JP2005088027A - Method for rougher-rolling h-section steel - Google Patents

Method for rougher-rolling h-section steel Download PDF

Info

Publication number
JP2005088027A
JP2005088027A JP2003322415A JP2003322415A JP2005088027A JP 2005088027 A JP2005088027 A JP 2005088027A JP 2003322415 A JP2003322415 A JP 2003322415A JP 2003322415 A JP2003322415 A JP 2003322415A JP 2005088027 A JP2005088027 A JP 2005088027A
Authority
JP
Japan
Prior art keywords
flange
web
rolled
hole
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003322415A
Other languages
Japanese (ja)
Other versions
JP4167572B2 (en
Inventor
Shinya Hayashi
慎也 林
Hiroshi Yamashita
浩 山下
Katsuya Matsuda
勝也 松田
Naoto Kataoka
直人 片岡
Yasuyuki Muramatsu
恭行 村松
Hidemi Kawaguchi
日出海 川口
Hiroyuki Ishibashi
弘之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003322415A priority Critical patent/JP4167572B2/en
Publication of JP2005088027A publication Critical patent/JP2005088027A/en
Application granted granted Critical
Publication of JP4167572B2 publication Critical patent/JP4167572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and stably produce an H-section steel having large web height and flange width without specially using large cross-sectional blank and facility. <P>SOLUTION: In the rougher-rolling method for H-section steel, while expanding the width in the internal dimension of the web with a caliber, the contact from the inner surface of the flange of the material to be rolled is started, and the width expansion rolling to the internal dimension of the web, is performed by deciding the shapes of the material to be rolled and the caliber of the roll, based on the distance (D) from the tip end part of the flange to the rolling reduction surface of the web in the caliber under contact-starting state, and the distance (C) between the outer surface of the flange and the outer side surface of the caliber under state of piling the material to be rolled and the caliber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、H形鋼の粗圧延方法に関し、特に、800×300mmを越えるようなウェブ高あるいはフランジ幅の大型H形鋼を、特別に大きな素材断面や設備を使用することなく効率的かつ安定的に製造するH形鋼の粗圧延方法に関する。   The present invention relates to a rough rolling method for H-section steel, and in particular, a large H-section steel having a web height or flange width exceeding 800 × 300 mm can be efficiently and stably used without using a particularly large material section or equipment. TECHNICAL FIELD The present invention relates to a rough rolling method for H-section steel that is manufactured.

熱間圧延によるシニアサイズのH形鋼の製造工程は、例えば図5に示すように、二重式粗圧延機31(以下、「粗圧延機」と称する)、一対の上下水平ロールと一対の左右竪ロールを有する第1粗ユニバーサル圧延機32と、この第1粗ユニバーサル圧延機32に近接して配設されたエッジャー圧延機33からなる第1粗ユニバーサル圧延機群、さらに第2粗ユニバーサル圧延機34とこの第2粗ユニバーサル圧延機34に近接して配設されたエッジャー圧延機35からなる第2粗ユニバーサル圧延機群、および仕上げユニバーサル圧延機36により構成された圧延装置列により圧延成形される。   As shown in FIG. 5, for example, the manufacturing process of the senior size H-section steel by hot rolling includes a double roughing mill 31 (hereinafter referred to as “rough rolling mill”), a pair of upper and lower horizontal rolls, and a pair of A first rough universal rolling mill group including a first rough universal rolling mill 32 having left and right horizontal rolls, an edger rolling mill 33 disposed in the vicinity of the first rough universal rolling mill 32, and a second rough universal rolling. The rolling machine is formed by a rolling device row composed of a second rough universal rolling mill group including a mill 34 and an edger rolling mill 35 disposed in the vicinity of the second rough universal rolling mill 34 and a finishing universal rolling mill 36. The

H形鋼の素材としては、一般に連続鋳造で製造されるスラブやビームブランクなどが用いられる。スラブを素材とした場合、粗圧延機31には、図6のように、スラブ幅方向に圧下を行うエッジング孔型311〜313と、ウェブ厚の圧下を行う造形孔型314を配置し、まず孔型の中央部に突起を有するエッジング孔型311〜313により順次、スラブの短辺部を上下から複数パスで圧下してフランジ幅を生成させてドッグボーン鋼片37を成形する。この際、ウェブ内法Hiが製品の内幅にほぼ等しいか多少小さくなるようなウェブ外法Hoまで圧下される。また、このドッグボーン鋼片37のフランジ幅、すなわち、第3エッジング孔型313の孔底幅Bは、造形孔型314とユニバーサル圧延機群でのフランジの変形量を考慮して決定される。   As a material of the H-shaped steel, a slab or a beam blank that is generally manufactured by continuous casting is used. When the slab is used as a raw material, the roughing mill 31 is provided with edging hole molds 311 to 313 for reducing in the slab width direction and a shaping hole mold 314 for reducing the web thickness as shown in FIG. The dogbone steel piece 37 is formed by sequentially rolling down the short side of the slab with a plurality of passes from above and below by a plurality of passes by the edging hole molds 311 to 313 having protrusions at the center of the hole mold. At this time, the web inner method Hi is reduced to the outer web method Ho such that the inner method Hi is substantially equal to or slightly smaller than the inner width of the product. Further, the flange width of the dog bone steel piece 37, that is, the hole bottom width B of the third edging hole mold 313 is determined in consideration of the deformation amount of the flange in the shaping hole mold 314 and the universal rolling mill group.

次に、このドッグボーン鋼片37を90°ないしは270°転回し、ウェブ厚の圧下とフランジ形状の整形を行う。ここで、造形孔型314の内幅Wiと外幅Woは、ドッグボーン鋼片37のウェブ内法Hiおよびウェブ外法Hoとほぼ等しく構成されており、孔型フランジ部深さdは製品のウェブ面からフランジ先端までの長さ(以下、「フランジ脚長」と称する)にほぼ等しく構成されている。この造形孔型314により複数パスで圧下を行い、ウェブ厚twに対するフランジ厚tfの比tf/twおよびフランジ脚長Lが製品の厚み比およびフランジ脚長にほぼ近い粗形鋼片38に成形する。
こうして得られた粗形鋼片38を第1および第2粗ユニバーサル圧延機群において、粗ユニバーサル圧延機でウェブとフランジの圧下率をほぼバランスさせた状態で厚み圧下を行うとともに、エッジャー圧延機でフランジ幅圧下を行いフランジ幅と先端形状の整形を行う。そしてほぼ製品寸法にまで整形された被圧延材に対し、仕上げユニバーサル圧延機36でフランジをウェブに対して直角にし、厚みを最終寸法に仕上げる。
Next, the dog bone steel piece 37 is turned 90 ° or 270 ° to reduce the web thickness and shape the flange shape. Here, the inner width Wi and the outer width Wo of the shaping hole mold 314 are substantially equal to the inner web method Hi and the outer web method Ho of the dogbone steel piece 37, and the hole flange portion depth d is the product depth. The length is approximately equal to the length from the web surface to the flange tip (hereinafter referred to as “flange leg length”). The forming hole mold 314 performs reduction in a plurality of passes to form a rough steel piece 38 in which the ratio tf / tw of the flange thickness tf to the web thickness tw and the flange leg length L are substantially close to the product thickness ratio and the flange leg length.
In the first and second rough universal rolling mills, the obtained rough shaped steel slab 38 is subjected to thickness reduction in a state in which the reduction ratio of the web and the flange is substantially balanced by the coarse universal rolling mill, and at the edger rolling mill. The flange width is reduced and the flange width and tip shape are shaped. Then, with respect to the material to be rolled which has been shaped to almost the product dimensions, the finishing universal rolling machine 36 makes the flange perpendicular to the web and finishes the thickness to the final dimension.

このように、H形鋼の製品シリーズに応じて、H形鋼の主要な部位の概略寸法は、ほとんど粗圧延機31で決定され、造形孔型での変形特性からドッグボーン鋼片37の断面寸法もおのずとほぼ決まってしまう。エッジング圧延で成形できるフランジ幅は、スラブ幅方向の圧下量、すなわちスラブ幅とエッジング圧延終了のウェブ外法の差でほぼ決まり、エッジング圧延で必要なフランジ幅を成形できるようにスラブ幅が決定される。
近年、建築物の高層化、大スパン化に伴い、これまでよりウェブ高やフランジ幅の大きなH形鋼に対するニーズが高まっているが、このようなH形鋼を製造するためには、前述の理由から一層大きなスラブ幅が必要となる。また、製品寸法に対応した粗圧延機1の各孔型の寸法が大きくなり、必要な孔型数を配置するためのロール胴長が大きくなる。
Thus, depending on the product series of H-section steel, the approximate dimensions of the main parts of the H-section steel are almost determined by the roughing mill 31, and the cross-section of the dogbone steel piece 37 is determined from the deformation characteristics of the shaping hole mold. The dimensions are almost determined naturally. The flange width that can be formed by edging rolling is almost determined by the reduction amount in the slab width direction, that is, the difference between the slab width and the outer web method at the end of edging rolling, and the slab width is determined so that the required flange width can be formed by edging rolling. The
In recent years, the needs for H-section steels with larger web heights and flange widths have increased with the increase in the height and span of buildings. In order to manufacture such H-section steels, For this reason, a larger slab width is required. Moreover, the dimension of each hole type | mold of the rough rolling mill 1 corresponding to a product dimension becomes large, and the roll trunk | drum length for arrange | positioning the required number of hole types becomes large.

例えば、ウェブ高さ1000mm、フランジ幅400mmのH形鋼を、上記圧延方法で製造圧延するためには、スラブ幅が1800mm以上、粗圧延機のロール胴長が3300mm以上必要となり、現状の一般的な設備では、ロールリフト量やロール胴長が制約となり、設備改造が必要となる。これに対して、分塊ミルを必要したり、粗圧延を途中まで行った後、粗圧延機のロールを組み替え、再加熱して製品まで圧延する、いわゆる2ヒート圧延も可能であるが、生産性や燃料原単位の低下、ロール数の増加によるコスト高やエネルギーロスが大きな問題となる。このように、限られた素材断面とロール胴長と孔型数の中でウェブ高やフランジ幅の大きいH形鋼を製造することが困難であった。   For example, in order to produce and roll an H-section steel having a web height of 1000 mm and a flange width of 400 mm by the above rolling method, a slab width of 1800 mm or more and a roll body length of a rough rolling mill of 3300 mm or more are required. In such a facility, the amount of roll lift and the length of the roll body are limited, and it is necessary to modify the facility. On the other hand, a so-called two-heat rolling is also possible, in which a batch mill is required or rough rolling is performed halfway, and then the rolls of the roughing mill are rearranged and reheated to roll the product. High cost and energy loss due to decrease in performance and fuel intensity, and increase in the number of rolls are major problems. As described above, it is difficult to produce an H-section steel having a large web height and a large flange width in a limited material section, roll body length, and number of hole types.

