JPH0562683A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH0562683A
JPH0562683A JP25483791A JP25483791A JPH0562683A JP H0562683 A JPH0562683 A JP H0562683A JP 25483791 A JP25483791 A JP 25483791A JP 25483791 A JP25483791 A JP 25483791A JP H0562683 A JPH0562683 A JP H0562683A
Authority
JP
Japan
Prior art keywords
zinc
corrosion
general formula
added
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25483791A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Watanabe
光俊 渡辺
Hiroshi Ishiuchi
博 石内
Masaru Miwa
優 美和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP25483791A priority Critical patent/JPH0562683A/en
Publication of JPH0562683A publication Critical patent/JPH0562683A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress a corrosion of zinc and a generation of hydrogen gas from the zinc by using a specific fluorine system compound in an alkaline battery using zinc as the negative electrode active material. CONSTITUTION:In a positive electrode compound 1, manganese dioxide is used as the positive electrode active material, a flake graphite as a conductive auxiliary and polyacrylic acid soda as a binder are added to the manganese dioxide, and they are mixed to form a ring form of compound, which is inserted to a positive electrode can 2 with terminals. And a negative electrode compound 4 consists of a paste form zinc, and 60 pts.wt. of zinc powder of the viscosity 35 to 200 mesh including 500ppm of lead, for example, and 2 pts.wt. of polyacrylic acid soda are mixed in a dry mixing, and then, 38 pts.wt. of electrolyte in which a specific fluorine system compound shown by the formula is added as a corrosion suppressing agent is added and churned, and gelled into a paste. In the formula, M is hydrogen or an alkaline metal, and n is 2 to 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は負極活物質として亜鉛を
用いるアルカリ電池に関する。
FIELD OF THE INVENTION The present invention relates to an alkaline battery using zinc as a negative electrode active material.

【0002】[0002]

【従来の技術】従来、負極活物質として亜鉛を用いるア
ルカリ電池では、亜鉛の腐食による水素ガスの発生を抑
制するために、亜鉛粒子の表面を水銀でアマルガム化す
ることが行われていた。そして、その水銀量は、亜鉛に
対する腐食抑制効果を重視して、多い場合、アマルガム
化率(汞化率)で10重量%近くにまで達していた(た
とえば、「新しい電池」、東京電機大学出版局発行、昭
和53年、第42頁)。
2. Description of the Related Art Conventionally, in alkaline batteries using zinc as a negative electrode active material, the surface of zinc particles has been amalgamated with mercury in order to suppress generation of hydrogen gas due to corrosion of zinc. When the amount of mercury is large, with an emphasis on the corrosion inhibitory effect on zinc, the amalgamation rate (blinding rate) reached nearly 10% by weight (for example, "new battery", published by Tokyo Denki University Press). Issued by the Bureau, 1978, p. 42).

【0003】しかしながら、最近は水銀による環境汚染
が問題になり、アマルガム化率を減少することが要求さ
れている。
However, recently, environmental pollution due to mercury has become a problem, and it is required to reduce the amalgamation rate.

【0004】そのため、水銀に代えて、インジウム、
鉛、ガリウム、アルミニウム、ビスマスなどを亜鉛に添
加して、亜鉛と合金化することによって亜鉛の腐食を抑
制することが検討され、現在では、アマルガム化率を
0.10〜0.15重量%程度にまで低減できるように
なってきた。
Therefore, instead of mercury, indium,
It has been investigated to suppress corrosion of zinc by adding lead, gallium, aluminum, bismuth, etc. to zinc and alloying with zinc. Currently, the amalgamation rate is about 0.10 to 0.15% by weight. It has become possible to reduce to

【0005】[0005]

【発明が解決しようとする課題】しかしながら、今後、
無水銀化していくためには、これまで提案されてきた添
加金属だけでは充分といえず、また、従来から腐食抑制
剤として提案されているラクトニトリルやカルバゾール
などの有機系インヒビターも、充分な効果を持つものが
なく、無水銀化のための有効な手段となっていないのが
現状である。
[Problems to be Solved by the Invention] However, in the future,
In order to eliminate mercury, the additive metals that have been proposed so far cannot be said to be sufficient, and organic inhibitors such as lactonitrile and carbazole that have been conventionally proposed as corrosion inhibitors have sufficient effects. In the present situation, there is no such thing as, and it is not an effective means for silver-free conversion.

【0006】したがって、本発明は、負極活物質として
亜鉛を用いるアルカリ電池を無水銀化していくにあたっ
て生じる問題点を解決し、環境汚染を引き起こすことな
く、亜鉛の腐食を抑制して、亜鉛からの水素ガスの発生
を抑制することを目的とする。
Therefore, the present invention solves the problems that occur in the process of making an alkaline battery using zinc as a negative electrode active material into anhydrous silver, suppresses corrosion of zinc without causing environmental pollution, and suppresses corrosion from zinc. The purpose is to suppress the generation of hydrogen gas.

【0007】[0007]

【課題を解決するための手段】本発明は、亜鉛の腐食抑
制剤として、下記の一般式(I) F(CF2 n (CH2 2 S(CH2 2 COOM (I) (式中、Mは水素またはアルカリ金属であり、nは2〜
16である)で示されるフッ素系化合物を用いることに
よって、上記目的を達成したものである。
The present invention provides, as a zinc corrosion inhibitor, the following general formula (I) F (CF 2 ) n (CH 2 ) 2 S (CH 2 ) 2 COOM (I) Where M is hydrogen or an alkali metal, and n is 2 to
The above object is achieved by using a fluorine-based compound represented by 16).

【0008】上記一般式(I)で示されるフッ素系化合
物を用いることによって、亜鉛の腐食を抑制し、亜鉛か
らの水素ガスの発生を抑制できる理由は、現在のところ
必ずしも明確ではないが、次のように考えられる。
The reason why the corrosion of zinc and the generation of hydrogen gas from zinc can be suppressed by using the fluorine-based compound represented by the above general formula (I) is not always clear at present. Can be thought of as.

【0009】まず、亜鉛の腐食反応は、下記の式に示す
ように進行する。
First, the corrosion reaction of zinc proceeds as shown in the following equation.

【0010】 〔アノード〕 Zn+4OH- → Zn(OH)4 2- +2e- 〔カソード〕 2H2 O+2e- → 2OH- +H2 [Anode] Zn + 4OH → Zn (OH) 4 2− + 2e [Cathode] 2H 2 O + 2e → 2OH + H 2

【0011】一般式(I)で示されるフッ素系化合物
は、その極性基(S含有基)が亜鉛に吸着し、かつ撥水
性のあるF(CF2 n (CH2 2 の部分が亜鉛と電
解液との親和性を阻害して両者の接触面積を小さくさせ
るので、上記の腐食反応が抑制され、亜鉛からの水素ガ
スの発生が抑制されるようになるものと考えられる。
In the fluorine compound represented by the general formula (I), the polar group (S-containing group) is adsorbed on zinc, and the water-repellent F (CF 2 ) n (CH 2 ) 2 portion is zinc. It is considered that the above-mentioned corrosion reaction is suppressed and generation of hydrogen gas from zinc is suppressed because the contact area between the electrolyte solution and the electrolyte solution is reduced by inhibiting the affinity between the electrolyte solution and the electrolyte solution.

【0012】また、一般式(I)で示されるフッ素系化
合物は、その鎖状構造部分の大部分がパーフルオロ系で
あるため、従来の有機インヒビターよりアルカリ電解液
中において安定であり、その腐食抑制効果の持続性が優
れている。
Further, the fluorine-based compound represented by the general formula (I) is more stable in an alkaline electrolyte than conventional organic inhibitors because its chain structure is mostly perfluoro-based and its corrosion The sustainability of the suppression effect is excellent.

【0013】本発明において、腐食抑制剤として用いる
フッ素系化合物を示す一般式(I)において、Mで示さ
れるアルカリ金属としては、リチウム、ナトリウム、カ
リウムなどがあげられる。これらのアルカリ金属はイオ
ン化しやすく、Mがアルカリ金属である場合、一般式
(I)で示されるフッ素系化合物の電解液への溶解性は
Mが水素の場合より優れている。
In the present invention, the alkali metal represented by M in the general formula (I) showing a fluorine compound used as a corrosion inhibitor includes lithium, sodium, potassium and the like. These alkali metals are easily ionized, and when M is an alkali metal, the solubility of the fluorine-based compound represented by the general formula (I) in the electrolytic solution is better than when M is hydrogen.

