JP2005056868A - Method of manufacturing silicon carbide semiconductor device - Google Patents

Method of manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP2005056868A
JP2005056868A JP2001167974A JP2001167974A JP2005056868A JP 2005056868 A JP2005056868 A JP 2005056868A JP 2001167974 A JP2001167974 A JP 2001167974A JP 2001167974 A JP2001167974 A JP 2001167974A JP 2005056868 A JP2005056868 A JP 2005056868A
Authority
JP
Japan
Prior art keywords
trench
etching
silicon carbide
carbide semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001167974A
Other languages
Japanese (ja)
Inventor
Osamu Kusumoto
修 楠本
Toshiya Yokogawa
俊哉 横川
Masao Uchida
正雄 内田
Masaya Yamashita
賢哉 山下
Ryoko Miyanaga
良子 宮永
Makoto Kitahata
真 北畠
Kunimasa Takahashi
邦方 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001167974A priority Critical patent/JP2005056868A/en
Priority to PCT/JP2002/005515 priority patent/WO2002099870A1/en
Publication of JP2005056868A publication Critical patent/JP2005056868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when trench etching is performed on the surface of a silicon carbide semiconductor substrate while a high etching rate is maintained at the time of forming a gate oxide film on the surface of a trench in a trench MOS, a micro-trench is produced in the bottom section of the end section of the trench and electric field concentration occurs in the micro-trench due to the small radius of curvature of the micro-trench and lowers the withstand voltage of the gate oxide film. <P>SOLUTION: After a first etching step is performed by using a usual Al mask, a second etching step is performed for etching the whole surface of the silicon carbide semiconductor substrate after removing the Al mask. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高耐圧、大電流用に使用される半導体パワーデバイス、とりわけ炭化珪素を用いた半導体パワーデバイスに関する。
【0002】
【従来の技術】
半導体パワーデバイスはインバータや電力制御などに用いられるデバイスで、パワーMOSFETやIGBTなどがある。炭化珪素(SiC)は絶縁破壊電界がシリコンに比べ一桁高く、炭化珪素半導体のパワーデバイスは高耐圧ながら低オン抵抗を有するデバイスとして期待され、研究開発が進められている。
【0003】