こうした課題に対し、特許文献1では、図7に示すようなウェブ部を相互に共用した3つ以上の造形孔型でウェブ厚を圧下することなくウェブ高さ拡大を行う圧延方法が提案されている。
また、特許文献2では、1種類の粗圧延ロールで、広範囲の大きさの大型H形鋼用粗形鋼片を造り分けるため、粗圧延素材あるいは連続鋳造ビームブランクを図8のようなフランジ相当部の一部分を共用した複数の孔型を有するロールに挿通し、フランジ形状の調整とウェブ厚の圧下を行った後、ウェブ高さの拡大あるいは、ウェブ高さの縮小、フランジ幅の圧下のうち、少なくとも一つを行う圧延方法が提案されている。
特許第2534223号公報 特開2000−271601号公報 特公昭55−30921号公報 特許第1555108号公報
For such a problem, Patent Document 1 proposes a rolling method for expanding the web height without reducing the web thickness with three or more modeling hole molds that share the web portions as shown in FIG. Yes.
Further, in Patent Document 2, a rough rolling material or continuous cast beam blank is equivalent to a flange as shown in FIG. After passing through a roll having a plurality of hole types that share a part of the part, adjusting the flange shape and reducing the web thickness, the web height is increased or the web height is reduced, and the flange width is reduced. A rolling method for performing at least one has been proposed.
Japanese Patent No. 2534223 JP 2000-271601 A Japanese Patent Publication No. 55-30921 Japanese Patent No. 1555108

しかし、本発明者らが、実験でこれらのウェブ内法の拡幅圧延法について詳細に調べたところ、単に被圧延材のウェブ内法よりも大きな内幅の孔型に挿通してウェブ高さを大きく拡大するだけでは、次のような理由で拡幅量に制限を受け十分に大きな拡幅ができない。すなわち、実際の被圧延材には上下左右のフランジ形状やウェブ高さ方向のウェブ厚の分布が非対称であったり、孔型も常にロール軸方向に対して対称な状態で配置することは困難であるために、圧延に非対称性が生じ、被圧延材が左右非対称に拡幅されたり、ミルの入側や出側で左右に曲がることがしばしばある。そして、場合によっては、左右の拡幅量に大きく差が生じて拡幅が大きい側に折れ込み疵を発生させたり、図9のようにサイドガイド8の拘束がなくなった瞬間に被圧延材6の尾端が大きく曲がり、フランジを孔型7のコーナーR部で押しつぶして圧延が不能となったり、最悪の場合には、ロールに大きな損傷を与えてしまう。   However, when the present inventors investigated in detail the widening rolling method of these in-web methods in an experiment, the web height was simply inserted through a hole mold having a larger inner width than the in-web method of the material to be rolled. Only by enlarging greatly, the widening amount is limited for the following reasons, and a sufficiently widening cannot be performed. In other words, it is difficult to place an actual rolled material in a state where the top and bottom flange shapes and the web thickness distribution in the web height direction are asymmetric, and the hole shape is always symmetrical with respect to the roll axis direction. For this reason, asymmetry occurs in rolling, and the material to be rolled is often widened asymmetrically in the left-right direction, or is often bent left and right on the entry side and the exit side of the mill. In some cases, there is a large difference between the left and right widening amounts to cause folding folds on the larger widening side, or when the side guide 8 is no longer restrained as shown in FIG. The end is bent greatly, and the flange is crushed at the corner R portion of the hole mold 7 so that rolling becomes impossible. In the worst case, the roll is seriously damaged.

前者に対しては、フランジ先端内側から孔型のコーナーRを接触させてウェブ内法を拡幅圧延する場合に、安定してセンタリングできる条件が特許文献3に開示されている。ただし、従来一般的である比較的ウェブ高さやフランジ幅が小さなH形鋼を対象としており,本発明で対象とするような大型のH形鋼の場合、フランジ先端付近から材料が接触すると、噛み込み角が大きくなり噛み込みが困難となったり、長手方向の両端部に折れ込み疵を発生させたり、フランジ幅の減少が大きくなりフランジ幅の大きな製品が製造できないといった問題がある。
後者に対しては、フランジ内側と孔型との接触の有無の違いはあるものの、特許文献4にあるように、尾端の拡幅を先に行い、途中で噛み戻し圧延を行った後、先端から全長にわたる拡幅圧延を行う方法の適用が考えられる。しかし、この方法では1回の拡幅を行うのに要するパス回数が増えるだけでなく、ロール開度を大きく変更するために時間ロスが発生して温度低下につながる。また、圧延の非対称性は根本的には解消されず疵発生の問題は解消できない。
With respect to the former, Patent Document 3 discloses a condition that allows stable centering when the inner corner of the flange is brought into contact with the inner end of the flange and the in-web method is widened and rolled. However, it is intended for H-section steels with a relatively small web height and flange width, which are common in the past, and in the case of large H-section steels that are the subject of the present invention, if the material contacts from the vicinity of the flange tip, There are problems that the insertion angle becomes large and it becomes difficult to bite, the folding ends are generated at both ends in the longitudinal direction, the flange width is greatly reduced, and a product having a large flange width cannot be manufactured.
For the latter, although there is a difference in the presence or absence of contact between the inside of the flange and the hole mold, as described in Patent Document 4, the tail end is widened first, and after biting and rolling in the middle, the tip It is conceivable to apply a method of performing widening rolling over the entire length. However, this method not only increases the number of passes required to perform one widening, but also causes a time loss due to a large change in the roll opening, leading to a decrease in temperature. Also, the rolling asymmetry is not fundamentally eliminated, and the problem of wrinkling cannot be resolved.

上記特許文献2に記載された技術では、第1孔型でフランジ形状とウェブ厚の圧下を行い、形状を整えるという配慮はあるものの、粗圧延素材に対して配置されたウェブ内法拡幅用孔型は1つであり、実施例ではウェブ内法拡幅量は100mm程度である。そのため、大きなウェブ高さの製品を製造するためには、予め大きな断面のビームブランクやスラブを使用する必要がある。この場合も、スラブを素材とすると粗圧延機のロールリフト制約で分塊ミルが必要となったり、ロール胴長制約で2ヒート圧延になるなどの問題がある。
本発明者らは、1孔型あたり被圧延材のフランジ厚の1/2以上に相当するような大きなウェブ内法拡幅を行う際に、これらの非対称な拡幅条件に対する圧延の安定性について詳細に検討した。その結果、特許文献3に示された圧延条件でウェブ内法拡幅圧延を行っても、非対称な拡幅に起因した上記問題は発生した。
そのため、孔型形状を各種変更して実験を行ったところ、拡幅圧延の安定性を確保するためには、図1に示すように接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離Dと、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離Cの関係を被圧延材の形状と拡幅量から適正条件にする必要があることが明らかとなった。
In the technique described in Patent Document 2, although there is a consideration that the flange shape and the web thickness are reduced by the first hole type and the shape is adjusted, the in-web widening hole disposed on the rough rolled material The number of molds is one. In the embodiment, the in-web method widening amount is about 100 mm. Therefore, in order to manufacture a product having a large web height, it is necessary to use a beam blank or a slab having a large cross section in advance. Also in this case, when the slab is used as a raw material, there is a problem that a lump mill is required due to the roll lift restriction of the rough rolling mill, or two heat rolling is caused due to the roll body length restriction.
When the present inventors perform a large in-web method widening corresponding to 1/2 or more of the flange thickness of the material to be rolled per hole mold, details of the rolling stability with respect to these asymmetric widening conditions will be described in detail. investigated. As a result, even when the in-web method widening rolling was performed under the rolling conditions disclosed in Patent Document 3, the above-described problem caused by asymmetric widening occurred.
Therefore, when the experiment was performed with various changes in the hole shape, in order to ensure the stability of the widening rolling, as shown in FIG. 1, the distance from the flange tip to the hole web pressure lower surface in the contact start state as shown in FIG. It is clear that the relationship between D and the distance C between the outer surface of the flange and the outer surface of the hole mold in the state where the material to be rolled and the hole mold are overlapped must be made appropriate from the shape of the material to be rolled and the amount of widening. became.

そこで、本発明は1孔型あたり被圧延材のフランジ厚の1/2以上に相当する大きなウェブ内法拡幅を行う際にも、通材の安定性を確保し、現状、使用が限られたスラブ幅やビームブランク断面および圧延設備の中で、効率的かつ安価に大きな断面の製品を製造する粗圧延方法を提供することを課題とする。   Therefore, the present invention ensures the stability of the threading material even when performing a large in-web method widening corresponding to 1/2 or more of the flange thickness of the material to be rolled per hole mold, and the use is limited at present. It is an object of the present invention to provide a rough rolling method for producing a product having a large cross section efficiently and inexpensively in a slab width, a beam blank cross section and rolling equipment.

本発明は、前述の課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載された通りの下記内容である。
1)孔型によりウェブ内法を拡幅圧延するH形鋼の粗圧延方法において、被圧延材のフランジ内面から接触を開始し、接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)に基づいて、被圧延材と孔型の形状を決定することを特徴とするH形鋼の粗圧延方法。
2)孔型によりウェブ内法を拡幅圧延するH形鋼の粗圧延方法において、被圧延材と孔型の形状に関して、被圧延材のフランジ内面から接触を開始し、接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)とが、下記(1)式を満足するように圧延することを特徴とするH形鋼の粗圧延方法。
C/(ΔW/2)≦f(D/F)・・・(1)
ここに、C:被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離、
ΔW:ウェブ内法の拡幅量、
D:接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離、
F:ウェブ面からフランジ先端までの距離、
f:D/Fに関して単調増加の関数
3)接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)との関係を、拡幅圧延時の被圧延材の最大ウェブ厚みによって決めることを特徴とする1)または2)に記載のH形鋼の粗圧延方法。
この発明により、同一ロールから多サイズの圧延材を造り分けることができる。
4)前記孔型における接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と当該孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)とが所定の関係になるように、ウェブ内法を拡幅する当該孔型の直前の孔型において、複数パスで少なくともウェブの両端部を圧延することを特徴とする1)乃至3)のいずれか1項に記載のH形鋼の粗圧延方法。
The present invention has been made as a result of intensive studies in order to solve the above-mentioned problems, and the gist of the present invention is the following contents as described in the claims.
1) In the rough rolling method for H-section steel, in which the in-web method is widened by a hole mold, contact is started from the flange inner surface of the material to be rolled, and the distance from the flange tip to the hole web pressure lower surface in the contact start state ( D) and the distance (C) between the outer surface of the flange and the outer surface of the hole mold in a state where the material to be rolled and the hole mold are overlapped, and the shapes of the material to be rolled and the hole mold are determined. A rough rolling method for H-section steel.
2) In the rough rolling method for H-section steel, which widens and rolls the in-web method with a hole mold, contact is started from the inner surface of the flange of the material to be rolled and the shape of the hole mold, and the tip of the flange in the contact start state And the distance (C) between the outer surface of the flange and the outer surface of the mold when the rolled material and the mold are overlapped satisfy the following formula (1): A rough rolling method for H-section steel, characterized by performing rolling as described above.
C / (ΔW / 2) ≦ f (D / F) (1)
Where C: distance between the outer surface of the flange and the outer surface of the hole mold in a state where the material to be rolled and the hole mold are overlapped,
ΔW: A widening amount of the in-web method,
D: Distance from the flange tip to the perforated web pressure surface in the contact start state,
F: Distance from web surface to flange tip,
f: Function of monotonous increase with respect to D / F 3) Distance (D) from flange tip to perforated web pressure surface in contact start state, flange outer surface and hole in state where rolled material and perforated form are overlapped The rough rolling method for H-section steel according to 1) or 2), wherein the relationship with the distance (C) from the outer surface of the mold is determined by the maximum web thickness of the material to be rolled during widening rolling.
According to the present invention, it is possible to separately produce multi-sized rolled materials from the same roll.
4) The distance (D) from the flange tip to the hole web pressure lower surface in the contact start state in the hole mold, and the flange outer surface and the hole outer surface in a state where the rolled material and the hole mold are overlapped with each other. 1) to 3 in which at least both ends of the web are rolled by a plurality of passes in the hole mold immediately before the hole mold for widening the inner web method so that the distance (C) has a predetermined relationship. The rough rolling method for H-section steel according to any one of the above.

本発明によれば、特別に大きな素材断面や設備を使用することなく、ウェブ高さとフランジ幅が大きなH形鋼を効率的かつ安定的に製造することができ、産業上有用な著しい効果を奏する。   According to the present invention, an H-section steel having a large web height and a large flange width can be efficiently and stably produced without using a particularly large material cross section or equipment, and there are significant industrially useful effects. .

図1に示すように胴幅Wrを有する孔型2で被圧延材1のウェブ内法Wmを拡幅する場合を例にして説明する。本発明では噛み込み性を良好にしフランジ幅の大きな減少を抑制するためフランジ内面から孔型が接触開始するようにする。ここで、接触開始状態の圧延方向に垂直な断面におけるフランジ先端から孔型ウェブ圧下面までの距離をD、被圧延材とロール隙に設定した孔型を重ね合わせた状態での圧延方向に垂直な断面におけるフランジ外面と孔型該側面との距離をCとする。Cの値がフランジ幅方向に変化する場合、ここでは最小値を使用する。   The case where the in-web method Wm of the material 1 to be rolled is widened by the hole mold 2 having the body width Wr as shown in FIG. 1 will be described as an example. In the present invention, in order to improve the biting property and suppress a large decrease in the flange width, the hole mold starts to contact from the inner surface of the flange. Here, the distance from the flange tip to the perforated web pressure lower surface in the cross section perpendicular to the rolling direction in the contact start state is D, and perpendicular to the rolling direction in the state where the rolled material and the hole shape set in the roll gap are overlapped. Let C be the distance between the outer surface of the flange and the side surface of the hole mold in a simple cross section. When the value of C changes in the flange width direction, the minimum value is used here.

噛み込み状態では被圧延材は孔型の内壁と接触し誘導されるため、距離Dは圧延の左右方向へのズレに対する安定性に影響し、Dが大きいほどセンタリング性が高い。距離Cは拡幅の左右のズレや被圧延材の入側入射角の左右方向へのズレに対して、被圧延材が所定量以上ずれることを抑制する作用と関係が深い。特に、拡幅量が大きい場合や、フランジ脚長が小さくDが十分でない場合などについては、Cを小さくすることが効果的である。
しかし、拡幅量が大きい場合にCを小さくしすぎると、ウェブ内法拡幅量に対してウェブ外法の拡がり量に十分な余裕がなく、フランジ肉量の大幅な減少を招いたり、孔型に過充満となりフランジ内側のコーナーR部に折れ込み疵や、フランジ外側に噛み出し疵を発生させてしまう。ここで、被圧延材のフランジ内面とウェブ圧下面の延長線の交点間距離をウェブ内法Wr、孔型の内面とウェブ圧下面の延長線の交点間距離を胴幅Wmとし、ウェブ内法拡幅量をΔW=Wr−Wmと定義すると、ΔWとCの関係で適正領域が決定される。
In the bitten state, the material to be rolled comes into contact with the inner wall of the hole mold and is guided. Therefore, the distance D affects the stability against misalignment in the horizontal direction of rolling, and the larger D is, the higher the centering property is. The distance C is deeply related to the effect of suppressing the material to be rolled from deviating by a predetermined amount or more with respect to the lateral displacement of the widening and the lateral displacement of the incident side incident angle of the rolled material. In particular, when the amount of widening is large, or when the flange leg length is small and D is not sufficient, it is effective to reduce C.
However, if C is too small when the widening amount is large, there is not enough room for the expansion amount of the outer web method with respect to the inner web widening amount, leading to a significant decrease in the flange wall thickness, Overfilling may occur, causing folds at the corner R inside the flange and bites on the outside of the flange. Here, the distance between the intersections of the extension line of the flange inner surface and the web pressing surface of the material to be rolled is the inner web method Wr, and the distance between the intersections of the hole inner surface and the extension line of the web pressing surface is the trunk width Wm. If the amount of widening is defined as ΔW = Wr−Wm, an appropriate region is determined by the relationship between ΔW and C.

また、フランジ脚長をFとすると、ロール隙が同じ場合、Dが同じでもフランジ脚長Fが小さいほど噛み込み角度が小さくなり、センタリング性が高くなる。
これらのことから、次式の関係を満たすように、拡幅圧延時における被圧延材の形状と孔型形状を決定すれば、拡幅圧延において図9のようにフランジを押しつぶすことを防止でき、通材の安定性を確保しつつ良好な状態で大きなウェブ内法の拡幅圧延が可能となる。
C/(ΔW/2)≦f(D/F) ・・(1)
ここに、C:被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離、
ΔW:ウェブ内法の拡幅量、
D:接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離、
F:ウェブ面からフランジ先端までの距離、
f:D/Fに関して単調増加の関数である。
単調増加の関数とは、D/Fがとりうる範囲で単調増加であればよく、例えば、一次式や二次式あるいは多項式、指数関数などで、特に形式に限定されるものではない。一方、疵の問題からC/(ΔW/2)>0.5とすることが好ましく、フランジ内側から接触を開始し、フランジを過度に圧下するのを抑制して、センタリング性を維持するためにはD/F>0.25とすることが好ましい。
Further, when the flange leg length is F, when the roll gap is the same, the smaller the flange leg length F is, the smaller the biting angle is, and the centering performance is higher.
From these facts, if the shape of the material to be rolled and the hole shape at the time of widening rolling are determined so as to satisfy the relationship of the following formula, it is possible to prevent the flange from being crushed as shown in FIG. Thus, it is possible to carry out wide rolling with a large in-web method in a good state while ensuring the stability of the sheet.
C / (ΔW / 2) ≦ f (D / F) (1)
Where C: distance between the outer surface of the flange and the outer surface of the hole mold in a state where the material to be rolled and the hole mold are overlapped,
ΔW: A widening amount of the in-web method,
D: Distance from the flange tip to the perforated web pressure surface in the contact start state,
F: Distance from web surface to flange tip,
f: A monotonically increasing function with respect to D / F.
The monotonically increasing function may be monotonically increasing as long as D / F can be taken, and is not particularly limited to a form, for example, a linear expression, a quadratic expression, a polynomial, an exponential function, or the like. On the other hand, it is preferable to set C / (ΔW / 2)> 0.5 from the problem of wrinkles, in order to maintain the centering property by starting contact from the inside of the flange and suppressing excessive reduction of the flange. Is preferably D / F> 0.25.

なお、ウェブ内法拡幅に対する安定性はウェブ厚によって異なり、拡幅に対する孔型の幾何学的条件が同じでも、ウェブ厚が大きいほど、ウェブがその幅方向に広がりにくいことや、拡幅に必要なウェブ面積が大きいためフランジからのメタルフローが大きくなることなどから、前述のフランジの押しつぶしが発生しやすくなる。すなわち、上記(1)式はウェブ内法拡幅圧延時のウェブ厚の関数でもある。通常、製品サイズに応じてブレークダウン圧延後の被圧延材のウェブ厚を調整しており、そのため、ウェブ内法拡幅圧延時のウェブ厚もサイズによって異なり,製品のフランジ厚/ウェブ厚の比が小さいサイズほどウェブ内法拡幅圧延時のウェブ厚が大きくなる傾向がある。したがって,同一ロールで製造する厚みサイズ構成の中で、拡幅圧延時の最大ウェブ厚に対して、(1)式を求め、孔型形状を決定することになる。   In addition, the stability against in-web widening varies depending on the web thickness. Even if the geometrical conditions of the hole shape for the widening are the same, the larger the web thickness, the harder it is to spread in the width direction, and the web required for widening. Since the metal flow from the flange increases due to the large area, the above-described flange crushing is likely to occur. That is, the above formula (1) is also a function of the web thickness at the time of in-web widening rolling. Normally, the web thickness of the material to be rolled after breakdown rolling is adjusted according to the product size. Therefore, the web thickness at the time of in-web widening rolling also varies depending on the size, and the ratio of product flange thickness / web thickness is Smaller sizes tend to increase the web thickness during in-web widening rolling. Therefore, in the thickness size configuration manufactured with the same roll, the formula (1) is obtained for the maximum web thickness at the time of widening rolling, and the hole shape is determined.

大型のH形鋼を現状限られた素材と設備から製造する場合、複数の孔型を用いて拡幅圧延すればより。その場合、例えば、図3のように2つの孔型21,22を用いてウェブ内法を拡幅圧延する場合には、各孔型での拡幅条件が上記(1)式を満たすように孔型形状を設計すればよく、3つ以上の場合も同様である。
2つ以上の拡幅孔型で圧延する場合、拡幅圧延の第1パスではフランジ内面はほぼ孔型形状に沿って拡幅されるが、例えば図4のように少なくともウェブ両端部を圧下できる拡幅孔型により複数パスで圧延すると、被圧延材のウェブ内法とウェブ外法がさらに拡がり、次の拡幅孔型で圧延する際にDが大きくなり、Cが小さくなるので、(1)式から拡幅圧延の安定性により有利な条件となる。もちろん、ウェブを全面にわたって圧延しても効果があるが、両端だけを圧下する場合の方が長手方向への延伸が生じにくく、ウェブ高さ方向へのメタルフローがより多く生じる。特に、配置できる孔型数やロール胴長の制約で孔型の幾何学的な拡幅条件では上記関係を満たせない場合に効果的である。
When manufacturing large H-section steel from materials and equipment that are currently limited, it is better if it is widened and rolled using a plurality of perforations. In that case, for example, when the in-web method is widened and rolled using two hole molds 21 and 22 as shown in FIG. 3, the hole molds so that the widening condition in each hole mold satisfies the above formula (1). What is necessary is just to design a shape, and the case of three or more is also the same.
When rolling with two or more widened hole molds, the inner surface of the flange is widened substantially along the hole shape in the first pass of the widened rolling. For example, as shown in FIG. When rolling in a plurality of passes, the in-web method and the outside-web method of the material to be rolled further expand, and when rolling with the next widened hole mold, D becomes large and C becomes small. This is an advantageous condition due to the stability of Of course, even if the web is rolled over the entire surface, it is effective. However, when only the both ends are reduced, stretching in the longitudinal direction is less likely to occur, and more metal flow occurs in the web height direction. In particular, it is effective when the above relationship cannot be satisfied under the geometric widening condition of the hole type due to restrictions on the number of hole types that can be arranged and the roll body length.