【0014】一般式(I)において、nを2〜16とし
たのは、nが2より小さくても、また、nが16より大
きくても、亜鉛の腐食を抑制する効果が充分でないから
である。そして、この一般式(I)中のnとしては、特
に6〜12が好ましい。
In the general formula (I), n is set to 2 to 16 because the effect of suppressing corrosion of zinc is not sufficient even if n is smaller than 2 or larger than 16. is there. And as n in this general formula (I), 6-12 are especially preferable.

【0015】上記一般式(I)で示されるフッ素系化合
物の使用方法としては、上記一般式(I)で示されるフ
ッ素系化合物を電解液に添加する方法、上記一般式
(I)で示されるフッ素系化合物を溶解または分散させ
た液で亜鉛を前処理する方法、上記一般式(I)で示さ
れるフッ素系化合物をセパレータに吸着させる方法など
が採用できる。
The fluorine-based compound represented by the general formula (I) can be used by adding the fluorine-based compound represented by the general formula (I) to the electrolytic solution, or by the general formula (I). A method of pretreating zinc with a liquid in which a fluorine-based compound is dissolved or dispersed, a method of adsorbing the fluorine-based compound represented by the general formula (I) onto a separator, and the like can be adopted.

【0016】上記一般式(I)で示されるフッ素系化合
物の使用量としては、亜鉛に対して50〜5000pp
m、特に100〜1000ppmの範囲が好ましい。
The amount of the fluorine compound represented by the general formula (I) used is 50 to 5000 pp relative to zinc.
m, particularly preferably in the range of 100 to 1000 ppm.

【0017】一般式(I)で示されるフッ素系化合物の
使用量が亜鉛に対して50ppmより少ない場合は、亜
鉛の腐食を抑制する効果が充分に発揮されず、また、5
000ppmより多くなると、亜鉛への吸着量が多くな
りすぎて放電異常が発生するおそれがある。
When the amount of the fluorine-based compound represented by the general formula (I) used is less than 50 ppm with respect to zinc, the effect of suppressing the corrosion of zinc is not sufficiently exerted, and 5
If the amount is more than 000 ppm, the amount of adsorption on zinc becomes too large, which may cause abnormal discharge.

【0018】本発明においては、上記のように一般式
(I)で示されるフッ素系化合物を腐食抑制剤として用
いることに特徴があるが、それ以外は通常の構成を採用
することができる。
The present invention is characterized in that the fluorine-based compound represented by the general formula (I) is used as a corrosion inhibitor as described above, but other than that, a usual constitution can be adopted.

【0019】たとえば、負極活物質としての亜鉛には、
亜鉛そのものはもとより、亜鉛にインジウム、鉛、ガリ
ウム、アルミニウム、ビスマスなどを添加したものを用
いることができるし、正極活物質としては、たとえば二
酸化マンガンなどを用いることができる。また、電解液
としては、水酸化カリウム水溶液、水酸化ナトリウム水
溶液などのアルカリ水溶液を用いることができるし、電
解液中に酸化亜鉛を添加しておくこともできる。
For example, zinc as the negative electrode active material contains
Not only zinc itself, but also zinc added with indium, lead, gallium, aluminum, bismuth, or the like can be used, and as the positive electrode active material, for example, manganese dioxide or the like can be used. As the electrolytic solution, an alkaline aqueous solution such as a potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution can be used, or zinc oxide can be added to the electrolytic solution.

【0020】[0020]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。なお、実施例に先立ち、実用電池にするこ
となく、各種腐食抑制剤を添加した電解液中に亜鉛を浸
漬して、腐食抑制剤による亜鉛の腐食抑制効果を調べた
結果を実験例1として示す。このような実験例1は、実
用電池にした場合の他の構成材料による影響を避け、一
般式(I)で示されるフッ素系化合物の亜鉛に対する腐
食抑制効果を正確に把握するためのものである。
EXAMPLES Next, the present invention will be described more specifically by way of examples. In addition, prior to the examples, the experimental results are shown as Experimental Example 1, in which zinc was immersed in an electrolytic solution to which various corrosion inhibitors were added, and the corrosion inhibitory effect of zinc by the corrosion inhibitors was examined, without using a practical battery. .. Such Experimental Example 1 is for accurately grasping the corrosion inhibition effect of zinc of the fluorine-based compound represented by the general formula (I) while avoiding the influence of other constituent materials in the case of being used as a practical battery. ..

【0021】実験例1 電解液として使用する酸化亜鉛を飽和させた35重量%
水酸化カリウム水溶液に各種腐食抑制剤を添加し、その
中に亜鉛粉末(鉛500ppm含有)を45℃で30日
間浸漬し、その間に発生した水素ガス量を測定した。そ
の結果を表1に示す。
Experimental Example 1 35 wt% saturated zinc oxide used as electrolyte
Various corrosion inhibitors were added to the aqueous potassium hydroxide solution, and zinc powder (containing 500 ppm of lead) was immersed therein at 45 ° C. for 30 days, and the amount of hydrogen gas generated during that period was measured. The results are shown in Table 1.

【0022】上記における亜鉛量は3.5gで、上記水
酸化カリウム水溶液量は2mlであり、これらは単3形
電池に充填する亜鉛量および注入する電解液量と同量で
ある。そして、腐食抑制剤の量は亜鉛に対して500p
pmである。
The amount of zinc in the above is 3.5 g, and the amount of the above potassium hydroxide aqueous solution is 2 ml, which are the same as the amount of zinc to be filled in the AA battery and the amount of electrolyte to be injected. And, the amount of corrosion inhibitor is 500 p for zinc
pm.

【0023】また、表1には、水銀を含まない亜鉛(た
だし、鉛500ppm含有)を用い、腐食抑制剤をまっ
たく添加していない場合(試料No.12の無添加)お
よび亜鉛としてアマルガム化率0.15重量%のアマル
ガム化亜鉛を用い、腐食抑制剤を添加しなかった場合
(試料No.13の従来亜鉛)について、同様に水素ガ
スの発生量を調べた結果を併せて示す。
In Table 1, zinc containing no mercury (containing 500 ppm of lead) was used, and no corrosion inhibitor was added (sample No. 12 was not added), and the amalgamation rate was determined as zinc. The results obtained by similarly examining the amount of hydrogen gas generated when 0.15% by weight of zinc amalgamate was used and no corrosion inhibitor was added (conventional zinc of Sample No. 13) are also shown.

【0024】なお、表1において、試料No.1のn=
2は一般式(I)中のnが2のフッ素系化合物、試料N
o.2のn=6は一般式(I)中のnが6のフッ素系化
合物、試料No.3のn=8は一般式(I)中のnが8
のフッ素系化合物、試料No.4のn=8、M=Naは
一般式(I)中のnが8でMがナトリウムであるフッ素
系化合物、試料No.5のn=12は一般式(I)中の
nが12のフッ素系化合物、試料No.6のn=16は
一般式(I)中のnが16のフッ素系化合物、試料N
o.7のn=25は一般式(I)中のnが25のフッ素
系化合物を示す。なお、試料No.1〜3および試料N
o.5〜7はいずれも一般式(I)中のMが水素のフッ
素系化合物である。
In Table 1, the sample No. N of 1 =
2 is a fluorine-based compound in which n in the general formula (I) is 2, sample N
o. 2 n = 6 is a fluorine-based compound in which n in the general formula (I) is 6, Sample No. N = 8 in 3 is 8 in the general formula (I).
Fluorine-based compound, sample No. 4 of n = 8 and M = Na is a fluorine-based compound in which n in the general formula (I) is 8 and M is sodium. 5 n = 12 is a fluorine-based compound in which n in the general formula (I) is 12, sample No. N = 16 in 6 is a fluorine-based compound in which n in the general formula (I) is 16, sample N
o. N = 25 in 7 represents a fluorine-based compound in which n in the general formula (I) is 25. Sample No. 1-3 and sample N
o. All of 5 to 7 are fluorine compounds in which M in the general formula (I) is hydrogen.

