JP2005072061A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2005072061A
JP2005072061A JP2003209104A JP2003209104A JP2005072061A JP 2005072061 A JP2005072061 A JP 2005072061A JP 2003209104 A JP2003209104 A JP 2003209104A JP 2003209104 A JP2003209104 A JP 2003209104A JP 2005072061 A JP2005072061 A JP 2005072061A
Authority
JP
Japan
Prior art keywords
metal core
core substrate
wiring
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209104A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003209104A priority Critical patent/JP2005072061A/en
Publication of JP2005072061A publication Critical patent/JP2005072061A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board containing a relatively thin metallic core substrate, high-density wiring layers, etc., and to provide a method by which the wiring board can be manufactured accurately and efficiently. <P>SOLUTION: The wiring board 1 (1a) comprises the metallic core substrate 2 having a front surface 3 and a rear surface 4, a plurality of insulating layers 5, 6, 13, and 15 respectively formed above the front and rear surfaces 3 and 4 of the substrates 2, and the wiring layers 12 and 14 positioned among the insulating layers 5, 6, 13 and 15. The wiring board 1 (1a) also comprises through holes 2a formed through the core substrate 2 from the front surface 3 to the rear surface 4 and via conductors 10 which are passed through the through holes 2a through insulators 7 to connect the wiring layer 12 above the front surface 3 of the core substrate 2 to the wiring layer 14 above the rear surface 4 of the substrate 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属コア基板を内設する配線基板およびその製造方法に関する。
【0002】
【従来の技術】
従来から配線基板の強度を高めるため、厚みが約100μm〜数100μmの金属コア基板を用い、かかる金属コア基板の表面上方および裏面上方に複数の絶縁層とこれらの間に位置する配線層とをそれぞれ対称に積層した多層構造の配線基板が使用されている。かかる配線基板は、上記厚みで且つ多数個取り用の金属板にスルーホール導体用の貫通孔を穿孔した後、かかる金属板の表面上方および裏面上方に、絶縁層と配線層とを交互に積層するビルドアップ工程を行うことにより製造されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−101245号公報 (第4〜7頁、図5)
【0004】
ところで、金属コア基板は、薄肉であるほど配線基板全体の厚みを薄くできるが、上述した金属板およびこれを分割した金属コア基板を剛性のある芯材として用いると、その厚みを100μm未満の薄肉とするには自ずと限界があった。
このため、金属コア基板の表面上方および裏面上方の配線層同士間を導通するスルーホール導体を形成するべく、大きな内径のスルーホールの穿孔、銅メッキによるスルーホール導体の形成、穴埋め樹脂の充填、および蓋メッキの形成などの煩雑な工程を要すると共に、上記導体や配線層の精密な配置(ファインピッチ)が困難であった。しかも、複数の金属コア基板を有する金属板を薄肉化すると、製造工程内や製造工程間のハンドリングにも支障を来す、という問題もあった。
【0005】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、比較的薄肉の金属コア基板および高密度な配線層などを含む配線基板、およびこれを精度と効率良く得るための配線基板の製造方法を提供する、ことを課題とする。
【0006】
【課題を解決するための手段および発明の効果】
本発明は、上記課題を解決するため、金属コア基板を絶縁層や配線層と同様に積層すべき1単位と着想する、ことにより成されたものである。
即ち、本発明の第1の配線基板(請求項1)は、表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上方および裏面上方にそれぞれ形成した複数の絶縁層およびその間に位置する配線層と、上記金属コア基板の表面と裏面との間を貫通する貫通孔と、かかる貫通孔内を絶縁材を介して貫通し且つ上記表面上方の配線層と裏面上方の配線層との間を接続するビア導体と、を含む、ことを特徴とする。
【0007】
これによれば、金属コア基板の表面上方および裏面上方にそれぞれ形成した配線層同士の間を、上記貫通孔を絶縁材を介して貫通するビア導体により接続するため、当該金属コア基板を薄肉化できる。また、金属コア基板を薄肉化できるため、その表面上方および裏面上方に配線層を高密度にそれぞれ形成することもできる。しかも、従来のように、金属コア基板の表面と裏面との間を絶縁材を介して貫通するスルーホール導体を用いないため、後述する製造方法も容易となる。
付言すれば、上記配線基板は、前記金属コア基板の厚みが50μm以下である、とすることも可能である。望ましい厚みは、35μmまたはこれ以下である。
【0008】
尚、金属コア基板は、上記厚みの銅箔、ステンレス鋼(例えばSUS304)箔や、Fe−42wt%Ni(所謂42アロイ)またはFe−36wt%Ni(インバ−)などの箔を含む薄板が用いられる。また、前記貫通孔内の絶縁材は、金属コア基板の表面または裏面に隣接する絶縁層と一体か、別途充填したものでも良い。
更に、前記ビア導体は、円錐形状の導体であるコンフォーマルビア導体の他、フィルドビア導体も含まれ、後者の場合は、金属コア基板の貫通孔内を貫通するフィルドビア導体の真上や真下に別のフィルドビア導体を接続しても良い。
【0009】
また、本発明の第2の配線基板(請求項2)は、平面視が矩形で且つ表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上方および裏面上方にそれぞれ形成した複数の絶縁層およびその間に位置する配線層と、上記金属コア基板の側面に形成され且つ上記絶縁層の何れかと一体の側面絶縁材と、を含む、ことを特徴とする。
これによれば、金属コア基板の4つの側面は、上記絶縁層の何れかと一体で且つ当該金属コア基板の各側面とほぼ平行な側面絶縁材によって被覆されている。このため、従来のような金属コア基板の側面からタイバーが突出しないので、これによる外部や基板内部との不用意な導通を防止できると共に、配線基板の周辺部においても緻密な配線層を配置することが可能となる。
【0010】
付言すれば、第1および第2の配線基板は、平面視が矩形で且つ表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上方および裏面上方にそれぞれ形成した複数の絶縁層およびその間に位置する配線層と、上記金属コア基板の表面と裏面との間を貫通する貫通孔と、かかる貫通孔内を絶縁材を介して貫通し且つ上記表面上の配線層と裏面上の配線層との間を接続するビア導体と、上記金属コア基板の側面に平行に形成され且つ上記絶縁層の何れかと一体の側面絶縁材と、を含む、とすることも可能である。これによる場合、金属コア基板を薄肉化でき、かかる金属コア基板の表面上方および裏面上方に配線層を緻密にそれぞれ形成できると共に、外部や基板内部との不要な導通を防止でき、配線基板の周辺部においても緻密な配線層を配置することが可能となる。
また付言すれば、第1および第2の配線基板は、前記金属コア基板の裏面とかかる金属コア基板の裏面上方の配線層との間を導通する新たなビア導体を有する、とすることも可能である。
【0011】
一方、本発明の配線基板の製造方法(請求項3)は、支持基板の平坦面上に複数の絶縁層およびその間に位置する配線層を形成する工程と、前記のうち最外層の絶縁層の上方に金属コア基板を積層する工程と、かかる金属コア基板を貫通する貫通孔を穿孔する工程と、上記貫通孔内を含めて上記金属コア基板の上面に新たな絶縁層を形成する工程と、を含む、ことを特徴とする。
これによれば、金属コア基板は、剛性を有する支持基板の平坦面(平坦な表面)上に予め形成された絶縁層の上方に積層されるため、前述した薄肉の銅箔などとすることができる。また、かかる薄肉の金属コア基板を貫通する貫通孔も精度良く容易に形成できると共に、その上面に形成する新たな絶縁層の一部を上記貫通孔内に確実に充填することもできる。しかも、剛性を有する支持基板の平坦面の上方に絶縁層や配線層などを順次積層するため、ハンドリング性も向上する。
【0012】
尚、上記「最外層の絶縁層」とは、支持基板から相対的に離れている絶縁層を指す。また、支持基板には、剛性を有する厚みが約1mmの銅板、銅合金板、鋼板、ステンレス鋼板、アルミニウム合金板、あるいはチタン合金板などが用いられ、且つ平坦な表面である平坦面を有するものである。かかる平坦面は、製品単位である前記金属コア基板を平面方向に沿って複数個載置できる多数個取り用の広さを有しても良く、かかる平坦面を有する大きな支持基板(パネル)としても良い。更に、支持基板の平坦面上に、積層する順序は、前記配線基板の第1主面側のソルダーレジスト層(絶縁層)、配線層、絶縁層、および金属コア基板などの順の他、前記配線基板の第2主面側のソルダーレジスト層(絶縁層)、配線層、絶縁層、および金属コア基板などの順としても良い。即ち、前記「新たな絶縁層」や後述する「新たな配線層」および「別の絶縁層」は、製造工程における支持基板の平坦面上に積層する順序における相対的な呼称である。
【0013】
また、本発明には、前記各工程の後に、前記新たな絶縁層および前記貫通孔内に位置する絶縁材を貫通し且つ前記配線層に達するビアホールを形成する工程と、上記ビアホール内にビア導体を形成する工程と、を有する、配線基板の製造方法(請求項4)も含まれる。
これによれば、金属コア基板に精度良く形成された貫通孔内に絶縁層と一体の絶縁材を介して、ビアホールおよびビア導体を容易に形成することができる。
【0014】
更に、本発明には、前記各工程の後に、前記金属コア基板上面の新たな絶縁層の上方に位置し且つ前記ビア導体と接続する新たな配線層を形成する工程と、かかる新たな絶縁層および新たな配線層の上方に別の絶縁層を形成する工程と、その後で前記支持基板を除去する工程と、を更に有する、配線基板の製造方法(請求項5)も含まれる。これによれば、金属コア基板を挟んでその表面上方および裏面上方に複数の配線層およびその間に形成した配線層を精度良く高密度で形成できると共に、係る多層構造の配線基板とした後で、支持基板を除去できる。
尚、上記支持基板の除去方法は、銅製の支持基板である場合、例えば塩化第2銅溶液によりエッチングする方法が採られる。
【0015】
加えて、本発明には、前記金属コア基板には、製品単位(金属コア基板)を複数有する多数個取りの金属薄板が用いられ、前記貫通孔を穿孔する工程と同時に、かかる金属薄板を複数の金属コア基板に分離する平面視が矩形の区画溝が形成される、配線基板の製造方法(請求項6)も含まれる。
これによれば、金属薄板は、上記区画孔(溝)に囲まれた製品単位である複数の金属コア基板に分割されると共に、前記支持基板を除去した後で、区画孔の幅方向の中間に沿ってダイシング加工などにより切断することによって、金属コア基板の側面が側面絶縁材で覆われている前記第2の配線基板を確実に得ることができる。尚、上記金属薄板には、銅や銅合金などからなる金属箔が含まれる。
【0016】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1(A)は、本発明の第1および第2の配線基板の1形態である配線基板1の模式的断面を示す。配線基板1は、図1(A)に示すように、表面3および裏面4を有する金属コア基板2と、この金属コア基板2の表面3上方および裏面4上方(図示で下方)にそれぞれ形成した複数の絶縁層5,13,22,6,15,23およびその間に位置する配線層12,21,14,18と、上記金属コア基板2の表面3と裏面4との間を貫通する貫通孔2aと、かかる貫通孔2a内を絶縁材7を介して貫通し且つ上記表面3上方の配線層12と裏面4上方の配線層14との間を接続するビア導体(コンフォーマルビア導体)10と、を含んでいる。
上記金属コア基板2は、平面視が正方形(矩形)で且つ厚みが35μmの銅箔または銅合金(例えばCu−2.3wt%Fe−0.03wt%P:所謂194アロイ)の箔からなる。かかる金属コア基板2には、表面3と裏面4との間を貫通する内径が約200μmの貫通孔2aが所定の位置に複数貫通している。
【0017】
図1(A)に示すように、金属コア基板2の表面3上方には、厚みが約40μmでエポキシ系樹脂からなる絶縁層5,13および厚みが約20μmで同様の樹脂からなるソルダーレジスト層(絶縁層)22と、これらの間に位置し所定のパターンを有する厚みが約15μmの配線層12,21とが積層されている。この配線層12,21間は、ビア導体(コンフォーマルビア導体)16により接続される。
尚、絶縁層5などは、例えばシリカフィラなどの無機フィラを含み、上記配線層12などは、銅メッキ膜や銅箔からなる。また、絶縁層5,13および配線層12,21は、一方のビルドアップ層を形成している。
【0018】
一方、図1(A)に示すように、金属コア基板2の裏面4上方(図示で下方)にも、厚みが約40μmでエポキシ系樹脂からなる上記同様の絶縁層6,15および厚みが約20μmで同様の樹脂からなるソルダーレジスト層(絶縁層)23と、これらの間に位置し所定のパターンを有する厚みが約15μmの配線層14,18とが積層されている。上記配線層14,18間は、ビア導体(コンフォーマルビア)17により接続されている。尚、絶縁層6,15および配線層14,18は、他方のビルドアップ層を形成している。
【0019】
図1(A)に示すように、金属コア基板2の貫通孔2a内には、絶縁材7を介して配線層12,14間を接続するビア導体(コンフォーマルビア)10が形成され、且つ図示でその内側の凹んだ部分には、絶縁層15と一体の絶縁材9が充填されている。尚、貫通孔2a内に充填された絶縁材7は、絶縁層5,6の何れかの一方と一体である。
また、図1(A)に示すように、金属コア基板2の各側面は、当該側面と平行で且つ一定の厚み(約35μm:金属コア基板2の厚み部分)の側面絶縁材8に被覆され、かかる側面絶縁材8も絶縁層5,6の何れかの一方と一体である。
【0020】
図1(A)に示すように、配線層21における所定の表面には、ソルダーレジスト層22を貫通し第1主面24側に露出する複数のランド26が形成され、かかるランド26の表面上に半球形状のハンダバンプ28が第1主面24よりも高く突設される。かかるハンダバンプ28は、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系、Sn−Zn系、Pb−Sn系など(本実施形態ではSn−Ag系)の低融点合金からなり、第1主面24上に実装される図示しないICチップなど(電子部品)の接続端子と個別に接続される。尚、ハンダバンプ28とICチップなどの接続端子とは、アンダーフィル材(図示せず)に覆われ且つ保護される。
【0021】
一方、図1(A)に示すように、配線層18から延びた配線19は、最下層のソルダーレジスト層(絶縁層)23に設けた開口部20の底面に位置し且つ第2主面25側に露出している。かかる配線19は、その表面にNiメッキおよびAuメッキが薄く被覆され、当該配線基板1自体を搭載する図示しないマザーボードなどのプリント基板との接続端子として活用される。尚、配線19の表面には、ハンダボールや銅系合金あるいは鉄系合金の導体ピンなどを接合しても良い。
【0022】
以上のような配線基板1によれば、金属コア基板2が薄肉であるため、かかる金属コア基板2の表面3上方および裏面4上方に配線層12,14などを高密度にそれぞれ形成できる。また、金属コア基板2の各側面が側面絶縁材8で被覆され且つ従来のタイバーが突出しないため、外部や基板内部との不要な導通を防止でき、配線基板1の周辺部にも緻密な配線層を配置することが可能となる。
尚、配線基板1の金属コア基板2は、電源電極または接地電極としても活用することができる。
【0023】
図1(B)は、前記配線基板1の応用形態である配線基板1aの模式的断面を示す。配線基板1aは、図1(B)に示すように、金属コア基板2、絶縁層5,6など、および配線層12,14などを含む配線基板1と同じ多層構造を有すると共に、更に金属コア基板2の裏面4と配線層14との間にこれらを導通するビア導体11が形成されている。このため、配線基板1aの金属コア基板2は、電源電極や接地電極の他、信号電極としても活用することが可能である。
【0024】
ここで、前記配線基板1の製造方法を図2〜図4によって説明する。尚、図2,4は、前記図1(A)における配線基板1の右側部分に基づいて図示する。
図2(A)に示すように、予め厚みが約1mmの銅板からなり且つ剛性を有するる支持基板30を用意し、その平坦な表面である平坦面32の表面上方に、厚みが約20μmのエポキシ系樹脂フィルムを積層し且つ熱圧着することで、絶縁層(ソルダーレジスト層)22を形成する。尚、本製造方法では、前記配線基板1の第1主面24側から順次積層を行う。また、支持基板30は、複数の配線基板1を製造可能な多数個取り用の金属パネルである。
次に、絶縁層22の表面上方に図示しない厚さ約15μmの銅箔を貼り付け、その上に形成したドライフィルムを露光・現像して所定パターンのエッチングレジストを形成し、上記銅箔をエッチングした後、かかるエッチングレジストを剥離する(公知のサブトラクティブ法)。その結果、図2(A)に示すように、絶縁層22の表面上方に上記パターンに倣った配線層21が形成される。
【0025】
次いで、絶縁層22および配線層21の表面上方に厚みが約40μmのエポキシ系樹脂フィルムを積層し且つ熱圧着して絶縁層13を形成する。かかる絶縁層13の所定の位置にレーザ(例えば炭酸ガスレーザ)を照射して配線層21の表面が露出するビアホールを形成し、かかるビアホール内を含む絶縁層13の表面上方に粗面化処理、無電解銅メッキ、および電解銅メッキを全面に施す。
得られた銅メッキ膜の上面に形成したドライフィルム(図示せず)を露光・現像して所定パターンのエッチングレジストを形成し、上記銅メッキ膜をエッチングした後、上記エッチングレジストを剥離する。
その結果、図2(A)に示すように、絶縁層13の表面上方に上記パターンに倣った配線層12が形成され、且つ上記ビアホール内には、配線層21,12間を接続するビア導体16が形成される。
【0026】
更に、図2(B)に示すように、支持基板30から離れた最外層の絶縁層13および配線層12の表面上方に厚みが約40μmのエポキシ系樹脂フィルムを積層し且つ熱圧着して絶縁層5を形成すると共に、かかる絶縁層5の表面上方に厚みが約35μmの金属コア基板2(金属薄板2b)を積層して圧着する。
この段階では、図3(A)に示すように、前記支持基板30の上方は、製品単位である複数の金属コア基板2を含む金属薄板2bに覆われている。尚、上記絶縁層22,13,5は、本発明の製造方法における「複数の絶縁層」に相当する。
次いで、金属コア基板2(金属薄板2b)の上面上方に形成したドライフィルム(図示せず)を露光・現像して所定パターンのエッチングレジストを形成し、上記金属薄板2bをエッチングした後、上記エッチングレジストを剥離する。この結果、図2(C)に示すように、金属コア基板2の所定の位置に内径が約200μmの貫通孔2aが穿孔される。同時に、図2(C)および図3(B)に示すように、複数の金属コア基板2の境界に沿って平面視が正方形(矩形)の区画孔(溝)2dが形成される。尚、図3(B)中の符号2cは、耳部を示す。
【0027】
次に、図2(D)に示すように、金属コア基板2(金属薄板2b)の上面(裏面4)上方に、厚みが約40μmのエポキシ系樹脂フィルムを積層し且つ熱圧着して絶縁層6を形成すると共に、かかる絶縁層6の一部を貫通孔2a内に充填して絶縁材7を形成する。同時に、絶縁層6の一部を上記区画孔2d内に充填して、側面絶縁材8を形成する。本形態では、側面絶縁材8は、絶縁層6と一体である。尚、上記絶縁層6は、本発明の製造方法における「新たな絶縁層」に相当する。
更に、絶縁層6および絶縁材7の中心部付近にレーザ(例えば炭酸ガスレーザ)を照射する。その結果、図2(E)に示すように、絶縁層6および絶縁材7の中心部付近を貫通し且つ配線層12の表面に達するほぼ円錐形のビアホール10aが形成される。かかるビアホール10aの最大内径は、約100μmである。
【0028】
次に、絶縁層6の表面およびビアホール10aの内壁を粗化処理し且つ無電解銅メッキによる銅メッキ膜を形成し、絶縁層6の表面上方に所定パターンのドライフィルムを形成した後、当該フィルム間に銅メッキを施す。そして、上記フイルムを剥離した後、クイックエッチングを施す(公知のセミアディティブ法)。
その結果、図4(A)に示すように、ビアホール10a内には、これに倣ったビア導体10が形成されると共に、絶縁層6の表面上方にビア導体10と接続し且つ所定パターンを有する配線層14が形成される。尚、かかる配線層14は、本発明の製造方法における「新たな配線層」に相当する。
次いで、図4(B)に示すように、絶縁層6および配線層14の表面上方に、厚みが約40μmのエポキシ系樹脂フィルムを積層し且つ熱圧着して絶縁層15を形成すると共に、かかる絶縁層15の一部をビア導体10の内側に充填して絶縁材9とする。尚、絶縁層15は、本発明の製造方法で「別の絶縁層」に相当する。
【0029】
更に、絶縁層15の所定の位置をレーザ加工してビアホールを形成し、且つこのビアホール内および絶縁層15の表面上方に前記同様のセミアデティブ法を施す。この結果、図4(B)に示すように、絶縁層15の表面上方に所定パターンの配線層18が形成され、且つ上記ビアホール内に配線層14,18間を接続するビア導体17が形成される。
この段階で、支持基板30を塩化第2銅溶液のシャワー噴射によりエッチングして除去した後、図4(B)中の破線Sで示すように、区画孔2dの幅方向の中間に沿って、金属コア基板2ごとにダイシングブレードにより切断する。
この結果、図4(C)に示すように、金属コア基板2ごとの複数(本実施形態では4個)の製品単位が得られる共に、複数の金属コア基板2の各側面は、それらと平行で且つ一定の厚みである側面絶縁材8によって覆われている。
【0030】
次いで、図4(C)に示すように、絶縁層15および配線層18の表面上方に、厚みが約20μmのエポキシ系樹脂フィルムを積層し且つ熱圧着してソルダーレジスト層(絶縁層)23を形成し、その表面(第2主面)25から配線層18に達する開口部20をレーザ加工などで形成する。かかる開口部20の底面に露出する配線19の表面にNiメッキおよびAuメッキを施す。
そして、図4(D)に示すように、最下層のソルダーレジスト層(絶縁層)22の表面(第1主面)24の所定の位置をレーザ加工などによって穿設し、配線層21の表面が露出するランド26を複数形成する。かかるランド26にハンダバンプ28を第1主面24よりも高く突出して個別に形成する。これにより、前記配線基板1を複数個製造することができる。
【0031】
以上のような配線基板1の製造方法によれば、薄肉の金属コア基板2に貫通孔2aを精度良く容易に形成できると共に、かかる貫通孔2a内に絶縁材7を介してビア導体10を容易に形成できる。しかも、金属コア基板2の表面3および裏面4の上方に形成する絶縁層5,6などや配線層12,14などを高密度で且つ精度良く配置することができ、且つ側面絶縁材8を同時に形成できる。
尚、前記図1(B)で示した配線基板1aを得るには、図2(E)において、絶縁層6に金属コア基板2の裏面4に達するビアホールを穿設し、且つ前記ビア導体10と同時に前記方法で配線層14に接続するビア導体を形成すれば良い。また、配線基板1,1aの製造方法は、支持基板30の平坦面32の上方に、第2主面25側の絶縁層23,15,6、配線層18,14、および金属コア基板2などの順序にして、前述した方法と逆向きに積層するように行っても良い。
【0032】
図5(A)は、本発明の第1および第2の配線基板の異なる形態の配線基板1bの模式的断面を示す。以下においては、前記形態と共通する部分や要素には、前記形態と共通する符号を用いる。
配線基板1bは、図5(A)に示すように、表面3および裏面4を有する前記同様の金属コア基板2と、かかる金属コア基板2の表面3上方および裏面4上方にそれぞれ形成した複数の絶縁層5,13,22,6,15,23およびその間に位置する配線層12,21,14,18と、上記金属コア基板2の表面3と裏面4との間を貫通する貫通孔2aと、かかる貫通孔2a内を絶縁材7を介して貫通し且つ上記表面3上方の配線層12と裏面4上方の配線層14との間を接続するビア導体(フィルドビア導体)36と、を含んでいる。
【0033】
図5(A)に示すように、金属コア基板2の表面3上方には、前記同様の絶縁層5,13およびソルダーレジスト層(絶縁層)22と、これらの間に位置し所定のパターンを有する前記同様の配線層12,21が積層されている。かかる配線層12,21間は、ビア導体(フィルドビア導体)34により接続されている。
また、図5(A)に示すように、金属コア基板2の裏面4上方(図示で下方)にも前記同様の絶縁層6,15およびソルダーレジスト層(絶縁層)23と、これらの間に位置する前記同様の配線層14,18が積層されている。かかる配線層14,23間は、ビア導体(フィルドビア導体)38により接続されている。
図5(A)に示すように、金属コア基板2の貫通孔2a内には、絶縁材7を介して配線層12,14間を接続するビア導体36が形成され、且つ図示でその真上および真下には、同心でビア導体(フィルドビア導体)34,38が接続される。
【0034】
図5(A)に示すように、金属コア基板2の各側面は、当該側面と平行で且つ一定の厚み(約35μm:金属コア基板2の厚み部分)の側面絶縁材8に被覆され、かかる側面絶縁材8も絶縁層5,6の何れかの一方と一体である。
更に、図5(A)に示すように、配線層21における所定の表面には、前記同様のランド26が形成され、かかるランド26の表面上に半球形状のハンダバンプ28が第1主面24よりも高く突設されている。かかるハンダバンプ28は、Sn−Ag系などの低融点合金からなり、第1主面24上に実装される図示しないICチップなど(電子部品)の接続端子と個別に接続される。
【0035】
一方、図5(A)に示すように、配線層18から延びた配線19は、最下層のソルダーレジスト層(絶縁層)23の開口部20の底面に位置し且つ第2主面25側に露出する。かかる配線19の表面には、NiメッキおよびAuメッキが薄く被覆され、当該配線基板1b自体を搭載する図示しないマザーボードなどのプリント基板との接続端子として活用される。尚、配線19の表面には、ハンダボールや銅系合金あるいは鉄系合金の導体ピンなどを接合しても良い。
【0036】
以上のような配線基板1bによれば、前記配線基板1と同様に、金属コア基板2の表面3上方および裏面4上方に配線層12,14などが高密度にそれぞれ配置されると共に、金属コア基板2の各側面が側面絶縁材8で被覆されているため、外部や基板内部との不要な導通を防止でき、配線基板1の周辺部においても緻密な配線層を配置することが可能となる。しかも、ビア導体36は、垂直方向に同心のビア導体34,28と接続されるため、電気的導通を安定して得られる。
尚、配線基板1bの金属コア基板2は、電源電極または接地電極としても活用することができる。
【0037】
図5(B)は、前記配線基板1bの応用形態である配線基板1cの模式的断面を示す。配線基板1cは、図5(B)に示すように、金属コア基板2、絶縁層5,6など、および配線層12,14などを含む配線基板1と同じ多層構造を有すると共に、更に金属コア基板2の裏面4と配線層14との間にこれらを導通するビア導体(フィルドビア導体)37が形成される。このため、配線基板1cの金属コア基板2は、電源電極や接地電極の他、信号電極としても活用可能である。
【0038】
ここで、配線基板1bの製造方法を図6,図7によって説明する。尚、図6,7では、前記図5(A)における配線基板1bの右側部分に基づいて図示する。
図6(A)に示すように、前記同様の銅板からなる支持基板30の平坦面32の表面上方に、前記同様の絶縁層(ソルダーレジスト層)22を形成する。尚、本製造方法も、前記配線基板1bの第1主面24側から順次積層を行う。
次に、絶縁層22の表面上方に前記同様に銅箔を貼り付け、その上に形成したドライフィルムを露光・現像して所定パターンのエッチングレジストを形成し、上記銅箔をエッチングした後、かかるエッチングレジストを剥離する公知のサブトラクティブ法により、図6(A)に示すように、配線層21を形成する。
【0039】
次いで、絶縁層22および配線層21の表面上方に前記同様のエポキシ系樹脂フィルムを積層し且つ圧着して絶縁層13を形成する。かかる絶縁層13の所定の位置に配線層21の表面が露出するビアホールを形成し、かかるビアホール内を含む絶縁層13の表面上方に無電解銅メッキや電解銅メッキなどを全面に施す。得られた銅メッキ膜の上面に形成したドライフィルム(図示せず)を露光・現像して所定パターンのエッチングレジストを形成し、上記銅メッキ膜をエッチングした後、上記エッチングレジストを剥離する。
その結果、図6(A)に示すように、絶縁層13の表面上方に上記パターンに倣った配線層12が形成され、且つ上記ビアホール内には、配線層21,12間を接続するフィルドビア導体34が形成される。
【0040】
更に、図6(B)に示すように、最外層の絶縁層13と配線層12との表面上方に前記同様のエポキシ系樹脂フィルムを積層・圧着して絶縁層5を形成すると共に、その表面上方に厚みが約35μmの金属コア基板2(金属薄板2b)を積層・圧着する。この段階では、前記図3(A)に示すように、前記支持基板30の上方は、製品単位である複数の金属コア基板2を含む金属薄板2bに覆われている。
次いで、金属コア基板2(金属薄板2b)の上面(裏面4)上方に形成したドライフィルムを露光・現像して所定パターンのエッチングレジストを形成し、上記金属薄板2bをエッチングした後、上記エッチングレジストを剥離する。この結果、図6(C)に示すように、金属コア基板2の所定の位置に内径が約200μmの貫通孔2aが穿孔され、同時に、図6(C)および前記図3(B)に示すように、複数の金属コア基板2の境界に沿って平面視が正方形(矩形)の区画孔(溝)2dが形成される。
【0041】
次に、図6(C)に示すように、金属コア基板2(金属薄板2b)の上面(裏面4)上方に、前記同様の樹脂フィルムを積層して絶縁層6を形成すると共に、この絶縁層6の一部を貫通孔2a内に充填して絶縁材7を形成する。同時に、絶縁層6の一部を上記区画孔2d内に充填して側面絶縁材8を形成する。
更に、絶縁層6および絶縁材7の中心部付近にレーザ(例えば炭酸ガスレーザ)を照射する。その結果、図6(D)に示すように、絶縁層6および絶縁材7の中心部付近を貫通し且つビア導体34の表面に達するほぼ円錐形のビアホール35が形成される。かかるビアホール35の最大内径も、約100μmである。
【0042】
次に、絶縁層6の表面およびビアホール35の内壁を粗化処理し且つ無電解銅メッキを施し、絶縁層6の表面上方に所定パターンのドライフィルムを形成した後、かかるフィルム間に銅メッキを施す。そして、上記フイルムを剥離した後、クイックエッチングを施す(公知のセミアディティブ法)。
その結果、図7(A)に示すように、ビアホール35内には、これに倣ったフィルドビア導体36が形成され、且つ絶縁層6の表面上方にビア導体36と接続する配線層14が形成される。尚、ビア導体34,36は、互いに同心である。
次いで、図7(B)に示すように、絶縁層6および配線層14の表面上方に、前記同様の樹脂フィルムを積層・圧着して絶縁層15を形成する。
【0043】
更に、絶縁層15の所定の位置にレーザ加工などしてビアホールを形成し、且つかかるビアホール内および絶縁層15の表面上方に前記同様のセミアデティブ法を施す。この結果、図7(B)に示すように、絶縁層15の表面上方に前記同様の配線層18が形成され、且つ上記ビアホール内に配線層14,18間を接続するフィルドビア導体38が形成される。
かかる段階で、支持基板30を前記同様にして除去すると共に、図7(B)中の破線Sで示すように、区画孔(溝)2dの幅方向の中間に沿って金属コア基板2ごとにダイシングブレードなどにより切断して分離する。この結果、図7(C)に示すように、金属コア基板2ごとの複数の製品単位が得られ、複数の金属コア基板2の各側面は、前記同様の側面絶縁材8によって覆われている。
【0044】
次いで、図7(C)に示すように、絶縁層15および配線層18の表面上方に、前記同様の樹脂フィルムを積層・圧着してソルダーレジスト層(絶縁層)23を形成し、その表面(第2主面)25から配線層18に達する開口部20を前記同様に形成する。この開口部20の底面に露出する配線19の表面にNiおよびAuメッキを施す。そして、図7(D)に示すように、ソルダーレジスト層(絶縁層)22の表面(第1主面)24の所定位置を前記同様に穿設し、配線層21の表面が露出するランド26を複数形成する。かかるランド26にハンダバンプ28を第1主面24よりも高く突出して形成すると、複数の前記配線基板1bが得られる。
【0045】
以上のような配線基板1bの製造方法によれば、薄肉の金属コア基板2に貫通孔2aを精度良く容易に形成でき、貫通孔2a内に絶縁材7を介してフィルドビア導体36を容易に形成できると共に、金属コア基板2の表面3および裏面4の上方に形成する絶縁層5,6などや配線層12,14などを高密度で且つ精度良く配置することができ、且つ側面絶縁材8を同時に形成できる。しかも、フィルドビア導体34,36,38を同心にして接続することもできる。
尚、前記図5(B)で示した配線基板1cを得るには、図6(D)において、絶縁層6に金属コア基板2の裏面4に達するビアホールを穿設し、且つ前記ビア導体36と同時に前記方法にて配線層14に接続するフィルドビア導体を形成すれば良い。また、配線基板1b,1cの製造方法も、支持基板30の平坦面32の上方に、第2主面側の絶縁層23,15,6、配線層18,14、および金属コア基板2などの順序にして、前述した方法と逆向きに行っても良い。
【0046】
本発明は、以上において説明した各形態に限定されるものではない。
例えば、金属コア基板や金属薄板は、平面視で長方形を呈する形態としても良い。例えば、前記金属薄板2bに形成する複数の金属コア基板2は、縦×横方向の数が互いに異なる形態でも良い。
また、金属コア基板2および金属薄板2bの素材には、前記銅やFe−Ni系合金に限らず、純銅、無酸素銅、銅合金、各種の鋼材、チタンおよびその合金、または、アルミニウムおよびその合金などを適用することも可能である。
【0047】
また、前記絶縁層5,6などの材質は、前記エポキシ樹脂を主成分とするもののほか、同様の耐熱性、パターン成形性等を有するポリイミド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系の複合材料などを用いることもできる。尚、絶縁層の形成には、絶縁性の樹脂フィルムを熱圧着する方法のほか、液状の樹脂をロールコータにより塗布する方法を用いることもできる。尚また、絶縁層に混入するガラス布またはガラスフィラの組成は、Eガラス、Dガラス、Qガラス、Sガラスの何れか、またはこれらのうちの2種類以上を併用したものとしても良い。
【0048】
更に、前記配線層12などやビア導体10などの材質は、銅(Cu)メッキの他、Ag、Ni、Ni−Au系などにしても良く、あるいは、これら金属のメッキ層を用いず、導電性樹脂を塗布するなどの方法により形成しても良い。
加えて、ビア導体は、複数のビア導体の軸心をずらしつつ積み重ねるスタッガードの形態でも良いし、途中で平面方向に延びる配線層が介在する形態としても良い。
【図面の簡単な説明】
【図1】(A),(B)は本発明の配線基板を示す模式的な断面図。
【図2】(A)〜(E)は図1(A)の配線基板の製造工程を示す概略図。
【図3】(A),(B)は図2(B),(C)の工程を示す平面図。
【図4】(A)〜(D)は図2(E)に続く製造工程を示す概略図。
【図5】(A),(B)は異なる形態の配線基板を示す模式的な断面図。
【図6】(A)〜(D)は図5(A)の配線基板の製造工程を示す概略図。
【図7】(A)〜(D)は図6(D)に続く製造工程を示す概略図。
【符号の説明】
1,1a〜1c…………………配線基板
2…………………………………金属コア基板
2a………………………………貫通孔
2b………………………………金属薄板
2d………………………………区画孔
3…………………………………表面
4…………………………………裏面
5,6,13,15,22,23…絶縁層
7…………………………………絶縁材
8…………………………………側面絶縁材
10,36………………………ビア導体
10a,35……………………ビアホール
12,14,18,21………配線層
30………………………………支持基板
32………………………………平坦面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring substrate in which a metal core substrate is installed and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in order to increase the strength of a wiring substrate, a metal core substrate having a thickness of about 100 μm to several hundreds of μm is used, and a plurality of insulating layers and a wiring layer positioned therebetween are provided above the front surface and the back surface of the metal core substrate. A wiring board having a multilayer structure laminated symmetrically is used. In such a wiring board, through-holes for through-hole conductors are drilled in a metal plate having the above-mentioned thickness, and an insulating layer and a wiring layer are alternately laminated on the upper surface and the upper surface of the metal plate. It is manufactured by performing the build-up process to perform (for example, refer patent document 1).
[0003]
[Patent Document 1]
JP 2000-101245 A (pages 4-7, FIG. 5)
[0004]
By the way, as the metal core substrate is thinner, the thickness of the entire wiring substrate can be reduced. However, when the metal plate described above and the metal core substrate obtained by dividing the metal plate are used as a rigid core material, the thickness is less than 100 μm. There was a limit to it.
Therefore, in order to form a through-hole conductor that conducts between the wiring layers above the front surface and the back surface of the metal core substrate, drilling a large-diameter through hole, forming a through-hole conductor by copper plating, filling a filling resin, In addition, complicated processes such as the formation of lid plating are required, and precise placement (fine pitch) of the conductors and wiring layers is difficult. In addition, if the metal plate having a plurality of metal core substrates is thinned, there is also a problem that the handling within the manufacturing process and between the manufacturing processes is hindered.
[0005]
[Problems to be Solved by the Invention]
The present invention solves the problems in the conventional techniques described above, and includes a wiring board including a relatively thin metal core board and a high-density wiring layer, and a wiring board for obtaining this accurately and efficiently. It is an object to provide a manufacturing method.
[0006]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above-described problems, the present invention has been conceived by conceiving the metal core substrate as one unit to be laminated in the same manner as the insulating layer and the wiring layer.
That is, the first wiring board of the present invention (Claim 1) is located between a metal core substrate having a front surface and a back surface, a plurality of insulating layers formed on the top surface and the back surface of the metal core substrate, respectively. A wiring layer, a through-hole penetrating between the front surface and the back surface of the metal core substrate, and passing through the through-hole through an insulating material between the wiring layer above the front surface and the wiring layer above the back surface And a via conductor connecting the two.
[0007]
According to this, in order to connect between the wiring layers formed above the front surface and the back surface of the metal core substrate with via conductors penetrating the through hole through the insulating material, the metal core substrate is thinned. it can. In addition, since the metal core substrate can be thinned, the wiring layers can be formed at a high density above the front surface and above the back surface, respectively. In addition, unlike the prior art, since a through-hole conductor that penetrates between the front surface and the back surface of the metal core substrate via an insulating material is not used, a manufacturing method described later is also facilitated.
In other words, the wiring board may have a thickness of the metal core substrate of 50 μm or less. Desirable thickness is 35 μm or less.
[0008]
As the metal core substrate, a thin plate including a copper foil having the above thickness, a stainless steel (for example, SUS304) foil, or a foil such as Fe-42 wt% Ni (so-called 42 alloy) or Fe-36 wt% Ni (invar) is used. It is done. The insulating material in the through hole may be integrated with an insulating layer adjacent to the front or back surface of the metal core substrate or may be separately filled.
Furthermore, the via conductor includes a conformal via conductor, which is a conical conductor, as well as a filled via conductor. In the latter case, the via conductor is provided directly above or below the filled via conductor penetrating through the through hole of the metal core substrate. The filled via conductor may be connected.
[0009]
Further, the second wiring board of the present invention (Claim 2) includes a metal core substrate having a rectangular plan view and having a front surface and a back surface, and a plurality of insulations formed above the front surface and the back surface of the metal core substrate, respectively. And a wiring layer positioned between the layers and a side surface insulating material formed on a side surface of the metal core substrate and integral with any one of the insulating layers.
According to this, the four side surfaces of the metal core substrate are covered with the side surface insulating material that is integral with any one of the insulating layers and substantially parallel to each side surface of the metal core substrate. For this reason, since the tie bar does not protrude from the side surface of the conventional metal core substrate, it is possible to prevent inadvertent conduction to the outside or the inside of the substrate, and to arrange a dense wiring layer in the peripheral portion of the wiring substrate. It becomes possible.
[0010]
In other words, the first and second wiring boards include a metal core substrate having a rectangular shape in plan view and having a front surface and a back surface, a plurality of insulating layers formed between the top surface and the back surface of the metal core substrate, respectively, A wiring layer located on the surface of the metal core substrate, a through hole penetrating between the front surface and the back surface of the metal core substrate, and penetrating through the through hole through an insulating material, and the wiring layer on the front surface and the wiring layer on the back surface It is also possible to include a via conductor that connects to each other and a side surface insulating material that is formed in parallel to the side surface of the metal core substrate and that is integral with any one of the insulating layers. In this case, the metal core substrate can be thinned, the wiring layer can be densely formed above the front surface and the back surface of the metal core substrate, and unnecessary conduction to the outside or the inside of the substrate can be prevented. It is possible to dispose a dense wiring layer also in the portion.
In addition, the first and second wiring boards may include new via conductors that conduct between the back surface of the metal core substrate and the wiring layer above the back surface of the metal core substrate. It is.
[0011]
On the other hand, the method for manufacturing a wiring board according to the present invention (Claim 3) includes a step of forming a plurality of insulating layers and a wiring layer positioned therebetween on the flat surface of the support substrate, and the outermost insulating layer among the above. A step of laminating a metal core substrate above, a step of drilling a through hole penetrating the metal core substrate, a step of forming a new insulating layer on the upper surface of the metal core substrate including the inside of the through hole, It is characterized by including.
According to this, since the metal core substrate is laminated above the insulating layer formed in advance on the flat surface (flat surface) of the support substrate having rigidity, the thin metal foil described above can be used. it can. Further, the through-hole penetrating the thin metal core substrate can be easily formed with high accuracy, and a part of a new insulating layer formed on the upper surface can be reliably filled in the through-hole. In addition, since an insulating layer, a wiring layer, and the like are sequentially stacked above the flat surface of the support substrate having rigidity, handling properties are also improved.
[0012]
The “outermost insulating layer” refers to an insulating layer that is relatively distant from the support substrate. The supporting substrate is made of a copper plate having a thickness of about 1 mm, a copper alloy plate, a steel plate, a stainless steel plate, an aluminum alloy plate, or a titanium alloy plate, and has a flat surface that is a flat surface. It is. Such a flat surface may have a large area for taking a plurality of the metal core substrates as product units along the plane direction, and as a large support substrate (panel) having such a flat surface. Also good. Furthermore, the order of stacking on the flat surface of the support substrate is the order of the solder resist layer (insulating layer) on the first main surface side of the wiring substrate, the wiring layer, the insulating layer, the metal core substrate, and the like. The solder resist layer (insulating layer) on the second main surface side of the wiring board, the wiring layer, the insulating layer, the metal core board, and the like may be used in this order. That is, the “new insulating layer” and “new wiring layer” and “another insulating layer” described later are relative names in the order of stacking on the flat surface of the support substrate in the manufacturing process.
[0013]
According to the present invention, a step of forming a via hole penetrating the new insulating layer and the insulating material located in the through hole and reaching the wiring layer after each step, and a via conductor in the via hole And a method of manufacturing a wiring board, comprising: a step of forming a wiring board.
According to this, via holes and via conductors can be easily formed in the through holes formed with high precision in the metal core substrate via the insulating material integral with the insulating layer.
[0014]
Furthermore, the present invention includes a step of forming a new wiring layer located above the new insulating layer on the upper surface of the metal core substrate and connected to the via conductor after each step, and the new insulating layer. Also included is a method of manufacturing a wiring board (Claim 5), further comprising a step of forming another insulating layer above the new wiring layer and a step of removing the support substrate thereafter. According to this, a plurality of wiring layers and a wiring layer formed therebetween can be formed with high precision and high density on the upper surface and back surface of the metal core substrate, and after making the wiring substrate of such a multilayer structure, The support substrate can be removed.
In addition, the removal method of the said support substrate takes the method of etching with a cupric chloride solution, for example, when it is a copper support substrate.
[0015]
In addition, in the present invention, a multi-piece metal thin plate having a plurality of product units (metal core substrates) is used as the metal core substrate, and a plurality of such metal thin plates are formed simultaneously with the step of drilling the through hole. Also included is a method of manufacturing a wiring board in which a partition groove having a rectangular shape in plan view is formed to be separated into the metal core substrate.
According to this, the thin metal plate is divided into a plurality of metal core substrates that are product units surrounded by the partition holes (grooves), and after the support substrate is removed, an intermediate in the width direction of the partition holes is obtained. The second wiring board in which the side surface of the metal core substrate is covered with the side surface insulating material can be surely obtained by cutting along the line by dicing or the like. The metal thin plate includes a metal foil made of copper, a copper alloy, or the like.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1A shows a schematic cross section of a wiring board 1 which is one form of the first and second wiring boards of the present invention. As shown in FIG. 1A, the wiring substrate 1 is formed on the metal core substrate 2 having the front surface 3 and the back surface 4, and above the front surface 3 and above the back surface 4 (lower in the drawing) of the metal core substrate 2, respectively. A through-hole penetrating between the plurality of insulating layers 5, 13, 22, 6, 15, 23 and the wiring layers 12, 21, 14, 18 positioned therebetween and the front surface 3 and the back surface 4 of the metal core substrate 2. 2a and a via conductor (conformal via conductor) 10 that penetrates through the through hole 2a via an insulating material 7 and connects the wiring layer 12 above the front surface 3 and the wiring layer 14 above the back surface 4; , Including.
The metal core substrate 2 is made of a copper foil or a copper alloy (for example, Cu-2.3 wt% Fe-0.03 wt% P: so-called 194 alloy) having a square (rectangular) shape in plan view and a thickness of 35 μm. In the metal core substrate 2, a plurality of through holes 2 a having an inner diameter of about 200 μm penetrating between the front surface 3 and the back surface 4 penetrate at predetermined positions.
[0017]
As shown in FIG. 1A, above the surface 3 of the metal core substrate 2, insulating layers 5 and 13 made of an epoxy resin having a thickness of about 40 μm and a solder resist layer made of a similar resin having a thickness of about 20 μm. (Insulating layer) 22 and wiring layers 12 and 21 having a predetermined pattern and a thickness of about 15 μm are laminated between them. The wiring layers 12 and 21 are connected by a via conductor (conformal via conductor) 16.
The insulating layer 5 and the like include an inorganic filler such as a silica filler, and the wiring layer 12 and the like are made of a copper plating film or a copper foil. The insulating layers 5 and 13 and the wiring layers 12 and 21 form one buildup layer.
[0018]
On the other hand, as shown in FIG. 1A, the insulating layers 6 and 15 having a thickness of about 40 μm and made of epoxy resin are also formed above the back surface 4 of the metal core substrate 2 (downward in the drawing) and the thickness is about A solder resist layer (insulating layer) 23 made of the same resin with a thickness of 20 μm and wiring layers 14 and 18 having a predetermined pattern and a thickness of about 15 μm are laminated therebetween. The wiring layers 14 and 18 are connected by a via conductor (conformal via) 17. The insulating layers 6 and 15 and the wiring layers 14 and 18 form the other buildup layer.
[0019]
As shown in FIG. 1A, a via conductor (conformal via) 10 is formed in the through-hole 2a of the metal core substrate 2 to connect the wiring layers 12 and 14 with an insulating material 7 interposed therebetween. In the figure, the inner concave portion is filled with an insulating material 9 integrated with the insulating layer 15. The insulating material 7 filled in the through hole 2a is integral with one of the insulating layers 5 and 6.
Further, as shown in FIG. 1A, each side surface of the metal core substrate 2 is covered with a side insulating material 8 that is parallel to the side surface and has a certain thickness (about 35 μm: a thickness portion of the metal core substrate 2). The side surface insulating material 8 is also integral with one of the insulating layers 5 and 6.
[0020]
As shown in FIG. 1A, a plurality of lands 26 penetrating through the solder resist layer 22 and exposed to the first main surface 24 side are formed on a predetermined surface of the wiring layer 21. Further, a hemispherical solder bump 28 protrudes higher than the first main surface 24. The solder bump 28 is made of a low melting point alloy such as Sn—Ag, Sn—Ag—Cu, Sn—Cu, Sn—Zn, Pb—Sn, etc. (Sn—Ag in this embodiment). 1 It is individually connected to a connection terminal of an IC chip or the like (electronic component) (not shown) mounted on the main surface 24. Note that the solder bumps 28 and connection terminals such as IC chips are covered and protected by an underfill material (not shown).
[0021]
On the other hand, as shown in FIG. 1A, the wiring 19 extending from the wiring layer 18 is located on the bottom surface of the opening 20 provided in the lowermost solder resist layer (insulating layer) 23 and the second main surface 25. Exposed to the side. The wiring 19 is thinly coated with Ni plating and Au plating on its surface, and is used as a connection terminal to a printed board such as a mother board (not shown) on which the wiring board 1 itself is mounted. Note that a solder ball, a copper alloy, or a ferrous alloy conductor pin may be joined to the surface of the wiring 19.
[0022]
According to the wiring substrate 1 as described above, since the metal core substrate 2 is thin, the wiring layers 12, 14 and the like can be formed at high density above the front surface 3 and the back surface 4 of the metal core substrate 2, respectively. Further, since each side surface of the metal core substrate 2 is covered with the side surface insulating material 8 and the conventional tie bar does not protrude, unnecessary continuity between the outside and the inside of the substrate can be prevented, and dense wiring is also provided on the periphery of the wiring substrate 1. Layers can be placed.
The metal core substrate 2 of the wiring substrate 1 can also be used as a power supply electrode or a ground electrode.
[0023]
FIG. 1B shows a schematic cross section of a wiring board 1 a which is an applied form of the wiring board 1. As shown in FIG. 1B, the wiring board 1a has the same multilayer structure as the wiring board 1 including the metal core board 2, the insulating layers 5, 6, and the wiring layers 12, 14, and the metal core. A via conductor 11 is formed between the back surface 4 of the substrate 2 and the wiring layer 14 to conduct these. For this reason, the metal core substrate 2 of the wiring board 1a can be used as a signal electrode in addition to the power supply electrode and the ground electrode.
[0024]
Here, a method of manufacturing the wiring board 1 will be described with reference to FIGS. 2 and 4 are shown based on the right side portion of the wiring board 1 in FIG.