フランジ幅340mm〜520mm、ウェブ厚50mm〜100mmの被圧延材を、1孔型あたりウェブ内法拡幅量70mm〜130mmの条件で圧延を行った。ここには、複数孔型で拡幅圧延した条件も含まれている。圧延条件と通材の安定性の関係を整理したところ、図2のグラフのようになった。拡幅条件は孔型形状および型取りから計算した。図中の○の条件では安定的にウェブ内法の拡幅圧延が行えたが、×の条件では尾端で図9のようなフランジ押しつぶしや折れ込み疵が発生し、圧延の続行が不可能であった。この場合の圧延安定限界を回帰式で求めると、次の関係式で与えられる。
C/(ΔW/2)≦13×(D/F)3+0.55 ・・(2)
ここで示した条件は、一般的な製品厚みサイズ構成(フランジ厚/ウェブ厚の比が1.2〜2.4程度)について、粗圧延後に生成されるフランジ厚から最大ウェブ厚を算出し、この条件において安定領域を表すものである。すなわち、拡幅圧延時の最大ウェブ厚がこれよりも小さい場合には、(2)式よりも圧延安定領域が広がる。
また、図2でフランジ押しつぶしが発生した条件で、直前の拡幅孔型において複数パスでウェブ両端部を圧下したところ、ウェブ内法が5mm広がったため、図2のD/Fが0.03増加し、安定的に拡幅を行うことができた。
A material to be rolled having a flange width of 340 mm to 520 mm and a web thickness of 50 mm to 100 mm was rolled under the conditions of an in-web method widening amount of 70 mm to 130 mm per hole mold. Here, the conditions of widening rolling with a plurality of holes are also included. When the relationship between the rolling conditions and the stability of the threading material was arranged, the graph shown in FIG. 2 was obtained. The widening condition was calculated from the hole shape and the mold. In the condition of ○ in the figure, the in-web widening rolling could be stably performed, but in the condition of ×, flange crushing and folding wrinkles as shown in Fig. 9 occurred at the tail edge, and rolling could not be continued. there were. When the rolling stability limit in this case is obtained by a regression equation, it is given by the following relational expression.
C / (ΔW / 2) ≦ 13 × (D / F) 3 +0.55 (2)
The conditions shown here calculate the maximum web thickness from the flange thickness generated after rough rolling for a general product thickness size configuration (ratio of flange thickness / web thickness is about 1.2 to 2.4), This represents a stable region under this condition. That is, when the maximum web thickness at the time of widening rolling is smaller than this, the rolling stable region becomes wider than the formula (2).
In addition, when both ends of the web were crushed by a plurality of passes in the previous widened hole mold under the conditions in which the flange crushing occurred in FIG. 2, the web internal method spread by 5 mm, and the D / F in FIG. 2 increased by 0.03. It was possible to perform widening stably.

本発明によるH形鋼のウェブ内法拡幅圧延方法の説明図である。It is explanatory drawing of the in-web method widening rolling method of the H-section steel by this invention. 本発明による拡幅安定条件の説明図である。It is explanatory drawing of the widening stable condition by this invention. 複数孔型でウェブ内法拡幅圧延を行う場合の粗圧延機の孔型図である。It is a hole type figure of a rough rolling mill in the case of performing in-web method widening rolling with a multiple hole type. 本発明の複数パスでのウェブ圧下による変形の説明図である。It is explanatory drawing of the deformation | transformation by the web reduction in multiple passes of this invention. 従来の代表的な圧延装置列を示す図である。It is a figure which shows the conventional typical rolling apparatus row | line | column. 従来のH形鋼の粗圧延方法についての説明図である。It is explanatory drawing about the rough rolling method of the conventional H-section steel. 従来のウェブ内法拡幅圧延方法における粗圧延機の孔型図である。It is a hole type figure of the roughing mill in the conventional in-web method widening rolling method. ウェブ高やフランジ幅の異なるH形鋼を造り分ける粗圧延機の孔型図である。It is a hole type figure of the rough rolling mill which produces H section steel from which web height and flange width differ. ウェブ内法拡幅圧延時における被圧延材の曲がりによる通材の不安定状態の説明図である。It is explanatory drawing of the unstable state of the passing material by the bending of the to-be-rolled material at the time of the in-web method widening rolling.

符号の説明Explanation of symbols

1 被圧延材
2 孔型
6 被圧延材
7 孔型
8 サイドガイド
21,22 孔型
31 二重式粗圧延機(粗圧延機)
32 第1粗ユニバーサル圧延機
33 エッジャー圧延機
34 第2粗ユニバーサル圧延機
35 エッジャー圧延機
36 仕上げユニバーサル圧延機
37 ドッグボーン鋼片
38 粗形鋼片
311〜313 エッジング孔型
314 造形孔型
DESCRIPTION OF SYMBOLS 1 Rolled material 2 Hole type 6 Rolled material 7 Hole type 8 Side guide 21, 22 Hole type 31 Double roughing mill (rough rolling mill)
32 First Coarse Rolling Machine 33 Edger Rolling Machine 34 Second Coarse Universal Rolling Machine 35 Edger Rolling Machine 36 Finishing Universal Rolling Machine 37 Dogbone Steel Slab 38 Coarse Steel Slabs 311 to 313 Edging Hole Mold 314 Modeling Hole Mold

Claims (4)

