JP2005061156A - Manufacturing method for functional building member - Google Patents

Manufacturing method for functional building member Download PDF

Info

Publication number
JP2005061156A
JP2005061156A JP2003295647A JP2003295647A JP2005061156A JP 2005061156 A JP2005061156 A JP 2005061156A JP 2003295647 A JP2003295647 A JP 2003295647A JP 2003295647 A JP2003295647 A JP 2003295647A JP 2005061156 A JP2005061156 A JP 2005061156A
Authority
JP
Japan
Prior art keywords
functional building
building member
coating film
photocatalyst
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295647A
Other languages
Japanese (ja)
Other versions
JP4576811B2 (en
Inventor
Arihiro Adachi
有弘 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003295647A priority Critical patent/JP4576811B2/en
Publication of JP2005061156A publication Critical patent/JP2005061156A/en
Application granted granted Critical
Publication of JP4576811B2 publication Critical patent/JP4576811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Building Environments (AREA)
  • Finishing Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for manufacturing a functional building member capable of displaying a sufficient photocatalytic function immediately after the start of a use even when the building member is used on the indoor side and displaying excellent antifouling properties, antibacterial properties and deodorizing properties. <P>SOLUTION: A base material is coated with a coating agent containing a photocatalyst, and a film is formed. A moisture is added to the surface of the film, and the surface is irradiated with ultraviolet rays. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、防汚性、抗菌性および消臭性に優れた機能性建築部材の製造方法に関するものである。さらに詳しくは、この出願の発明は、使用開始直後から高い防汚性、抗菌性および消臭性を発揮できる機能性建築部材の製造方法に関するものである。   The invention of this application relates to a method for producing a functional building member having excellent antifouling properties, antibacterial properties, and deodorizing properties. More specifically, the invention of this application relates to a method for producing a functional building member capable of exhibiting high antifouling properties, antibacterial properties and deodorizing properties immediately after the start of use.

外壁、屋根、デッキ等の外装材や、クロス、柱、床、手すり等の内装材は、日光、風雨、排気ガス、湿気、油分、タバコ、埃等による汚染を受け、経年により美麗さを失うため、清掃や交換等のメンテナンスを必要とする。また、風呂、洗面所、トイレ、台所等の水廻りでは、カビの発生や細菌の繁殖が起こりやすいため、衛生管理が重要となっている。   Exterior materials such as outer walls, roofs, decks, and interior materials such as cloth, pillars, floors, and handrails are contaminated by sunlight, wind and rain, exhaust gas, moisture, oil, tobacco, dust, etc. and lose their beauty over time. Therefore, maintenance such as cleaning and replacement is required. In addition, hygiene management is important because mold and bacterial growth tend to occur around the water in baths, washrooms, toilets, and kitchens.

そこで、近年、光触媒を配合した塗料を表面に塗布した機能性建材が、防汚性、抗菌性、消臭性等を発揮できるものとして注目され、ビル、マンション、戸建て住宅に導入されている。   Therefore, in recent years, functional building materials in which a coating containing a photocatalyst is applied to the surface are attracting attention as being capable of exhibiting antifouling properties, antibacterial properties, deodorizing properties, and the like, and have been introduced into buildings, condominiums, and detached houses.

光触媒は、光照射により空気中の水から水酸ラジカルを発生させ、有機物の分解力を発揮するとともに、光触媒表面に親水基を形成させ、親水性を発揮する。したがって、光触媒は、汚れ成分の付着を防止したり、細菌の増殖を防いだり、汚れ成分や悪臭成分を分解除去したりでき、優れた防汚、抗菌、消臭剤として注目されている。   The photocatalyst generates hydroxyl radicals from water in the air by light irradiation, exhibits the decomposing power of organic substances, forms a hydrophilic group on the surface of the photocatalyst, and exhibits hydrophilicity. Therefore, the photocatalyst can prevent adhesion of dirt components, prevent bacterial growth, decompose and remove dirt components and malodorous components, and has attracted attention as an excellent antifouling, antibacterial and deodorant.

しかし、前記の機能性建材では、光触媒は、バインダー等の塗料成分で覆われ、塗膜中に固定化されているため、塗膜表面に露出しておらず、使用開始時には分解力や親水性が十分に発現されない。このような機能性建材も、屋外で太陽光に曝されれば光触媒機能が発揮され、塗料成分が分解されて光触媒が表面に露出する。そして、これにより、分解力や親水性が発現される。したがって、使用開始から間もなくして光触媒による防汚性、抗菌性、消臭性が十分に発揮されるようになるのである。   However, in the functional building materials described above, the photocatalyst is covered with a coating component such as a binder and is fixed in the coating film, so it is not exposed to the coating film surface, and has a decomposition power and hydrophilicity at the start of use. Is not fully expressed. Such a functional building material also exhibits a photocatalytic function when exposed to sunlight outdoors, and the coating component is decomposed to expose the photocatalyst on the surface. And thereby, decomposing power and hydrophilicity are expressed. Therefore, the antifouling property, antibacterial property, and deodorizing property due to the photocatalyst are sufficiently exhibited shortly after the start of use.

ところが、このような機能性建材が屋内で使用される場合には、光量が不十分なために光触媒機能が容易には発揮されず、光触媒は塗料成分に覆われたままとなり、光触媒による防汚性、抗菌性、消臭性が全く得られなかったり、得られるまでに長期間を要したりするという問題があった。   However, when such a functional building material is used indoors, the photocatalytic function is not easily exhibited because the light quantity is insufficient, and the photocatalyst remains covered with the paint component, and the antifouling by the photocatalyst is prevented. However, there is a problem that no properties, antibacterial properties, and deodorizing properties are obtained or a long period of time is required to obtain them.

このような問題を解決するものとして、光触媒を配合した塗料を基材に塗布した後、放電処理を施して塗膜表面の塗料成分を分解し、光触媒を表面に露出させる方法が提案されている(特許文献1)。しかし、放電処理を行うためには、特殊な装置や設備が必要であり、機能性建材の製造工程を煩雑にする上、製造コストが高くなるという新たな問題が発生した。
特開平11−047614
As a solution to such problems, a method has been proposed in which a coating containing a photocatalyst is applied to a substrate, and then a discharge treatment is applied to decompose the coating component on the surface of the coating film, thereby exposing the photocatalyst to the surface. (Patent Document 1). However, in order to perform the discharge treatment, a special device or facility is required, which causes a new problem that the manufacturing process of the functional building material becomes complicated and the manufacturing cost increases.
JP 11-047614 A

そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、屋内で使用される場合でも、使用開始直後から十分な光触媒機能を発揮でき、優れた防汚性、抗菌性および消臭性を示す機能性建築部材を製造するための簡便な方法を提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, solves the problems of the prior art, and can exhibit a sufficient photocatalytic function immediately after the start of use even when used indoors. An object of the present invention is to provide a simple method for producing a functional building member exhibiting excellent antifouling properties, antibacterial properties and deodorizing properties.

この出願の発明は、上記の課題を解決するものとして、第1には、基材に光触媒を含有するコーティング剤を塗布し、塗膜を形成した後、該塗膜表面に水分を付加し、紫外線を照射することを特徴とする機能性建築部材の製造方法を提供する。   The invention of this application is to solve the above-mentioned problem. First, after applying a coating agent containing a photocatalyst to a base material to form a coating film, moisture is added to the coating film surface, Provided is a method for producing a functional building member characterized by irradiating ultraviolet rays.

また、この出願の発明は、第2には、塗膜表面への水分の付加を、温度20〜40℃、湿度50〜90%RHとすることにより行う前記の機能性建築部材の製造方法を、第3には、塗膜表面への水分の付加を、加温した塗膜表面に水を噴霧または塗布することにより行う機能性建築部材の製造方法を提供する。   In addition, the invention of this application secondly provides the method for producing a functional building member as described above, wherein moisture is added to the surface of the coating film at a temperature of 20 to 40 ° C. and a humidity of 50 to 90% RH. 3rdly, the manufacturing method of the functional building member which performs addition of the water | moisture content to the coating-film surface by spraying or apply | coating water to the heated coating-film surface is provided.

この出願の発明は、第4には、光触媒を含有するコーティング剤を、酸化チタン微粒子とシリコン系バインダーを含有してなるものとする前記いずれかの機能性建築部材の製造方法を提供する。   Fourthly, the invention of this application provides a method for producing any one of the above functional building members, wherein the coating agent containing a photocatalyst contains titanium oxide fine particles and a silicon-based binder.

そして、この出願の発明は、第5には、光触媒を含有するコーティング剤におけるシリコン系バインダーが、次の(a)〜(c)
(a)次式(I)
And, in the fifth aspect of the present invention, the silicon binder in the coating agent containing the photocatalyst is the following (a) to (c):
(A) Formula (I)

(ただし、R1は一価の炭化水素基である)
で表されるケイ素化合物および/またはコロイダルシリカ
(b)次式(II)
(Where R 1 is a monovalent hydrocarbon group)
A silicon compound and / or colloidal silica (b)

(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
(c)次式(III)
(However, R 1 and R 2 are monovalent hydrocarbon groups)
A silicon compound (c) represented by the following formula (III)

(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
の3成分を、(a)合計20〜200重量部、(b)100重量部、(c)0〜60重量部で混合し、加水分解および重縮合して得られる900以上の重量平均分子量(PS換算)を有するものである前記の機能性建築部材の製造方法を提供する。
(However, R 1 and R 2 are monovalent hydrocarbon groups)
900 obtained by mixing (a) a total of 20 to 200 parts by weight, (b) 100 parts by weight, (c) 0 to 60 parts by weight, and hydrolysis and polycondensation. The manufacturing method of the said functional building member which has the above weight average molecular weight (PS conversion) is provided.

上記第1の発明の機能性建築部材の製造方法では、光触媒を含有するコーティング剤を塗布し、得られた塗膜表面に紫外線を照射することにより、塗膜中の光触媒が活性化され、光触媒機能により塗膜表面のコーティング剤成分が分解される。このとき、紫外線照射には市販のUVランプが適用できることから、従来の放電処理を伴う方法に比べ、簡便かつ安価に機能性建築部材を製造することが可能となる。また、紫外線照射の際、塗膜表面に水分を付加することにより、光触媒による水酸ラジカルの発生がさらに促進され、コーティング剤成分の分解反応が進行する。したがって、短時間で光触媒が表面に露出されるようになる。このようにして製造される機能性建築部材では、屋内での使用においても、使用開始直後から光触媒による防汚性、抗菌性、消臭性が発揮される。   In the method for producing a functional building member of the first invention, the photocatalyst in the coating film is activated by applying a coating agent containing a photocatalyst and irradiating the obtained coating film surface with ultraviolet rays. The coating agent component on the coating film surface is decomposed by the function. At this time, since a commercially available UV lamp can be applied for ultraviolet irradiation, it is possible to manufacture a functional building member more easily and at a lower cost than a conventional method involving discharge treatment. In addition, by adding moisture to the surface of the coating film during ultraviolet irradiation, the generation of hydroxyl radicals by the photocatalyst is further promoted, and the decomposition reaction of the coating agent component proceeds. Accordingly, the photocatalyst is exposed to the surface in a short time. The functional building member produced in this way exhibits antifouling properties, antibacterial properties, and deodorizing properties due to the photocatalyst immediately after the start of use even when used indoors.

また、上記第2の発明の機能性建築部材の製造方法では、光触媒を含有するコーティング剤を塗布した後、雰囲気を温度20〜40℃、湿度50〜90%RHとすることにより、塗膜表面に水分を過剰に存在させることができる。したがって、紫外線を照射した際に光触媒による水酸ラジカルの発生がさらに促進され、コーティング剤成分の分解反応が進行する。   Moreover, in the manufacturing method of the functional building member of the said 2nd invention, after apply | coating the coating agent containing a photocatalyst, the atmosphere is 20-40 degreeC and humidity is 50-90% RH, By the coating-film surface Excess water can be present. Therefore, generation of hydroxyl radicals by the photocatalyst when irradiated with ultraviolet light is further promoted, and the decomposition reaction of the coating agent component proceeds.

さらに、上記第3の発明の機能性建築部材の製造方法では、光触媒を含有するコーティング剤を塗布した後、得られた塗膜を加温し、そこに水を噴霧または塗布する。これにより塗膜表面に水分が付加され、紫外線照射による水酸ラジカルの発生が促進される。したがって、簡便にコーティング剤成分の分解反応を進行させることできる。   Furthermore, in the method for producing a functional building member of the third invention, after the coating agent containing the photocatalyst is applied, the obtained coating film is heated and water is sprayed or applied thereto. Thereby, moisture is added to the surface of the coating film, and generation of hydroxyl radicals by ultraviolet irradiation is promoted. Therefore, the decomposition reaction of the coating agent component can be easily advanced.

上記第4の発明の機能性建築部材の製造方法では、光触媒を含有するコーティング剤を、酸化チタン微粒子とシリコン系バインダーを含有してなるものとすることにより、機能性建築部材の表面に光触媒機能を有する高強度で均一な塗膜が形成される。   In the method for producing a functional building member of the fourth invention, the coating agent containing a photocatalyst contains titanium oxide fine particles and a silicon-based binder, whereby the surface of the functional building member has a photocatalytic function. A high-strength and uniform coating having

また、上記第5の発明の機能性建築部材の製造方法では、機能性建築部材表面に高い防汚性、抗菌性、消臭性を有し、基材との密着性が高く、高強度な塗膜が形成される。   In the method for producing a functional building member of the fifth invention, the surface of the functional building member has high antifouling properties, antibacterial properties, and deodorizing properties, and has high adhesion to the base material and high strength. A coating film is formed.

この出願の発明の機能性建築部材の製造方法は、基材に、光触媒を含有するコーティング剤を塗布し、塗膜を形成した後、該塗膜表面に水分を付加し、紫外線を照射することを特徴とする。   In the method for producing a functional building member of the invention of this application, a coating agent containing a photocatalyst is applied to a base material to form a coating film, and then water is added to the coating film surface and irradiated with ultraviolet rays. It is characterized by.

このとき、基材の材質はとくに限定されない。例えば、アルミニウム、鉄等の金属板、ステンレス等の合金板、ブリキやトタン等のメッキ板などの金属基材、木材、合板、MDF、パーティクルボード等の木質基材、FRP、人造大理石、樹脂成形品等のプラスチック基材、ガラス、ホーロー、セラミックス、石膏ボード、珪酸カルシウム板、ロックウール板、セメント板、粘土板、陶磁器質タイル、スレート等の無機質基材、さらには、各種シート、紙、繊維質シート、不織布等が使用できる。さらに、これらの基材に有機塗装を施したものやこれらの基材を複数積層させたものを用いてもよい。   At this time, the material of the base material is not particularly limited. For example, metal substrates such as metal plates such as aluminum and iron, alloy plates such as stainless steel, plated plates such as tin and tin, wood substrates such as wood, plywood, MDF, particle board, FRP, artificial marble, resin molding Plastic substrates such as products, glass, enamel, ceramics, gypsum board, calcium silicate board, rock wool board, cement board, clay board, ceramic tile, slate, etc., and various sheets, paper, fiber A quality sheet, nonwoven fabric, etc. can be used. Furthermore, you may use what gave organic coating to these base materials, or what laminated these base materials in multiple numbers.

この出願の発明の機能性建築部材の製造方法において、基材に塗布されるコーティング剤は、光触媒を含有するものであればよく、その種類や組成はとくに限定されない。コーティング剤における光触媒としては、TiO2、ZnO、WO3、Fe23、ZnS、Pt/TiO2等が例示され、これらは粉体であってもゾルであってもよい。ゾル状のものとする場合、水分散性であってもアルコール等の非水系有機溶剤分散性であってもよい。また、光触媒は、Pt担持ルチル型酸化チタンのように、金属酸化物にPt、Re、Rh、Ru、Au、Pd等の遷移金属を1種以上担持したものであってもよい。このように遷移金属が担持された金属酸化物では、より高い触媒活性が期待できる。 In the method for producing a functional building member of the invention of this application, the coating agent applied to the base material may contain a photocatalyst, and the type and composition thereof are not particularly limited. Examples of the photocatalyst in the coating agent include TiO 2 , ZnO, WO 3 , Fe 2 O 3 , ZnS, Pt / TiO 2, etc. These may be powder or sol. In the case of a sol form, it may be water dispersible or non-aqueous organic solvent dispersible such as alcohol. The photocatalyst may be one in which one or more transition metals such as Pt, Re, Rh, Ru, Au, and Pd are supported on a metal oxide, such as Pt-supported rutile titanium oxide. In this way, a higher catalytic activity can be expected with a metal oxide carrying a transition metal.

一方、コーティング剤におけるのバインダー成分としては、アクリル系、ウレタン系、フッ素系、シリコン系のものが例示される。中でも、シリコン系バインダーは、高強度で均一な塗膜を与えることから、好ましい。シリコン系バインダーとしては、各種のものが適用できるが、例えば、次の(a)〜(c)
(a)次式(I)
On the other hand, examples of the binder component in the coating agent include acrylic, urethane, fluorine, and silicon. Among these, a silicon-based binder is preferable because it provides a high-strength and uniform coating film. Various types of silicon binder can be used. For example, the following (a) to (c)
(A) Formula (I)

(ただし、R1は一価の炭化水素基である)
で表されるケイ素化合物および/またはコロイダルシリカ
(b)次式(II)
(Where R 1 is a monovalent hydrocarbon group)
A silicon compound and / or colloidal silica (b)

(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
(c)次式(III)
(However, R 1 and R 2 are monovalent hydrocarbon groups)
A silicon compound (c) represented by the following formula (III)

(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
の3成分を、(a)合計20〜200重量部、(b)100重量部、(c)0〜60重量部で混合し、加水分解および重縮合して得られる900以上の重量平均分子量(PS換算)を有するものは、基材との密着性が高く、高強度な塗膜を与えることから好ましいものとして挙げられる。
(However, R 1 and R 2 are monovalent hydrocarbon groups)
900 obtained by mixing (a) a total of 20 to 200 parts by weight, (b) 100 parts by weight, (c) 0 to 60 parts by weight, and hydrolysis and polycondensation. What has the above weight average molecular weight (PS conversion) is mentioned as a preferable thing from the high adhesiveness with a base material, and giving a high intensity | strength coating film.

このようなシリコン系バインダーにおいて、(a)〜(c)は、いずれも次式(IV)   In such a silicon-based binder, (a) to (c) are all represented by the following formula (IV):

(ただし、R1、R2は一価の炭化水素基であり、nは置換基の数を表す0〜2の整数である)
で表されるケイ素化合物である。つまり、(a)成分は式(IV)においてn=0、(b)成分は式(IV)においてn=1、(c)成分は式(IV)においてn=2のケイ素化合物である。これら(a)〜(c)の各成分において、R1とR2は各々同一であっても別異であってもよい一価の炭化水素基である。また、(a)〜(c)におけるR1はすべて同一であってもよいし、別異であっても良く、(b)および(c)におけるR2も各々同じものであってもよいし、異なるものであってもよい。
(Wherein, R 1, R 2 is a monovalent hydrocarbon radical, n is an integer of 0 to 2 representing the number of substituents)
It is a silicon compound represented by these. That is, the component (a) is a silicon compound in which n = 0 in the formula (IV), the component (b) is n = 1 in the formula (IV), and the component (c) is a silicon compound in the formula (IV) where n = 2. In these components (a) to (c), R 1 and R 2 are monovalent hydrocarbon groups which may be the same or different. In addition, R 1 in (a) to (c) may all be the same or different, and R 2 in (b) and (c) may be the same. May be different.

1としては、炭素数1〜4のアルキル基、R2としては炭素数1〜8の置換または非置換炭化水素基が好ましく例示される。具体的には、R1としては、メチル、エチル、プロピル、ブチル等のアルキル基が、R2としては、メチル、エチル、プロピル、ブチルに加えて、ペンチル、ヘキシル、ヘプチル、オクチル等のアルキル基、フェニル、トルイル等のアリール基、メトキシ、エトキシ等のアルコキシ基、ビニル基、さらにこれらがアルキル基、ハロゲン基、アミノ基、ニトロ基、シアノ基、水酸基等で置換された各種の置換基が例示される。したがって、(a)成分としては、例えばテトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランが挙げられる。また、(a)成分はケイ素化合物であるが、コロイダルシリカの状態で存在するものであってもよいし、式(I)のケイ素化合物に加えてコロイダルシリカを含有するものであってもよい。次に(b)成分としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のオルガノトリアルコキシシランが例示される。さらに、(c)成分としては、例えばジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランが挙げられる。 R 1 is preferably exemplified by an alkyl group having 1 to 4 carbon atoms, and R 2 is preferably a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms. Specifically, R 1 is an alkyl group such as methyl, ethyl, propyl, or butyl, and R 2 is an alkyl group such as pentyl, hexyl, heptyl, or octyl in addition to methyl, ethyl, propyl, or butyl. And aryl groups such as phenyl and toluyl, alkoxy groups such as methoxy and ethoxy, vinyl groups, and various substituents in which these are substituted with alkyl groups, halogen groups, amino groups, nitro groups, cyano groups, hydroxyl groups, etc. Is done. Accordingly, examples of the component (a) include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane. Moreover, although (a) component is a silicon compound, it may exist in the state of colloidal silica, and may contain colloidal silica in addition to the silicon compound of Formula (I). Next, examples of the component (b) include organotrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. Furthermore, examples of the component (c) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.

これら(a)〜(c)の3成分は、(a)合計20〜200重量部、(b)100重量部、(c)0〜60重量部の混合比で混合される。このような混合比は、加水分解、重縮合により好適な重量平均分子量を得る上で重要である。なお、本明細書において、「重量平均分子量」とは、例えばGPC(ゲルパーミエーションクロマトグラフ)により求められる値(ポリスチレン換算)を意味するものとする。   These three components (a) to (c) are mixed at a mixing ratio of (a) 20 to 200 parts by weight in total, (b) 100 parts by weight, and (c) 0 to 60 parts by weight. Such a mixing ratio is important in obtaining a suitable weight average molecular weight by hydrolysis and polycondensation. In addition, in this specification, "weight average molecular weight" shall mean the value (polystyrene conversion) calculated | required, for example by GPC (gel permeation chromatograph).

さらに、このようなシリコン系バインダーは、(a)〜(c)成分を、水またはメタノール、エタノール、イソプロピルアルコール等のアルコール類、あるいはエチレングリコール類等の各種溶媒中で、もしくはこれらの溶媒にトルエン、キシレン、酢酸エチル、酢酸ブチル等を加えた混合溶媒中で混合し、加水分解および重縮合させることにより得られるものであってもよい。このとき、加水分解と重縮合は水によって進行するが、重縮合反応をさらに促進させるために、各種の硬化触媒を添加してもよい。重量平均分子量が900未満の場合には、光触媒の分散性が低下したり、膜形成能が低下したりして良好な塗膜が得られ難くなるため、上記のシリコン系バインダーの重量平均分子量は900以上(PS換算)とする。   Further, such a silicon-based binder contains components (a) to (c) in water, alcohols such as methanol, ethanol, isopropyl alcohol, or various solvents such as ethylene glycol, or toluene in these solvents. , Xylene, ethyl acetate, butyl acetate and the like may be mixed in a mixed solvent, followed by hydrolysis and polycondensation. At this time, hydrolysis and polycondensation proceed with water, but various curing catalysts may be added to further accelerate the polycondensation reaction. When the weight average molecular weight is less than 900, the dispersibility of the photocatalyst decreases or the film forming ability decreases, and it becomes difficult to obtain a good coating film. 900 or more (PS conversion).

この出願の発明の機能性建築部材の製造方法において、光触媒を含有するコーティング剤の固形分量は、とくに限定されない。一般に光触媒の量が多いほど触媒機能が発揮されるが、多すぎると反対に膜形成能が低下したり、十分な塗膜強度が得られなくなったりすることから、例えば、光触媒とバインダー成分の固形分比を1:9〜8:2の範囲とすることができる。また、このようなコーティング剤は、光触媒以外にも、分散性や安定性の向上、着色等の目的に応じて、分散剤、界面活性剤、レベリング剤、増粘剤、顔料、染料等を含有するものとしてもよい。   In the method for producing a functional building member of the invention of this application, the solid content of the coating agent containing the photocatalyst is not particularly limited. In general, the larger the amount of photocatalyst, the more the catalyst function is exerted. However, if the amount is too large, the film-forming ability is decreased or sufficient film strength cannot be obtained. The fraction ratio can be in the range of 1: 9 to 8: 2. In addition to the photocatalyst, such a coating agent contains a dispersant, a surfactant, a leveling agent, a thickener, a pigment, a dye, etc., depending on the purpose of dispersibility and stability, coloring, etc. It is good also as what to do.

この出願の発明の機能性建築部材の製造方法において、光触媒を含有するコーティング剤を基材に塗布する方法はとくに限定されず、スプレー、刷毛塗り、バーコーター、スピンコーター、ディッピング、ロールコーター、フローコーター等の一般的な塗布方法が用いられる。もちろん、光触媒を含有するコーティング剤は、基材に直接塗布してもよいし、下塗り塗料を塗布して下層を設けてもよい。また、このようにして得られる塗膜や下層の厚さはとくに限定されない。   In the method for producing a functional building member of the invention of this application, a method for applying a coating agent containing a photocatalyst to a substrate is not particularly limited, and spray, brush coating, bar coater, spin coater, dipping, roll coater, flow. A general coating method such as a coater is used. Of course, the coating agent containing a photocatalyst may be applied directly to the substrate, or an undercoat may be applied to provide a lower layer. Moreover, the thickness of the coating film and lower layer obtained in this way is not specifically limited.

この出願の発明の機能性建築部材の製造方法では、以上のとおりの光触媒を含有するコーティング剤を基材に塗布した後、得られた塗膜表面に水を付加し、紫外線を照射する。塗膜表面への水の付加は、紫外線照射を行う雰囲気を高湿とすることにより行ってもよいし、塗膜表面を直接水で濡らした後、紫外線を照射することにより行ってもよい。具体的には、温度20〜40℃、湿度50〜90%RHの雰囲気下で塗膜表面に紫外線を照射することが好ましい。さらに簡便な方法としては、塗膜表面を加温し、水を噴霧または塗布して紫外線を照射する方法が挙げられる。   In the method for producing a functional building member of the invention of this application, the coating agent containing the photocatalyst as described above is applied to a substrate, and then water is added to the surface of the obtained coating film and irradiated with ultraviolet rays. Addition of water to the surface of the coating film may be performed by increasing the atmosphere in which the ultraviolet irradiation is performed, or may be performed by directly irradiating the coating film surface with water and then irradiating with ultraviolet light. Specifically, it is preferable to irradiate the coating film surface with ultraviolet light in an atmosphere of a temperature of 20 to 40 ° C. and a humidity of 50 to 90% RH. As a simpler method, there is a method in which the surface of the coating film is heated, and water is sprayed or applied to irradiate ultraviolet rays.

この出願の発明の機能性建築部材の製造方法において照射される紫外線としては、ブラックライト、キセノンランプ、低〜超高圧水銀灯、殺菌灯などを用いた波長100〜400nmの光としてもよいし、太陽光等の紫外線を含む光としてもよい。中でも、365nmピーク波長域における紫外線強度が1〜50mW/cm2であるものが好ましい。 The ultraviolet rays irradiated in the method for producing a functional building member of the invention of this application may be light having a wavelength of 100 to 400 nm using a black light, a xenon lamp, a low to ultrahigh pressure mercury lamp, a germicidal lamp, etc. It is good also as light containing ultraviolet rays, such as light. Among them, those having an ultraviolet intensity of 1 to 50 mW / cm 2 in a 365 nm peak wavelength region are preferable.

以上のとおりのこの出願の発明の機能性建築部材の製造方法では、塗膜表面に水を付加させて紫外線照射を行うことにより光触媒作用が発揮され、塗膜表面で水酸ラジカルがより多く発生する。これにより短時間で塗膜表面のコーティング剤成分が分解され、塗膜表面に光触媒が露出して分解力や親水性が発現される。したがって、機能性建築部材が内装材等として屋内で使用される場合でも、使用開始直後から防汚性、抗菌性、消臭性が発揮されるようになる。   In the method for producing a functional building member of the invention of this application as described above, photocatalytic action is exhibited by adding water to the coating film surface and irradiating with ultraviolet rays, and more hydroxyl radicals are generated on the coating film surface. To do. Thereby, the coating agent component on the surface of the coating film is decomposed in a short time, and the photocatalyst is exposed on the surface of the coating film, so that the decomposing power and hydrophilicity are expressed. Therefore, even when the functional building member is used indoors as an interior material or the like, antifouling properties, antibacterial properties, and deodorizing properties are exhibited immediately after the start of use.

この出願の発明の機能性建築部材の製造方法によって得られる機能性建築部材は、外壁材、屋根材、瓦、雨樋、門、フェンス、ドア、窓、およびそれらの周辺部材として、また天井、壁、床、収納部材、造作材、キッチン、トイレ、洗面、浴室、窓およびそれらの周辺部材として、さらには照明カバー、ランプ、障子、ふすま等の建具、インテリア部材等として使用されるものであるが、とくに光量の少ない屋内用途に適したものである。   The functional building member obtained by the method for producing the functional building member of the invention of this application includes an outer wall material, a roofing material, a tile, a rain gutter, a gate, a fence, a door, a window, and their peripheral members, and a ceiling, Walls, floors, storage members, artificial materials, kitchens, toilets, washbasins, bathrooms, windows and their peripheral members, as well as lighting covers, lamps, shoji, bran and other fittings, interior members, etc. However, it is particularly suitable for indoor applications where the amount of light is low.

以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

<実施例1>
メチルトリメトキシシラン100重量部、トリエトキシシラン10重量部とIPAオルガノシリカゾル(触媒化成社製、商品名:OSCAL1432)90重量部、ジメチルジメトキシシラン30重量部、およびイソプロピルアルコール100重量部を混合し、水90重量部を添加した。攪拌しながら60℃で反応させ、重量平均分子量が約1500のシリコン系バインダーを調製した。
<Example 1>
100 parts by weight of methyltrimethoxysilane, 10 parts by weight of triethoxysilane, 90 parts by weight of IPA organosilica sol (trade name: OSCAL1432 manufactured by Catalyst Kasei Co., Ltd.), 30 parts by weight of dimethyldimethoxysilane, and 100 parts by weight of isopropyl alcohol are mixed. 90 parts by weight of water were added. A silicon binder having a weight average molecular weight of about 1500 was prepared by reacting at 60 ° C. with stirring.

次に、得られたシリコン系バインダーに、酸化チタンゾル(石原産業(株)製、STS01)を固形分の重量比がシリコン系バインダー固形分/酸化チタン=50/50となるように添加した後、メタノールで固形分が1%となるように希釈し、光触媒を含有するコーティング剤を得た。   Next, after adding titanium oxide sol (STS01, manufactured by Ishihara Sangyo Co., Ltd.) to the obtained silicon-based binder so that the weight ratio of the solid content is silicon-based binder solid content / titanium oxide = 50/50, It was diluted with methanol to a solid content of 1% to obtain a coating agent containing a photocatalyst.

得られたコーティング剤をサイディング基板に100g/m2でスプレー塗装し、風乾した後、150℃で硬化させた。得られた塗膜の厚さは2μmであった。 The obtained coating agent was spray-coated on a siding substrate at 100 g / m 2 , air-dried, and cured at 150 ° C. The thickness of the obtained coating film was 2 μm.

次いで、20℃、45%RHの雰囲気中で、高圧水銀灯(オーク製作所ORCハンディW300)により、2cmの高さから塗膜に紫外線を照射し、機能性建築部材を得た。   Subsequently, the coating film was irradiated with ultraviolet rays from a height of 2 cm with a high-pressure mercury lamp (Oak Seisakusho ORC Handy W300) in an atmosphere of 20 ° C. and 45% RH to obtain a functional building member.

紫外線照射時間毎の機能性建築部材表面の接触角を測定し、塗膜表面が親水性となるまでの時間を確認した。   The contact angle of the functional building member surface for each ultraviolet irradiation time was measured, and the time until the coating film surface became hydrophilic was confirmed.

結果を図1に示した。
<実施例2>
紫外線照射を25℃、70%RHの雰囲気中で行った以外は、実施例1と同様の方法により機能性建築部材を製造し、塗膜表面が親水性となるまでの時間を確認した。
The results are shown in FIG.
<Example 2>
A functional building member was produced by the same method as in Example 1 except that ultraviolet irradiation was performed in an atmosphere of 25 ° C. and 70% RH, and the time until the coating film surface became hydrophilic was confirmed.

結果を図1に示した。
<実施例3>
紫外線照射を30℃、80%RHの雰囲気中で行った以外は、実施例1と同様の方法により機能性建築部材を製造し、塗膜表面が親水性となるまでの時間を確認した。
The results are shown in FIG.
<Example 3>
A functional building member was produced by the same method as in Example 1 except that ultraviolet irradiation was performed in an atmosphere of 30 ° C. and 80% RH, and the time until the coating film surface became hydrophilic was confirmed.

結果を図1に示した。
<実施例4>
紫外線照射を、40℃、湿度90%RHで行った以外は、実施例1と同様の方法により機能性建築部材を製造した。
The results are shown in FIG.
<Example 4>
A functional building member was produced by the same method as in Example 1 except that the ultraviolet irradiation was performed at 40 ° C. and a humidity of 90% RH.

塗膜表面が親水性となるまでの時間を確認し、結果を図1に示した。
<実施例5>
実施例1と同様の方法によりコーティング剤をサイディング基材に塗布し、風乾および硬化させて得られた塗膜を、表面温度が60℃となるようにプレヒートし、スポンジロールで水を約50g/m2塗布した後、実施例1と同様の方法により紫外線を照射した。
The time until the coating film surface became hydrophilic was confirmed, and the results are shown in FIG.
<Example 5>
The coating obtained by applying the coating agent to the siding substrate by the same method as in Example 1, air drying and curing was preheated so that the surface temperature was 60 ° C., and water was added at about 50 g / min with a sponge roll. After m 2 application, ultraviolet rays were irradiated in the same manner as in Example 1.

塗膜表面が親水性となるまでの時間を確認し、結果を図1に示した。
<比較例1>
実施例1と同様の方法によりコーティング剤をサイディング基材に塗布し、風乾および硬化させた後、23℃の乾燥雰囲気(湿度28%RH)中で塗膜に紫外線を照射し、機能性建築部材を得た。
The time until the coating film surface became hydrophilic was confirmed, and the results are shown in FIG.
<Comparative Example 1>
The coating agent was applied to the siding substrate by the same method as in Example 1, air-dried and cured, and then the coating film was irradiated with ultraviolet rays in a dry atmosphere at 23 ° C. (humidity 28% RH). Got.

紫外線照射時間毎の機能性建築部材表面の接触角を測定し、塗膜表面が親水性となるまでの時間を確認した。   The contact angle of the functional building member surface for each ultraviolet irradiation time was measured, and the time until the coating film surface became hydrophilic was confirmed.

結果を図1に示した。   The results are shown in FIG.

図1より、基材に光触媒を含有するコーティング剤を塗布して得られた塗膜に水分を付加させ、紫外線を照射することにより、高い撥水性(接触角>95°)を示していた塗膜表面が短時間で親水性(接触角<1°)となることが確認された(実施例1〜5)。とくに、高湿雰囲気下で紫外線照射を行った場合(実施例3および4)や塗膜を直接濡らして紫外線を照射した場合(実施例5)は、5〜6分で塗膜表面が親水性となった。   As shown in FIG. 1, the coating film obtained by applying a coating agent containing a photocatalyst to a substrate was added with moisture, and irradiated with ultraviolet rays, thereby exhibiting high water repellency (contact angle> 95 °). It was confirmed that the membrane surface became hydrophilic (contact angle <1 °) in a short time (Examples 1 to 5). In particular, when UV irradiation is performed in a high humidity atmosphere (Examples 3 and 4) or when the coating film is directly wetted and irradiated with UV light (Example 5), the coating surface becomes hydrophilic in 5 to 6 minutes. It became.

一方、光触媒を含有するコーティング剤を塗布して得られた塗膜に、乾燥雰囲気下で紫外線を照射した場合には、長時間に渡り塗膜の撥水性が維持され、30分経過後も完全に親水性にはならなかった(比較例1)。   On the other hand, when the coating film obtained by applying a coating agent containing a photocatalyst is irradiated with ultraviolet rays in a dry atmosphere, the water repellency of the coating film is maintained over a long period of time, and even after 30 minutes have elapsed It did not become hydrophilic (Comparative Example 1).

以上より、光触媒を含有するコーティング剤を塗布して得られた塗膜に水分を付加させて紫外線を照射することにより、光触媒機能が発揮され、塗膜表面のコーティング剤成分が分解されて光触媒が塗膜表面に露出されたことが示唆された。したがって、この出願の発明の機能性建築部材の製造方法により、使用開始直後から防汚性、抗菌性、消臭性を発揮できる機能性建築部材が、短時間の紫外線照射で、簡便に得られることが示された。   As described above, by adding moisture to the coating film obtained by applying the coating agent containing the photocatalyst and irradiating with ultraviolet rays, the photocatalytic function is exhibited, and the coating agent component on the coating film surface is decomposed to cause the photocatalyst to decompose. It was suggested that it was exposed to the coating surface. Therefore, by the method for producing a functional building member of the invention of this application, a functional building member that can exhibit antifouling properties, antibacterial properties, and deodorizing properties immediately after the start of use can be easily obtained by short-time ultraviolet irradiation. It was shown that.

以上詳しく説明したとおり、この出願の発明によって、屋内で使用される場合でも、使用開始直後から光触媒による防汚性、抗菌性、消臭性が発揮される機能性建築部材の簡便な製造方法が提供される。   As described above in detail, according to the invention of this application, even when used indoors, there is a simple method for producing a functional building member that exhibits antifouling properties, antibacterial properties, and deodorizing properties with a photocatalyst immediately after the start of use. Provided.

この出願の発明の機能性建築部材の製造方法では、光触媒を含有するコーティング剤を塗布し、得られた塗膜表面に紫外線を照射することにより、塗膜中の光触媒が活性化され、光触媒機能により塗膜表面付近のコーティング剤成分が分解される。紫外線照射には市販のUVランプが使用でき、従来の放電処理を伴う方法に比べ、簡便かつ安価に機能性建築部材を製造することが可能となる。また、紫外線照射の際、塗膜表面に水を付加することにより、光触媒によるラジカルの発生がさらに促進されることから、短時間で塗膜表面のコーティング剤成分が分解され、光触媒が表面に露出される。   In the method for producing a functional building member of the invention of this application, the photocatalyst in the coating film is activated by applying a coating agent containing a photocatalyst and irradiating the obtained coating film surface with ultraviolet rays. As a result, the coating agent component in the vicinity of the coating film surface is decomposed. A commercially available UV lamp can be used for ultraviolet irradiation, and a functional building member can be produced easily and inexpensively as compared with a conventional method involving discharge treatment. In addition, by adding water to the coating surface during UV irradiation, radical generation by the photocatalyst is further promoted, so that the coating agent component on the coating surface is decomposed in a short time, and the photocatalyst is exposed to the surface. Is done.

図1は、紫外線照射時間ごとの機能性建築部材表面の接触角の経時変化を示した図である。FIG. 1 is a diagram showing the change with time of the contact angle of the functional building member surface for each ultraviolet irradiation time.

Claims (5)

基材に、光触媒を含有するコーティング剤を塗布し、塗膜を形成した後、該塗膜表面に水分を付加し、紫外線を照射することを特徴とする機能性建築部材の製造方法。 A method for producing a functional building member, comprising: applying a coating agent containing a photocatalyst to a substrate to form a coating film; adding moisture to the coating film surface; and irradiating with ultraviolet rays. 塗膜表面への水分の付加は、温度20〜40℃、湿度50〜90%RHとすることにより行う請求項1の機能性建築部材の製造方法。 The method for producing a functional building member according to claim 1, wherein moisture is added to the surface of the coating film at a temperature of 20 to 40 ° C and a humidity of 50 to 90% RH. 塗膜表面への水分の付加は、加温した塗膜表面に水を噴霧または塗布することにより行う請求項1の機能性建築部材の製造方法。 The method for producing a functional building member according to claim 1, wherein the addition of moisture to the coating film surface is performed by spraying or applying water to the heated coating film surface. 光触媒を含有するコーティング剤は、酸化チタン微粒子とシリコン系バインダーを含有してなるものとする請求項1ないし3のいずれかの機能性建築部材の製造方法。 The method for producing a functional building member according to any one of claims 1 to 3, wherein the coating agent containing a photocatalyst contains titanium oxide fine particles and a silicon-based binder. 光触媒を含有するコーティング剤におけるシリコン系バインダーは、次の(a)〜(c)
(a)次式(I)
(ただし、R1は一価の炭化水素基である)
で表されるケイ素化合物および/またはコロイダルシリカ
(b)次式(II)
(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
(c)次式(III)
(ただし、R1、R2は一価の炭化水素基である)
で表されるケイ素化合物
の3成分を、(a)合計20〜200重量部、(b)100重量部、(c)0〜60重量部で混合し、加水分解および重縮合して得られる900以上の重量平均分子量(PS換算)を有するものとする請求項4の機能性建築部材の製造方法。
The silicon-based binder in the coating agent containing a photocatalyst includes the following (a) to (c):
(A) Formula (I)
(Where R 1 is a monovalent hydrocarbon group)
A silicon compound and / or colloidal silica (b)
(However, R 1 and R 2 are monovalent hydrocarbon groups)
A silicon compound (c) represented by the following formula (III)
(However, R 1 and R 2 are monovalent hydrocarbon groups)
900 obtained by mixing (a) a total of 20 to 200 parts by weight, (b) 100 parts by weight, (c) 0 to 60 parts by weight, and hydrolysis and polycondensation. The method for producing a functional building member according to claim 4, which has the above weight average molecular weight (PS conversion).
JP2003295647A 2003-08-19 2003-08-19 Method for manufacturing functional building materials Expired - Fee Related JP4576811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295647A JP4576811B2 (en) 2003-08-19 2003-08-19 Method for manufacturing functional building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295647A JP4576811B2 (en) 2003-08-19 2003-08-19 Method for manufacturing functional building materials

Publications (2)

Publication Number Publication Date
JP2005061156A true JP2005061156A (en) 2005-03-10
JP4576811B2 JP4576811B2 (en) 2010-11-10

Family

ID=34371818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295647A Expired - Fee Related JP4576811B2 (en) 2003-08-19 2003-08-19 Method for manufacturing functional building materials

Country Status (1)

Country Link
JP (1) JP4576811B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262150A (en) * 2006-03-27 2007-10-11 Ohbayashi Corp Photocatalyst coating agent and photocatalyst carrier
JP2008073664A (en) * 2006-09-25 2008-04-03 Totsuya Echo:Kk Coating method giving photodegradation performance and workpiece given photodegradation performance
JP2010163584A (en) * 2009-01-16 2010-07-29 Kyushu Hi-Tech:Kk Flexibility-imparting normal temperature curable inorganic coating agent for protection of chemical floor
KR100987356B1 (en) * 2008-05-30 2010-10-12 충북대학교 산학협력단 Silicone Hybrid Hard Coating Composition for Platic Substrate Comprising Photocatalyst
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141503A (en) * 1994-11-28 1996-06-04 Matsushita Electric Works Ltd Method for forming inorganic coating film
JPH08259891A (en) * 1995-03-24 1996-10-08 Matsushita Electric Works Ltd Formation of inorganic coating film
JPH09273288A (en) * 1996-04-04 1997-10-21 Inax Corp Manufacture of tile panel
JP2000126607A (en) * 1998-10-26 2000-05-09 Dainippon Printing Co Ltd Synthetic resin shaped body having photocatalytic function
JP2001323188A (en) * 2000-05-19 2001-11-20 Nisshin Steel Co Ltd Coating material for forming transparent photocatalytic dispersion film and metallic plate coated with transparent photocatlytic dispersion film
JP2001347136A (en) * 2000-06-09 2001-12-18 Kansai Paint Co Ltd Inorganic coating material capable of forming photocatalytically activated coating film and method of coating with the same
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141503A (en) * 1994-11-28 1996-06-04 Matsushita Electric Works Ltd Method for forming inorganic coating film
JPH08259891A (en) * 1995-03-24 1996-10-08 Matsushita Electric Works Ltd Formation of inorganic coating film
JPH09273288A (en) * 1996-04-04 1997-10-21 Inax Corp Manufacture of tile panel
JP2000126607A (en) * 1998-10-26 2000-05-09 Dainippon Printing Co Ltd Synthetic resin shaped body having photocatalytic function
JP2001323188A (en) * 2000-05-19 2001-11-20 Nisshin Steel Co Ltd Coating material for forming transparent photocatalytic dispersion film and metallic plate coated with transparent photocatlytic dispersion film
JP2001347136A (en) * 2000-06-09 2001-12-18 Kansai Paint Co Ltd Inorganic coating material capable of forming photocatalytically activated coating film and method of coating with the same
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262150A (en) * 2006-03-27 2007-10-11 Ohbayashi Corp Photocatalyst coating agent and photocatalyst carrier
JP2008073664A (en) * 2006-09-25 2008-04-03 Totsuya Echo:Kk Coating method giving photodegradation performance and workpiece given photodegradation performance
KR100987356B1 (en) * 2008-05-30 2010-10-12 충북대학교 산학협력단 Silicone Hybrid Hard Coating Composition for Platic Substrate Comprising Photocatalyst
JP2010163584A (en) * 2009-01-16 2010-07-29 Kyushu Hi-Tech:Kk Flexibility-imparting normal temperature curable inorganic coating agent for protection of chemical floor
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
KR102265903B1 (en) 2014-02-26 2021-06-16 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same

Also Published As

Publication number Publication date
JP4576811B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP3182107B2 (en) Functional coatings, their production methods and applications
CN102105303B (en) Object with photo-catalyst coating
WO1997045502A1 (en) Antifouling member and antifouling coating composition
TWI441678B (en) Photocatalyst coating and photocatalyst coating solution
JP2008272718A (en) Photocatalyst-applied object and photocatalytic coating liquid for this object
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP3291563B2 (en) Photocatalytic paint and its production method and use
JP2001064583A (en) Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JP4576811B2 (en) Method for manufacturing functional building materials
JP4352721B2 (en) Functional inorganic paint and its coating composition
JPH10212809A (en) Building material for external wall
JP5726071B2 (en) Coating composition, film forming method, and article having the film
JP2005035198A (en) Film or sheet with photocatalyst for wallpaper
JP2004250598A (en) Functional coating composition, functional building component using the same, and method for producing the same
JP2002336768A (en) Method for forming antifouling coating film
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2005066429A (en) Method for manufacturing functional building materal
JPH11319709A (en) Formation of photocatalyst film on organic substrate and its use
JP4323216B2 (en) Photocatalyst-coated metal plate excellent in wear resistance, stain resistance, and coating film adhesion and method for producing the same
JP3291560B2 (en) Photocatalytic film formation method and paint used for it
JP3291561B2 (en) Photocatalytic paint, method for producing the same, photocatalytic film coated with the same, and base material having the photocatalytic film
JP5112016B2 (en) Bonded titania silica film manufacturing method and coating liquid
JP4569432B2 (en) Method for producing interior material coated with photocatalyst
JP4088995B2 (en) Method for forming functional inorganic coating film and functional coated product
JP4332908B2 (en) Room temperature curing photocatalyst coating film forming agent, photocatalyst-containing coating film forming method using the same, and photocatalyst-containing coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees