JP2005081519A - Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter - Google Patents

Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter Download PDF

Info

Publication number
JP2005081519A
JP2005081519A JP2003318633A JP2003318633A JP2005081519A JP 2005081519 A JP2005081519 A JP 2005081519A JP 2003318633 A JP2003318633 A JP 2003318633A JP 2003318633 A JP2003318633 A JP 2003318633A JP 2005081519 A JP2005081519 A JP 2005081519A
Authority
JP
Japan
Prior art keywords
steel plate
steel
steel sheet
carbon nanofibers
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003318633A
Other languages
Japanese (ja)
Inventor
Tadashi Inoue
正 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003318633A priority Critical patent/JP2005081519A/en
Publication of JP2005081519A publication Critical patent/JP2005081519A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate and its preparation method capable of easily controlling generation of carbon nanofibers so as to be uniformized, and producing an inexpensive and high-performance electron emission device. <P>SOLUTION: This steel plate for forming carbon nanofibers, containing 1 wt.% C by the average concentration in plate-thickness direction, has a decarburized layer on the surface layer part and forms a number of recess portions on the surface. In the preparation method for the steel plate, when the steel is hot-rolled and then cold-rolled once or more times and annealed once or more times so as to prepare the steel plate having a prescribed plate thickness, the steel is subjected to decarburizing annealing in the process or in a final process so as to form the decarburized layer on the surface layer part of the steel plate, and a number of recess portions are formed on the surface of the steel plate. The nanocarbon emitter, in which the steel plate is used as a material, forms carbon nanofibers in the recess portions by thermal CVD process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、針状エミッタ電極からなる電子放出素子を製造するための基板用材料、およびその基板用材料にカーボンナノファイバを形成させて針状エミッタ電極とした電子放出素子に関する。
The present invention relates to a substrate material for manufacturing an electron-emitting device comprising a needle-like emitter electrode, and an electron-emitting device in which a carbon nanofiber is formed on the substrate material to form a needle-like emitter electrode.

フラットパネルディスプレイの1種として、FED(Field Emission Display)が精力的に研究されている。このFEDは、カソード基板とアノード基板を対向させ、カソード基板上に針状の電子放出素子を多数配置したもので、アノード基板に向けて電子を放出させてアノード基板上の蛍光体層を発光させる。   As one type of flat panel display, FED (Field Emission Display) has been actively researched. In this FED, a cathode substrate and an anode substrate are opposed to each other, and a large number of needle-shaped electron-emitting devices are arranged on the cathode substrate, and electrons are emitted toward the anode substrate to cause the phosphor layer on the anode substrate to emit light. .

カソード基板上に形成された電子放出素子は、電子放出に適した針状の突起構造の電極を有する物が一般的である。例えば、先端部の尖った円錐状の金属からなる電極を用いた電子放出素子が広く用いられている。   Generally, the electron-emitting device formed on the cathode substrate has a needle-like protruding electrode suitable for electron emission. For example, an electron-emitting device using an electrode made of a conical metal with a sharp tip is widely used.

特許文献1特開平9-274845号公報には、電子放出素子と電子放出素子用収束電極およびその製造方法が提案されている。これは、電子放出素子の対向基板側での電子収束性を高めることを目的とするもので、エミッタ電極に対応した微細開口を形成した金属板を平行に設け、これに負電圧を与えて収束電極とすることにより、カソード側のエミッタチップから放出された電子ビームを効率よく収束することができるというものである。   Japanese Patent Application Laid-Open No. 9-274845 proposes an electron-emitting device, a focusing electrode for the electron-emitting device, and a manufacturing method thereof. The purpose of this is to improve the electron convergence on the counter substrate side of the electron-emitting device. A metal plate with a fine opening corresponding to the emitter electrode is provided in parallel, and a negative voltage is applied to this to converge. By using the electrode, the electron beam emitted from the emitter tip on the cathode side can be efficiently converged.

エミッタ側の電子放出素子の製造方法としては、シリコン基板のエミッタ電極側となる表面を熱酸化し、表面にSiO2 からなる熱酸化膜を形成し、その上に、無機レジスト膜とさらに有機レジスト層を順次積層して形成する。有機レジスト層を所定パターンに形成後、無機レジスト層をエッチングしてマスクとし、SiO2からなる熱酸化膜をリアクティブイオンエッチング等でエッチングし、有機レジストを剥離処理する)。続いて、無機レジストをマスクとしてシリコン基板を水酸化カリウム水溶液により等方エッチングすると針状チップの形状が現れてくるというものである。 As a method for manufacturing the emitter-side electron-emitting device, the surface of the silicon substrate on the emitter electrode side is thermally oxidized, a thermal oxide film made of SiO 2 is formed on the surface, and an inorganic resist film and further an organic resist are formed thereon. Layers are sequentially stacked. After the organic resist layer is formed in a predetermined pattern, the inorganic resist layer is etched and used as a mask, and the thermal oxide film made of SiO 2 is etched by reactive ion etching or the like to remove the organic resist). Subsequently, when the silicon substrate is isotropically etched with an aqueous potassium hydroxide solution using an inorganic resist as a mask, the shape of a needle-shaped tip appears.

特許文献2特開平9-283013号公報には、表面伝導型の電子放出素子と電子放出素子用収束電極およびその製造方法が提案されている。これは、表面伝導型の電子放出素子を用いること以外は、特許文献1と同様、電子ビームの収束性を高めることを目的とするもので、開口を形成した金属板に負電圧を与えて電子ビームを開口の内側に効率よく収束させる。特に、収束電極を一枚の共通の金属板に形成したので、アノード側基板あるいはカソード側基板と一体にすることができるとともに、素子毎のばらつきをなくすことができるというものである。

これらのエッチングにより電極を形成する方法に対して、電子放出素子としてカーボンナノファイバを活用することも検討されている。例えば、非特許文献1(金属,vol.72,p872)には、熱CVD法によるFED用のエミッタ電極の製作方法が提案されている。この方法によれば、原料ガスとしてCOとH2の混合ガスを用いて、チャンバ内に配置されたFED用カソード基板を、チャンバ外部に設置された赤外線ランプで加熱する。基板上には触媒金属が成膜されており、CO分子がこの触媒により乖離し、カーボンナノファイバが生成するというものである。
Japanese Patent Application Laid-Open No. 9-283013 proposes a surface conduction electron-emitting device, a focusing electrode for the electron-emitting device, and a method for manufacturing the same. The purpose of this is to improve the convergence of the electron beam, as in Patent Document 1, except that a surface conduction electron-emitting device is used. Efficiently focuses the beam inside the aperture. In particular, since the focusing electrode is formed on one common metal plate, it can be integrated with the anode side substrate or the cathode side substrate, and variation among elements can be eliminated.

The use of carbon nanofibers as electron-emitting devices is also being studied for these methods of forming electrodes by etching. For example, Non-Patent Document 1 (Metal, vol. 72, p872) proposes a method of manufacturing an emitter electrode for FED by a thermal CVD method. According to this method, using a mixed gas of CO and H 2 as a raw material gas, the cathode substrate for FED disposed in the chamber is heated with an infrared lamp installed outside the chamber. A catalytic metal film is formed on the substrate, and CO molecules are separated by the catalyst to generate carbon nanofibers.

特許文献3特開2003-160321号公報にもカーボンナノファイバーの製造方法が提案されている。これは、ガスデポジション法によって、触媒粒子を基板上の陰極電極に配置し、該触媒粒子を核として気相から炭素を主成分とするファイバを成長させるというものである。   Japanese Patent Application Laid-Open No. 2003-160321 also proposes a method for producing carbon nanofibers. In this method, catalyst particles are arranged on a cathode electrode on a substrate by a gas deposition method, and a fiber mainly composed of carbon is grown from the gas phase using the catalyst particles as nuclei.