孔型によりウェブ内法を拡幅圧延するH形鋼の粗圧延方法において、被圧延材のフランジ内面から接触を開始し、接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)に基づいて、被圧延材と孔型の形状を決定することを特徴とするH形鋼の粗圧延方法。   In the rough rolling method of H-section steel that widens and rolls the inner web method with a hole mold, contact starts from the flange inner surface of the material to be rolled, and the distance from the flange tip to the hole web pressure lower surface in the contact start state (D) And the shape of the material to be rolled and the hole shape is determined based on the distance (C) between the outer surface of the flange and the outer surface of the hole shape when the material to be rolled and the hole shape are overlapped. A rough rolling method for steel. 孔型によりウェブ内法を拡幅圧延するH形鋼の粗圧延方法において、被圧延材と孔型の形状に関して、被圧延材のフランジ内面から接触を開始し、接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)とが、下記(1)式を満足するように圧延することを特徴とするH形鋼の粗圧延方法。
C/(ΔW/2)≦f(D/F)・・・(1)
ここに、C:被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離、
ΔW:ウェブ内法の拡幅量、
D:接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離、
F:ウェブ面からフランジ先端までの距離、
f:D/Fに関して単調増加の関数
In the rough rolling method of the H-section steel, which widens and rolls the in-web method using a hole mold, contact is started from the inner surface of the flange of the material to be rolled and the shape of the hole mold from the flange inner surface in the contact start state. The distance (D) to the mold web pressure lower surface and the distance (C) between the outer surface of the flange and the outer surface of the hole mold in a state where the material to be rolled and the hole mold are overlapped satisfy the following formula (1). A rough rolling method for H-section steel, characterized in that it is rolled into a steel.
C / (ΔW / 2) ≦ f (D / F) (1)
Where C: distance between the outer surface of the flange and the outer surface of the hole mold in a state where the material to be rolled and the hole mold are overlapped,
ΔW: A widening amount of the in-web method,
D: Distance from the flange tip to the perforated web pressure surface in the contact start state,
F: Distance from web surface to flange tip,
f: monotonically increasing function for D / F
接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)離との関係を、拡幅圧延時の被圧延材の最大ウェブ厚みによって決めることを特徴とする請求項1または請求項2に記載のH形鋼の粗圧延方法。   The distance (D) from the flange tip to the perforated web pressure surface in the contact start state and the distance (C) separation between the outer surface of the flange and the outer surface of the perforated state when the rolled material and the perforated mold are overlapped The rough rolling method for H-section steel according to claim 1 or 2, wherein the relationship is determined by the maximum web thickness of the material to be rolled during widening rolling. 前記孔型における接触開始状態でのフランジ先端から孔型ウェブ圧下面までの距離(D)と、被圧延材と当該孔型を重ね合わせた状態でのフランジ外面と孔型外側面との距離(C)とが所定の関係になるように、ウェブ内法を拡幅する当該孔型の直前の孔型において、複数パスで少なくともウェブの両端部を圧延することを特徴とする請求項1乃至請求項3のいずれか1項に記載のH形鋼の粗圧延方法。 The distance (D) from the flange tip to the hole web pressure lower surface in the contact start state in the hole mold, and the distance between the flange outer surface and the hole outer surface in a state where the material to be rolled and the hole mold are overlapped ( The at least both ends of the web are rolled by a plurality of passes in the hole mold immediately before the hole mold for widening the in-web method so as to have a predetermined relationship with C). 4. The rough rolling method for H-section steel according to any one of 3 above.
JP2003322415A 2003-09-16 2003-09-16 Rough rolling method for H-section steel Expired - Fee Related JP4167572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322415A JP4167572B2 (en) 2003-09-16 2003-09-16 Rough rolling method for H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322415A JP4167572B2 (en) 2003-09-16 2003-09-16 Rough rolling method for H-section steel

Publications (2)

Publication Number Publication Date
JP2005088027A true JP2005088027A (en) 2005-04-07
JP4167572B2 JP4167572B2 (en) 2008-10-15

Family

ID=34453774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322415A Expired - Fee Related JP4167572B2 (en) 2003-09-16 2003-09-16 Rough rolling method for H-section steel

Country Status (1)

Country Link
JP (1) JP4167572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111584A (en) * 2015-03-19 2019-07-11 日本製鉄株式会社 Rolled H-shaped steel
JP2021041443A (en) * 2019-09-12 2021-03-18 日本製鉄株式会社 H-section steel manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106372A (en) * 1977-02-26 1978-09-16 Kawasaki Steel Co Roughly rolling method for widening of hhbeam raw material by open caliber
JPS60162503A (en) * 1984-02-01 1985-08-24 Nippon Steel Corp Rough rolling method of h-beam
JP2003010902A (en) * 2001-04-25 2003-01-15 Nippon Steel Corp Method for rough rolling h-section steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106372A (en) * 1977-02-26 1978-09-16 Kawasaki Steel Co Roughly rolling method for widening of hhbeam raw material by open caliber
JPS60162503A (en) * 1984-02-01 1985-08-24 Nippon Steel Corp Rough rolling method of h-beam
JP2003010902A (en) * 2001-04-25 2003-01-15 Nippon Steel Corp Method for rough rolling h-section steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111584A (en) * 2015-03-19 2019-07-11 日本製鉄株式会社 Rolled H-shaped steel
JP2021041443A (en) * 2019-09-12 2021-03-18 日本製鉄株式会社 H-section steel manufacturing method
JP7360026B2 (en) 2019-09-12 2023-10-12 日本製鉄株式会社 Manufacturing method of H-beam steel

Also Published As

Publication number Publication date
JP4167572B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
WO2016148030A1 (en) H-shaped steel production method
US4420961A (en) Method for producing beam blank for universal beam
JP3769245B2 (en) Rough rolling method for H-section steel
WO2016148028A1 (en) H-shaped steel production method and h-shaped steel product
JP4167572B2 (en) Rough rolling method for H-section steel
JPS61135404A (en) Hot rolling method of h-beam
JP6458917B1 (en) Manufacturing method of H-section steel
JP4767434B2 (en) Rolling method and rolling device row of section steel with flange
JP5037418B2 (en) Rolling method for section steel with flange
JP6597321B2 (en) H-section steel manufacturing method and H-section steel products
JP4277640B2 (en) Method for producing shaped steel with protrusion and rolling equipment for shaped steel
JP7003841B2 (en) Manufacturing method of H-section steel
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JP3339466B2 (en) H-section steel and its rolling method
JP2005144497A (en) Rough rolling roll and rough rolling method used for manufacturing steel sheet pile having projected line on joint
JP6501047B1 (en) H-shaped steel manufacturing method
JP3279222B2 (en) Rolling method of shaped steel with flange
JP6593456B2 (en) H-section steel manufacturing method and H-section steel products
JP6447285B2 (en) Manufacturing method of H-section steel
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JPH0141402B2 (en)
JP4109443B2 (en) Rolling method for section steel with flange
JP5831139B2 (en) Rough rolling mill for H-section steel production
JP4276581B2 (en) Rolling method for extra thick H-section steel
JP4218481B2 (en) Method for producing shaped steel with protrusion and rolling equipment for shaped steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

R151 Written notification of patent or utility model registration

Ref document number: 4167572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees