108と連結し、ラジエータ107の後方には冷却ファン109が備えられて、コンデンサ100で高温になった冷却水を冷却している。   The radiator 107 is connected to the reservoir tank 108, and a cooling fan 109 is provided at the rear of the radiator 107 to cool the cooling water that has reached a high temperature by the condenser 100.

本発明のコンデンサ100は、複数のプレートが積層された構造で、レシーバードライヤーが一体に設けられている。コンデンサ100は、冷却水を利用して冷媒を冷却すると共に、気体冷媒と液体冷媒に分離し、分離された液体冷媒を、蒸発器103からの比較的低温低圧の気体冷媒と熱交換させている。   The capacitor 100 of the present invention has a structure in which a plurality of plates are laminated, and a receiver dryer is integrally provided. Capacitor 100 cools the refrigerant using cooling water, separates the refrigerant into a gas refrigerant and a liquid refrigerant, and heat-exchanges the separated liquid refrigerant with a relatively low-temperature and low-pressure gas refrigerant from evaporator 103. .

コンデンサ100を詳細に説明すると、図2〜図4に示したように、メイン放熱部110、レシーバードライヤー部130、および過冷放熱部140を有した構成になっている。以下、これら各部について詳しく説明する。   The capacitor 100 will be described in detail. As shown in FIGS. 2 to 4, the capacitor 100 has a main heat radiating part 110, a receiver dryer part 130, and a supercooling heat radiating part 140. Hereinafter, each of these parts will be described in detail.

コンデンサ100の上部と下部には、それぞれ上部カバー111と下部カバー113が取り付けられ、メイン放熱部110、レシーバードライヤー部130、および過冷放熱部140は、上部カバー111と下部カバー113の間に位置することになる。   An upper cover 111 and a lower cover 113 are attached to the upper and lower portions of the capacitor 100, respectively. The main heat radiating unit 110, the receiver dryer unit 130, and the supercooling heat radiating unit 140 are located between the upper cover 111 and the lower cover 113. Will do.

メイン放熱部110は、図3に示したように、複数の第1冷媒流路117a、複数の第2冷媒流路117b、複数の第3冷媒流路117c、および気液分離部118を含んで構成される。   As shown in FIG. 3, the main heat radiating unit 110 includes a plurality of first refrigerant channels 117 a, a plurality of second refrigerant channels 117 b, a plurality of third refrigerant channels 117 c, and a gas-liquid separator 118. Composed.

メイン放熱部110では、圧縮器105から流れてきた冷媒を、ラジエータ107から流れてきた冷却水と熱交換して凝縮させている。そこで、メイン放熱部110は、複数のプレート115が積層された構造で、冷却水と冷媒が交互に流れており、それぞれの流れ方向を反対の対向流(counterflow)にして熱交換効率を高めている。つまり、メイン放熱部110は、複数のプレート115が間隔をおいて積層され、プレート115の間は、冷媒流路117と冷却水流路119が交互に形成されている。冷媒流路117には冷媒が流れ、冷却水流路119には冷却水が流れ、冷媒と冷却水が互いに混合することなく、かつ互いに反対方向に流れ、互いに熱交換する。   In the main heat radiating unit 110, the refrigerant flowing from the compressor 105 is condensed by exchanging heat with the cooling water flowing from the radiator 107. Accordingly, the main heat radiating unit 110 has a structure in which a plurality of plates 115 are stacked, and cooling water and refrigerant flow alternately, and the respective flow directions are opposite counterflows to increase heat exchange efficiency. Yes. That is, in the main heat radiating section 110, a plurality of plates 115 are stacked at intervals, and between the plates 115, refrigerant flow paths 117 and cooling water flow paths 119 are alternately formed. The refrigerant flows through the refrigerant flow path 117, the cooling water flows through the cooling water flow path 119, the refrigerant and the cooling water flow in opposite directions without being mixed with each other, and exchange heat with each other.

第1冷媒流路117aは、メイン放熱部110の中心部の長さ方向に沿って形成され、圧縮器105からの冷媒が、メイン放熱部110の一端部に設けられた冷媒流入口125から流入してくる。   The first refrigerant flow path 117 a is formed along the length direction of the central portion of the main heat radiating portion 110, and the refrigerant from the compressor 105 flows in from the refrigerant inlet 125 provided at one end of the main heat radiating portion 110. Come on.

気液分離部118は、メイン放熱部110の内部一端部に形成されて、第1冷媒流路117aと連結し、第1冷媒流路117aを流れて一部凝縮した冷媒が、自重によって気体冷媒と液体冷媒に分けられる。気液分離部118の上部には軽い気体冷媒が、下部には重い液体冷媒が集まる。   The gas-liquid separation unit 118 is formed at one end of the main heat radiating unit 110 and is connected to the first refrigerant channel 117a. The refrigerant partially condensed by flowing through the first refrigerant channel 117a is gas refrigerant by its own weight. And liquid refrigerant. Light gas refrigerant gathers at the upper part of the gas-liquid separation unit 118, and heavy liquid refrigerant gathers at the lower part.

この実施形態では、第2冷媒流路117bが、第1冷媒流路117aの上部に気液分離部118と連通して形成され、気液分離部118で分離された気体冷媒が、第2冷媒流路117bに流れ、冷却水と熱交換して気体冷媒を凝縮させる。   In this embodiment, the second refrigerant channel 117b is formed in the upper part of the first refrigerant channel 117a in communication with the gas-liquid separator 118, and the gas refrigerant separated by the gas-liquid separator 118 is the second refrigerant. It flows into the flow path 117b and heat exchanges with the cooling water to condense the gaseous refrigerant.

第3冷媒流路117cは、第1冷媒流路117aの下部に気液分離部118と連通して形成され、気液分離部118で分離された液体冷媒が、第3冷媒流路117cに流れ、冷却水と熱交換してその温度をさらに下げる。   The third refrigerant channel 117c is formed at the lower part of the first refrigerant channel 117a so as to communicate with the gas-liquid separator 118, and the liquid refrigerant separated by the gas-liquid separator 118 flows into the third refrigerant channel 117c. The temperature is further lowered by exchanging heat with cooling water.

ここで、気液分離部118は、複数ある第2冷媒流路117bと複数ある第3冷媒流路117cのうち、気液分離部118の上部と下部に隣接した少なくとも1つの第2冷媒流路117b、少なくとも1つの第3冷媒流路117cにそれぞれ連結され、他の第2冷媒流路117b、第3冷媒流路117cとはプレート115により直接連結しないように閉鎖させている。   Here, the gas-liquid separation unit 118 includes at least one second refrigerant channel adjacent to the upper and lower portions of the gas-liquid separation unit 118 among the plurality of second refrigerant channels 117b and the plurality of third refrigerant channels 117c. 117b is connected to at least one third refrigerant channel 117c, and is closed by the plate 115 so as not to be directly connected to the other second refrigerant channel 117b and the third refrigerant channel 117c.

すなわち、気液分離部118からの気体冷媒は、気液分離部118と連通する第2冷媒流路117bに入り、次いで他の第2冷媒流路117bに流れていき、その過程で冷却されて液体冷媒となり、第1連結流路126を通って後述するレシーバードライヤー部130へ流れる。一方、気液分離部118からの液体冷媒は、気液分離部118と連通する第3冷媒流路117cに入り、次いで他の第3冷媒流路117cを流れてさらに温度を下げて、第2連結流路127を通って後述するレシーバードライヤー部130に流れていく。   That is, the gas refrigerant from the gas-liquid separator 118 enters the second refrigerant channel 117b communicating with the gas-liquid separator 118, and then flows into the other second refrigerant channel 117b, and is cooled in the process. It becomes a liquid refrigerant and flows to the receiver dryer section 130 described later through the first connection channel 126. On the other hand, the liquid refrigerant from the gas-liquid separator 118 enters the third refrigerant channel 117c communicating with the gas-liquid separator 118, and then flows through the other third refrigerant channel 117c to further reduce the temperature. It flows to the receiver dryer part 130 mentioned later through the connection flow path 127. FIG.

そこで、この実施形態において、上部カバーは、その一端部にラジエータからの冷却水が入る冷却水流入口121が、他端部にメイン放熱部110から冷却水を排出するための冷却水排出口123が形成され、さらに、冷却水排出口123のある端部に、圧縮器105からの冷媒が入る冷媒流入口125が形成される。つまり、冷媒流入口125は、冷却水流入口121と反対側に形成され、冷却水排出口123と同じ側に形成されることで、冷却水と冷媒とが対向流となる。   Therefore, in this embodiment, the upper cover has a cooling water inlet 121 for receiving cooling water from the radiator at one end thereof, and a cooling water discharge port 123 for discharging cooling water from the main heat radiating portion 110 at the other end. Further, a refrigerant inlet 125 into which the refrigerant from the compressor 105 enters is formed at an end portion where the cooling water discharge port 123 is formed. That is, the coolant inlet 125 is formed on the side opposite to the coolant inlet 121 and is formed on the same side as the coolant outlet 123, so that the coolant and the coolant are opposed to each other.

第2冷媒流路117bを形成するプレート115は、冷媒流入口125に隣接して配置された一端部を折り曲げて隔壁122を形成し、冷媒流入口125から流入した冷媒がメイン放熱部110の上部に形成された第2冷媒流路117bに直接流入しないようにしている。   The plate 115 forming the second refrigerant flow path 117b bends one end portion disposed adjacent to the refrigerant inlet 125 to form the partition wall 122, and the refrigerant flowing from the refrigerant inlet 125 is located above the main heat radiating part 110. The second refrigerant flow path 117b formed in the second refrigerant flow path 117b is prevented from flowing directly.

また、第3冷媒流路117cを形成するプレート115のうち最上部に位置するプレート115によって、第3冷媒流路117cは、冷媒流入口125と直接には連通しないようにされ、冷媒流入口125から入った冷媒は、直接第3冷媒流路117cに流れない。これにより、冷媒流入口125から入った冷媒は、全て先ず第1冷媒流路117aに流れるようになる。   Further, the plate 115 positioned at the uppermost part of the plates 115 forming the third refrigerant flow path 117c prevents the third refrigerant flow path 117c from directly communicating with the refrigerant inlet 125. The refrigerant entering from does not flow directly into the third refrigerant flow path 117c. As a result, all of the refrigerant entering from the refrigerant inlet 125 first flows into the first refrigerant flow path 117a.

レシーバードライヤー部130は、メイン放熱部110で凝縮された冷媒を流入させ、残存する気体状の冷媒を分ける気液分離をし、かつ水分除去を行う。レシーバードライヤー部130は、メイン放熱部110の一端に一体に形成されていて、メイン放熱部110と連通している。詳細には、気液分離部118で気体冷媒と液体冷媒に分離し、気体冷媒は第2冷媒流路117bで、液体冷媒は第3冷媒流路117cでそれぞれ冷却水と熱交換してレシーバードライヤー部130に流れてくる。
このようなレシーバードライヤー部130は、コンデンサ100の側面に形成され、従来のレシーバードライヤーと比較して容積を小さくすることだでき、別途の配管をなくすことができる。
The receiver dryer unit 130 allows the refrigerant condensed in the main heat radiating unit 110 to flow in, performs gas-liquid separation that separates the remaining gaseous refrigerant, and removes moisture. The receiver dryer unit 130 is formed integrally with one end of the main heat radiating unit 110 and communicates with the main heat radiating unit 110. Specifically, the gas-liquid separation unit 118 separates the gas refrigerant and the liquid refrigerant, and the gas refrigerant exchanges heat with the cooling water in the second refrigerant flow path 117b and the liquid refrigerant in the third refrigerant flow path 117c, respectively. To the unit 130.
Such a receiver dryer unit 130 is formed on the side surface of the capacitor 100, and can be reduced in volume as compared with a conventional receiver dryer, and a separate pipe can be eliminated.

レシーバードライヤー部130の内部には、装着空間131が形成され、装着空間131に対応して下部カバー113には挿入ホール133が形成される。
装着空間131には、乾燥剤135が装着され、メイン放熱部110で凝縮された冷媒中の水分を除去する機能を果たす。この乾燥剤135は、挿入ホール133を通して取出しと挿入ができ、交換が容易である。
A mounting space 131 is formed inside the receiver dryer unit 130, and an insertion hole 133 is formed in the lower cover 113 corresponding to the mounting space 131.
A desiccant 135 is mounted in the mounting space 131 and functions to remove moisture in the refrigerant condensed in the main heat radiating unit 110. The desiccant 135 can be taken out and inserted through the insertion hole 133 and can be easily replaced.

