JP2004311849A - Wiring board and its producing process - Google Patents

Wiring board and its producing process Download PDF

Info

Publication number
JP2004311849A
JP2004311849A JP2003105888A JP2003105888A JP2004311849A JP 2004311849 A JP2004311849 A JP 2004311849A JP 2003105888 A JP2003105888 A JP 2003105888A JP 2003105888 A JP2003105888 A JP 2003105888A JP 2004311849 A JP2004311849 A JP 2004311849A
Authority
JP
Japan
Prior art keywords
metal core
wiring board
core substrate
tie bar
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105888A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003105888A priority Critical patent/JP2004311849A/en
Publication of JP2004311849A publication Critical patent/JP2004311849A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board exhibiting excellent corrosion resistance and requiring no finish work in which possibility of inadvertent electrical conduction to the outside or to the interior of the wiring board is eliminated, and to provide a process for obtaining the wiring board efficiently. <P>SOLUTION: The wiring board 1 comprises a metal core substrate 2 of rectangular plan view having a surface 4 and a rear surface 5, build-up layers BU1 and BU2 consisting of insulating layers 10, 11, 14, 15 and wiring layers (built-up wiring layers) 12, 13, 18, 19 formed on at least one of the surface 4 and the rear surface 5 of the metal core substrate 2, and tie bars 3 projecting from the side face of the metal core substrate 2 wherein the tie bar 3 is coated with an insulating material 7b integral with the insulating layers 14 and 15 close to the surface layer. Since the side face of the wiring board is covered with the insulating material including the tie bars integral with the incorporated metalcore substrate, finish work of the end face of the tie bar, e.g. deburring or polishing, is not required and the possibility of inadvertent electrical conduction to the outside or to the interior of the wiring board is eliminated. Furthermore, not only corrosion through oxidation but also delamination or migration incident to moisture absorption can be prevented because the tie bar of the metal core substrate is not exposed to the outside resulting in a highly reliable wiring board. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属コア基板を含む配線基板およびその製造方法に関する。
【0002】
【従来の技術】
複数の絶縁層とこれらの間に位置する複数の配線層とを含む多層構造の配線基板には、樹脂製または樹脂−ガラス製の絶縁性を有するコア基板が用いられている。しかし、近年では、例えば銅合金からなる金属コア基板も活用されている。
かかる金属コア基板を含む配線基板30は、例えば図10(A)に示すように、表面32および裏面33を有する金属コア基板31と、このコア基板31の表面32と裏面33との間を貫通する貫通孔34と、この貫通孔34内に絶縁材35を介して配置されるスルーホール導体36および充填樹脂37と、を備える。
【0003】
図10(A)に示すように、金属コア基板31の表面32上および裏面33上には、絶縁材35と一体の絶縁層38,39が個別に形成される。また、かかる絶縁層38,39の表面に形成された所定パターンの配線層40,41は、前記スルーホール導体36の上端または下端と接続され、且つ絶縁層42,43に覆われている。以上のような配線基板30は、コア基板31(製品単位)を複数含む多数個取り用の金属板(パネル)において製造された後、ダイシング加工などにより各金属コア基板31ごとのサイズに切断して分離することにより形成される。
ところで、金属コア基板31の板厚が厚肉であると、上記ダイシング加工が効率および精度良く行えなくなると共に、得られる配線基板30の各側面に切断時のバリが露出したり、かかる露出した金属コア基板31の側面から腐食(酸化)するおそれがあった。
【0004】
これらを解決するため、図10(B)に示すように、上記と同様な配線基板30aも検討されている(例えば、特許文献1参照)。
かかる配線基板30aに用いる金属コア基板31aは、図10(C)に示す多数個取り用の金属板(パネル)31bを、切断予定線Sに沿って切断したもので、隣接する金属コア基板31a,31a間には、予め薄肉部31cが形成される。
従って、金属板31bにおいて、コア基板31a毎にスルーホール導体36、絶縁層38,39,42,43、および配線層40,41などを形成した後、切断予定線Sに沿って切断すると、図10(B)に示すように、各側面に金属コア基板31aにおける薄肉部31cの切断面が露出した配線基板30aが得られる。
【0005】
【特許文献1】
特開2000−133913号公報 (図2,図3)
【0006】
【発明が解決すべき課題】
しかし、前記配線基板30aにおいても、その各側面の全長に沿って金属コア基板31aの薄肉部31cの端面が露出するため、腐食のおそれがあり、また、バリ除去用の仕上げ加工が必要となり、外部との不用意な電気的導通、あるいは配線基板内部における不用意な電気的導通を招き易い、という問題があった。
また、前記金属板31bから個別の配線基板30a毎に切断して分離する際、各配線基板30aの4つの側面における金属コア基板31aの薄肉部31c全長において、ダイシング加工などが必要となる。このため、工数および時間を要し且つ得られる配線基板30aの各側面にバリを生じ易い、という問題もあった。
本発明は、以上に説明した従来の技術における問題点を解決し、耐食性に優れ、仕上げ加工などが不要で且つ外部との不用意な電気的導通がなく、更には配線基板内部における不用意な電気的導通のおそれのない配線基板、およびかかる配線基板を効率良く得るための製造方法を提供する、ことを課題とする。
【0007】
【課題を解決するための手段】
本発明は、前記課題を解決するため、複数の金属コア基板を有する金属板において、隣接する金属コア基板同士の間に配置した接続用のタイバーを切断する貫通孔に充填した絶縁材に沿って切断する、ことに着想して成されたものである。
即ち、本発明の配線基板(請求項1)は、表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上および裏面上の少なくとも一方に形成された絶縁層および配線層からなるビルドアップ層と、上記金属コア基板の側面に突出するタイバーと、を含み、かかるタイバーは、絶縁材により被覆されている、ことを特徴とする。
【0008】
これによれば、配線基板の側面は、これに内蔵される金属コア基板と一体のタイバーを含めて絶縁材により覆われる。このため、タイバー端面のバリ取りや研磨などの仕上げ加工が不要となり、且つ外部や配線基板内部との不用意な電気的導通のおそれもなくなる。しかも、前記金属コア基板は、そのタイバーが外部に露出しないため、酸化による腐食はもちろん、金属と樹脂との界面からの水分吸収に伴うデラミネーションやマイグレーションも防止できる。従って、信頼性の高い配線基板とすることができる。
付言すれば、本発明の配線基板は、表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上および裏面上の少なくとも一方に形成された絶縁層および配線層からなるビルドアップ層と、上記金属コア基板の側面に突出するタイバーと、を含み、かかるタイバーは、上記絶縁層と一体の絶縁材により被覆されている、とすることも可能である。これよれば、ビルドアップ層を形成する絶縁層を、タイバーなどが位置する金属コア基板の側面を被覆する絶縁材と兼用して一体化できるため、耐食性および側面における絶縁性が一層向上する。
【0009】
また付言すれば、本発明には、前記タイバーは、前記金属コア基板の厚みよりも薄肉とされている配線基板、とすることもできる。これによれば、配線基板の側面に接近するタイバーの端面が狭い面積になるため、不用意な電気的導通が一層生じにくくなり、一層信頼性を高めることができる。
更に付言すれば、本発明には、表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上および裏面上の少なくとも一方に形成された絶縁層および配線層からなるビルドアップ層と、上記金属コア基板の表面と裏面との間を絶縁材を介して貫通するスルーホール導体と、上記金属コア基板の側面に突出するタイバーと、を含み、かかるタイバーは、上記絶縁層と一体の絶縁材により被覆されている、配線基板も含まれ得る。
【0010】
尚、上記金属コア基板の素材には、例えばCu−2.3wt%Fe−0.03wt%P(所謂194アロイ)の銅合金、純銅、または無酸素銅、あるいはFe−42wt%Ni(所謂42アロイ)やFe−36wt%Ni(インバー)などのFe−Ni系合金などが適用される。また、金属コア基板は、電極電位や接地電位としても活用される。更に、本明細書において、ビルドアップ層とは、少なくとも1層の絶縁層および1層の配線層を積層した部分を指し示すが、これらの上に更に新たな絶縁層および配線層を積層した複数の絶縁層とこれらの間に位置する複数の配線層とからなる形態も含まれる。
【0011】
一方、本発明の配線基板の製造方法(請求項2)は、表面および裏面を有する金属板において、追って製品単位の金属コア基板となる複数の製品エリア同士の境界に沿って、タイバーおよび区画孔を形成する工程と、上記タイバーおよび区画孔を形成した金属板の表面上および裏面上ならびに区画孔内に下層側絶縁層を形成する工程と、上記タイバーと交差し且つ係るタイバーを切断する貫通孔を上記下層側絶縁層を含めて形成する工程と、上記貫通孔内を含めて上記下層側絶縁層の表面上および裏面上に表層側絶縁層を形成する工程と、上記貫通孔内に位置する上記表層側絶縁層と一体の絶縁材を、上記区画孔内に位置する上記絶縁材と共に、上記境界に沿って切断することにより、製品単位ごとの金属コア基板に分離する工程と、を含む、ことを特徴とする。
【0012】
これによれば、多数個取り用の金属板から個別の配線基板に切断して分離する際は、隣接する金属コア基板同士の境界に部分的に位置するタイバーを切断した複数の貫通孔内に充填した絶縁材に沿ってかかる絶縁材や上下の絶縁層などを分離するだけで済む。この結果、タイバーが絶縁材により被覆され前述した優れた耐食性および電気的信頼性を有する配線基板を効率良く製造でき、且つタイバーの端面に対するバリなどを除去する仕上げ加工も不要となる。しかも、分離工程では、予めタイバーが貫通孔により切断されているため、かかる工程で用いる例えばダイシングブレードのような切断治具を損傷しにくくすることもできる。
尚、タイバーの厚みは、上記金属板の厚みと同じでも良いが、かかる金属板よりも薄肉にすることにより、切断治具の損傷を更に低減して配線基板を一層効率良く製造できると共に、絶縁材に覆われるタイバーの端面が小さくなるため、耐食性および絶縁性を一層高めることもできる。また、前記下層側絶縁層および表層側絶縁層は、金属コア基板に対する相対的な位置を示す呼称である。
【0013】
また、本発明には、前記下層側絶縁層と表層側絶縁層との間で、ビルドアップ配線層を形成する工程が更に行われる、配線基板の製造方法(請求項3)も含まれる。これによれば、金属コア基板の側面から突出するタイバーを表層側絶縁層と一体の絶縁材で被覆する工程と平行して、下層側絶縁層と表層側絶縁層との間にビルドアップ配線層を形成することができる。換言すれば、ビルドアップ層形成工程の途中でタイバーを切断する貫通孔を形成し、且つ係る貫通孔内に充填され且つ追って切断される絶縁材を、ビルドアップ層を形成する絶縁層と同時に形成することが可能となる。
【0014】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明による配線基板1の断面を示す。
かかる配線基板1は、図1に示すように、平面視が正方形(矩形)の金属コア基板2と、この金属コア基板2の表面4上および裏面5上(図示で下側)に形成したビルドアップ層BU1,BU2と、を含んでいる。ビルドアップ層BU1は、絶縁層10,14と、これらの間または上に位置し且つ所定パターンを有する配線層(ビルドアップ配線層)12,18とから構成され、ビルドアップ層BU2は、絶縁層11,15と、これらの間または上に位置し且つ所定パターンを有する配線層(ビルドアップ配線層)13,19とから構成される。かかるビルドアップ層BU1,BU2の上には、ソルダーレジスト層20,21が形成されている。
【0015】
上記金属コア基板2は、約0.25mmの厚みで例えば前記銅合金からなり、絶縁層10,11,14,15は、約30μmの厚みで例えばシリカフィラなどの無機フィラを含むエポキシ系樹脂からなる。最上層または最下層に位置するソルダーレジスト層(絶縁層)20,21は、約25μmの厚みで上記同様の樹脂からなり、配線層12,13などは、約15μmの厚みの銅メッキ層からなる。
また、図1および図2に示すように、配線基板1における金属コア基板2の各側面には、2個ずつのタイバー3が一体に突出するが、それらの端面は当該配線基板1の各側面を覆う絶縁材7bにより被覆されている。
【0016】
かかるタイバー3は、後述するように、複数の金属コア基板2を併有する多数個取り用の金属板(パネル)において、隣接する金属コア基板2,2を部分的に接続するものであり、複数の配線基板1を形成した後に、これらを個別に分離するため、当該タイバー3を切断する貫通孔を形成した際に残留したものである。
尚、図2は、図1中のA−A線に沿った矢視における断面を示す。図1および図2に示すように、配線基板1の各側面におけるタイバー3を除いた位置には、上記絶縁材7bと一体で直線形またはL字形の絶縁材7aが被覆されている。
【0017】
更に、図1,図2に示すように、金属コア基板2における所定の位置には、その表面4および裏面5との間を貫通する内径が約250μmで且つ断面円形の通し孔6が複数穿孔されている。各通し孔6内には、前記絶縁層10,11と一体の絶縁材7が充填され、その中心部には直径約100μmのスルーホール導体8およびその内側の充填樹脂9が、それぞれ同軸心にして貫通している。
各スルーホール導体8は、その上端または下端において、絶縁層10,11の表面上に形成された配線層12,13と個別に接続されている。
【0018】
図1に示すように、金属コア基板2の表面4上方の配線層12,18間には、両者を接続するビア導体(フィルドビア)16が絶縁層14内に形成される。
また、配線層18上の所定の位置には、最上層のソルダーレジスト層(絶縁層)20を貫通し且つ第1主面22よりも高く突出するハンダバンプ(IC接続端子)24が複数形成される。かかるハンダバンプ24は、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系、Sn−Zn系、Pb−Sn系など(本実施形態ではSn−Ag系)の低融点合金からなり、図1に示すように、第1主面22上に実装されるICチップ(電子部品)26の接続端子(図示せず)と個別に接続される。
尚、複数のハンダバンプ24とICチップ26の接続端子とは、図示しないアンダーフィル材に覆われ且つ保護される。
【0019】
一方、図1に示すように、金属コア基板2の裏面5下方の配線層13,19間にも、両者を接続するビア導体(フィルドビア)17が絶縁層15に形成される。また、配線層19から延びた配線27は、最下層のソルダーレジスト層(絶縁層)21に設けた開口部25の底面に位置し且つ第2主面23側に露出している。
かかる配線27は、その表面にNiメッキおよびAuメッキが薄く被覆され、当該配線基板1自体を搭載する図示しないマザーボードなどのプリント基板との接続端子として活用される。尚、配線27の表面には、ハンダボールや銅系合金あるいは鉄系合金の導体ピンなどを接合しても良い。
【0020】
以上のような配線基板1によれば、製造時に用いた金属板から残留したタイバー3は、絶縁材7bに被覆されているため、かかるタイバー3の端面のバリ取りや研磨などの仕上げ加工が不要となり、且つ外部や当該配線基板1の内部との不用意な電気的導通のおそれも皆無になる。しかも、金属コア基板2は、そのタイバー3を含め絶縁材7a,7bや絶縁層10,11に包囲されるため、酸化による腐食はもちろん、金属と樹脂との界面からの水分吸収に伴うデラミネーションやマイグレーションも防止できる。従って、信頼性を高めることが可能となる。
【0021】
以下において、前述した配線基板1の製造方法について説明する。
図3(A)は、Cu−2.3wt%Fe−0.03wt%P(いわゆる194アロイ)の銅合金からなり、厚みが約0.25mmで且つ平面視が正方形(矩形)を呈する金属素板(パネル)2aの一部を示す。かかる金属素板2aの表面および裏面に図示しない感光性樹脂層を形成し、これに対して所定パターンによる露光および現像を施した後、エッチングを行う。
この結果、図3(B)に示すように、上記パターンに倣って、縦横2つずつ合計4つの金属コア基板2と、これらを包囲して外側に位置する四角枠形状の耳部2cと、隣接する金属コア基板2,2間を接続するタイバー3bと、耳部2cとこれに隣接する金属コア基板2との間を接続するタイバー3cと、を備える金属板(パネル)2bが形成される(タイバーおよび区画孔を形成する工程)。
【0022】
隣接する金属コア基板2,2とタイバー3bとの間、および耳部2cとこれに隣接する金属コア基板2とタイバー3cとの間には、平面視で長方形、ほぼ十字形、またはほぼL字形の区画孔2dが位置している。また、各金属コア基板2には、複数の通し孔6が所定の位置に前記工程で同時に穿孔されている。
即ち、金属板2bでは、製品単位となるコア基板(製品エリア)2,2間の境界に沿って、タイバー3bおよび区画孔2dが形成され、各コア基板2と耳部2cとの境界に沿って、タイバー3cおよび区画孔2dが形成されている。かかる金属板2bの全表面には、所定厚みのCu(銅)メッキが施される。
尚、前記金属素板2aに施すエッチングなどに替えて、レーザ加工またはプレスによる打ち抜き加工を用いても良い。
【0023】
図4(A)は、金属コア基板2,2などを有する前記金属板2bの前記図3(B)中におけるX−X線に沿った矢視の断面を示す。かかる金属板2bの表面および裏面に、厚みが約50μmの樹脂フィルムをそれぞれ配置した後、厚み方向に沿って熱圧着する。この結果、図4(B)に示すように、金属板2bの表面上および裏面下に、厚みが約30μmの絶縁層(下層側絶縁層)10,11が形成される。
同時に、各金属コア基板2に穿孔された通し孔6内には、上記樹脂フィルムの一部が進入して固化した絶縁材7が充填され、且つ各区画孔2dには絶縁材7aが個別に充填される。尚、絶縁層10,11および絶縁材7,7aは、液状の樹脂をロールコータを用いて、金属板2bの表面上および裏面下に形成し且つ通し孔6内や区画孔2d内に充填しても良い。
【0024】
次いで、金属板2bの金属コア基板2,2の通し孔6内に位置する各絶縁材7の中心付近に、その厚み方向に沿ってレーザ(例えば、炭酸ガスレーザ)を照射する。その結果、図4(C)に示すように、内径約100μmのスルーホール8aが、絶縁材7の中心部および絶縁層10,11を貫通して個別に穿孔される。
更に、複数のスルーホール8aの内壁にPdを含むメッキ触媒を予め塗布した後、無電解銅メッキおよび電解銅メッキを施す。
その結果、図4(D)に示すように、各スルーホール8a内にほぼ円筒形のスルーホール導体8が形成される。かかるスルーホール導体8の内側に、シリカフィラなどを含むエポキシ系樹脂からなる充填樹脂9をそれぞれ充填する。
【0025】
次に、絶縁層10,11上の全面に無電解銅メッキおよび電解銅メッキを施し、且つその上に前記同様の感光性樹脂を形成し、所定パターンの露光および現像をした後、エッチングを施す(公知のサブトラクティブ法)。
この結果、図5(A)に示すように、絶縁層10,11上に上記パターンに倣った配線層12,13が形成され、且つ各充填樹脂9の真上が蓋メッキされる。尚、図5(A)では、前記図4(D)で右側のコア基板2を中心に図解している。
更に、図5(A),(B)に示すように、金属コア基板2,2を接続するタイバー3bおよび金属コア基板2と耳部2cとを接続するタイバー3cの中間で且つこれらと直交するように、平面視で長方形または長孔を呈する貫通孔28を、図示しないエンドミルなどを用いるルータ加工にて形成する(貫通孔形成工程)。かかる貫通孔28は、上下に位置する絶縁層10,11も部分的に貫通する。
【0026】
この結果、タイバー3b,3cは、個別の金属コア基板2の側面から片持ち状に突出するタイバー3となる。また、図5(A),(B)に示すように、個別の金属コア基板2は、区画孔2d内の絶縁材7aと、当該金属コア基板2の表面および裏面に形成された絶縁層10,11を介して、隣接する金属コア基板2や金属板2bの耳部2cと接続されている。
次いで、図6(A)に示すように、金属コア基板2における絶縁層10および配線層12の上側と絶縁層11および配線層13の下側とに、前記と同様に絶縁層(表層側絶縁層)14,15を形成する。この際、かかる絶縁層14,15の一部は、貫通孔28内に充填されて絶縁材7bとなる。
【0027】
これ以降は、図6(A)に示すフィルドビア導体16,17およびこれらの上端に接続し且つ絶縁層14,15上に位置する配線層18,19を、公知のビルドアップ工程(セミアディティブ法、フルアディティブ法、サブトラクティブ法、フィルム状樹脂材料のラミネートによる絶縁層の形成、フォトリソグラフィ技術など)によって形成する。この結果、ビルドアップ層BU1,BU2が形成される(ビルドアップ層形成工程)。
更に、図6(B)に示すように、上方のビルドアップ層BU1上には、ソルダーレジスト層(表層側絶縁層)20およびハンダバンプ24を形成し、下方のビルドアップ層BU2上には、ソルダーレジスト層(表層側絶縁層)21、開口部25、および配線27を形成する。
【0028】
そして、図6(C)で拡大した断面中の破線で示すように、隣接する金属コア基板2,2間に位置し且つ図示で前後方向に沿って位置する貫通孔28,28内の絶縁材7bを、これらの間に位置する絶縁材7a,7aおよび上下の絶縁層14,15,20,21と共に、図示しないダイシングブレードを用いて切断する。
この結果、図6(D)に拡大して示すように、絶縁材7bの中間に沿って個別に分離された金属コア基板2となる(分離工程)。これにより、前記図1,2に示した各断面構造を有する配線基板1を、複数個同時に得ることができる。
【0029】
以上のような配線基板1の製造方法によれば、配線基板1を効率良く製造できると共に、内蔵される金属コア基板2の側面から突出するタイバー3には、絶縁材7b,7aが被覆されている。このため、タイバー3の端面にバリなどが生じていても除去する必要がなく、且つ金属コア基板2の耐食性も向上すると共に、分離工程で用いる例えばダイシングブレードなどの切断治具を損傷しにくくし、耐久性を高めることにも寄与する。しかも、タイバー3が外部や配線基板内部との不用意な電気的導通を生じるのおそれも皆無にできる。
【0030】
図7(A)は、前記金属板2bにおける隣接する金属コア基板2,2の表面と裏面とに、絶縁層(下層側絶縁層)10,11,14,15を2層ずつ形成し、前記タイバー3bを切断する貫通孔28を形成した後で、当該貫通孔28内を含めてソルダーレジスト層(表層側絶縁層)20,21を形成した状態を示す。タイバー3bの中間を切断し且つ絶縁層10,11,14,15を貫通する貫通孔28には、ソルダーレジスト層20,21と一体の絶縁材7bが充填されている。
そして、図7(A)中の破線で示すように、隣接する金属コア基板2,2間に位置し且つ図示で前後方向に沿って位置する貫通孔28,28内の絶縁材7bを、前記同様にして切断する。この結果、図7(B)に示すように、絶縁材7bの中間に沿って個別に分離された金属コア基板2となる(分離工程)。これにより、前記図1,2の配線基板1と同様な配線基板を、複数個同時に得ることができる。
【0031】
図7(C)は、前記金属板2bにおける隣接する金属コア基板2,2の表面および裏面上に、絶縁層(下層側絶縁層)10,11を形成し、前記タイバー3bを切断する貫通孔28を形成した後で、かかる貫通孔28内を含めてソルダーレジスト層(表層側絶縁層)20,21を形成した状態を示す。タイバー3bの中間を切断し且つ絶縁層10,11を貫通する貫通孔28には、ソルダーレジスト層20,21と一体の絶縁材7bが充填されている。
そして、図7(C)中の破線で示すように、隣接する金属コア基板2,2間に位置し且つ図示で前後方向に沿って位置する貫通孔28,28内の絶縁材7bを、前記同様にして切断する。この結果、図7(D)に示すように、絶縁材7bの中間で個別に分離された金属コア基板2となる(分離工程)。これれば、前記図1,2の配線基板1と同様でやや薄肉の配線基板を、複数個同時に得ることができる。
【0032】
図8は、前記金属板2bの応用形態の金属板(パネル)2b′に関する。
金属板2b′は、図8(A)乃至(C)に示すように、前記同様に、縦横2個ずつ合計4個の金属コア基板2と、これらを包囲して外側に位置する四角枠形状の耳部2cと、隣接する金属コア基板2,2間を接続するタイバー3dと、耳部2cとこれに隣接する金属コア基板2とを接続するタイバー3eと、を備えている。
かかる金属板2b′では、図8(B)に示すように、全てのタイバー3d,3eの厚みは、各金属コア基板2や耳部2cの厚みよりも薄肉とされている。尚、各金属コア基板2には、前記同様の通し孔6が複数形成されている。
【0033】
かかる金属板2b′を得るには、例えば前記金属素板2aにおいて、タイバー3d,3eおよびこれらに隣接する区画孔2dとなる位置のみを予め細長くエッチングして深さが数10μm〜数100μmの凹溝を形成する。その後、所定パターンに倣って、エッチング、レーザ加工、またはプレスによる打ち抜き加工を施すことにより金属板2b′を得ることができる。尚、上記凹溝は、金属素板2aの片面のみに形成しても良く、あるいは追ってタイバー3d,3eとなる位置のみに設けて良い。
【0034】
前記金属板2b′を用いて前記図4(B)〜図4(D)に示した各製造工程を施して、絶縁層(下層側絶縁層)10,11、絶縁材7,7a、スルーホール導体8などを形成すると共に、更に図5(A)で示した配線層12,13を形成する。
次いで、図9(A),(B)に示すように、金属板2b′において隣接する金属コア基板2,2を接続するタイバー3dおよび金属コア基板2と耳部2cとを接続するタイバー3eの中間で且つこれらと直交するように、平面視で長方形を呈する貫通孔28を、前記同様のルータ加工によって形成する(貫通孔形成工程)。かかる貫通孔28は、併せて上下の絶縁層10,11も部分的に貫通する。
【0035】
これ以降は、前記図6(A),(B)にて示したビルドアップ層BU1,BU2を形成するビルドアップ層形成工程など行った後、前記図6(C),(D)で示したように、貫通孔28に充填した絶縁材7bの中間で金属コア基板2,2を切断して分離する分離工程を行う。この結果、前記配線基板1と同様で且つ金属コア基板2の側面から突出する薄肉のタイバー3を絶縁材7bで被覆した配線基板を、複数個同時に得ることができる。
【0036】
以上のような金属板2b′を用いた配線基板の製造方法によれば、複数の配線基板を効率良く製造でき且つ金属コア基板2の側面から突出するタイバー3が薄肉であるため、バリなどが生じにくくなり且つ耐食性も向上する。更に、貫通孔28の形成も容易となり、且つ分離工程で用いる例えばダイシングブレードなどの切断治具を一層損傷しにくくし、その耐久性を一層高めることにも寄与する。しかも、薄肉のタイバー3は、絶縁材7b,7aに覆われているため、得られる配線基板の耐食性が向上すると共に、外部または配線基板内部との不用意な電気的導通のおそれも皆無となる。尚、金属板2b′に対して、前記図7(A)〜(D)に示した積層構造および分離工程を適用することもできる。
【0037】
本発明は、以上において説明した各形態に限定されるものではない。
金属コア基板2の側面から突出するタイバー3は、各側面の中央部に1つのみとしも良く、あるいは側面ごとに薄肉のタイバーを3つ以上ずつとしても良い。
また、前記ビルドアップ層は、金属コア基板2の表面4上方のみ、あるいは金属コア基板2の裏面5下方のみに形成しても良い。ビルドアップ層としない表面4上や裏面5下では、前記ビルドアップ配線層12,13などが省略される。
更に、金属コア基板や金属板は、平面視で長方形を呈する形態としても良い。例えば、前記金属板2b,2b′に形成する複数の金属コア基板2は、縦×横の数が互いに異なる形態でも良い。
また、金属コア基板2および金属板2b,2b′の素材には、前記銅合金やFe−Ni系合金に限らず、純銅、無酸素銅、各種の鋼材、チタンおよびその合金、または、アルミニウムおよびその合金などを適用することも可能である。
【0038】
また、前記絶縁層14,15などの材質は、前記エポキシ樹脂を主成分とするもののほか、同様の耐熱性、パターン成形性等を有するポリイミド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系の複合材料などを用いることもできる。尚、絶縁層の形成には、絶縁性の樹脂フィルムを熱圧着する方法のほか、液状の樹脂をロールコータにより塗布する方法を用いることもできる。尚また、絶縁層に混入するガラス布またはガラスフィラの組成は、Eガラス、Dガラス、Qガラス、Sガラスの何れか、またはこれらのうちの2種類以上を併用したものとしても良い。
また、前記配線層12などやスルーホール導体8などの材質は、銅(Cu)メッキの他、Ag、Ni、Ni−Au系などにしても良く、あるいは、これら金属のメッキ層を用いず、導電性樹脂を塗布するなどの方法により形成しても良い。
加えて、ビア導体は、前記フィルドビア導体16などでなく、内部が完全に導体で埋まってない逆円錐形状のコンフォーマルビア導体とすることもできる。あるいは、各ビア導体の軸心をずらしつつ積み重ねるスタッガードの形態でも良いし、途中で平面方向に延びる配線層が介在する形態としても良い。
【0039】
【発明の効果】
本発明の配線基板(請求項1)によれば、配線基板の側面は、これに内蔵される金属コア基板と一体のタイバーを含めて絶縁材により覆われるため、タイバー端面のバリ取りや研磨などの仕上げ加工が不要となり、且つ外部や配線基板内部との不用意な電気的導通のおそれもなくなる。しかも、金属コア基板のタイバーが外部に露出しないため、酸化による腐食はもちろん、水分吸収に伴うデラミネーションやマイグレーションも防止できるため、信頼性の高い配線基板となる。
【0040】
また、本発明の配線基板の製造方法(請求項2)によれば、多数個取り用の金属板から個別の配線基板に切断して分離する際、金属コア基板同士の境界に部分的に位置するタイバーを切断した複数の貫通孔内に充填した絶縁材に沿ってかかる絶縁材や上下の絶縁層を分離するだけで済む。このため、タイバーが絶縁材により被覆され且つ優れた耐食性および電気的信頼性を有する配線基板を効率良く製造でき、且つタイバー端面のバリ取りなども不要となる。しかも、分離工程で用いる切断用治具の損傷を低減することも可能となる。
更に、請求項3の配線基板の製造方法によれば、ビルドアップ層形成工程の途中でタイバーを切断する貫通孔を形成し、且つその内側に充填し追って切断される絶縁材を、ビルドアップ層を形成する絶縁層と同時に形成することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の1形態を示す断面図。
【図2】図1中のA−A線に沿った矢視における断面図。
【図3】(A),(B)は本発明の製造方法で区画孔とタイバーとの形成工程を示す概略図。
【図4】(A)〜(D)は図3(B)に続く上記製造方法の各工程を模式的に示す概略図。
【図5】(A),(B)は図4(D)に続く各工程を模式的に示す概略図。
【図6】(A)〜(D)は図5(B)に続く各工程を模式的に示す概略図。
【図7】(A)〜(D)は前記製造方法の変形形態を模式的に示す概略図。
【図8】(A)は異なる形態の金属板を示す平面図、(B),(C)は(A)中のB−B線またはC−C線に沿った矢視における断面図。
【図9】(A)は図8の金属板を用いた製造方法の貫通孔形成工程を模式的に示す概略図、(B)は(A)中のB−B線に沿った矢視における断面図。
【図10】(A),(B)は従来の配線基板を示す断面図、(C)は(B)の配線基板に用いる金属板を示す断面図。
【符号の説明】
1……………………………配線基板
2……………………………金属コア基板
2b,2b′………………金属板
2d…………………………区画孔
3,3b〜3e……………タイバー
4……………………………表面
5……………………………裏面
7a,7b…………………絶縁材
10,11,14,15…絶縁層/下層側絶縁層/表層側絶縁層
12,13,18,19…配線層(ビルドアップ配線層)
20,21…………………ソルダーレジスト層/表層側絶縁層
BU1,BU2……………ビルドアップ層
28…………………………貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board including a metal core substrate and a method for manufacturing the same.
[0002]
[Prior art]
As a wiring substrate having a multilayer structure including a plurality of insulating layers and a plurality of wiring layers located therebetween, a resin or resin-glass insulating core substrate is used. However, in recent years, a metal core substrate made of, for example, a copper alloy has also been used.
A wiring board 30 including such a metal core substrate, for example, as shown in FIG. 10A, penetrates a metal core substrate 31 having a front surface 32 and a back surface 33 and a space between the front surface 32 and the back surface 33 of the core substrate 31. And a through-hole conductor 36 and a filling resin 37 disposed in the through-hole 34 via an insulating material 35.
[0003]
As shown in FIG. 10A, on the front surface 32 and the back surface 33 of the metal core substrate 31, insulating layers 38 and 39 integrated with the insulating material 35 are individually formed. The wiring layers 40 and 41 having a predetermined pattern formed on the surfaces of the insulating layers 38 and 39 are connected to the upper or lower ends of the through-hole conductors 36 and are covered with the insulating layers 42 and 43. The wiring substrate 30 as described above is manufactured on a multi-piece metal plate (panel) including a plurality of core substrates 31 (product units), and then cut into a size for each metal core substrate 31 by dicing or the like. Formed by separation.
If the thickness of the metal core substrate 31 is large, the dicing process cannot be performed with high efficiency and accuracy, and burrs at the time of cutting are exposed on each side surface of the obtained wiring substrate 30 or such exposed metal is exposed. There was a risk of corrosion (oxidation) from the side surface of the core substrate 31.
[0004]
To solve these problems, as shown in FIG. 10B, a wiring board 30a similar to the above is being studied (for example, see Patent Document 1).
The metal core board 31a used for the wiring board 30a is obtained by cutting a multi-piece metal plate (panel) 31b shown in FIG. 10C along a cutting line S. The adjacent metal core board 31a , 31a, a thin portion 31c is formed in advance.
Therefore, when the through-hole conductor 36, the insulating layers 38, 39, 42, 43, the wiring layers 40, 41, and the like are formed for each core substrate 31a on the metal plate 31b, and cut along the planned cutting line S, FIG. As shown in FIG. 10 (B), a wiring substrate 30a is obtained in which the cut surface of the thin portion 31c of the metal core substrate 31a is exposed on each side surface.
[0005]
[Patent Document 1]
JP-A-2000-133913 (FIGS. 2 and 3)
[0006]
[Problems to be solved by the invention]
However, also in the wiring board 30a, since the end face of the thin portion 31c of the metal core board 31a is exposed along the entire length of each side face, there is a possibility of corrosion, and a finishing process for removing burrs is required, There has been a problem that inadvertent electrical continuity with the outside or inadvertent electrical continuity inside the wiring board is easily caused.
In addition, when cutting and separating each individual wiring board 30a from the metal plate 31b, dicing or the like is required for the entire length of the thin portion 31c of the metal core board 31a on the four side surfaces of each wiring board 30a. For this reason, there is also a problem that a man-hour and time are required, and burrs are easily generated on each side surface of the obtained wiring board 30a.
The present invention solves the above-described problems in the conventional technology, is excellent in corrosion resistance, does not require finishing and the like, does not have inadvertent electrical continuity with the outside, and furthermore, has an inadvertent inside of the wiring board. It is an object of the present invention to provide a wiring board having no fear of electrical conduction and a manufacturing method for efficiently obtaining such a wiring board.
[0007]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem, in a metal plate having a plurality of metal core substrates, along an insulating material filled in a through hole for cutting a connection tie bar disposed between adjacent metal core substrates. It was made inspired by cutting.
That is, a wiring board (Claim 1) of the present invention is a build-up comprising a metal core substrate having a front surface and a back surface, and an insulating layer and a wiring layer formed on at least one of the front surface and the back surface of the metal core substrate. And a tie bar protruding from a side surface of the metal core substrate, wherein the tie bar is covered with an insulating material.
[0008]
According to this, the side surface of the wiring substrate is covered with the insulating material including the tie bar integrated with the metal core substrate incorporated therein. This eliminates the need for finishing such as deburring and polishing of the tie bar end face, and also eliminates the risk of inadvertent electrical conduction with the outside or the inside of the wiring board. Moreover, since the tie bars of the metal core substrate are not exposed to the outside, not only corrosion due to oxidation but also delamination and migration due to absorption of water from the interface between the metal and the resin can be prevented. Therefore, a highly reliable wiring board can be obtained.
In addition, the wiring board of the present invention has a metal core substrate having a front surface and a back surface, and a build-up layer including an insulating layer and a wiring layer formed on at least one of the front surface and the back surface of the metal core substrate, And a tie bar protruding from the side surface of the metal core substrate. The tie bar may be covered with an insulating material integral with the insulating layer. According to this, the insulating layer forming the build-up layer can be integrated with the insulating material covering the side surface of the metal core substrate on which the tie bar or the like is located, so that the corrosion resistance and the insulating property on the side surface are further improved.
[0009]
In addition, according to the present invention, the tie bar may be a wiring board that is thinner than the thickness of the metal core board. According to this, since the end surface of the tie bar approaching the side surface of the wiring board has a small area, careless electrical conduction is more unlikely to occur, and the reliability can be further improved.
Further, the present invention provides a metal core substrate having a front surface and a back surface, a build-up layer including an insulating layer and a wiring layer formed on at least one of the front surface and the back surface of the metal core substrate, A through-hole conductor penetrating between the front surface and the back surface of the metal core substrate via an insulating material; and a tie bar protruding from the side surface of the metal core substrate. The tie bar is an insulating material integral with the insulating layer. May be included.
[0010]
The material of the metal core substrate is, for example, a copper alloy of Cu-2.3 wt% Fe-0.03 wt% P (so-called 194 alloy), pure copper, or oxygen-free copper, or Fe-42 wt% Ni (so-called 42 Alloy), Fe-Ni-based alloys such as Fe-36wt% Ni (Invar), etc. are applied. The metal core substrate is also used as an electrode potential and a ground potential. Further, in the present specification, the term “build-up layer” refers to a portion where at least one insulating layer and one wiring layer are stacked, and a plurality of layers in which a new insulating layer and a wiring layer are further stacked thereon. An embodiment including an insulating layer and a plurality of wiring layers located therebetween is also included.
[0011]
On the other hand, the method of manufacturing a wiring board according to the present invention (claim 2) provides a method of manufacturing a metal plate having a front surface and a back surface along a boundary between a plurality of product areas which will be metal core substrates in product units. Forming a lower insulating layer on the front and back surfaces of the metal plate on which the tie bar and the partition hole are formed and in the partition hole; and a through hole intersecting with the tie bar and cutting the tie bar. Forming the surface layer including the lower insulating layer, forming the surface layer insulating layer on the front and back surfaces of the lower insulating layer including the inside of the through hole, and positioning the inside of the through hole. Cutting the insulating material integral with the surface-side insulating layer, along with the insulating material located in the partitioning hole, along the boundary to separate the metal core substrate for each product unit. It is characterized in.
[0012]
According to this, when cutting and separating from the multi-piece metal plate into individual wiring boards, the tie bars partially located at the boundary between adjacent metal core boards are cut into a plurality of through holes. It is only necessary to separate the insulating material and the upper and lower insulating layers along the filled insulating material. As a result, the wiring board having the above-described excellent corrosion resistance and electrical reliability in which the tie bar is covered with the insulating material can be efficiently manufactured, and the finishing process for removing the burrs and the like on the end face of the tie bar becomes unnecessary. In addition, in the separation step, since the tie bar is cut in advance by the through hole, a cutting jig used in such a step, such as a dicing blade, can be hardly damaged.
The thickness of the tie bar may be the same as the thickness of the metal plate. However, by making the thickness of the tie bar thinner than that of the metal plate, damage to the cutting jig can be further reduced, and the wiring board can be manufactured more efficiently. Since the end face of the tie bar covered with the material is reduced, the corrosion resistance and the insulation can be further improved. The lower insulating layer and the surface insulating layer are names indicating relative positions with respect to the metal core substrate.
[0013]
The present invention also includes a method of manufacturing a wiring board, wherein a step of forming a build-up wiring layer is further performed between the lower insulating layer and the surface insulating layer. According to this, in parallel with the step of covering the tie bar projecting from the side surface of the metal core substrate with the insulating material integral with the surface-side insulating layer, the build-up wiring layer is disposed between the lower-layer insulating layer and the surface-side insulating layer. Can be formed. In other words, a through-hole for cutting the tie bar is formed in the middle of the build-up layer forming step, and an insulating material filled in the through-hole and cut off is formed simultaneously with the insulating layer forming the build-up layer. It is possible to do.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross section of a wiring board 1 according to the present invention.
As shown in FIG. 1, such a wiring board 1 has a square (rectangular) metal core substrate 2 in plan view, and a build formed on a front surface 4 and a rear surface 5 (lower side in the drawing) of the metal core substrate 2. And upper layers BU1 and BU2. The build-up layer BU1 includes insulating layers 10 and 14, and wiring layers (build-up wiring layers) 12 and 18 located between or on the insulating layers and having a predetermined pattern. 11 and 15, and wiring layers (build-up wiring layers) 13 and 19 located between or above these and having a predetermined pattern. On these build-up layers BU1 and BU2, solder resist layers 20 and 21 are formed.
[0015]
The metal core substrate 2 is made of, for example, the copper alloy with a thickness of about 0.25 mm, and the insulating layers 10, 11, 14, 15 are made of an epoxy resin containing an inorganic filler such as silica filler with a thickness of about 30 μm. Become. The solder resist layers (insulating layers) 20 and 21 located at the uppermost layer or the lowermost layer are formed of the same resin as described above with a thickness of about 25 μm, and the wiring layers 12 and 13 are formed of a copper plating layer having a thickness of about 15 μm. .
Also, as shown in FIGS. 1 and 2, two tie bars 3 protrude integrally from each side surface of the metal core substrate 2 in the wiring board 1, and their end faces are formed on the respective side surfaces of the wiring board 1. Is covered with an insulating material 7b.
[0016]
As described later, the tie bar 3 partially connects adjacent metal core substrates 2 and 2 in a multi-piece metal plate (panel) having a plurality of metal core substrates 2. After the wiring board 1 is formed, the wiring board 1 remains after forming a through hole for cutting the tie bar 3 in order to separate them separately.
FIG. 2 shows a cross section taken along the line AA in FIG. As shown in FIGS. 1 and 2, a position excluding the tie bar 3 on each side surface of the wiring board 1 is covered with a linear or L-shaped insulating material 7a integrally with the insulating material 7b.
[0017]
Further, as shown in FIGS. 1 and 2, a plurality of through holes 6 having an inner diameter of about 250 μm and having a circular cross section penetrating between the front surface 4 and the back surface 5 are formed at predetermined positions in the metal core substrate 2. Have been. Each through hole 6 is filled with an insulating material 7 integral with the insulating layers 10 and 11, and a through hole conductor 8 having a diameter of about 100 μm and a filling resin 9 inside thereof are coaxially arranged at the center. Through.
Each of the through-hole conductors 8 is individually connected at its upper or lower end to wiring layers 12 and 13 formed on the surfaces of the insulating layers 10 and 11.
[0018]
As shown in FIG. 1, via conductors (filled vias) 16 connecting the wiring layers 12 and 18 above the surface 4 of the metal core substrate 2 are formed in the insulating layer 14.
A plurality of solder bumps (IC connection terminals) 24 penetrating the uppermost solder resist layer (insulating layer) 20 and projecting higher than the first main surface 22 are formed at predetermined positions on the wiring layer 18. . The solder bump 24 is made of a low melting point alloy such as Sn-Ag, Sn-Ag-Cu, Sn-Cu, Sn-Zn, and Pb-Sn (in this embodiment, Sn-Ag). As shown in FIG. 1, it is individually connected to a connection terminal (not shown) of an IC chip (electronic component) 26 mounted on the first main surface 22.
The solder bumps 24 and the connection terminals of the IC chip 26 are covered and protected by an underfill material (not shown).
[0019]
On the other hand, as shown in FIG. 1, via conductors (filled vias) 17 connecting the wiring layers 13 and 19 below the back surface 5 of the metal core substrate 2 are formed in the insulating layer 15. The wiring 27 extending from the wiring layer 19 is located on the bottom surface of the opening 25 provided in the lowermost solder resist layer (insulating layer) 21 and is exposed on the second main surface 23 side.
The surface of the wiring 27 is thinly coated with Ni plating and Au plating, and is used as a connection terminal with a printed board such as a motherboard (not shown) on which the wiring board 1 itself is mounted. The surface of the wiring 27 may be joined with a solder ball, a conductor pin made of a copper alloy or an iron alloy, or the like.
[0020]
According to the wiring board 1 described above, since the tie bars 3 remaining from the metal plate used during the manufacturing are covered with the insulating material 7b, finishing such as deburring and polishing of the end faces of the tie bars 3 is unnecessary. In addition, there is no possibility of inadvertent electrical conduction with the outside or the inside of the wiring board 1. In addition, since the metal core substrate 2 is surrounded by the insulating materials 7a and 7b and the insulating layers 10 and 11 including the tie bar 3, the metal core substrate 2 is not only corroded by oxidation but also delaminated due to moisture absorption from the interface between the metal and the resin. And migration can also be prevented. Therefore, the reliability can be improved.
[0021]
Hereinafter, a method for manufacturing the above-described wiring board 1 will be described.
FIG. 3A shows a metal element made of a copper alloy of Cu-2.3 wt% Fe-0.03 wt% P (so-called 194 alloy), having a thickness of about 0.25 mm and a square (rectangular) shape in plan view. It shows a part of a plate (panel) 2a. A photosensitive resin layer (not shown) is formed on the front and back surfaces of the metal base plate 2a, and after performing exposure and development in a predetermined pattern, etching is performed.
As a result, as shown in FIG. 3 (B), a total of four metal core substrates 2 each two in length and width, and a square frame-shaped ear portion 2c which surrounds and surrounds the metal core substrates 2 in accordance with the above pattern, A metal plate (panel) 2b including a tie bar 3b connecting the adjacent metal core substrates 2 and 2 and a tie bar 3c connecting the ear portion 2c and the metal core substrate 2 adjacent thereto is formed. (Step of forming tie bars and partition holes).
[0022]
Between the adjacent metal core substrates 2 and 2 and the tie bar 3b, and between the ear portion 2c and the adjacent metal core substrate 2 and the tie bar 3c, a rectangular shape, a substantially cross shape, or a substantially L shape in plan view. 2d is located. In each metal core substrate 2, a plurality of through-holes 6 are simultaneously drilled at predetermined positions in the above-described step.
That is, in the metal plate 2b, a tie bar 3b and a partition hole 2d are formed along the boundary between the core substrates (product areas) 2 and 2 serving as product units, and along the boundary between each core substrate 2 and the ear 2c. Thus, a tie bar 3c and a partition hole 2d are formed. The entire surface of the metal plate 2b is plated with Cu (copper) having a predetermined thickness.
Note that, instead of etching or the like performed on the metal base plate 2a, laser processing or punching processing by a press may be used.
[0023]
FIG. 4A shows a cross section of the metal plate 2b having the metal core substrates 2 and 2 taken along line XX in FIG. 3B. After a resin film having a thickness of about 50 μm is arranged on each of the front and back surfaces of the metal plate 2b, thermocompression bonding is performed along the thickness direction. As a result, as shown in FIG. 4B, insulating layers (lower-side insulating layers) 10 and 11 having a thickness of about 30 μm are formed on the upper surface and lower surface of the metal plate 2b.
At the same time, the through holes 6 formed in each metal core substrate 2 are filled with an insulating material 7 into which a part of the resin film has entered and solidified, and an insulating material 7a is individually provided in each partition hole 2d. Will be filled. The insulating layers 10 and 11 and the insulating materials 7 and 7a are formed by forming a liquid resin on the upper surface and lower surface of the metal plate 2b using a roll coater and filling the through holes 6 and the partition holes 2d. May be.
[0024]
Next, a laser (for example, a carbon dioxide laser) is applied to the vicinity of the center of each of the insulating members 7 located in the through holes 6 of the metal core substrates 2 and 2 of the metal plate 2b along the thickness direction. As a result, as shown in FIG. 4C, through holes 8a having an inner diameter of about 100 μm are individually formed through the center of the insulating material 7 and the insulating layers 10 and 11.
Further, after a plating catalyst containing Pd is previously applied to the inner walls of the plurality of through holes 8a, electroless copper plating and electrolytic copper plating are performed.
As a result, as shown in FIG. 4D, a substantially cylindrical through-hole conductor 8 is formed in each through-hole 8a. The inside of the through-hole conductor 8 is filled with a filling resin 9 made of an epoxy resin containing silica filler or the like.
[0025]
Next, electroless copper plating and electrolytic copper plating are applied to the entire surface on the insulating layers 10 and 11, and a photosensitive resin similar to the above is formed thereon, and after performing exposure and development in a predetermined pattern, etching is performed. (Known subtractive method).
As a result, as shown in FIG. 5A, the wiring layers 12 and 13 are formed on the insulating layers 10 and 11 according to the above-mentioned pattern, and the upper portion of each of the filling resins 9 is plated with a lid. FIG. 5A illustrates the core substrate 2 on the right side in FIG. 4D.
Further, as shown in FIGS. 5A and 5B, a tie bar 3b for connecting the metal core substrates 2 and 2 and a tie bar 3c for connecting the metal core substrate 2 and the ear 2c are located at right angles to and perpendicular to these. As described above, the through-hole 28 having a rectangular shape or a long hole in plan view is formed by router processing using an end mill or the like (not shown) (through-hole forming step). The through hole 28 partially penetrates the insulating layers 10 and 11 located above and below.
[0026]
As a result, the tie bars 3b and 3c become the tie bars 3 protruding in a cantilever manner from the side surfaces of the individual metal core substrates 2. As shown in FIGS. 5A and 5B, the individual metal core substrate 2 includes an insulating material 7a in the partition hole 2d and an insulating layer 10 formed on the front surface and the rear surface of the metal core substrate 2. , 11 are connected to the adjacent metal core substrate 2 and the ear 2c of the metal plate 2b.
Next, as shown in FIG. 6A, the insulating layer (surface-side insulating layer) is formed on the upper side of the insulating layer 10 and the wiring layer 12 and the lower side of the insulating layer 11 and the wiring layer 13 in the metal core substrate 2 in the same manner as described above. Layers 14 and 15 are formed. At this time, a part of the insulating layers 14 and 15 is filled in the through hole 28 to become the insulating material 7b.
[0027]
Thereafter, the filled via conductors 16 and 17 shown in FIG. 6A and the wiring layers 18 and 19 connected to the upper ends thereof and located on the insulating layers 14 and 15 are formed by a known build-up process (semi-additive method, A full additive method, a subtractive method, an insulating layer formed by laminating a film-like resin material, a photolithography technique, or the like. As a result, the build-up layers BU1 and BU2 are formed (build-up layer forming step).
Further, as shown in FIG. 6B, a solder resist layer (surface-side insulating layer) 20 and solder bumps 24 are formed on the upper build-up layer BU1, and a solder resist is formed on the lower build-up layer BU2. A resist layer (surface-side insulating layer) 21, an opening 25, and a wiring 27 are formed.
[0028]
As shown by the broken line in the cross section enlarged in FIG. 6C, the insulating material in the through holes 28 located between the adjacent metal core substrates 2 and 2 and along the front-rear direction in the drawing. 7b is cut using a dicing blade (not shown) together with the insulating materials 7a, 7a and the upper and lower insulating layers 14, 15, 20, 21 located between them.
As a result, as shown in an enlarged manner in FIG. 6D, the metal core substrate 2 is separated along the middle of the insulating material 7b (separation step). Thereby, a plurality of wiring boards 1 having the cross-sectional structures shown in FIGS. 1 and 2 can be obtained at the same time.
[0029]
According to the method of manufacturing the wiring board 1 as described above, the wiring board 1 can be manufactured efficiently, and the tie bars 3 protruding from the side surfaces of the built-in metal core board 2 are covered with the insulating materials 7b and 7a. I have. For this reason, even if burrs or the like are generated on the end face of the tie bar 3, it is not necessary to remove the burrs, the corrosion resistance of the metal core substrate 2 is improved, and the cutting jig used in the separation step, such as a dicing blade, is hardly damaged. It also contributes to increasing the durability. In addition, it is possible to eliminate the possibility that the tie bar 3 may inadvertently establish electrical connection with the outside or the inside of the wiring board.
[0030]
FIG. 7 (A) shows that two insulating layers (lower insulating layers) 10, 11, 14, 15 are formed on the front and back surfaces of the adjacent metal core substrates 2, 2 in the metal plate 2b, respectively. This shows a state in which after forming the through-hole 28 for cutting the tie bar 3b, the solder resist layers (surface-side insulating layers) 20, 21 including the inside of the through-hole 28 are formed. The through hole 28 that cuts the middle of the tie bar 3b and penetrates the insulating layers 10, 11, 14, 15 is filled with an insulating material 7b integrated with the solder resist layers 20, 21.
Then, as shown by a broken line in FIG. 7A, the insulating material 7b in the through-holes 28, 28 located between the adjacent metal core substrates 2, 2 and along the front-rear direction in the drawing is removed. Cut in the same manner. As a result, as shown in FIG. 7B, the metal core substrate 2 is separated along the middle of the insulating material 7b (separation step). Thereby, a plurality of wiring boards similar to the wiring board 1 of FIGS. 1 and 2 can be obtained at the same time.
[0031]
FIG. 7 (C) shows through holes for forming insulating layers (lower insulating layers) 10 and 11 on the front and back surfaces of the adjacent metal core substrates 2 and 2 in the metal plate 2b and cutting the tie bars 3b. 28 shows a state in which solder resist layers (surface-side insulating layers) 20 and 21 are formed including the inside of the through-hole 28 after the formation of the through-hole 28. The through hole 28 that cuts the middle of the tie bar 3b and penetrates the insulating layers 10 and 11 is filled with the insulating material 7b integrated with the solder resist layers 20 and 21.
Then, as shown by a broken line in FIG. 7 (C), the insulating material 7b in the through holes 28, 28 located between the adjacent metal core substrates 2, 2 and along the front-rear direction in the drawing, is removed. Cut in the same manner. As a result, as shown in FIG. 7D, the metal core substrate 2 is separated individually in the middle of the insulating material 7b (separation step). This makes it possible to simultaneously obtain a plurality of wiring boards that are slightly thinner and similar to the wiring board 1 of FIGS.
[0032]
FIG. 8 relates to a metal plate (panel) 2b 'of an application form of the metal plate 2b.
As shown in FIGS. 8 (A) to 8 (C), the metal plate 2b 'has a total of four metal core substrates 2 each two in length and width, and a rectangular frame And a tie bar 3d for connecting the adjacent metal core substrates 2 and 2, and a tie bar 3e for connecting the ear 2c and the metal core substrate 2 adjacent thereto.
In the metal plate 2b ', as shown in FIG. 8B, the thickness of all the tie bars 3d and 3e is thinner than the thickness of each metal core substrate 2 and the ear 2c. Incidentally, a plurality of through holes 6 similar to the above are formed in each metal core substrate 2.
[0033]
In order to obtain the metal plate 2b ', for example, only the tie bars 3d and 3e and the positions to be the partition holes 2d adjacent to the tie bars 3d and 3e are elongated and etched in advance in the metal base plate 2a to form a recess having a depth of several tens to several hundreds of micrometers. Form a groove. Thereafter, the metal plate 2b 'can be obtained by performing etching, laser processing, or punching by pressing according to a predetermined pattern. The concave groove may be formed only on one surface of the metal plate 2a, or may be provided only at a position where the tie bars 3d and 3e will be subsequently formed.
[0034]
The manufacturing steps shown in FIGS. 4B to 4D are performed using the metal plate 2b 'to form insulating layers (lower insulating layers) 10, 11, insulating materials 7, 7a, through holes While forming the conductor 8 and the like, the wiring layers 12 and 13 shown in FIG. 5A are further formed.
Next, as shown in FIGS. 9A and 9B, a tie bar 3d for connecting the adjacent metal core substrates 2 and 2 in the metal plate 2b 'and a tie bar 3e for connecting the metal core substrate 2 to the ear 2c are formed. A through-hole 28 having a rectangular shape in a plan view is formed in the middle and perpendicular to these through a router process similar to the above (through-hole forming step). The through hole 28 also partially penetrates the upper and lower insulating layers 10 and 11.
[0035]
Thereafter, after performing a build-up layer forming step of forming the build-up layers BU1 and BU2 shown in FIGS. 6A and 6B, the process shown in FIGS. 6C and 6D is performed. As described above, the separation step of cutting and separating the metal core substrates 2 and 2 in the middle of the insulating material 7b filled in the through holes 28 is performed. As a result, it is possible to simultaneously obtain a plurality of wiring boards in which the thin tie bars 3 that are similar to the wiring board 1 and protrude from the side surfaces of the metal core board 2 are covered with the insulating material 7b.
[0036]
According to the method for manufacturing a wiring board using the metal plate 2b 'as described above, a plurality of wiring boards can be manufactured efficiently, and the tie bars 3 protruding from the side surfaces of the metal core board 2 are thin, so that burrs and the like are reduced. It hardly occurs and the corrosion resistance is improved. Further, the formation of the through holes 28 is facilitated, and the cutting jig used in the separation step, such as a dicing blade, is hardly damaged, and the durability is further improved. Moreover, since the thin tie bar 3 is covered with the insulating materials 7b and 7a, the corrosion resistance of the obtained wiring board is improved, and there is no possibility of inadvertent electrical conduction with the outside or the inside of the wiring board. . Note that the laminated structure and the separation process shown in FIGS. 7A to 7D can be applied to the metal plate 2b '.
[0037]
The present invention is not limited to the embodiments described above.
The number of tie bars 3 protruding from the side surface of the metal core substrate 2 may be only one at the center of each side surface, or three or more thin tie bars may be provided for each side surface.
Further, the build-up layer may be formed only above the front surface 4 of the metal core substrate 2 or only below the rear surface 5 of the metal core substrate 2. Above the front surface 4 and the back surface 5 which are not the build-up layers, the build-up wiring layers 12 and 13 are omitted.
Further, the metal core substrate and the metal plate may have a rectangular shape in plan view. For example, the plurality of metal core substrates 2 formed on the metal plates 2b and 2b 'may have different vertical and horizontal numbers.
The material of the metal core substrate 2 and the metal plates 2b and 2b 'is not limited to the copper alloy and the Fe-Ni alloy, but pure copper, oxygen-free copper, various steel materials, titanium and its alloys, or aluminum and It is also possible to apply the alloy or the like.
[0038]
The material of the insulating layers 14 and 15 and the like has, besides the epoxy resin as a main component, a polyimide resin, a BT resin, a PPE resin or a continuous pore having similar heat resistance and pattern moldability. A resin-resin composite material in which a resin such as an epoxy resin is impregnated into a fluorine-based resin having a three-dimensional network structure such as PTFE can also be used. The insulating layer may be formed by a method of applying a liquid resin by a roll coater in addition to a method of thermocompression bonding an insulating resin film. The composition of the glass cloth or glass filler mixed into the insulating layer may be any one of E glass, D glass, Q glass, and S glass, or a combination of two or more of them.
The material such as the wiring layer 12 and the through-hole conductor 8 may be made of Ag, Ni, Ni-Au, or the like in addition to copper (Cu) plating. It may be formed by a method such as applying a conductive resin.
In addition, the via conductor may be an inverted conical conformal via conductor whose inside is not completely filled with the conductor, instead of the filled via conductor 16 or the like. Alternatively, a staggered configuration in which the via conductors are stacked while shifting their axes may be used, or a configuration in which a wiring layer extending in the plane direction is interposed in the middle.
[0039]
【The invention's effect】
According to the wiring board of the present invention (claim 1), the side surface of the wiring board is covered with the insulating material including the tie bar integrated with the metal core substrate incorporated therein, so that the end face of the tie bar is deburred or polished. Finish processing is unnecessary, and there is no fear of inadvertent electrical conduction with the outside or the inside of the wiring board. In addition, since the tie bars of the metal core substrate are not exposed to the outside, not only corrosion due to oxidation but also delamination and migration due to moisture absorption can be prevented, so that a highly reliable wiring substrate can be obtained.
[0040]
Further, according to the method of manufacturing a wiring board of the present invention (claim 2), when the multi-piece metal plate is cut and separated into individual wiring boards, the wiring board is partially located at the boundary between the metal core boards. It is only necessary to separate the insulating material and the upper and lower insulating layers along the insulating material filled in the plurality of through holes obtained by cutting the tie bars. For this reason, a wiring board having a tie bar covered with an insulating material and having excellent corrosion resistance and electrical reliability can be efficiently manufactured, and deburring of the end surface of the tie bar becomes unnecessary. In addition, it is possible to reduce damage to the cutting jig used in the separation step.
Further, according to the method of manufacturing a wiring board according to the third aspect, a through hole for cutting the tie bar is formed in the middle of the build-up layer forming step, and the insulating material that is filled inside and cut off is formed on the build-up layer. Can be formed simultaneously with the insulating layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a wiring board of the present invention.
FIG. 2 is a sectional view taken along line AA in FIG.
FIGS. 3A and 3B are schematic views showing steps of forming a partition hole and a tie bar in the manufacturing method of the present invention.
4 (A) to 4 (D) are schematic diagrams schematically showing each step of the above-mentioned manufacturing method following FIG. 3 (B).
FIGS. 5A and 5B are schematic diagrams schematically showing each step following FIG. 4D.
6 (A) to 6 (D) are schematic diagrams schematically showing each step following FIG. 5 (B).
FIGS. 7A to 7D are schematic views schematically showing modified examples of the manufacturing method.
8A is a plan view showing a metal plate having a different form, and FIGS. 8B and 8C are cross-sectional views taken along arrows BB or CC in FIG. 8A.
9A is a schematic diagram schematically showing a through-hole forming step of the manufacturing method using the metal plate of FIG. 8, and FIG. 9B is a view taken along arrows BB in FIG. 9A. Sectional view.
FIGS. 10A and 10B are cross-sectional views showing a conventional wiring board, and FIGS. 10C and 10C are cross-sectional views showing a metal plate used for the wiring board of FIG.
[Explanation of symbols]
1 Wiring board 2 Metal core board 2b, 2b 'Metal plate 2d ... Partition holes 3, 3b to 3e... Tie bar 4... Front surface 5... Back surface 7a, 7b. ... insulating materials 10, 11, 14, 15 ... insulating layer / lower insulating layer / surface insulating layer 12, 13, 18, 19 ... wiring layer (build-up wiring layer)
20, 21 ...... Solder resist layer / surface-side insulating layer BU1, BU2 ... Build-up layer 28 ... Through hole

Claims (3)

表面および裏面を有する金属コア基板と、かかる金属コア基板の表面上および裏面上の少なくとも一方に形成された絶縁層および配線層からなるビルドアップ層と、上記金属コア基板の側面に突出するタイバーと、を含み、
上記タイバーは、絶縁材により被覆されている、ことを特徴とする配線基板。
A metal core substrate having a front surface and a back surface, a build-up layer including an insulating layer and a wiring layer formed on at least one of the front surface and the back surface of the metal core substrate, and a tie bar protruding from a side surface of the metal core substrate. , Including
The wiring board, wherein the tie bar is covered with an insulating material.
表面および裏面を有する金属板において、追って製品単位の金属コア基板となる複数の製品エリア同士の境界に沿って、タイバーおよび区画孔を形成する工程と、
上記タイバーおよび区画孔を形成した金属板の表面上および裏面上ならびに区画孔内に下層側絶縁層を形成する工程と、
上記タイバーと交差し且つかかるタイバーを切断する貫通孔を上記下層側絶縁層を含めて形成する工程と、
上記貫通孔内を含めて上記下層側絶縁層の表面上および裏面上に表層側絶縁層を形成する工程と、
上記貫通孔内に位置する上記表層側絶縁層と一体の絶縁材を、上記区画孔内に位置する上記絶縁材と共に、上記境界に沿って切断することにより、製品単位ごとの金属コア基板に分離する工程と、を含む、
ことを特徴とする配線基板の製造方法。
In a metal plate having a front surface and a back surface, a step of forming a tie bar and a partition hole along a boundary between a plurality of product areas to be a metal core substrate in a product unit later,
Forming a lower insulating layer on the front and back surfaces of the metal plate having the tie bar and the partition hole and in the partition hole,
Forming a through hole intersecting with the tie bar and cutting the tie bar including the lower insulating layer;
Forming a surface-side insulating layer on the front surface and the back surface of the lower-layer insulating layer, including in the through-hole,
By cutting the insulating material integral with the surface-side insulating layer located in the through hole along with the insulating material located in the partition hole along the boundary, the insulating material is separated into metal core substrates for each product unit. And
A method for manufacturing a wiring board, comprising:
前記下層側絶縁層と表層側絶縁層との間で、ビルドアップ配線層を形成する工程が更に行われる、
ことを特徴とする請求項2に記載の配線基板の製造方法。
Between the lower insulating layer and the surface insulating layer, a step of forming a build-up wiring layer is further performed.
The method for manufacturing a wiring board according to claim 2, wherein:
JP2003105888A 2003-04-09 2003-04-09 Wiring board and its producing process Pending JP2004311849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105888A JP2004311849A (en) 2003-04-09 2003-04-09 Wiring board and its producing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105888A JP2004311849A (en) 2003-04-09 2003-04-09 Wiring board and its producing process

Publications (1)

Publication Number Publication Date
JP2004311849A true JP2004311849A (en) 2004-11-04

Family

ID=33468239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105888A Pending JP2004311849A (en) 2003-04-09 2003-04-09 Wiring board and its producing process

Country Status (1)

Country Link
JP (1) JP2004311849A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036387A (en) * 2005-07-22 2007-02-08 Star Micronics Co Ltd Microphone array
JP2007201035A (en) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd Process for producing laminated substrate
JP2008047843A (en) * 2006-07-20 2008-02-28 Sanyo Electric Co Ltd Circuit device, manufacturing method thereof, wiring board, and manufacturing method thereof
JP2008084998A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Plate member and method of manufacturing circuit apparatus using it
JP2009135415A (en) * 2007-10-29 2009-06-18 Mitsubishi Electric Corp Printed interconnection board and method for manufacturing the same
JP2009135247A (en) * 2007-11-30 2009-06-18 Cmk Corp Printed circuit board having metal plate, assembled printed circuit board with metal plate, and manufacturing method thereof
JP2010093088A (en) * 2008-10-09 2010-04-22 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the same
JP2011044646A (en) * 2009-08-24 2011-03-03 Mitsubishi Electric Corp Method of manufacturing printed wiring board
WO2011074684A1 (en) * 2009-12-18 2011-06-23 三洋電機株式会社 Substrate and method for manufacturing circuit device that use same
JP2012204603A (en) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The Metal core substrate and core plate structure
WO2013001801A1 (en) * 2011-06-30 2013-01-03 住友ベークライト株式会社 Substrate, metal film, method for producing substrate, and method for producing metal film
JP2013077759A (en) * 2011-09-30 2013-04-25 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method of multilayer printed wiring board
JP2013225714A (en) * 2010-02-26 2013-10-31 Mitsubishi Electric Corp Manufacturing method of printed wiring board
WO2013180088A1 (en) * 2012-05-30 2013-12-05 古河電気工業株式会社 Metal core substrate, method for manufacturing metal core substrate; and core plate used for metal core substrate and method for manufacturing metal core substrate
US8669477B2 (en) 2010-02-24 2014-03-11 Empire Technology Development Llc Wiring substrate and method for manufacturing the same
JP2014123734A (en) * 2012-12-20 2014-07-03 Samsung Electro-Mechanics Co Ltd Metal core substrate and method of manufacturing the same
US8772646B2 (en) 2011-03-29 2014-07-08 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
US20190053380A1 (en) * 2017-08-10 2019-02-14 Taiyo Yuden Co., Ltd. Intermediate printed board for making multiple printed circuit boards and method of manufacturing the same
JP2019153668A (en) * 2018-03-02 2019-09-12 太陽誘電株式会社 Circuit board and manufacturing method thereof
DE102013101403B4 (en) 2012-12-21 2024-05-08 Innovative Sensor Technology Ist Ag Sensor for determining a process variable of a medium and method for manufacturing the sensor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036387A (en) * 2005-07-22 2007-02-08 Star Micronics Co Ltd Microphone array
JP2007201035A (en) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd Process for producing laminated substrate
JP2008047843A (en) * 2006-07-20 2008-02-28 Sanyo Electric Co Ltd Circuit device, manufacturing method thereof, wiring board, and manufacturing method thereof
JP2008084998A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Plate member and method of manufacturing circuit apparatus using it
JP2009135415A (en) * 2007-10-29 2009-06-18 Mitsubishi Electric Corp Printed interconnection board and method for manufacturing the same
JP2009135247A (en) * 2007-11-30 2009-06-18 Cmk Corp Printed circuit board having metal plate, assembled printed circuit board with metal plate, and manufacturing method thereof
JP2010093088A (en) * 2008-10-09 2010-04-22 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the same
JP2011044646A (en) * 2009-08-24 2011-03-03 Mitsubishi Electric Corp Method of manufacturing printed wiring board
WO2011074684A1 (en) * 2009-12-18 2011-06-23 三洋電機株式会社 Substrate and method for manufacturing circuit device that use same
US8669477B2 (en) 2010-02-24 2014-03-11 Empire Technology Development Llc Wiring substrate and method for manufacturing the same
JP2013225714A (en) * 2010-02-26 2013-10-31 Mitsubishi Electric Corp Manufacturing method of printed wiring board
US9532444B2 (en) 2010-02-26 2016-12-27 Mitsubishi Electric Corporation Method of manufacturing printed wiring board, and printed wiring board
JP2012204603A (en) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The Metal core substrate and core plate structure
US8772646B2 (en) 2011-03-29 2014-07-08 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
WO2013001801A1 (en) * 2011-06-30 2013-01-03 住友ベークライト株式会社 Substrate, metal film, method for producing substrate, and method for producing metal film
JP2013077759A (en) * 2011-09-30 2013-04-25 Ibiden Co Ltd Multilayer printed wiring board and manufacturing method of multilayer printed wiring board
US9332657B2 (en) 2011-09-30 2016-05-03 Ibiden Co., Ltd. Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
US20150083472A1 (en) * 2012-05-30 2015-03-26 Furukawa Electric Co., Ltd. Metal core substrate, method for producing the same, and core plate usable for the same
CN104380846A (en) * 2012-05-30 2015-02-25 古河电气工业株式会社 Metal core substrate, method for manufacturing metal core substrate; and core plate used for metal core substrate and method for manufacturing metal core substrate
JPWO2013180088A1 (en) * 2012-05-30 2016-01-21 古河電気工業株式会社 Metal core substrate, metal core substrate manufacturing method, and core plate used in the same
WO2013180088A1 (en) * 2012-05-30 2013-12-05 古河電気工業株式会社 Metal core substrate, method for manufacturing metal core substrate; and core plate used for metal core substrate and method for manufacturing metal core substrate
US9942995B2 (en) * 2012-05-30 2018-04-10 Furukawa Electric Co., Ltd. Method for producing a metal core substrate having improved edge insulating properties
JP2014123734A (en) * 2012-12-20 2014-07-03 Samsung Electro-Mechanics Co Ltd Metal core substrate and method of manufacturing the same
DE102013101403B4 (en) 2012-12-21 2024-05-08 Innovative Sensor Technology Ist Ag Sensor for determining a process variable of a medium and method for manufacturing the sensor
US20190053380A1 (en) * 2017-08-10 2019-02-14 Taiyo Yuden Co., Ltd. Intermediate printed board for making multiple printed circuit boards and method of manufacturing the same
CN109392241A (en) * 2017-08-10 2019-02-26 太阳诱电株式会社 Gather the manufacturing method of printed base plate, printed wiring board
JP2019036605A (en) * 2017-08-10 2019-03-07 太陽誘電株式会社 Aggregate printed circuit board, and manufacturing method of printed wiring board
US10785876B2 (en) 2017-08-10 2020-09-22 Taiyo Yuden Co., Ltd. Intermediate printed board for making multiple printed circuit boards and method of manufacturing the same
JP2019153668A (en) * 2018-03-02 2019-09-12 太陽誘電株式会社 Circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5010737B2 (en) Printed wiring board
JP5101169B2 (en) Wiring board and manufacturing method thereof
JP2004311849A (en) Wiring board and its producing process
US7363706B2 (en) Method of manufacturing a multilayer printed wiring board
EP2904884B1 (en) The printed circuit board and the method for manufacturing the same
JP2006108211A (en) Wiring board, multilayered wiring circuit board using the board, and method of manufacturing the multilayered wiring circuit board
US7968803B2 (en) Wiring substrate, wiring material, copper-clad laminate, and method of manufacturing the wiring substrate
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
JP2003031925A (en) Structure with flush circuit feature and manufacturing method therefor
TWI505756B (en) Printed circuit board and method for manufacturing the same
WO2004014114A1 (en) Method for manufacturing board with built-in device and board with built-in device, and method for manufacturing printed wiring board and printed wiring board
JP6244138B2 (en) Wiring board and method of manufacturing wiring board
US20030168249A1 (en) Wiring board and method for producing the same
JP2018032657A (en) Printed wiring board and method for manufacturing printed wiring board
KR100315588B1 (en) Manufacturing method of multilayer wiring board
JP2002111205A (en) Multilayered wiring board and method of manufacturing the same
JP7253946B2 (en) Wiring board and its manufacturing method, semiconductor package
JP2009272435A (en) Circuit board including built-in component and method for manufacturing the same
JP2008177619A (en) Chip carrier, semiconductor device and method of manufacturing the chip carrier
JP2008270633A (en) Semiconductor-element integrating substrate
JP2004095854A (en) Multilayer interconnection board
US20090090548A1 (en) Circuit board and fabrication method thereof
JP2005072061A (en) Wiring board and its manufacturing method
KR102595247B1 (en) Connector for implementing multi-faceted interconnection and manufacturing method thereof
US6913814B2 (en) Lamination process and structure of high layout density substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930