特許文献4特開2003-203556号公報には、エミッタのアスペクト比を増加させることにより、駆動電圧を低めて消費電力を低減する電界放出素子及びその製造方法が提案されている。これは、半導体素子の製造工程で、シリコン基板にナノメートルサイズのホールをまず形成し、ホール内にエミッタを形成してエミッタのアスペクト比を増加させるというものである。

特開平9-274845号公報 特開平9-283013号公報 特開2003-160321号公報 特開2003-203556号公報 村上裕彦:金属,vol.72,(2002),No.9,p872-875
Japanese Patent Application Laid-Open No. 2003-203556 proposes a field emission element that reduces the driving voltage and power consumption by increasing the emitter aspect ratio, and a method for manufacturing the field emission element. In this semiconductor device manufacturing process, a nanometer-sized hole is first formed in a silicon substrate, and an emitter is formed in the hole to increase the emitter aspect ratio.

JP-A-9-274845 Japanese Patent Laid-Open No. 9-283013 JP 2003-160321 A JP 2003-203556 A Hirohiko Murakami: Metals, vol. 72, (2002), No. 9, p872-875

しかしながら、電界放出型のカソードを用いて画像表示装置を作製するにはCRTのような高輝度を得るため、エミッタからの放出電子量の増大が要求されている。そのためには、エミッタ先端部への電界集中が起こり易いように、エミッタ先端が先鋭化された構造を設けなければならない。   However, in order to produce an image display device using a field emission type cathode, it is required to increase the amount of electrons emitted from the emitter in order to obtain high brightness like CRT. For this purpose, a structure in which the tip of the emitter is sharpened must be provided so that the electric field concentration on the emitter tip tends to occur.

特許文献1,2記載の技術は、エミッタ先端部をエッチングで先鋭化させるが、エッチングの制御は必ずしも容易ではなく、十分に小さな曲率半径の先端部が安定して得られる訳ではない。更に、同時に多数のエミッタをエッチングする場合、個々のエミッタの先端部の形状を揃えることは困難である。エミッタ先端部の先鋭化が不十分であると、電界強度が低下して放出電流が低下し、十分な輝度が得られなくなるという問題がある。   The techniques described in Patent Documents 1 and 2 sharpen the emitter tip by etching, but the control of etching is not always easy, and a tip having a sufficiently small radius of curvature is not always obtained. Furthermore, when etching a large number of emitters at the same time, it is difficult to align the shape of the tip of each emitter. If the tip of the emitter tip is not sufficiently sharpened, there is a problem that the electric field strength is lowered, the emission current is lowered, and sufficient luminance cannot be obtained.

その点、カーボンナノファイバは、高いアスペクト比を持つため先端部に電界が集中し易く、低電圧にて電子放出を行わせることができる。更にこれは、個々の寸法(外径)が微細であることから、単位面積当たり高密度に集積配置することも可能である。   In that respect, since carbon nanofibers have a high aspect ratio, the electric field tends to concentrate on the tip, and electrons can be emitted at a low voltage. Furthermore, since the individual dimensions (outer diameter) are fine, it is possible to arrange and arrange them at a high density per unit area.

しかし、非特許文献1記載の技術のように、触媒金属を成膜させる方法では、成膜の不均一に起因した欠陥(カーボンナノファイバの分布密度の不均一)が避けられない。あるいは特許文献3記載の技術についても、触媒粒子を基板上に配置する必要があり、やはり触媒粒子の分布密度の不均一により、カーボンナノファイバの分布密度に不均一が生じることが避けられない。   However, as in the technique described in Non-Patent Document 1, in the method of forming a catalyst metal film, defects (nonuniform distribution density of carbon nanofibers) due to nonuniform film formation cannot be avoided. Alternatively, in the technique described in Patent Document 3, it is necessary to dispose the catalyst particles on the substrate, and it is inevitable that the distribution density of the carbon nanofibers is uneven due to the uneven distribution density of the catalyst particles.

本発明は、これら課題を解決し、カーボンナノファイバの生成が制御しやすく、均一化させることが可能で、電子放出素子を安価で高性能な電子放出素子を作成することが可能な鋼板およびその製造方法を提供することを目的とする。
The present invention solves these problems, makes it easy to control the generation of carbon nanofibers, makes it uniform, and makes it possible to produce an electron-emitting device at low cost and with high performance, and a steel plate thereof An object is to provide a manufacturing method.

上記の課題は次の発明により解決される。その発明は、Cを板厚方向の平均濃度で1質量%以下含有する鋼板であって、表層部に脱炭層を有すると共に、表面に多数の凹部が形成されていることを特徴とするカーボンナノファイバ形成用鋼板である。   The above problems are solved by the following invention. The invention is a carbon nano-sheet containing 1% by mass or less of C in an average concentration in the plate thickness direction, having a decarburized layer on the surface layer portion, and having a number of concave portions formed on the surface. It is a steel sheet for fiber formation.

この発明の鋼板を製造することが可能な製造方法の発明は、Cを板厚方向の平均濃度で1質量%以下含有する鋼板の製造方法であって、鋼を熱間圧延し、冷間圧延および焼鈍をそれぞれ1回以上施し、所定の板厚の鋼板を製造する際、脱炭焼鈍をこの間の工程あるいは最終工程で施し、鋼板表層部に脱炭層を形成させると共に、鋼板表面に多数の凹部を形成させることを特徴とするカーボンナノファイバ形成用鋼板の製造方法である。   The invention of the production method capable of producing the steel sheet of the present invention is a method for producing a steel sheet containing C at an average concentration in the thickness direction of 1% by mass or less, wherein the steel is hot-rolled and cold-rolled And annealing each time at least once to produce a steel sheet of a predetermined thickness, decarburization annealing is performed in the process or the final process during this period, and a decarburized layer is formed on the steel sheet surface layer part, and a number of concave portions are formed on the steel sheet surface. It is a manufacturing method of the steel plate for carbon nanofiber formation characterized by forming.

また、上記発明の鋼板を用いたナノカーボンエミッタの発明は、上記発明の鋼板を素材とし、熱CVD法の処理により凹部にカーボンナノファイバを形成させたことを特徴とするナノカーボンエミッタである。   The invention of the nanocarbon emitter using the steel plate of the invention is a nanocarbon emitter characterized in that the carbon steel fiber of the invention is used as a raw material and carbon nanofibers are formed in the recesses by a thermal CVD process.

この発明は、鋼に熱CVD法の処理を施すと、鋼中のC濃度が高い領域に優先的にCの析出が見られる、という知見に基づきなされた。すなわち、鋼板のC濃度に所定の分布を付与することにより、C濃度の高い領域にカーボンナノファイバが生成し易くなることを利用している。   The present invention has been made based on the knowledge that when steel is subjected to a thermal CVD process, precipitation of C is preferentially seen in a region where the C concentration in the steel is high. That is, it is utilized that carbon nanofibers are easily generated in a region having a high C concentration by giving a predetermined distribution to the C concentration of the steel sheet.

本発明では鋼板表層部に脱炭層を形成させ、鋼板板厚方向に濃度勾配を付与しておく。従って、鋼板表層部はカーボンナノファイバが生成し難い状態となっている。この表層部の一部をエッチング等により除去して凹部を設けると、鋼板の板厚深さ方向にC濃度が高くなるので、その凹部の底面のC濃度が最も高くなる。   In the present invention, a decarburized layer is formed on the surface portion of the steel plate, and a concentration gradient is given in the steel plate thickness direction. Therefore, the surface portion of the steel sheet is in a state where it is difficult for carbon nanofibers to be generated. If a part of the surface layer part is removed by etching or the like to provide a recess, the C concentration increases in the thickness direction of the steel sheet, so that the C concentration on the bottom surface of the recess becomes the highest.