一方、乾燥剤135にはフィルターを一体に構成することができ、フィルターは、レシーバードライヤー部130を流れる冷媒に含まれた異物を除くことができる。つまり、レシーバードライヤー部130は、乾燥剤135により冷媒に残存する水分を除き、フィルターにより冷媒に含まれている異物を除くことによって、水分と異物のない冷媒を膨張バルブ101に送ることができる。これによって、膨張バルブ101での閉塞などの問題を防止することができる。   On the other hand, a filter can be integrally formed with the desiccant 135, and the filter can remove foreign substances contained in the refrigerant flowing through the receiver dryer unit 130. That is, the receiver dryer unit 130 can send the refrigerant free of moisture and foreign matter to the expansion valve 101 by removing the moisture remaining in the refrigerant with the desiccant 135 and removing foreign matters contained in the refrigerant with the filter. As a result, problems such as blockage in the expansion valve 101 can be prevented.

挿入ホール133には、装着空間131に挿入された乾燥剤135の離脱を防止し、レシーバードライヤー部130に流入した冷媒が外部に漏れ出ることを防止するように固定キャップ137が装着される。   A fixing cap 137 is mounted in the insertion hole 133 so as to prevent the desiccant 135 inserted into the mounting space 131 from being detached and to prevent the refrigerant flowing into the receiver dryer unit 130 from leaking outside.

過冷放熱部140は、メイン放熱部110の下部に一体に形成される。過冷放熱部140は、レシーバードライヤー部130からの液体冷媒を、蒸発器103から供給された比較的低温低圧の気体冷媒と熱交換して、過冷させる。このとき、蒸発器103からの低温低圧の気体冷媒とレシーバードライヤー部130からの液体冷媒は、対向流(counterflow)させて熱交換させるようにする。   The supercooling heat radiation part 140 is integrally formed at the lower part of the main heat radiation part 110. The supercooling heat dissipating unit 140 heats the liquid refrigerant from the receiver dryer unit 130 with a relatively low-temperature and low-pressure gas refrigerant supplied from the evaporator 103 to supercool the liquid refrigerant. At this time, the low-temperature and low-pressure gas refrigerant from the evaporator 103 and the liquid refrigerant from the receiver dryer unit 130 are counterflowed to exchange heat.

本実施形態において、過冷放熱部140は、レシーバードライヤー部130と第3連結流路128で連結され、レシーバードライヤー部130で水分除去が行われた液体冷媒が供給される。   In the present embodiment, the supercooling heat radiating unit 140 is connected to the receiver dryer unit 130 by the third connection channel 128, and the liquid refrigerant from which moisture has been removed by the receiver dryer unit 130 is supplied.

過冷放熱部140内には、冷媒が液体状態で流れる冷媒流路117と気体冷媒流路141が形成され、冷媒流路117には、レシーバードライヤー部130から第3連結流路128を通じて流入した液体冷媒が流れ、気体冷媒流路141には、蒸発器103から供給された低温低圧の気体冷媒が流れる。この過程で、液体冷媒と気体冷媒が互いに熱交換する。つまり、過冷放熱部140には、複数のプレート115が間隔をおいて積層され、(液体)冷媒流路117と気体冷媒流路141が交互に形成される。   A refrigerant channel 117 and a gas refrigerant channel 141 in which the refrigerant flows in a liquid state are formed in the supercooling heat radiation unit 140, and flows into the refrigerant channel 117 from the receiver dryer unit 130 through the third connection channel 128. The liquid refrigerant flows, and the low-temperature and low-pressure gas refrigerant supplied from the evaporator 103 flows in the gas refrigerant flow path 141. In this process, the liquid refrigerant and the gaseous refrigerant exchange heat with each other. That is, a plurality of plates 115 are stacked at intervals in the supercooling heat radiation unit 140, and (liquid) refrigerant flow paths 117 and gas refrigerant flow paths 141 are alternately formed.

下部カバー113の一端部には、上部カバー111の冷媒流入口125とほぼ対応した位置に冷媒排出口129が形成され、冷媒排出口129は、膨張バルブ101と連結される。   A refrigerant discharge port 129 is formed at one end portion of the lower cover 113 at a position substantially corresponding to the refrigerant inlet 125 of the upper cover 111, and the refrigerant discharge port 129 is connected to the expansion valve 101.

さらに、下部カバー113の一端部には気体冷媒流入口143が、他端部には気体冷媒排出口145が形成される。気体冷媒流入口143は蒸発器103と連結され、気体冷媒排出口145は圧縮器105に連結される。   Further, a gas refrigerant inlet 143 is formed at one end of the lower cover 113, and a gas refrigerant outlet 145 is formed at the other end. The gas refrigerant inlet 143 is connected to the evaporator 103, and the gas refrigerant outlet 145 is connected to the compressor 105.

レシーバードライヤー部130は、メイン放熱部110と過冷放熱部140の端に一体に形成されている。レシーバードライヤー部130は、第1連結流路126、第2連結流路127および第3連結流路128を除いた残りの部分では、メイン放熱部110と過冷放熱部140に直接に流体が流れないように連結されている。   The receiver dryer unit 130 is integrally formed at the ends of the main heat radiation unit 110 and the supercooling heat radiation unit 140. In the receiver dryer unit 130, fluid flows directly to the main heat dissipating unit 110 and the subcooling heat dissipating unit 140 in the remaining portions except for the first connecting channel 126, the second connecting channel 127, and the third connecting channel 128. There is no concatenation.

本実施形態において、メイン放熱部110と過冷放熱部140との間には、メイン放熱部110を通過する冷媒と、過冷放熱部140を通過して過冷された冷媒との熱伝達を防止するための熱伝達防止部150が形成される。   In the present embodiment, between the main heat radiating unit 110 and the supercooling heat radiating unit 140, heat transfer between the refrigerant passing through the main heat radiating unit 110 and the refrigerant cooled through the subcooling heat radiating unit 140 is performed. A heat transfer prevention unit 150 is formed for prevention.

熱伝達防止部150は、複数のプレート115が積層される時に形成された複数のブレイジングホール151があり、ブレイジングホール151を通して溶接時にその内部に窒素を流し、溶接により発生したガスを外部に排出して溶接不良率を低下させることができる。そして、各ブレイジングホール151は、熱伝達防止部150を形成するための窒素の注入後、閉鎖される。   The heat transfer prevention unit 150 has a plurality of brazing holes 151 formed when a plurality of plates 115 are stacked. Nitrogen flows through the brazing holes 151 during welding and discharges the gas generated by the welding to the outside. As a result, the welding defect rate can be reduced. Each brazing hole 151 is closed after nitrogen is injected to form the heat transfer prevention unit 150.

上述したように、本発明のコンデンサ100は、複数のプレート115が積層されて形成される熱交換器を有している。つまり、コンデンサ100は、ラジエータ107で冷却された冷却水が冷却水流入口121からメイン放熱部110に流入される。この冷却水は、メイン放熱部110で複数のプレート115の間に形成された冷却水流路119に沿って循環し、冷却水排出口123からコンデンサ100を出て再びラジエータ107に供給される。   As described above, the capacitor 100 of the present invention has a heat exchanger formed by laminating a plurality of plates 115. That is, in the condenser 100, the cooling water cooled by the radiator 107 flows into the main heat radiating unit 110 from the cooling water inlet 121. This cooling water circulates along the cooling water flow path 119 formed between the plurality of plates 115 in the main heat radiating section 110, exits the condenser 100 from the cooling water discharge port 123, and is supplied to the radiator 107 again.

一方、圧縮器105からの冷媒は、冷媒流入口125からメイン放熱部110に入り、冷却水流路119と交互に形成された冷媒流路117のうち第1冷媒流路117aを流れて気液分離部118に入る。気液分離部118で、気体冷媒と液体冷媒に分離され、気体冷媒は第2冷媒流路117bを流れ、液体冷媒は第3冷媒流路117cを流れ、それぞれ冷却水と熱交換する。   On the other hand, the refrigerant from the compressor 105 enters the main heat radiating section 110 through the refrigerant inlet 125 and flows through the first refrigerant flow path 117a among the refrigerant flow paths 117 formed alternately with the cooling water flow path 119 to separate the gas and liquid. Part 118 is entered. The gas-liquid separation unit 118 separates the gas refrigerant and the liquid refrigerant, the gas refrigerant flows through the second refrigerant flow path 117b, and the liquid refrigerant flows through the third refrigerant flow path 117c to exchange heat with the cooling water.

この時、気液分離部118で分離された気体冷媒と液体冷媒は、それぞれ冷却水と対向流となるようにして熱交換が行われるようにする。そして、メイン放熱部110で冷却され凝縮した液体冷媒は、第1連結流路126あるいは第2連結流路127を通ってレシーバードライヤー部130へ流れる。   At this time, heat exchange is performed so that the gas refrigerant and the liquid refrigerant separated by the gas-liquid separation unit 118 are opposed to the cooling water, respectively. The liquid refrigerant cooled and condensed by the main heat radiating unit 110 flows to the receiver dryer unit 130 through the first connection channel 126 or the second connection channel 127.

冷却された冷媒は、レシーバードライヤー部130の内部で循環しながら気液分離が行われ、さらに乾燥剤135dにより冷媒中の水分が除かれ、第3連結流路128を通って過冷放熱部140に流入する。過冷放熱部140に流入した冷媒は、過冷放熱部140の冷媒流路117に沿って循環する。   The cooled refrigerant is subjected to gas-liquid separation while circulating inside the receiver dryer unit 130, moisture in the refrigerant is removed by the desiccant 135 d, and the supercooling heat radiating unit 140 passes through the third connection channel 128. Flow into. The refrigerant that has flowed into the supercooling heat radiation unit 140 circulates along the refrigerant flow path 117 of the supercooling heat radiation unit 140.

この時、過冷放熱部140の気体冷媒流路141には、蒸発器103から供給された低温低圧の気体冷媒が、冷媒流路117を流れる冷媒とは反対方向に流れて熱交換する。
過冷放熱部140の冷媒流路117を流れた冷媒は、冷媒排出口129を通って膨張バルブ101に供給される。
At this time, the low-temperature and low-pressure gas refrigerant supplied from the evaporator 103 flows in the gas refrigerant flow path 141 of the supercooling heat radiating unit 140 in the opposite direction to the refrigerant flowing through the refrigerant flow path 117 to exchange heat.
The refrigerant that has flowed through the refrigerant flow path 117 of the supercooling heat dissipating unit 140 is supplied to the expansion valve 101 through the refrigerant discharge port 129.

一方、過冷放熱部140の気体冷媒流路141を流れた気体冷媒は、気体冷媒排出口145を通って圧縮器105に供給される。   On the other hand, the gaseous refrigerant that has flowed through the gaseous refrigerant flow path 141 of the supercooling heat radiating section 140 is supplied to the compressor 105 through the gaseous refrigerant discharge port 145.

本発明では、レシーバードライヤー部130が、メイン放熱部110と過冷放熱部140の端部に一体に構成されることによって、レシーバードライヤー部130とメイン放熱部110および過冷放熱部140を連結するための別途の連結配管をなくすことができ、同時に、コンデンサ100と同じ形状にすることにより全体容積を小さくして冷媒を循環させることができる。そして、メイン放熱部110と過冷放熱部140は、熱伝達防止部150により冷媒の相互熱伝達を防止してコンデンサ100全体の冷却効率を向上させることができる。   In the present invention, the receiver dryer unit 130 is integrally formed at the ends of the main heat dissipating unit 110 and the supercooling heat dissipating unit 140, thereby connecting the receiver dryer unit 130, the main heat dissipating unit 110, and the subcooling heat dissipating unit 140. For this reason, it is possible to eliminate the separate connecting pipe for the purpose, and at the same time, by making the same shape as the capacitor 100, it is possible to reduce the overall volume and to circulate the refrigerant. The main heat dissipating unit 110 and the undercooling heat dissipating unit 140 can improve the cooling efficiency of the entire capacitor 100 by preventing the heat transfer preventing unit 150 from mutually transferring heat.

本発明のコンデンサ100を説明するに当たり、メイン放熱部110、レシーバードライヤー部130、および過冷放熱部140が、上部カバー111と下部カバー113の間に複数のプレート115が積層された実施形態で説明したが、これに限定されるものではない。上部カバー111と下部カバー113なしに積層された複数のプレート115のみでも、メイン放熱部110と過冷放熱部140、ならびにレシーバードライヤー部130を構成することができる。   In explaining the capacitor 100 of the present invention, the main heat radiating part 110, the receiver dryer part 130, and the supercooling heat radiating part 140 are explained in an embodiment in which a plurality of plates 115 are laminated between the upper cover 111 and the lower cover 113. However, the present invention is not limited to this. The main heat dissipating part 110, the supercooling heat dissipating part 140, and the receiver dryer part 130 can be configured with only the plurality of plates 115 stacked without the upper cover 111 and the lower cover 113.

本発明のコンデンサ100は、レシーバードライヤーを一体に構成し、複数のプレートが積層されており、冷却水を利用して冷媒を気体冷媒と液体冷媒に分離して凝縮するようになっている。また、凝縮された冷媒を、蒸発器103を通って供給された低温低圧の気体冷媒との熱交換で過冷させるようになっている。したがって、構成部品を小さくし、連結配管レイアウトを簡素化することができ、全体重量を小さく、製造原価を低減させることができる。   In the condenser 100 of the present invention, a receiver dryer is integrally formed and a plurality of plates are stacked, and the refrigerant is condensed into gas refrigerant and liquid refrigerant using cooling water. Further, the condensed refrigerant is supercooled by heat exchange with a low-temperature and low-pressure gaseous refrigerant supplied through the evaporator 103. Therefore, it is possible to reduce the component parts, simplify the connection piping layout, reduce the overall weight, and reduce the manufacturing cost.

メイン放熱部110で凝縮された冷媒を再び過冷放熱部140で低温低圧の気体冷媒と熱交換して過冷させることができるので、冷媒を追加的に過冷するための別途の装置や配管をなくすことができる。従って、追加の費用がなくすることができる。   Since the refrigerant condensed in the main heat radiating section 110 can be re-cooled by heat exchange with the low-temperature and low-pressure gas refrigerant again in the sub-cooling heat radiating section 140, a separate device or piping for additionally sub-cooling the refrigerant Can be eliminated. Thus, additional costs can be eliminated.

コンデンサ100は、メイン放熱部110の第1冷媒流路117aを通った冷媒を気液分離部118で気体冷媒と液体冷媒に分離し、気体冷媒と液体冷媒をそれぞれ冷却水と熱交換させて凝縮させる。従って、熱交換効率を向上させることができる。   The capacitor 100 separates the refrigerant that has passed through the first refrigerant flow path 117a of the main heat radiating unit 110 into a gas refrigerant and a liquid refrigerant by the gas-liquid separation unit 118, and condenses the gas refrigerant and the liquid refrigerant by exchanging heat with cooling water, respectively. Let Therefore, the heat exchange efficiency can be improved.

レシーバードライヤーをメイン放熱部110と過冷放熱部140と一体に構成することによって、コンデンサ100内の容積を小さくすることができ、コンデンサ100の放熱面積が大きくなり、コンデンサ100の寸法を大きくせずに冷却効率を上げることができ、商品性を向上させることができる。   By configuring the receiver dryer integrally with the main heat dissipating part 110 and the subcooling heat dissipating part 140, the volume in the capacitor 100 can be reduced, the heat dissipating area of the capacitor 100 is increased, and the dimensions of the capacitor 100 are not increased. In addition, the cooling efficiency can be increased, and the merchantability can be improved.

以上、本発明のコンデンサを、限定された実施形態と図面で説明したが、本発明はこれにより限定されず、本発明が属する技術分野における通常の知識を有する者により本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正および変形が可能であることは当然である。 The capacitor of the present invention has been described with reference to the embodiments and drawings. However, the present invention is not limited to this, and the technical idea and patent of the present invention can be obtained by a person having ordinary knowledge in the technical field to which the present invention belongs. Naturally, various modifications and variations are possible within the equivalent scope of the claims.

100:コンデンサ
101:膨張バルブ
103:蒸発器
105:圧縮器
107:ラジエータ
108:リザーバタンク
109:冷却ファン
110:メイン放熱部
111:上部カバー
113:下部カバー
115:プレート
117:冷媒流路
117a:第1冷媒流路
117b:第2冷媒流路
117c:第3冷媒流路
118:気液分離部
119:冷却水流路
121:冷却水流入口
122:隔壁
123:冷却水排出口
125:冷媒流入口
126:第1連結流路
127:第2連結流路
128:第3連結流路
129:冷媒排出口
130:レシーバードライヤー部
131:装着空間
133:挿入ホール
135:乾燥剤
137:固定キャップ
140:過冷放熱部
141:気体冷媒流路
143:気体冷媒流入口
145:気体冷媒排出口
150:熱伝達防止部
151:ブレイジングホール
DESCRIPTION OF SYMBOLS 100: Capacitor 101: Expansion valve 103: Evaporator 105: Compressor 107: Radiator 108: Reservoir tank 109: Cooling fan 110: Main heat dissipation part 111: Upper cover 113: Lower cover 115: Plate 117: Refrigerant flow path 117a: No. 1 refrigerant channel 117b: second refrigerant channel 117c: third refrigerant channel 118: gas-liquid separator 119: cooling water channel 121: cooling water inlet 122: partition wall 123: cooling water outlet 125: refrigerant inlet 126: First connection channel 127: Second connection channel 128: Third connection channel 129: Refrigerant outlet 130: Receiver dryer part 131: Installation space 133: Insertion hole 135: Desiccant 137: Fixing cap 140: Supercooling heat dissipation Portion 141: Gas refrigerant flow path 143: Gas refrigerant inlet 145: Gas refrigerant outlet 15 0: Heat transfer prevention part 151: Blazing hole

Claims (17)

膨張バルブ、蒸発器、圧縮器を含むエアコンシステムに使用され、前記圧縮器と前記膨張バルブとの間に備えられ、前記圧縮器から流入した冷媒を、ラジエータから供給された冷却水と熱交換させて、凝縮させる車両用コンデンサにおいて、
複数のプレートが積層されて、前記圧縮器からの冷媒を循環させ、前記ラジエータからの冷却水を循環させ、前記冷媒を、前記冷却水と熱交換させて凝縮させるメイン放熱部と、
前記メイン放熱部と一体に形成され、前記メイン放熱部と連通して、前記メイン放熱部で凝縮された冷媒を流入させて、冷媒の気液分離と水分除去を行うレシーバードライヤー部と、
前記メイン放熱部の下部に一体に形成され、前記蒸発器から供給された低温低圧の気体冷媒を循環させ、前記レシーバードライヤー部から流入した冷媒を、前記低温低圧の気体冷媒と熱交換させて過冷させる過冷放熱部と、
を有する構成であり、
前記メイン放熱部は、
前記メイン放熱部の中心部に長さ方向に沿って形成され、前記メイン放熱部の一端部に設けられた冷媒流入口を経て前記圧縮器から流入した冷媒が流れる第1冷媒流路、
前記メイン放熱部の内部他端部に形成されて、前記第1冷媒流路を流れた冷媒を気体冷媒と液体冷媒に分離させる気液分離部、
前記第1冷媒流路の上部に形成され、前記気液分離部で分離された気体冷媒が流れる少なくとも一つの第2冷媒流路、および
前記第1冷媒流路の下部に形成され、前記気液分離部で分離された液体冷媒が流れる少なくとも一つの第3冷媒流路、を有し、
前記メイン放熱部、レシーバードライヤー部、および過冷放熱部の上部には、上部カバー、下部には下部カバーがそれぞれ装着され、
前記下部カバーは、前記上部カバーに前記冷媒流入口が形成された端部に、前記膨張バルブと連結される冷媒排出口と、前記蒸発器と連結される気体冷媒流入口が形成され、その反対側端部には、前記圧縮器と連結される気体冷媒排出口が形成されることを特徴とする車両用コンデンサ。
Used in an air conditioner system including an expansion valve, an evaporator, and a compressor, provided between the compressor and the expansion valve, heat exchange of the refrigerant flowing from the compressor with cooling water supplied from a radiator. In the vehicle condenser to be condensed,
A plurality of plates are stacked to circulate the refrigerant from the compressor, to circulate the cooling water from the radiator, and to exchange heat with the cooling water to condense the refrigerant with the cooling water,
A receiver dryer unit that is formed integrally with the main heat dissipating part, communicates with the main heat dissipating part, allows the refrigerant condensed in the main heat dissipating part to flow, and performs gas-liquid separation and moisture removal of the refrigerant;
A low-temperature low-pressure gas refrigerant supplied from the evaporator is circulated integrally with a lower part of the main heat radiating unit, and the refrigerant flowing from the receiver dryer unit is heat-exchanged with the low-temperature low-pressure gas refrigerant to be passed through. An undercooling heat dissipating part to be cooled;
And a configuration having
The main heat dissipating part is
A first refrigerant flow path that is formed along a length direction in a center portion of the main heat radiating portion and through which a refrigerant flowing from the compressor flows through a refrigerant inlet provided at one end of the main heat radiating portion;
A gas-liquid separation unit that is formed at the other inner end of the main heat dissipation unit and separates the refrigerant that has flowed through the first refrigerant flow path into a gaseous refrigerant and a liquid refrigerant;
At least one second refrigerant channel formed in the upper part of the first refrigerant channel and through which the gas refrigerant separated by the gas-liquid separator flows; and formed in the lower part of the first refrigerant channel; at least one third refrigerant flow path of the liquid refrigerant separated by the separating unit flows, have a,
An upper cover is attached to the upper part of the main heat radiating part, the receiver dryer part, and the supercooling heat radiating part, and a lower cover is attached to the lower part,
The lower cover is formed with a refrigerant outlet connected to the expansion valve and a gas refrigerant inlet connected to the evaporator at an end of the upper cover where the refrigerant inlet is formed, and vice versa. A vehicular capacitor characterized in that a gas refrigerant discharge port connected to the compressor is formed at a side end portion .
前記気液分離部は、上部で前記第2冷媒流路の1つと連通し、下部で前記第3冷媒流路の1つと連通して、他の第2冷媒流路と第3冷媒流路とは前記プレートにより直接の連通がないことを特徴とする請求項1に記載の車両用コンデンサ。   The gas-liquid separation part communicates with one of the second refrigerant flow paths at the upper part, communicates with one of the third refrigerant flow paths at the lower part, and includes another second refrigerant flow path and a third refrigerant flow path. The vehicle capacitor according to claim 1, wherein the plate is not in direct communication with the plate. 前記メイン放熱部は、前記冷媒と前記冷却水が対向流して熱交換することを特徴とする請求項1に記載の車両用コンデンサ。   2. The vehicle capacitor according to claim 1, wherein the main heat dissipating unit exchanges heat by allowing the refrigerant and the cooling water to flow opposite to each other. 前記メイン放熱部は、前記第2冷媒流路で凝縮された冷媒が第1連結流路により前記レシーバードライヤー部に送られ、前記第3冷媒流路で温度が下げられた冷媒が第2連結流路により前記レシーバードライヤー部に送られる、ことを特徴とする請求項1に記載の車両用コンデンサ。 In the main heat radiating section, the refrigerant condensed in the second refrigerant flow path is sent to the receiver dryer section by the first connection flow path, and the refrigerant whose temperature is lowered in the third refrigerant flow path is the second connection flow. vehicle capacitor according to claim 1 which is sent more to the receiver drier unit for the road, characterized in that. 前記過冷放熱部は、前記レシーバードライヤー部からの冷媒と、前記蒸発器からの低温低圧の気体冷媒とが対向流して、熱交換することを特徴とする請求項1に記載の車両用コンデンサ。   2. The vehicular capacitor according to claim 1, wherein the supercooling heat dissipating unit exchanges heat by causing a refrigerant from the receiver dryer unit and a low-temperature and low-pressure gas refrigerant from the evaporator to flow opposite to each other. 前記過冷放熱部は、第3連結流路を通じて前記レシーバードライヤー部と連結され、前記レシーバードライヤー部から気液分離および水分が除去された冷媒が流入することを特徴とする請求項1に記載の車両用コンデンサ。   2. The refrigerant according to claim 1, wherein the undercooling heat radiating unit is connected to the receiver dryer unit through a third connection channel, and a refrigerant from which gas-liquid separation and moisture have been removed flows from the receiver dryer unit. Capacitors for vehicles. 前記過冷放熱部は、
前記レシーバードライヤー部から前記第3連結流路を通じて流入した冷媒が流れる冷媒流路と、
前記冷媒流路と交互に形成され、前記蒸発器から供給された低温低圧の気体冷媒が流れる気体冷媒流路と、
を有し、
前記冷媒流路を流れる冷媒を、前記気体冷媒流路を流れる気体冷媒と熱交換して過冷させることを特徴とする請求項6に記載の車両用コンデンサ。
The undercooling heat radiating part is
A refrigerant flow path through which the refrigerant flowing from the receiver dryer section through the third connection flow path flows;
A gas refrigerant flow path formed alternately with the refrigerant flow path, through which a low-temperature and low-pressure gas refrigerant supplied from the evaporator flows,
Have
The vehicle capacitor according to claim 6, wherein the refrigerant flowing through the refrigerant flow path is supercooled by exchanging heat with the gas refrigerant flowing through the gaseous refrigerant flow path.
前記メイン放熱部と前記過冷放熱部との間には、前記メイン放熱部を通過する冷媒と、前記過冷放熱部を通過する冷媒との熱伝達を防止するための熱伝達防止部が形成されることを特徴とする請求項1に記載の車両用コンデンサ。   Between the main heat radiating portion and the undercooling heat radiating portion, a heat transfer preventing portion for preventing heat transfer between the refrigerant passing through the main heat radiating portion and the refrigerant passing through the overcooling heat radiating portion is formed. The vehicle capacitor according to claim 1, wherein the vehicle capacitor is provided. 前記熱伝達防止部は、前記メイン放熱部と前記過冷放熱部との間で長さ方向に複数のブレイジングホールが形成され、前記ブレイジングホールを通して溶接時にその内部に窒素を注入できるようにしたことを特徴とする請求項8に記載の車両用コンデンサ。   The heat transfer prevention part has a plurality of brazing holes formed in a length direction between the main heat radiation part and the supercooling heat radiation part, and nitrogen can be injected into the inside during welding through the brazing hole. The vehicle capacitor according to claim 8. 前記上部カバーは、その一端部に、前記ラジエータからの冷却水が入る冷却水流入口、他端部に、前記メイン放熱部から冷却水を排出するための冷却水排出口が形成され、さらに、前記冷却水排出口のある端部に、前記圧縮器からの冷媒が入る冷媒流入口が形成されることを特徴とする請求項に記載の車両用コンデンサ。 The upper cover is formed with a cooling water inlet for receiving cooling water from the radiator at one end thereof, and a cooling water discharge port for discharging cooling water from the main heat radiating portion at the other end, the end of the cooling water outlet, a vehicle condenser of claim 1, characterized in that the coolant inlet port is formed in which the refrigerant from the compressor enters. 前記第2冷媒流路を形成するプレートの一端部が折り曲げられて隔壁を形成することを特徴とする請求項に記載の車両用コンデンサ。 The vehicle capacitor according to claim 1 , wherein one end of a plate forming the second refrigerant flow path is bent to form a partition wall. 前記第3冷媒流路を形成するプレートのうち最上部に位置するプレートによって、前記第3冷媒流路は、前記冷媒流入口と直接的に連通しないことを特徴とする請求項に記載の車両用コンデンサ。 The plate positioned on top of the plate forming the third refrigerant flow path, the third refrigerant flow path of the vehicle according to claim 1, characterized in that do not communicate directly with the coolant inlet Capacitor. 前記レシーバードライヤー部は、その内部に装着空間が形成され、前記装着空間に対応して前記下部カバーには挿入ホールが形成されることを特徴とする請求項1に記載の車両用コンデンサ。 The vehicular capacitor according to claim 1, wherein a mounting space is formed in the receiver dryer unit, and an insertion hole is formed in the lower cover corresponding to the mounting space. 前記装着空間には、前記挿入ホールを通じて乾燥剤が挿入されることを特徴とする請求項13に記載の車両用コンデンサ。 The vehicular capacitor according to claim 13 , wherein a desiccant is inserted into the mounting space through the insertion hole. 前記挿入ホールには、前記装着空間に挿入された乾燥剤の離脱を防止し、前記レシーバードライヤー部に流入された冷媒が外部に漏れ出ることを防止する固定キャップが装着されることを特徴とする請求項14に記載の車両用コンデンサ。 The insertion hole is provided with a fixing cap that prevents the desiccant inserted into the mounting space from being detached and prevents the refrigerant flowing into the receiver dryer part from leaking outside. The vehicle capacitor according to claim 14 . 前記ラジエータは、リザーバタンクと連結され、後方には冷却ファンが備えられることを徴とする請求項1に記載の車両用コンデンサ。 The radiator is connected to the reservoir tank, vehicle condenser of claim 1, in the rear and feature a cooling fan is provided. 前記コンデンサは、複数のプレートが積層されて形成される熱交換器を有することを特徴とする請求項1に記載の車両用コンデンサ。
The vehicle capacitor according to claim 1, wherein the capacitor includes a heat exchanger formed by stacking a plurality of plates.
JP2012145664A 2011-12-08 2012-06-28 Vehicle capacitors Active JP6041424B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0131299 2011-12-08
KR1020110131299A KR101316858B1 (en) 2011-12-08 2011-12-08 Condenser for vehicle

Publications (2)

Publication Number Publication Date
JP2013119382A JP2013119382A (en) 2013-06-17
JP6041424B2 true JP6041424B2 (en) 2016-12-07

Family

ID=48464736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145664A Active JP6041424B2 (en) 2011-12-08 2012-06-28 Vehicle capacitors

Country Status (5)

Country Link
US (1) US20130146257A1 (en)
JP (1) JP6041424B2 (en)
KR (1) KR101316858B1 (en)
CN (1) CN103162473B (en)
DE (1) DE102012105804A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960955B2 (en) 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company Vehicle capacitors
FR3000183B1 (en) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques CONDENSER WITH FRIGORIGENE FLUID RESERVE FOR AIR CONDITIONING CIRCUIT
CN105074375B (en) 2013-02-27 2018-05-15 株式会社电装 Cascade type heat exchanger
JP6160385B2 (en) * 2013-09-17 2017-07-12 株式会社デンソー Laminate heat exchanger
DE102013011477A1 (en) 2013-07-09 2015-01-15 Volkswagen Aktiengesellschaft Drive unit for a motor vehicle
CN104279800B (en) * 2013-07-09 2018-01-23 比亚迪股份有限公司 Electric automobile air-conditioning system and electric automobile
KR101575315B1 (en) * 2013-10-14 2015-12-07 현대자동차 주식회사 Heat exchanger for vehicle
KR101918506B1 (en) * 2013-12-18 2018-11-14 한온시스템 주식회사 Heat Exchanger
KR102173383B1 (en) * 2014-07-24 2020-11-03 한온시스템 주식회사 Air conditioner system for vehicle
KR102131158B1 (en) * 2014-07-24 2020-07-08 한온시스템 주식회사 Air conditioner system for vehicle
WO2016117069A1 (en) 2015-01-22 2016-07-28 三菱電機株式会社 Plate heat exchanger and heat-pump-type outdoor device
DE102016001607A1 (en) 2015-05-01 2016-11-03 Modine Manufacturing Company Liquid-to-refrigerant heat exchanger and method of operating the same
CN105737647B (en) * 2016-03-22 2017-11-03 江苏远卓设备制造有限公司 A kind of plate type heat exchanger for steam-water separation
JP6658242B2 (en) * 2016-04-15 2020-03-04 株式会社デンソー Heat exchanger
JP6911469B2 (en) * 2017-03-31 2021-07-28 株式会社Ihi Heat treatment equipment
DE102018129988A1 (en) 2018-07-09 2020-01-09 Hanon Systems Compact heat exchanger unit and air conditioning module, especially for electric vehicles
JP7400234B2 (en) * 2019-07-16 2023-12-19 株式会社デンソー Heat exchanger
JP7207286B2 (en) * 2019-07-23 2023-01-18 株式会社デンソー Heat exchanger
WO2021014893A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heat exchanger
JP7188376B2 (en) * 2019-07-23 2022-12-13 株式会社デンソー Heat exchanger
CN112747613B (en) * 2019-10-31 2023-06-13 丹佛斯有限公司 Heat exchange plate for plate heat exchanger and plate heat exchanger
US20230173874A1 (en) * 2021-12-07 2023-06-08 Mahle International Gmbh Plate ihx as mounting plate for refrigerant module

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825861B2 (en) * 1989-02-17 1998-11-18 アイシン精機株式会社 Internal combustion engine with water-cooled intercooler
JPH06137726A (en) * 1991-05-31 1994-05-20 Suzuki Motor Corp Mounting layout of high and low pressure switch and fusible plug for car air conditioning device
GB2290130B (en) * 1994-06-01 1998-07-29 Ind Tech Res Inst Refrigeration system and method of operation
JPH0840054A (en) * 1994-08-01 1996-02-13 Zexel Corp Air-conditioning control device for vehicle
JP2900898B2 (en) * 1996-10-28 1999-06-02 ダイキン工業株式会社 Plate heat exchanger
KR100264815B1 (en) * 1997-06-16 2000-09-01 신영주 Multi-stage air and liquid separable type condenser
JPH11287572A (en) * 1998-03-31 1999-10-19 Hisaka Works Ltd Brazing plate type heat exchanger
KR100805424B1 (en) * 2001-08-30 2008-02-20 한라공조주식회사 Condenser having double refrigerant pass and refrigerating plant used the condenser
DE10164668A1 (en) * 2001-12-28 2003-07-10 Behr Lorraine S A R L Europole Soldered capacitor
KR100872468B1 (en) * 2002-05-24 2008-12-08 한라공조주식회사 Multistage gas and liquid phase separation type condenser
FR2846733B1 (en) * 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa CONDENSER, IN PARTICULAR FOR A CIRCUIT FOR CIMATING A MOTOR VEHICLE, AND CIRCUIT COMPRISING THE CONDENSER
JP4334965B2 (en) * 2003-09-30 2009-09-30 株式会社日阪製作所 Plate heat exchanger
JP4323307B2 (en) * 2003-12-26 2009-09-02 カルソニックカンセイ株式会社 Vehicle heat exchanger system
EP1616610B1 (en) * 2004-07-13 2012-07-25 Byeong-Seung Lee Plate heat exchanger with condensed fluid separating function and its manufacturing method
JP4367294B2 (en) * 2004-09-02 2009-11-18 株式会社デンソー Cooling device for water-cooled internal combustion engine for vehicle
US7237406B2 (en) * 2004-09-07 2007-07-03 Modine Manufacturing Company Condenser/separator and method
JP3812582B2 (en) * 2005-01-20 2006-08-23 株式会社デンソー Receiver integrated refrigerant condenser
US7753105B2 (en) * 2006-05-16 2010-07-13 Delphi Technologies, Inc. Liquid cooled condenser having an integrated heat exchanger
JP2008064455A (en) * 2007-11-23 2008-03-21 Denso Corp Heat exchanger module for cooling
US8588336B2 (en) 2009-03-20 2013-11-19 Signal Processing Devices Sweden Ab Methods and apparatuses for compensation of I/Q imbalance
KR101188226B1 (en) * 2009-10-13 2012-10-05 한라공조주식회사 Heat Exchanger
KR101222590B1 (en) * 2010-01-14 2013-01-16 한라공조주식회사 Refrigerant system for vehicles
CN201740318U (en) * 2010-06-04 2011-02-09 上海恒安空调设备有限公司 Automobile air-conditioning condenser
JP5960955B2 (en) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company Vehicle capacitors
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
FR3001796A1 (en) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Condenser and sub-cooler arrangement for air-conditioning circuit of vehicle, has drain for connecting receiver-dehumidifier to inlet of channel, so that fluid circulates successively in condenser, receiver-dehumidifier and sub-cooler

Also Published As

Publication number Publication date
KR101316858B1 (en) 2013-10-10
US20130146257A1 (en) 2013-06-13
KR20130064603A (en) 2013-06-18
DE102012105804A1 (en) 2013-06-13
CN103162473A (en) 2013-06-19
CN103162473B (en) 2017-08-18
JP2013119382A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP6041424B2 (en) Vehicle capacitors
JP5960955B2 (en) Vehicle capacitors
JP6010356B2 (en) Vehicle capacitors
JP6022156B2 (en) Vehicle capacitors
KR101461872B1 (en) Condenser for vehicle
KR101326841B1 (en) Condenser for vehicle
KR101461871B1 (en) Condenser for vehicle
CN111114243B (en) Cooling module for a vehicle
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
KR101610075B1 (en) Condenser for vehicle
KR101619187B1 (en) Condenser for vehicle
KR101734281B1 (en) Condenser for vehicle
KR102123858B1 (en) Air conditioner system for vehicle
KR102161475B1 (en) Air conditioner system for vehicle
KR102173383B1 (en) Air conditioner system for vehicle
KR102206973B1 (en) Air conditioner system for vehicle
KR102092568B1 (en) Air conditioner system for vehicle
KR101081964B1 (en) Receiver drier - integrated condenser
JP2018071911A (en) Condenser unit and refrigeration cycle device
KR101336493B1 (en) Condenser having integrated receiver drier
JP2018071910A (en) Condenser unit and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6041424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250