近年、パワーMOSFETやIGBTのオン抵抗を低減するためにトレンチゲートが採用されている。図2はトレンチMOSFETの構造を示す図である。低抵抗のn型炭化珪素基板21上には低濃度のp型炭化珪素のエピ層22が堆積され、エピ層の一部に高濃度のn+ソース領域23がイオン注入により形成されている。25はエピ層22を貫通し、炭化珪素基板21の中まで届くトレンチ(溝)である。トレンチ25の表面にはゲート酸化膜27が形成され、さらにゲート電極28がトレンチ25の内部に形成されている。ソース領域23にはソース電極210が設けられ、また裏面にはドレイン電極211が設けられている。通常ソース電極は接地電位とし、ドレイン電極に正の高電圧Vを印加する。ゲート電極が接地電位の場合はキャリアが流れるパスがなく、ソース・ドレイン間に電流は流れない。ゲート電極を正の電位にすることによってゲート酸化膜直下のエピ層にキャリアの反転層が形成されソース・ドレイン間に電流が流れる。
【0004】
トレンチMOSの製造方法においてトレンチエッチングは非常に重要な工程である。トレンチゲートのトレンチの深さは耐圧等によって異なるが数百Vの耐圧で数μm必要である。しかしながら炭化珪素はシリコン原子とカーボン原子の強固な結合のためウェットエッチングはほとんどできず、もっぱらドライエッチングを用いるがエッチングレートはきわめて低い。例えば平行平板方式のRIE(リアクティブ・イオン・エッチング)で、CFとOの混合ガスを用いてエッチングする場合のエッチングレートは50nm/min.前後である。
【0005】
このため近年、ECR(Electron Cyclotoron resonance)方式やICP(誘導結合プラズマ)方式などによる高密度プラズマを用いてドライエッチングが行われている。従来の平行平板方式のRIEにくらべ1桁プラズマ密度が高く、エッチングレートを上げることができ、例えばCFとOの混合ガスを用いた場合エッチングレートは100nm/min.以上にできる。
【0006】
ところが高密度プラズマによるエッチングではトレンチングと呼ばれる形状異常の問題が生じる。図4はCFとOの混合ガス(O流量比20%)を用い、ガス圧0.6Pa、アンテナRF電力500W、バイアスRF電力20Wの条件でSiCのトレンチエッチングを行ったときの断面形状を示した図である。図4よりわかるようにトレンチ底面端部には小さな溝が見られ、これはマイクロトレンチと呼ばれる。マイクロトレンチ部は曲率半径が極めて小さいため、ゲート電極とSiC基板の間に電圧を印加したとき、マイクロトレンチに電界が集中し、ゲート酸化膜はこの部分で絶縁破壊を起こしやすく耐圧低下の原因となる。したがって、トレンチングをなくす必要がある。
【0007】
トレンチングが起きる原因は以下のとおりである。ドライエッチング時のプラズマにはエッチング種と堆積種が存在する。エッチング種とはエッチングしようとする基板原子と化学反応を起こしエッチングをすすめる役割をするイオンまたはラジカルである。堆積種とはエッチングの化学反応には寄与せず、基板表面に堆積する堆積膜を形成する役割をするラジカルやイオン、原子、分子である。例えばCFやCなどのフロンガスを用いた場合、エッチング種はFであり、堆積種はC(x,yは任意の整数)である。
【0008】
エッチング種のFイオンまたはFラジカルは炭化珪素のSi、C原子と以下のように反応してエッチングが進む。
【0009】
Si+4F→SiF
C+4F→CF
また、堆積種は重合してカーボンフロライド(C:x,yは任意の整数)のポリマーを形成し、このポリマーが基板表面に堆積する。ポリマーはエッチング種とは化学反応はおこさない。したがってポリマーが堆積している基板表面はエッチングされない。
【0010】
しかしながら堆積したポリマーは基板に入射するイオンによって物理的に除去され、露出したSiC表面の原子とデポ種が反応してエッチングが進む。エッチングを阻害するポリマーの堆積と除去、エッチング種と表面原子との反応という一連の過程が繰り返し起こって、ドライエッチングが進む。したがって基板表面におけるデポ種とエッチング種の相対比によってエッチングレートが変化する。すなわち、デポ種に対するエッチング種の割合が大きいところではエッチングがよく進み、逆に小さいところではあまり進まない。
【0011】
トレンチングが起こる原因として発明者は以下のように考えた。図6はトレンチエッチング時のエッチング種の分布を示すトレンチ断面図である。トレンチ横のAlマスク領域61ではエッチング種62が消費されず、この一部がトレンチ側壁63をつたってトレンチ底面端部64に流れ込む。したがってトレンチ底面のエッチング種の分布はトレンチ底面端部において他より若干多くなる。デポ種に対するエッチング種の相対量が大きいところはエッチングがよく進むので、トレンチ底面端部54でマイクロトレンチができる。エッチング種に比べてデポ種の量がかなり多い場合は多少のエッチング種の分布があってもデポ種に対する相対量の分布としてはそれほど大きくないのでトレンチングはおきにくい。しかしECR方式やICP方式など効率的に高密度プラズマを発生できる方式ではCFからのFの解離がよく進むので、デポ種に比べエッチング種の量が多く、エッチング種の分布がそのまま相対量の分布になり、トレンチングがおきやすい。
【0012】
したがってトレンチングを防ぐためにはデポ種を多くして、デポ種に対するエッチング種の相対量の分布を小さくするようにすればよい。一般的なトレンチング対策としてはプラズマを発生させるときに必要な電力を下げてガスの解離があまり進まない条件や、分子中のフッ素原子の数に対する炭素原子の数(C/F)が多いガスを使う。例えばCF(C/F=0.25)よりC(C/F=0.375)を用いる。
【0013】
【発明が解決しようとする課題】
ところが、このような条件では当然エッチングレートが低く、もともとエッチングレートの低いSiCのエッチングではさらに長時間のエッチングが必要となり、デバイス生産のスループットが低下し工業的に問題となる。またデポ種を多くするとポリマーがチャンバー内部にも付着して、プラズマの状態が変化するため、エッチレートが安定しないという問題点があった。本発明の目的はトレンチングがなく、かつ十分なエッチングレートで安定したSiCドライエッチングの方法を提供すること、ならびにこれを用いたSiCパワーデバイスの製造方法を提供することである。
【0014】
【課題を解決するための手段】
上記課題を解決するために本発明は炭化珪素半導体基板に深いトレンチを形成する方法であって、前記炭化珪素半導体基板上にパターニングしたマスクを形成して前記炭化珪素半導体基板をドライエッチングする第1のエッチング工程と、前記マスクを半導体基板から除去した後、前記炭化珪素半導体基板を等方的にドライエッチングする第2のエッチング工程により炭化珪素半導体基板表面に深いトレンチを設けることを特徴とする炭化珪素半導体デバイスの製造方法である。
【0015】
より好ましくはフッ化物を含むガスを電離して得られるプラズマを用いてドライエッチングを行い、マスク材料がアルミまたはニッケルを含む材料からなる。
【0016】
【発明の実施の形態】
以下本発明のいくつかの実施の形態のについて説明する。
【0017】
(第1の実施の形態)
図3は、従来の炭化珪素トレンチMOSFETの製造方法を示す工程図である。
【0018】
不純物濃度が1×1018cm−3の低抵抗SiC基板21上に、熱CVD法により不純物濃度2×1016cm−3のP型SiCエピ層22を厚さ2.5μm成長させる。その後図示しないがパターニングしたSiOマスクを通して、基板を500℃〜1000℃の高温に保った状態で窒素イオンをイオン注入してソース領域23を形成した。注入ドーズは1×1018〜1×1019cm−3である。SiOマスクを除去した後、1500℃以上の活性化アニールを行う。
【0019】
次にトレンチエッチングを行う。Alを200nm表面に堆積した後、フォトリソグラフィを行ってイオンミリングやウェットエッチングなどでトレンチを形成したい領域のAlを除去する。このようにしてパターニングしたAlマスク24を用いてドライエッチングを行った.本実施の形態ではICP方式のドライエッチング装置を用いた。図示しない真空チャンバー中にCFを32sccm、Oを8sccm流し、圧力を0.6Paに保つ。真空チャンバー上に設けられたアンテナコイルに13.56MHzのRF電力を投入し、基板下のバイアス電極に13.56MHzのRF電力を20W投入した。この条件でのSiCエッチングレートは0.06μm/min.であり、深さ3μmのトレンチエッチングを行うのに50分かかった。このときトレンチ25の形状を断面SEMで確認したところ、底面の側壁近くのエッジには深さ約0.3μmのマイクロトレンチ26ができていることが判明した。ドライエッチング後、Alマスク24を硫酸加水(HSO:H=3:1)にてウェットエッチングで除去した。続いてウェットO雰囲気中で1100℃、3時間の熱酸化を行い、トレンチ25の表面にゲート酸化膜27を形成した。
【0020】
ゲート電極28としてボロンドープしたP型ポリシリコンをCVD法にて酸化膜27の表面に堆積し、フォトリソグラフィを行ったのち、ドライエッチングして所望のパターンにパターニングした。続いて層間絶縁膜28としてSiOをCVD法で0.5μm堆積し、ソース電極を形成するためフォトリソグラフィを行ったのち、ドライエッチングして層間絶縁膜28の一部および熱酸化膜27の一部を除去した。引き続きソース電極210としてニッケルを表面に真空蒸着し、フォトリソグラフィを行いウェットエッチングしてパターニングした。またドレイン電極211として裏面全面にニッケルを蒸着し、オーミック特性を得るために1000℃、5min.のアニールを行った。
【0021】
このようにして完成したトレンチMOSFETのゲート・ソース間に電圧を印加し、ゲート酸化膜のリーク電流を測定したところ、ゲート・ソース電圧が10V以上でリーク電流が急激に増加することがわかった。
【0022】