その結果、この凹部が形成された鋼板は、熱CVD法の処理を施すことにより、凹部の底面およびその近傍に、カーボンナノファイバを優先的に生成させることが可能となる。鋼板の凹部は、フォトエッチング等により目的とするFEDの個々の蛍光体の形状・寸法・分布に合わせて形成させることができる。   As a result, it is possible to preferentially generate carbon nanofibers on the bottom surface of the recess and in the vicinity thereof by performing a thermal CVD process on the steel sheet in which the recess is formed. The concave portion of the steel plate can be formed by photoetching or the like according to the shape, size, and distribution of the target FED phosphor.

この発明において、Cは、カーボンナノファイバを効率的に形成させるために必須の元素である。しかし、C量が板厚方向の平均濃度で1質量%を超えると、冷間加工性が劣化し、薄鋼板を製造する際の歩留りが著しく低下するので、C量の上限を1質量%とする。
In the present invention, C is an essential element for efficiently forming carbon nanofibers. However, if the amount of C exceeds 1% by weight in the average concentration in the sheet thickness direction, the cold workability deteriorates and the yield in manufacturing a thin steel sheet is remarkably lowered. Therefore, the upper limit of the amount of C is 1% by weight. To do.

本発明の方法は、凹部の底面がC濃度の高い領域に到達させることにより、総ての凹部についてカーボンナノファイバの生成条件がほぼ同一となる。従って、従来技術で必須であった触媒金属の成膜の不均一等、カーボンナノファイバの生成条件の不均一を本質的に回避することができる。その結果、欠陥発生の少ない、信頼性の高いナノカーボンエミッタを製造することが容易となる。
In the method according to the present invention, the bottom surface of the recess reaches the region having a high C concentration, so that the carbon nanofiber generation conditions are substantially the same for all the recesses. Therefore, it is possible to essentially avoid non-uniformity of the carbon nanofiber generation conditions such as non-uniformity of the catalyst metal film formation, which is essential in the prior art. As a result, it becomes easy to manufacture a highly reliable nanocarbon emitter with few defects.

発明の実施に当っては、C量が板厚方向の平均濃度で1質量%以下となるよう鋼の成分調整を行う。その他の元素については、通常の薄鋼板程度は含有されていても、カーボンナノファイバの生成には特に支障はない。むしろ、エッチング性の観点からC量は、0.5質量%以下とすることが望ましい。   In carrying out the invention, the steel components are adjusted so that the C content is 1% by mass or less in terms of the average concentration in the thickness direction. About other elements, even if it contains about a normal thin steel plate, there is no particular problem in the production of carbon nanofibers. Rather, from the viewpoint of etching properties, the C content is desirably 0.5% by mass or less.

鋼を熱間圧延し、冷間圧延、焼鈍をそれぞれ1回以上施し、所定の板厚の鋼板を製造する。その際、脱炭焼鈍をこの間の工程あるいは最終工程で施し、鋼板表層部に脱炭層を形成させることにより、本発明の意図する鋼板を得ることができる。なお、脱炭焼鈍は、通常の薄鋼板における脱炭焼鈍条件で施せばよいが、鋼板の板厚方向の濃度勾配を確保するためには、脱炭時間を3時間以下とすることが望ましい。
Steel is hot-rolled and cold-rolled and annealed at least once each to produce a steel plate with a predetermined thickness. In that case, decarburization annealing is performed in the process in the meantime or a final process, and the steel plate intended by this invention can be obtained by forming a decarburization layer in the steel plate surface layer part. The decarburization annealing may be performed under normal decarburization annealing conditions for a thin steel plate, but it is desirable that the decarburization time be 3 hours or less in order to ensure a concentration gradient in the thickness direction of the steel plate.

Cを0.35%含有する鋼を鋳造し、得られた鋳片を板厚3mmに熱間圧延した後、酸洗し、脱炭焼鈍後、板厚1mmに冷間圧延した。その後、焼鈍を鋼板の軟質化のため施し、引き続き冷間圧延により板厚0.25mmの薄鋼板とした。脱炭は、熱延板において、雰囲気;20%H2-残N2、露点+20℃で3時間行なった。   Steel containing 0.35% C was cast, and the obtained slab was hot-rolled to a thickness of 3 mm, pickled, decarburized, and cold-rolled to a thickness of 1 mm. Then, annealing was performed to soften the steel sheet, and a thin steel sheet having a thickness of 0.25 mm was subsequently formed by cold rolling. Decarburization was performed in a hot-rolled sheet in an atmosphere; 20% H2-residual N2, dew point + 20 ° C for 3 hours.

このようにして、鋼板表層部に脱炭層を形成させ、鋼板板厚中央部のC濃度が高くなる濃度勾配を付与した鋼板に、塩化第二鉄によるフォトエッチングにより凹部を形成させた。凹部のピッチは250μm、凹部の深さは50μm以下とした。   In this way, a decarburized layer was formed on the steel sheet surface layer portion, and a concave portion was formed by photoetching with ferric chloride on the steel plate provided with a concentration gradient in which the C concentration in the central portion of the steel plate thickness increased. The pitch of the recesses was 250 μm, and the depth of the recesses was 50 μm or less.

この凹部が形成された鋼板を、熱CVD法の処理によりカーボンナノファイバを生成させた。結果は、図1に示すように、鋼板の凹部の底面およびその近傍に、カーボンナノファイバが優先的に生成し、また、各凹部のファイバ生成状況もほぼ均一であった。
Carbon nanofibers were produced from the steel sheet with the recesses formed by thermal CVD. As a result, as shown in FIG. 1, carbon nanofibers were preferentially generated on the bottom surface of the concave portion of the steel plate and in the vicinity thereof, and the fiber generation state of each concave portion was almost uniform.

以上説明した様に、本発明により電子放出素子の針状エミッタ電極を製造するための素子およびその製造方法を提供することができる。これらの電子放出素子を安価で高性能に作成することが可能となり、工業上有用な効果がもたらされる。
As described above, according to the present invention, an element for manufacturing a needle-like emitter electrode of an electron-emitting device and a manufacturing method thereof can be provided. These electron-emitting devices can be produced inexpensively and with high performance, and an industrially useful effect is brought about.

本発明法による薄鋼板を用いたカーボンナノファイバの形成方法を示す模式図。(a)脱炭焼鈍後 (b)フォトエッチング後 (c)熱CVD法の処理後The schematic diagram which shows the formation method of the carbon nanofiber using the thin steel plate by this invention method. (A) After decarburization annealing (b) After photoetching (c) After treatment by thermal CVD method

Claims (3)

Cを板厚方向の平均濃度で1質量%以下含有する鋼板であって、表層部に脱炭層を有すると共に、表面に多数の凹部が形成されていることを特徴とするカーボンナノファイバ形成用鋼板。
A steel sheet for carbon nanofiber formation, comprising a C content of 1% by mass or less in an average concentration in the sheet thickness direction, having a decarburized layer in the surface layer portion, and having a number of recesses on the surface. .
Cを板厚方向の平均濃度で1質量%以下含有する鋼板の製造方法であって、鋼を熱間圧延し、冷間圧延および焼鈍をそれぞれ1回以上施し、所定の板厚の鋼板を製造する際、脱炭焼鈍をこの間の工程あるいは最終工程で施し、鋼板表層部に脱炭層を形成させると共に、鋼板表面に多数の凹部を形成させることを特徴とするカーボンナノファイバ形成用鋼板の製造方法。
A method for producing a steel sheet containing 1% by mass or less of C in an average concentration in the sheet thickness direction, wherein the steel is hot-rolled and cold-rolled and annealed at least once to produce a steel sheet having a predetermined thickness. The carbon nanofiber-forming steel sheet manufacturing method is characterized in that decarburization annealing is performed in this process or the final process, and a decarburized layer is formed on the steel sheet surface layer part, and a large number of recesses are formed on the steel sheet surface. .
請求項1記載の鋼板を素材とし、熱CVD法の処理により凹部にカーボンナノファイバを形成させたことを特徴とするナノカーボンエミッタ。 A nanocarbon emitter, characterized in that the steel plate according to claim 1 is used as a raw material, and carbon nanofibers are formed in the recesses by a thermal CVD method.
JP2003318633A 2003-09-10 2003-09-10 Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter Pending JP2005081519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003318633A JP2005081519A (en) 2003-09-10 2003-09-10 Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003318633A JP2005081519A (en) 2003-09-10 2003-09-10 Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter

Publications (1)

Publication Number Publication Date
JP2005081519A true JP2005081519A (en) 2005-03-31

Family

ID=34417862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003318633A Pending JP2005081519A (en) 2003-09-10 2003-09-10 Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter

Country Status (1)

Country Link
JP (1) JP2005081519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659624B2 (en) 2006-04-25 2010-02-09 Samsung Electronics Co,., Ltd. Semiconductor device having a nanoscale conductive structure
JP2015520717A (en) * 2012-04-16 2015-07-23 シーアストーン リミテッド ライアビリティ カンパニー Method for using a metal catalyst in a carbon oxide catalytic converter
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659624B2 (en) 2006-04-25 2010-02-09 Samsung Electronics Co,., Ltd. Semiconductor device having a nanoscale conductive structure
JP2015520717A (en) * 2012-04-16 2015-07-23 シーアストーン リミテッド ライアビリティ カンパニー Method for using a metal catalyst in a carbon oxide catalytic converter
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Similar Documents

Publication Publication Date Title
US7879398B2 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
JP2001180920A (en) Method of machining nano tube and method of producing field emission-type cold cathode and indicator
JP2006224296A (en) Carbon nanotube structure and method of manufacturing the same, and field emission device using the carbon nanotube structure and method of manufacturing the device
JP2002150929A (en) Manufacturing method of electron emitting element, electron source and image forming device
CN104851765B (en) Method for improving field emission performance of carbon nano tube by microwave hydrogen plasma treatment
JP3792436B2 (en) Field emission cold cathode, manufacturing method thereof, and manufacturing method of flat display
JP2002075171A (en) Manufacturing method of electron emission element and electronic device
JP2005081519A (en) Steel plate for forming carbon nanofiber and its preparation method, and nanocarbon emitter
TWI254338B (en) Carbon-nanotube cold cathode and method for fabricating the same
JP2006294387A (en) Nanocarbon emitter and its manufacturing method
JP5024813B2 (en) Method for manufacturing surface light emitting device
JP2001068016A (en) Electron gun, manufacture thereof, and field emission display
JP2005206936A (en) Metal sheet in which carbon nanofiber is easy to be formed, its production method, and nanocarbon emitter
JP4707336B2 (en) Manufacturing method of electron source using carbon nanofiber
JP3012517B2 (en) Electron emitting device and method of manufacturing the same
WO2019109966A1 (en) Plasma generator electrode and manufacturing method thereof
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same
JP2005150091A (en) Metal plate and nano-carbon emitter easy to form carbon nano-fiber
CN100342474C (en) Method of ion injecting for increasing emitting performance of carbon mnotube thin film electronic field
JP2006120546A (en) Nano-carbon emitter, its manufacturing method and field emission display
JP2005158704A (en) Nano-carbon emitter using metal plate easily forming carbon nano-fiber, its manufacturing method, and field emission display
JP4590631B2 (en) Field emitter array and manufacturing method thereof
JP2000173444A (en) Electric field emitting type cold negative electrode, and its manufacture
JP2002255527A (en) Carbon nanotube and method of processing for generating carbon nanotube
JP2006244857A (en) Cold cathode electron source and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921