【0025】[0025]

【表1】 [Table 1]

【0026】表1において、試料No.1〜No.6の
腐食抑制剤は一般式(I)で示されるフッ素系化合物に
属するものであるが、この試料No.1〜No.6の腐
食抑制剤による場合は、水素ガスの発生量が少なく、従
来亜鉛(つまり、従来のアマルガム化率0.15重量%
の亜鉛)を用いた場合に近い水素ガス発生量であって、
腐食抑制効果が優れていた。
In Table 1, the sample No. 1-No. The corrosion inhibitor of No. 6 belongs to the fluorine-based compound represented by the general formula (I). 1-No. When the corrosion inhibitor of No. 6 is used, the amount of hydrogen gas generated is small, and the conventional zinc (that is, the conventional amalgamation rate of 0.15% by weight) is used.
The amount of hydrogen gas generated is similar to that of
The corrosion inhibition effect was excellent.

【0027】また、試料No.3と試料No.4との対
比からわかるように、一般式(I)中のMが水素の場合
もアルカリ金属の場合も、水素ガス発生量が同じであ
り、同等の腐食抑制効果を有していた。
Sample No. 3 and sample No. 3 As can be seen from the comparison with No. 4, the hydrogen gas generation amount was the same regardless of whether M in the general formula (I) was hydrogen or an alkali metal, and had the same corrosion inhibition effect.

【0028】実施例1 腐食抑制剤としてF(CF2 8 (CH2 2 S(CH
2 2 COOHを電解液に添加し、図1に示す構造の単
3形アルカリ電池を作製して、その10Ω放電(終止電
圧0.9V)での放電持続時間を調べた。その結果を表
2に示す。
Example 1 As a corrosion inhibitor, F (CF 2 ) 8 (CH 2 ) 2 S (CH
2 ) 2 COOH was added to the electrolytic solution to prepare an AA alkaline battery having the structure shown in FIG. 1 and its discharge duration at 10Ω discharge (final voltage 0.9 V) was examined. The results are shown in Table 2.

【0029】図1に示す電池について説明すると、図
中、1は正極合剤であり、この正極合剤1は二酸化マン
ガンを正極活物質とし、これに導電助剤としてのりん状
黒鉛とバインダーとしてのポリアクリル酸ソーダを加え
て混合した合剤をリング状に成形して、端子付きの正極
缶2内に挿入したものである。
The battery shown in FIG. 1 will be described. In the figure, 1 is a positive electrode mixture, and this positive electrode mixture 1 contains manganese dioxide as a positive electrode active material, and phosphorous graphite as a conduction aid and a binder. The mixed material obtained by adding and mixing the above sodium polyacrylate is molded into a ring shape and inserted into the positive electrode can 2 with a terminal.

【0030】3はセパレータであり、4はペースト状亜
鉛からなる負極剤である。この負極剤4は、鉛を500
ppm含有した粒度35〜200メッシュの亜鉛粉末6
0重量部とポリアクリル酸ソーダ2重量部を乾式混合し
た後、腐食抑制剤としてF(CF2 8 (CH2 2
(CH2 2 COOHを添加した電解液(酸化亜鉛を飽
和させた35重量%水酸化カリウム水溶液)38重量部
を加えて攪拌し、ゲル化させてペースト状に調製したも
のである。
3 is a separator, and 4 is a negative electrode agent made of paste zinc. This negative electrode agent 4 contains 500 lead.
Zinc powder with a particle size of 35-200 mesh containing 6 ppm
After dry-mixing 0 part by weight and 2 parts by weight of sodium polyacrylate, F (CF 2 ) 8 (CH 2 ) 2 S was added as a corrosion inhibitor.
38 parts by weight of an electrolyte solution (35% by weight aqueous solution of potassium hydroxide saturated with zinc oxide) containing (CH 2 ) 2 COOH was added, stirred and gelled to prepare a paste.

【0031】5は負極集電体、6は封口体、7は金属ワ
ッシャ、8は樹脂ワッシャ、9は絶縁キャップ、10は
負極端子板、11は樹脂外装体である。
Reference numeral 5 is a negative electrode current collector, 6 is a sealing body, 7 is a metal washer, 8 is a resin washer, 9 is an insulating cap, 10 is a negative electrode terminal plate, and 11 is a resin exterior body.

【0032】この電池における亜鉛の充填量は3.5g
で、電解液量は2mlであり、F(CF2 8 (C
2 2 S(CH2 2 COOHの添加量は亜鉛に対し
て500ppmである。
The filling amount of zinc in this battery was 3.5 g.
And the amount of electrolyte is 2 ml, and F (CF 2 ) 8 (C
The addition amount of H 2 ) 2 S (CH 2 ) 2 COOH is 500 ppm with respect to zinc.

【0033】なお、表2においては、腐食抑制剤として
用いたF(CF2 8 (CH2 2 S(CH2 2 CO
OHを簡略化してn=8で示している。
In Table 2, F (CF 2 ) 8 (CH 2 ) 2 S (CH 2 ) 2 CO used as a corrosion inhibitor was used.
OH is simplified and shown by n = 8.

【0034】比較例1 F(CF2 8 (CH2 2 S(CH2 2 COOHを
添加しなかったほかは、実施例1と同様にして単3形ア
ルカリ電池を作製した。つまり、この比較例1の電池の
亜鉛は実施例1の場合と同様に水銀を含んでいない。
Comparative Example 1 An AA alkaline battery was prepared in the same manner as in Example 1 except that F (CF 2 ) 8 (CH 2 ) 2 S (CH 2 ) 2 COOH was not added. That is, the zinc of the battery of Comparative Example 1 does not contain mercury as in the case of Example 1.

【0035】この比較例1の電池について実施例1と同
様に放電持続時間を調べた結果を表2に示す。
Table 2 shows the results of examining the discharge duration of the battery of Comparative Example 1 as in Example 1.

【0036】比較例2 アマルガム化率0.15重量%のアマルガム化亜鉛を用
い、かつF(CF28 (CH2 2 S(CH2 2
OOHを添加しなかったほかは、実施例1と同様にして
単3形アルカリ電池を作製した。
Comparative Example 2 Zinc amalgamation having an amalgamation rate of 0.15% by weight was used, and F (CF 2 ) 8 (CH 2 ) 2 S (CH 2 ) 2 C was used.
AA alkaline batteries were produced in the same manner as in Example 1 except that OOH was not added.

【0037】この比較例2の電池について実施例1と同
様に放電持続時間を調べた結果を表2に示す。
Table 2 shows the results of examining the discharge duration of the battery of Comparative Example 2 as in Example 1.

【0038】[0038]

【表2】 [Table 2]

【0039】表2に示すように、実施例1の電池は、ア
マルガム化亜鉛を用いた比較例2の電池と同等の放電持
続時間を有していて、無水銀の亜鉛を用いた比較例1の
電池より放電持続時間が長く、アマルガム化に代えて腐
食抑制剤を用いたことによる放電特性の低下がなかっ
た。
As shown in Table 2, the battery of Example 1 had the same discharge duration as the battery of Comparative Example 2 using zinc amalgamate, and Comparative Example 1 using anhydrous zinc was used. The discharge duration was longer than that of the above battery, and the discharge characteristics were not deteriorated by using the corrosion inhibitor instead of the amalgamation.

【0040】[0040]

【発明の効果】以上説明したように、本発明では、亜鉛
の腐食抑制剤として、一般式(I)で示されるフッ素系
化合物を用いることによって、亜鉛の腐食を抑制し、水
素ガスの発生を抑制することができた。
As described above, in the present invention, by using the fluorine-based compound represented by the general formula (I) as the corrosion inhibitor for zinc, the corrosion of zinc is suppressed and the generation of hydrogen gas is suppressed. I was able to suppress it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ電池の一例を示す部分断
面図である。
FIG. 1 is a partial cross-sectional view showing an example of an alkaline battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 3 セパレータ 4 負極剤 1 Positive mix 3 Separator 4 Negative

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質として亜鉛を用いるアルカリ
電池において、亜鉛の腐食抑制剤として、下記の一般式
(I) F(CF2 n (CH2 2 S(CH2 2 COOM (I) (式中、Mは水素またはアルカリ金属であり、nは2〜
16である)で示されるフッ素系化合物を用いたことを
特徴とするアルカリ電池。
1. In an alkaline battery using zinc as a negative electrode active material, a compound represented by the following general formula (I) F (CF 2 ) n (CH 2 ) 2 S (CH 2 ) 2 COOM (I ) (In the formula, M is hydrogen or an alkali metal, and n is 2 to
16) is used, and an alkaline battery is used.
【請求項2】 一般式(I)中のnが6〜12である請
求項1記載のアルカリ電池。
2. The alkaline battery according to claim 1, wherein n in the general formula (I) is 6 to 12.
JP25483791A 1991-09-04 1991-09-04 Alkaline battery Withdrawn JPH0562683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25483791A JPH0562683A (en) 1991-09-04 1991-09-04 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25483791A JPH0562683A (en) 1991-09-04 1991-09-04 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH0562683A true JPH0562683A (en) 1993-03-12

Family

ID=17270546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25483791A Withdrawn JPH0562683A (en) 1991-09-04 1991-09-04 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH0562683A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023010A1 (en) * 2017-07-24 2019-01-31 Cougeller Research Llc Rechargeable battery with hydrogen scavenger
US11189855B1 (en) 2020-04-22 2021-11-30 Apple Inc. Redox mediators as electrolyte additives for alkaline battery cells
US11228074B2 (en) 2017-05-19 2022-01-18 Apple Inc. Rechargeable battery with anion conducting polymer
US11296351B1 (en) 2018-01-12 2022-04-05 Apple Inc. Rechargeable battery with pseudo-reference electrode
US11367877B1 (en) 2018-09-19 2022-06-21 Apple Inc. Aqueous battery current collectors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228074B2 (en) 2017-05-19 2022-01-18 Apple Inc. Rechargeable battery with anion conducting polymer
US11888112B2 (en) 2017-05-19 2024-01-30 Apple Inc. Rechargeable battery with anion conducting polymer
WO2019023010A1 (en) * 2017-07-24 2019-01-31 Cougeller Research Llc Rechargeable battery with hydrogen scavenger
CN110915016A (en) * 2017-07-24 2020-03-24 苹果公司 Rechargeable battery with hydrogen scavenger
US11349161B2 (en) 2017-07-24 2022-05-31 Apple Inc. Rechargeable battery with hydrogen scavenger
US11296351B1 (en) 2018-01-12 2022-04-05 Apple Inc. Rechargeable battery with pseudo-reference electrode
US11652230B1 (en) 2018-01-12 2023-05-16 Apple Inc. Rechargeable battery with pseudo-reference electrode
US11367877B1 (en) 2018-09-19 2022-06-21 Apple Inc. Aqueous battery current collectors
US11189855B1 (en) 2020-04-22 2021-11-30 Apple Inc. Redox mediators as electrolyte additives for alkaline battery cells

Similar Documents

Publication Publication Date Title
JP3317526B2 (en) Alkaline battery
JPH05135776A (en) Cylindrical alkaline battery
JPH0562683A (en) Alkaline battery
JPH0513070A (en) Alkaline battery
JPH0955207A (en) Zinc-alkali battery
JPH0562682A (en) Alkaline battery
JPH0513072A (en) Alkaline battery
JPH0371738B2 (en)
JPH0513071A (en) Alkaline battery
JPH0562684A (en) Alkaline battery
JP3512182B2 (en) Alkaline battery
JPH0119622B2 (en)
JPH0513073A (en) Alkaline battery
JP3187266B2 (en) Gelled zinc negative electrode for alkaline batteries
JPH0750612B2 (en) Zinc alkaline battery
JPH06231757A (en) Zinc alkaline battery
JPH09270254A (en) Zinc alkaline battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JPH06223829A (en) Zinc alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JPH06338319A (en) Zinc-alkaline battery
JPH06223828A (en) Zinc alkaline battery
JPH0955206A (en) Zinc-alkali battery
JPH0822822A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203