As shown in FIG. 2A, a support substrate 30 made of a copper plate having a thickness of about 1 mm and having rigidity is prepared in advance, and a thickness of about 20 μm is provided above the surface of the flat surface 32 that is the flat surface. An insulating layer (solder resist layer) 22 is formed by laminating epoxy resin films and thermocompression bonding. In this manufacturing method, lamination is performed sequentially from the first main surface 24 side of the wiring board 1. The support substrate 30 is a metal panel for multi-piece production that can manufacture a plurality of wiring substrates 1.
Next, a copper foil having a thickness of about 15 μm (not shown) is pasted on the surface of the insulating layer 22, and the dry film formed thereon is exposed and developed to form an etching resist having a predetermined pattern, and the copper foil is etched. Then, the etching resist is peeled off (a known subtractive method). As a result, as shown in FIG. 2A, the wiring layer 21 following the pattern is formed above the surface of the insulating layer 22.
[0025]
Next, an epoxy resin film having a thickness of about 40 μm is laminated above the surfaces of the insulating layer 22 and the wiring layer 21 and thermocompression bonded to form the insulating layer 13. By irradiating a predetermined position of the insulating layer 13 with a laser (for example, a carbon dioxide laser), a via hole exposing the surface of the wiring layer 21 is formed, and a roughening treatment is performed above the surface of the insulating layer 13 including the inside of the via hole. Electrolytic copper plating and electrolytic copper plating are applied to the entire surface.
A dry film (not shown) formed on the upper surface of the obtained copper plating film is exposed and developed to form an etching resist having a predetermined pattern, and after etching the copper plating film, the etching resist is peeled off.
As a result, as shown in FIG. 2A, a wiring layer 12 following the pattern is formed above the surface of the insulating layer 13, and a via conductor connecting the wiring layers 21 and 12 is formed in the via hole. 16 is formed.
[0026]
Further, as shown in FIG. 2B, an outermost insulating layer 13 separated from the support substrate 30 and an epoxy resin film having a thickness of about 40 μm are laminated above the surface of the wiring layer 12 and insulated by thermocompression bonding. A layer 5 is formed, and a metal core substrate 2 (thin metal plate 2b) having a thickness of about 35 μm is laminated and pressure-bonded on the surface of the insulating layer 5.
At this stage, as shown in FIG. 3A, the upper side of the support substrate 30 is covered with a thin metal plate 2b including a plurality of metal core substrates 2 as product units. The insulating layers 22, 13, and 5 correspond to “a plurality of insulating layers” in the manufacturing method of the present invention.
Next, a dry film (not shown) formed on the upper surface of the metal core substrate 2 (metal thin plate 2b) is exposed and developed to form an etching resist having a predetermined pattern, and after etching the metal thin plate 2b, the etching is performed. Strip the resist. As a result, as shown in FIG. 2C, a through hole 2 a having an inner diameter of about 200 μm is drilled at a predetermined position of the metal core substrate 2. At the same time, as shown in FIGS. 2C and 3B, square (rectangular) partition holes (grooves) 2d in plan view are formed along the boundaries of the plurality of metal core substrates 2. In addition, the code | symbol 2c in FIG. 3 (B) shows an ear | edge part.
[0027]
Next, as shown in FIG. 2 (D), an epoxy resin film having a thickness of about 40 μm is laminated on the upper surface (back surface 4) of the metal core substrate 2 (metal thin plate 2b), and the insulating layer is formed by thermocompression bonding. 6 and a part of the insulating layer 6 is filled in the through hole 2a to form the insulating material 7. At the same time, a part of the insulating layer 6 is filled in the partition hole 2d to form the side surface insulating material 8. In this embodiment, the side insulating material 8 is integral with the insulating layer 6. The insulating layer 6 corresponds to a “new insulating layer” in the manufacturing method of the present invention.
Further, a laser (for example, a carbon dioxide laser) is irradiated near the central portions of the insulating layer 6 and the insulating material 7. As a result, as shown in FIG. 2E, a substantially conical via hole 10a that penetrates the vicinity of the center of the insulating layer 6 and the insulating material 7 and reaches the surface of the wiring layer 12 is formed. The maximum inner diameter of the via hole 10a is about 100 μm.
[0028]
Next, after roughening the surface of the insulating layer 6 and the inner wall of the via hole 10a and forming a copper plating film by electroless copper plating, a dry film having a predetermined pattern is formed above the surface of the insulating layer 6, and then the film Apply copper plating between them. Then, after the film is peeled off, quick etching is performed (a known semi-additive method).
As a result, as shown in FIG. 4A, a via conductor 10 is formed in the via hole 10a and connected to the via conductor 10 above the surface of the insulating layer 6 and has a predetermined pattern. A wiring layer 14 is formed. The wiring layer 14 corresponds to a “new wiring layer” in the manufacturing method of the present invention.
Next, as shown in FIG. 4B, an insulating layer 15 is formed by laminating an epoxy resin film having a thickness of about 40 μm above the surfaces of the insulating layer 6 and the wiring layer 14 and thermocompression bonding. A part of the insulating layer 15 is filled inside the via conductor 10 to form the insulating material 9. The insulating layer 15 corresponds to “another insulating layer” in the manufacturing method of the present invention.
[0029]
Further, a predetermined position of the insulating layer 15 is laser processed to form a via hole, and the same semi-additive method as described above is performed in the via hole and above the surface of the insulating layer 15. As a result, as shown in FIG. 4B, a wiring layer 18 having a predetermined pattern is formed above the surface of the insulating layer 15, and a via conductor 17 connecting the wiring layers 14 and 18 is formed in the via hole. The
At this stage, after removing the support substrate 30 by etching by shower injection of cupric chloride solution, as shown by a broken line S in FIG. 4B, along the middle in the width direction of the partition hole 2d, Each metal core substrate 2 is cut with a dicing blade.
As a result, as shown in FIG. 4C, a plurality of (four in this embodiment) product units are obtained for each metal core substrate 2, and each side surface of the plurality of metal core substrates 2 is parallel to them. And a side insulating material 8 having a constant thickness.
[0030]
Next, as shown in FIG. 4C, an epoxy resin film having a thickness of about 20 μm is laminated on the upper surface of the insulating layer 15 and the wiring layer 18 and thermocompression bonded to form a solder resist layer (insulating layer) 23. The opening 20 reaching the wiring layer 18 from the surface (second main surface) 25 is formed by laser processing or the like. Ni plating and Au plating are applied to the surface of the wiring 19 exposed on the bottom surface of the opening 20.
Then, as shown in FIG. 4D, a predetermined position of the surface (first main surface) 24 of the lowermost solder resist layer (insulating layer) 22 is formed by laser processing or the like, and the surface of the wiring layer 21 is formed. A plurality of lands 26 are exposed. Solder bumps 28 are individually formed on the lands 26 so as to protrude higher than the first main surface 24. Thereby, a plurality of the wiring boards 1 can be manufactured.
[0031]
According to the manufacturing method of the wiring substrate 1 as described above, the through hole 2a can be easily formed with high accuracy in the thin metal core substrate 2, and the via conductor 10 can be easily formed in the through hole 2a via the insulating material 7. Can be formed. In addition, the insulating layers 5 and 6 and the wiring layers 12 and 14 formed above the front surface 3 and the back surface 4 of the metal core substrate 2 can be arranged with high density and high accuracy, and the side surface insulating material 8 is simultaneously formed. Can be formed.
In order to obtain the wiring substrate 1a shown in FIG. 1B, a via hole reaching the back surface 4 of the metal core substrate 2 is formed in the insulating layer 6 in FIG. At the same time, a via conductor connected to the wiring layer 14 may be formed by the above method. In addition, the manufacturing method of the wiring substrates 1 and 1a is such that the insulating layers 23, 15, 6 on the second main surface 25 side, the wiring layers 18, 14 and the metal core substrate 2 are provided above the flat surface 32 of the support substrate 30. In this order, the layers may be stacked in the opposite direction to the above-described method.
[0032]
FIG. 5A shows a schematic cross section of a wiring board 1b of a different form of the first and second wiring boards of the present invention. In the following, the same reference numerals as those of the embodiment are used for parts and elements common to the embodiment.
As shown in FIG. 5A, the wiring board 1b includes the same metal core substrate 2 having the front surface 3 and the back surface 4, and a plurality of layers formed above the front surface 3 and the back surface 4 of the metal core substrate 2, respectively. Insulating layers 5, 13, 22, 6, 15, 23 and wiring layers 12, 21, 14, 18 positioned therebetween, and a through hole 2 a penetrating between the surface 3 and the back surface 4 of the metal core substrate 2 A via conductor (filled via conductor) 36 that penetrates through the through-hole 2a through the insulating material 7 and connects the wiring layer 12 above the front surface 3 and the wiring layer 14 above the back surface 4; Yes.
[0033]
As shown in FIG. 5A, above the surface 3 of the metal core substrate 2, the same insulating layers 5 and 13 and the solder resist layer (insulating layer) 22 as described above, and a predetermined pattern located between them are formed. The same wiring layers 12 and 21 as described above are stacked. The wiring layers 12 and 21 are connected by a via conductor (filled via conductor) 34.
Further, as shown in FIG. 5A, the insulating layers 6 and 15 and the solder resist layer (insulating layer) 23 similar to those described above are also provided above the back surface 4 (downward in the drawing) of the metal core substrate 2, and between these layers. The same wiring layers 14 and 18 as described above are stacked. The wiring layers 14 and 23 are connected by a via conductor (filled via conductor) 38.
As shown in FIG. 5 (A), a via conductor 36 is formed in the through hole 2a of the metal core substrate 2 to connect the wiring layers 12 and 14 with an insulating material 7 interposed therebetween. Via conductors (filled via conductors) 34 and 38 are concentrically connected directly below.
[0034]
As shown in FIG. 5A, each side surface of the metal core substrate 2 is covered with a side insulating material 8 that is parallel to the side surface and has a certain thickness (about 35 μm: a thickness portion of the metal core substrate 2). The side insulating material 8 is also integral with one of the insulating layers 5 and 6.
Further, as shown in FIG. 5A, a land 26 similar to the above is formed on a predetermined surface of the wiring layer 21, and a hemispherical solder bump 28 is formed on the surface of the land 26 from the first main surface 24. It is also protruding high. The solder bumps 28 are made of a low melting point alloy such as Sn—Ag, and are individually connected to connection terminals of IC chips (electronic parts) (not shown) mounted on the first main surface 24.
[0035]
On the other hand, as shown in FIG. 5A, the wiring 19 extending from the wiring layer 18 is located on the bottom surface of the opening 20 of the lowermost solder resist layer (insulating layer) 23 and on the second main surface 25 side. Exposed. The surface of the wiring 19 is thinly coated with Ni plating and Au plating, and is used as a connection terminal with a printed board such as a mother board (not shown) on which the wiring board 1b itself is mounted. Note that a solder ball, a copper alloy, or a ferrous alloy conductor pin may be joined to the surface of the wiring 19.
[0036]
According to the wiring board 1b as described above, like the wiring board 1, the wiring layers 12, 14 and the like are arranged at high density above the front surface 3 and the back surface 4 of the metal core substrate 2, respectively, and the metal core Since each side surface of the substrate 2 is covered with the side surface insulating material 8, unnecessary continuity with the outside or the inside of the substrate can be prevented, and a dense wiring layer can be disposed also in the peripheral portion of the wiring substrate 1. . Moreover, since the via conductor 36 is connected to the concentric via conductors 34 and 28 in the vertical direction, electrical conduction can be stably obtained.
The metal core substrate 2 of the wiring board 1b can also be used as a power supply electrode or a ground electrode.
[0037]
FIG. 5B shows a schematic cross section of a wiring board 1c which is an applied form of the wiring board 1b. As shown in FIG. 5B, the wiring board 1c has the same multilayer structure as the wiring board 1 including the metal core board 2, the insulating layers 5, 6, and the wiring layers 12, 14, and the metal core. A via conductor (filled via conductor) 37 is formed between the back surface 4 of the substrate 2 and the wiring layer 14 to conduct these. For this reason, the metal core substrate 2 of the wiring board 1c can be used as a signal electrode in addition to the power supply electrode and the ground electrode.
[0038]
Here, a method of manufacturing the wiring board 1b will be described with reference to FIGS. 6 and 7 are illustrated based on the right side portion of the wiring board 1b in FIG.
As shown in FIG. 6A, an insulating layer (solder resist layer) 22 similar to that described above is formed above the surface of the flat surface 32 of the supporting substrate 30 made of the same copper plate. In this manufacturing method as well, lamination is performed sequentially from the first main surface 24 side of the wiring board 1b.
Next, a copper foil is attached to the upper surface of the insulating layer 22 in the same manner as described above, and the dry film formed thereon is exposed and developed to form an etching resist having a predetermined pattern, and then the copper foil is etched. As shown in FIG. 6A, the wiring layer 21 is formed by a known subtractive method for removing the etching resist.
[0039]
Next, an epoxy resin film similar to that described above is laminated above the surfaces of the insulating layer 22 and the wiring layer 21 and pressed to form the insulating layer 13. A via hole in which the surface of the wiring layer 21 is exposed is formed at a predetermined position of the insulating layer 13, and electroless copper plating, electrolytic copper plating, or the like is performed on the entire surface of the insulating layer 13 including the inside of the via hole. A dry film (not shown) formed on the upper surface of the obtained copper plating film is exposed and developed to form an etching resist having a predetermined pattern, and after etching the copper plating film, the etching resist is peeled off.
As a result, as shown in FIG. 6A, a wiring layer 12 following the pattern is formed above the surface of the insulating layer 13, and a filled via conductor connecting the wiring layers 21 and 12 is formed in the via hole. 34 is formed.
[0040]
Furthermore, as shown in FIG. 6B, the insulating layer 5 is formed by laminating and pressing the same epoxy resin film as described above on the surface of the outermost insulating layer 13 and the wiring layer 12, and its surface. A metal core substrate 2 (metal thin plate 2b) having a thickness of about 35 μm is laminated and pressure-bonded on the upper side. At this stage, as shown in FIG. 3A, the upper side of the support substrate 30 is covered with a thin metal plate 2b including a plurality of metal core substrates 2 as product units.
Next, the dry film formed above the upper surface (back surface 4) of the metal core substrate 2 (metal thin plate 2b) is exposed and developed to form an etching resist having a predetermined pattern, and after etching the metal thin plate 2b, the etching resist To peel off. As a result, as shown in FIG. 6 (C), a through hole 2a having an inner diameter of about 200 μm is drilled at a predetermined position of the metal core substrate 2, and at the same time, shown in FIG. 6 (C) and FIG. 3 (B). As described above, a square (rectangular) partition hole (groove) 2 d in plan view is formed along the boundaries of the plurality of metal core substrates 2.
[0041]
Next, as shown in FIG. 6C, an insulating layer 6 is formed by laminating a resin film similar to the above on the upper surface (back surface 4) of the metal core substrate 2 (metal thin plate 2b). A part of the layer 6 is filled into the through hole 2 a to form the insulating material 7. At the same time, the side insulating material 8 is formed by filling a part of the insulating layer 6 into the partition hole 2d.
Further, a laser (for example, a carbon dioxide laser) is irradiated near the central portions of the insulating layer 6 and the insulating material 7. As a result, as shown in FIG. 6D, a substantially conical via hole 35 that penetrates the vicinity of the center of the insulating layer 6 and the insulating material 7 and reaches the surface of the via conductor 34 is formed. The maximum inner diameter of the via hole 35 is also about 100 μm.
[0042]
Next, the surface of the insulating layer 6 and the inner wall of the via hole 35 are roughened and subjected to electroless copper plating. After a dry film having a predetermined pattern is formed above the surface of the insulating layer 6, copper plating is performed between the films. Apply. Then, after the film is peeled off, quick etching is performed (a known semi-additive method).
As a result, as shown in FIG. 7A, a filled via conductor 36 is formed in the via hole 35 and the wiring layer 14 connected to the via conductor 36 is formed above the surface of the insulating layer 6. The The via conductors 34 and 36 are concentric with each other.
Next, as shown in FIG. 7B, an insulating layer 15 is formed by laminating and press-bonding the same resin film above the surfaces of the insulating layer 6 and the wiring layer 14.
[0043]
Further, a via hole is formed at a predetermined position of the insulating layer 15 by laser processing or the like, and the same semi-additive method as described above is performed in the via hole and above the surface of the insulating layer 15. As a result, as shown in FIG. 7B, a wiring layer 18 similar to the above is formed above the surface of the insulating layer 15, and a filled via conductor 38 for connecting the wiring layers 14 and 18 is formed in the via hole. The
At this stage, the support substrate 30 is removed in the same manner as described above, and as shown by a broken line S in FIG. 7B, for each metal core substrate 2 along the middle in the width direction of the partition hole (groove) 2d. Cut and separate with a dicing blade. As a result, as shown in FIG. 7C, a plurality of product units for each metal core substrate 2 is obtained, and each side surface of the plurality of metal core substrates 2 is covered with the same side surface insulating material 8 as described above. .
[0044]
Next, as shown in FIG. 7C, a solder resist layer (insulating layer) 23 is formed by laminating and press-bonding the same resin film above the surfaces of the insulating layer 15 and the wiring layer 18, and the surface ( The opening 20 reaching the wiring layer 18 from the second main surface 25 is formed in the same manner as described above. Ni and Au plating is applied to the surface of the wiring 19 exposed at the bottom of the opening 20. Then, as shown in FIG. 7D, a predetermined position on the surface (first main surface) 24 of the solder resist layer (insulating layer) 22 is drilled in the same manner as described above, and the land 26 where the surface of the wiring layer 21 is exposed. A plurality of are formed. When the solder bumps 28 are formed on the lands 26 so as to protrude higher than the first main surface 24, a plurality of the wiring boards 1b are obtained.
[0045]
According to the manufacturing method of the wiring board 1b as described above, the through hole 2a can be easily formed with high accuracy in the thin metal core substrate 2, and the filled via conductor 36 is easily formed in the through hole 2a via the insulating material 7. In addition, the insulating layers 5 and 6 and the wiring layers 12 and 14 formed above the front surface 3 and the back surface 4 of the metal core substrate 2 can be arranged with high density and high accuracy, and the side surface insulating material 8 is provided. Can be formed simultaneously. Moreover, the filled via conductors 34, 36, and 38 can be connected concentrically.
In order to obtain the wiring substrate 1c shown in FIG. 5B, a via hole reaching the back surface 4 of the metal core substrate 2 is formed in the insulating layer 6 in FIG. At the same time, a filled via conductor connected to the wiring layer 14 may be formed by the above method. In addition, the method of manufacturing the wiring boards 1b and 1c also includes the insulating layers 23, 15, and 6, the wiring layers 18 and 14, and the metal core board 2 on the second main surface side above the flat surface 32 of the support substrate 30. You may carry out in order and reverse to the method mentioned above.
[0046]
The present invention is not limited to the embodiments described above.
For example, the metal core substrate or the metal thin plate may have a rectangular shape in plan view. For example, the plurality of metal core substrates 2 formed on the thin metal plate 2b may have different numbers in the vertical and horizontal directions.
Further, the material of the metal core substrate 2 and the metal thin plate 2b is not limited to the copper or Fe—Ni alloy, but pure copper, oxygen-free copper, copper alloys, various steel materials, titanium and its alloys, or aluminum and its An alloy or the like can also be applied.
[0047]
The insulating layers 5 and 6 are made of the epoxy resin as a main component, and have polyimide resin, BT resin, PPE resin, or continuous pores having similar heat resistance and pattern moldability. A resin-resin composite material in which a fluororesin having a three-dimensional network structure such as PTFE is impregnated with a resin such as an epoxy resin can also be used. The insulating layer can be formed by a method of applying a liquid resin with a roll coater in addition to a method of thermocompression bonding an insulating resin film. In addition, the composition of the glass cloth or glass filler mixed in the insulating layer may be any of E glass, D glass, Q glass, S glass, or a combination of two or more of these.
[0048]
Further, the material of the wiring layer 12 and the via conductor 10 may be made of Ag, Ni, Ni—Au, etc. in addition to copper (Cu) plating, or without using these metal plating layers. It may also be formed by a method such as applying a functional resin.
In addition, the via conductor may be in the form of a staggered structure that is stacked while shifting the axial centers of the plurality of via conductors, or may be in the form of interposing a wiring layer extending in the plane direction in the middle.
[Brief description of the drawings]
1A and 1B are schematic cross-sectional views showing a wiring board according to the present invention.
FIGS. 2A to 2E are schematic views showing a manufacturing process of the wiring board of FIG.
FIGS. 3A and 3B are plan views showing the steps of FIGS. 2B and 2C. FIGS.
4A to 4D are schematic views showing manufacturing steps subsequent to FIG. 2E.
FIGS. 5A and 5B are schematic cross-sectional views showing different types of wiring boards. FIGS.
6A to 6D are schematic views showing a manufacturing process of the wiring board of FIG. 5A.
7A to 7D are schematic views showing manufacturing steps subsequent to FIG. 6D.
[Explanation of symbols]
1,1a ~ 1c ……………… Wiring board
2 …………………………………… Metal core substrate
2a ……………………………… Through hole
2b ……………………………… Metal sheet
2d ……………………………… Partition hole
3 ………………………………… Surface
4 ………………………………… Back side
5, 6, 13, 15, 22, 23 ... insulating layer
7 ………………………………… Insulating material
8 ………………………………… Side insulation
10, 36 ………………………… Via conductor
10a, 35 …………………… Beer Hall
12, 14, 18, 21 ... …… Wiring layer
30 ……………………………… Supporting substrate
32 ……………………………… Flat surface

Claims (6)

表面および裏面を有する金属コア基板と、
上記金属コア基板の表面上方および裏面上方にそれぞれ形成した複数の絶縁層およびその間に位置する配線層と、
上記金属コア基板の表面と裏面との間を貫通する貫通孔と、
上記貫通孔内を絶縁材を介して貫通し且つ上記表面上方の配線層と裏面上方の配線層との間を接続するビア導体と、を含む、
ことを特徴とする配線基板。
A metal core substrate having a front surface and a back surface;
A plurality of insulating layers formed on the top surface and the back surface of the metal core substrate, respectively, and a wiring layer positioned therebetween,
A through hole penetrating between the front surface and the back surface of the metal core substrate;
A via conductor that penetrates the inside of the through-hole through an insulating material and connects between the wiring layer above the front surface and the wiring layer above the back surface,
A wiring board characterized by that.
平面視が矩形で且つ表面および裏面を有する金属コア基板と、
上記金属コア基板の表面上方および裏面上方にそれぞれ形成した複数の絶縁層およびその間に位置する配線層と、
上記金属コア基板の側面に形成され且つ上記絶縁層の何れかと一体の側面絶縁材と、を含む、ことを特徴とする配線基板。
A metal core substrate having a rectangular plan view and a front surface and a back surface;
A plurality of insulating layers formed on the top surface and the back surface of the metal core substrate, respectively, and a wiring layer positioned therebetween,
A wiring board comprising: a side surface insulating material formed on a side surface of the metal core substrate and integral with any of the insulating layers.
支持基板の平坦面上に複数の絶縁層およびその間に位置する配線層を形成する工程と、
上記のうち最外層の絶縁層の上方に金属コア基板を積層する工程と、
上記金属コア基板を貫通する貫通孔を穿孔する工程と、
上記貫通孔内を含めて上記金属コア基板の上面に新たな絶縁層を形成する工程と、を含む、ことを特徴とする配線基板の製造方法。
Forming a plurality of insulating layers on the flat surface of the support substrate and a wiring layer positioned therebetween;
Laminating a metal core substrate above the outermost insulating layer among the above,
Drilling a through hole penetrating the metal core substrate;
Forming a new insulating layer on the upper surface of the metal core substrate including the inside of the through-hole.
前記各工程の後に、前記新たな絶縁層および前記貫通孔内に位置する絶縁材を貫通し且つ前記配線層に達するビアホールを形成する工程と、
上記ビアホール内にビア導体を形成する工程と、を有する、
ことを特徴とする請求項3に記載の配線基板の製造方法。
After each step, forming a via hole that penetrates the new insulating layer and the insulating material located in the through hole and reaches the wiring layer;
Forming via conductors in the via holes,
The method for manufacturing a wiring board according to claim 3.
前記各工程の後に、前記金属コア基板上面の新たな絶縁層の上方に位置し且つ前記ビア導体と接続する新たな配線層を形成する工程と、
上記新たな絶縁層および新たな配線層の上方に別の絶縁層を形成する工程と、
その後で前記支持基板を除去する工程と、を更に有する、
ことを特徴とする請求項3または4に記載の配線基板の製造方法。
After each step, forming a new wiring layer located above the new insulating layer on the upper surface of the metal core substrate and connected to the via conductor;
Forming another insulating layer above the new insulating layer and the new wiring layer;
And further removing the support substrate.
The method for manufacturing a wiring board according to claim 3 or 4, wherein
前記金属コア基板には、製品単位を複数有する多数個取りの金属薄板が用いられ、前記貫通孔を穿孔する工程と同時に、かかる金属薄板を複数の金属コア基板に分離する平面視が矩形の区画溝が形成される、
ことを特徴とする請求項3乃至5の何れか一項に記載の配線基板の製造方法。
As the metal core substrate, a multi-piece metal thin plate having a plurality of product units is used, and at the same time as the step of drilling the through hole, the metal thin plate is divided into a plurality of rectangular sections in plan view. Grooves are formed,
The method for manufacturing a wiring board according to any one of claims 3 to 5, wherein:
JP2003209104A 2003-08-27 2003-08-27 Wiring board and its manufacturing method Pending JP2005072061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209104A JP2005072061A (en) 2003-08-27 2003-08-27 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209104A JP2005072061A (en) 2003-08-27 2003-08-27 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005072061A true JP2005072061A (en) 2005-03-17

Family

ID=34402147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209104A Pending JP2005072061A (en) 2003-08-27 2003-08-27 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005072061A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339421A (en) * 2005-06-02 2006-12-14 Shinko Electric Ind Co Ltd Wiring board and method for manufacturing the same
JP2008300782A (en) * 2007-06-04 2008-12-11 Shinko Electric Ind Co Ltd Method of manufacturing substrate with penetrating electrodes
JP2009076847A (en) * 2007-09-18 2009-04-09 Samsung Electro Mech Co Ltd Multilayered printed circuit board and fabricating method thereof
JP2009135247A (en) * 2007-11-30 2009-06-18 Cmk Corp Printed circuit board having metal plate, assembled printed circuit board with metal plate, and manufacturing method thereof
JP2011249735A (en) * 2010-05-31 2011-12-08 Kyocer Slc Technologies Corp Wiring board and method of manufacturing same
JP2012212912A (en) * 2012-06-20 2012-11-01 Princo Corp Structure of surface treatment layer of multilayer substrate and manufacturing method of the same
JP2013187255A (en) * 2012-03-06 2013-09-19 Ngk Spark Plug Co Ltd Wiring board manufacturing method
JP2014022741A (en) * 2012-07-18 2014-02-03 Samsung Electro-Mechanics Co Ltd Method for manufacturing metal core-inserted printed circuit board
JP2015204379A (en) * 2014-04-14 2015-11-16 イビデン株式会社 Printed wiring board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339421A (en) * 2005-06-02 2006-12-14 Shinko Electric Ind Co Ltd Wiring board and method for manufacturing the same
JP2008300782A (en) * 2007-06-04 2008-12-11 Shinko Electric Ind Co Ltd Method of manufacturing substrate with penetrating electrodes
US8349733B2 (en) 2007-06-04 2013-01-08 Shinko Electric Industries Co., Ltd. Manufacturing method of substrate with through electrode
JP2009076847A (en) * 2007-09-18 2009-04-09 Samsung Electro Mech Co Ltd Multilayered printed circuit board and fabricating method thereof
JP2011018948A (en) * 2007-09-18 2011-01-27 Samsung Electro-Mechanics Co Ltd Multilayered printed circuit board, and fabricating method thereof
JP2009135247A (en) * 2007-11-30 2009-06-18 Cmk Corp Printed circuit board having metal plate, assembled printed circuit board with metal plate, and manufacturing method thereof
JP2011249735A (en) * 2010-05-31 2011-12-08 Kyocer Slc Technologies Corp Wiring board and method of manufacturing same
JP2013187255A (en) * 2012-03-06 2013-09-19 Ngk Spark Plug Co Ltd Wiring board manufacturing method
JP2012212912A (en) * 2012-06-20 2012-11-01 Princo Corp Structure of surface treatment layer of multilayer substrate and manufacturing method of the same
JP2014022741A (en) * 2012-07-18 2014-02-03 Samsung Electro-Mechanics Co Ltd Method for manufacturing metal core-inserted printed circuit board
JP2015204379A (en) * 2014-04-14 2015-11-16 イビデン株式会社 Printed wiring board

Similar Documents

Publication Publication Date Title
TWI482542B (en) Multilayer wiring substrate
KR100867148B1 (en) Printed circuit board and manufacturing method of the same
JP4673207B2 (en) Multilayer printed wiring board and manufacturing method thereof
KR101215246B1 (en) Method of Manufacturing Multilayer Wiring Substrate, and Multilayer Wiring Substrate
TW201225770A (en) Printed circuit board and method for manufacturing the same
KR20120093776A (en) Method of manufacturing multilayer wiring substrate
KR101281410B1 (en) Multilayer Wiring Substrate
KR20080046275A (en) Multilayer printed wiring board and method for manufacturing same
KR101868680B1 (en) Circuit board, production method of circuit board, and electronic equipment
US10477682B2 (en) Printed wiring board and method for manufacturing the same
JP2004311849A (en) Wiring board and its producing process
JP2018032660A (en) Printed wiring board and method for manufacturing the same
US8058568B2 (en) Circuit board and method for fabricating the same
JP6084283B2 (en) Component built-in substrate and manufacturing method thereof
JP2005072061A (en) Wiring board and its manufacturing method
JP2013540368A (en) Printed circuit board and manufacturing method thereof
KR100782404B1 (en) Printed circuit board and manufacturing method thereof
TW201206296A (en) Multilayer wiring substrate and method of manufacturing the same
JP2005072063A (en) Wiring board and its manufacturing method
JP2005072064A (en) Wiring board and its manufacturing method
JP2019121766A (en) Printed wiring board and manufacturing method thereof
JP3955799B2 (en) Wiring board manufacturing method
JP2014222733A (en) Printed wiring board and method for manufacturing the same
JP2001257476A (en) Multilayer wiring board and manufacturing method thereof
JP2002314255A (en) Printed wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A02