また完成したトレンチMOSFETの断面を走査電子顕微鏡(SEM)で観察したところ、トレンチ底のエッジ部に深さ約0.3μm、上部の幅が約0.3μmのマイクロトレンチができていることが判明した。
【0023】
(第2の実施の形態)
本実施の形態は基本的に第1の実施の形態と同じ工程を用いたが、マイクロトレンチが発生しないように、トレンチのドライエッチングの条件を変更した。デポ種に対するエッチング種の比率を下げるため、ICP−RIE装置のアンテナコイルに投入するRF電力を500Wから400Wに下げた。CFからのFの解離があまり進まない条件とした。その他の工程に関しては第1の実施の形態と何ら変わらない。
【0024】
アンテナコイルに投入するRF電力を400Wに下げたためエッチングレートは0.02μm/min.に低下し、深さ3μmのトレンチエッチングを行うのに150分かかった。
【0025】
完成したトレンチMOSFETのゲート・ソース間に電圧を印加し、ゲート酸化膜のリーク電流を測定したところ、ゲート・ソース電圧が25Vになるまで急激なリーク電流の増加は見られなかった。
【0026】
また完成したトレンチMOSFETの断面を走査電子顕微鏡(SEM)で観察したところ、マイクロトレンチは見られなかったが、上部のコーナー部分はとがっていた。
【0027】
本実施の形態でわかるように一段階のエッチングでもアンテナコイルのRF電力を下げることによってガスの解離が進まずエッチング種の発生を抑制するため、マイクロトレンチはできない。しかしながらエッチング時間は長時間になる。
【0028】
(第3の実施の形態)
図1は、本発明の炭化珪素トレンチMOSFETの製造方法を示す工程図である。
【0029】
不純物濃度が1×1018cm−3の低抵抗SiC基板11上に、熱CVD法により不純物濃度2×1016cm−3のP型SiCエピ層12を厚さ3.5μm成長させる。第2のエッチング工程で1μmの全面エッチングを行う分、第一の実施の形態よりもエピ層の厚さを1μm厚くしている。その後図示しないがパターニングしたSiOマスクを通して、基板を500℃〜1000℃の高温に保った状態で窒素イオンをイオン注入してソース領域13を形成した。注入ドーズは1×1018〜1×1019cm−3である。先と同じ理由で注入深さも第一の実施の形態よりも1μm深くする。SiOマスクを除去した後、1500℃以上の活性化アニールを行う(図1(a))。
【0030】
次にトレンチエッチングを行う。Alを200nm表面に堆積した後、フォトリソグラフィを行ってイオンミリングやウットエッチングなどでトレンチを形成したい領域のAlを除去する。このようにしてパターニングしたAlマスク14を用いて第1のエッチング工程を行った.本実施の形態ではICP方式のドライエッチング装置を用いた。図示しない真空チャンバー中にCFを32sccm、Oを8sccm流し、圧力を0.6Paに保つ。真空チャンバー上に設けられたアンテナコイルに13.56MHzのRF電力を投入し、基板下のバイアス電極に13.56MHzのRF電力を20W投入した。この条件でのSiCエッチングレートは0.06μm/min.であり、深さ3μmのトレンチエッチングを行うのに50分かかった(図1(b))。
【0031】
ドライエッチング後、Alマスク14を硫酸加水(HSO:H=3:1)にてウェットエッチングで除去した。引き続き第2のエッチング工程としてAlマスクのない状態で第1のエッチング工程と同じくICP方式のドライエッチング装置を用いて、CFを32sccm、Oを8sccm流し、圧力を0.6Paに保ち、アンテナコイルに13.56MHZをのRF電力を500W投入し、バイアス電極には13.56MHzのRF電力を20W投入し、10分間エッチングを行った(図1(c))。
【0032】
続いてウェットO雰囲気中で1100℃、3時間の熱酸化を行い、トレンチ15の表面にげート酸化膜17を形成した。
【0033】
ゲート電極18としてボロンドープしたP型ポリシリコンをCVD法にて酸化膜17の表面に堆積し、フォトリソグラフィを行ったのち、ドライエッチングして所望のパターンにパターニングした(図1(d))。
【0034】
続いて層間絶縁膜18としてSiOをCVD法で0.5μm堆積し、ソース電極を形成するためフォトリソグラフィを行ったのち、ドライエッチングして層間絶縁膜19の一部および熱酸化膜17の一部を除去した。引き続きソース電極110としてニッケルを表面に真空蒸着し、フォトリソグラフィを行いウェットエッチングしてパターニングした。またドレイン電極111として裏面全面にニッケルを蒸着し、オーミック特性を得るために1000℃、5min.のアニールを行った。
【0035】
このようにして完成したトレンチMOSFETのゲート・ソース間に電圧を印加し、ゲート酸化膜のリーク電流を測定したところ、ゲート・ソース電圧が30Vになるまでリーク電流はほぼ一定でゲート・ソース耐圧は30Vであった。
【0036】
また完成したトレンチMOSFETの断面を走査電子顕微鏡(SEM)で観察したところ、トレンチ底のエッジ部に深さ約0.3μm、上部の幅が約0.3μmのマイクロトレンチができていることが判明した。
【0037】
第1のエッチング工程終了後および第2のエッチング工程終了後のトレンチ形状を確認するために断面SEM観察を行った。図5はその比較を示している。
【0038】
図5からわかるように第2のエッチング工程終了後のトレンチ形状は、マイクロトレンチの深さは浅く、幅はひろくなり、また上部コーナーの曲率半径も大きくなっている。マスクなしの全面エッチング時にはトレンチ横の表面でもエッチング種が消費されるので、トレンチ底面端部におけるエッチング種の過剰な分布がなくなる。また、バイアス電極に投入しているRF電力が20Wと低く、イオンエネルギーが数eVと低いので等方的なエッチングがすすむため、曲率半径の小さな上部コーナーやマイクロトレンチなどの突起が尖端からもエッチングされ、曲率半径が大きくなり結果としてトレンチングが緩和される。
【0039】
本実施の形態ではゲート・ソース間耐圧が高いトレンチMOSが得られ、またエッチングにかかる時間も、第一のエッチングが50分、第2のエッチングが10分、合計60分であり、第2の実施の形態の150分にくらべ大幅にエッチング時間を削減できる。
【0040】
なお本実施の形態ではエッチングガスにCFとOの混合ガスを用いたが、SFとOの混合ガスを用いるとさらに高速なエッチングができる。例えばSF=20sccm、O=0〜20sccm、0.6Pa、アンテナコイルのRF500W、バイアスのRF20Wの条件でSiCエッチングレートは0.16μm/min.であった。またマスク材料としてアルミを用いたがニッケルでも良い。
【0041】
【発明の効果】
以上述べたように本発明は、炭化珪素半導体基板の深いトレンチエッチングの時に生じるマイクロトレンチと呼ばれる形状異常を緩和することができる。その結果トレンチMOSのゲート・ソース間耐圧を向上させることができる。
【0042】
またエッチング種の量を抑えた条件で一段階でエッチングするよりも本発明の二段階のエッチングのほうが短時間でエッチングできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示すトレンチMOSの製造工程を示す図
【図2】トレンチMOSの構造を示す概略図
【図3】従来のトレンチMOSの製造工程を示す図
【図4】従来のトレンチMOSの製造工程によって得られたトレンチの形状を示す断面図
【図5】本発明の一実施の形態であるトレンチMOSの第一のエッチング工程後と第二のエッチング工程後のトレンチ形状の変化を示す断面図
【図6】トレンチエッチング時のエッチング種の分布を示す図
【符号の説明】
1 炭化珪素基板
2 エピ層
3 ソース領域
4 Alマスク
5 トレンチ
6 マイクロトレンチ
7 ゲート酸化膜
8 ゲート電極
9 層間絶縁膜
10 ソース電極
11 ドレイン電極
21 炭化珪素基板
22 エピ層
23 ソース領域
24 Alマスク
25 トレンチ
26 マイクロトレンチ
27 ゲート酸化膜
28 ゲート電極
29 層間絶縁膜
210 ソース電極
211 ドレイン電極
41 マイクロトレンチ
42 上部コーナー
51 第一のエッチング工程後のトレンチ断面プロファイル
52 第二のエッチング工程後のトレンチ断面プロファイル
61 マスク
62 エッチング種
63 トレンチ側壁
64 トレンチ底面端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor power device used for high withstand voltage and large current, and more particularly to a semiconductor power device using silicon carbide.
[0002]
[Prior art]
Semiconductor power devices are devices used for inverters and power control, and include power MOSFETs and IGBTs. Silicon carbide (SiC) has a dielectric breakdown electric field that is an order of magnitude higher than that of silicon, and silicon carbide semiconductor power devices are expected to be devices having a low on-resistance while having a high breakdown voltage, and research and development are underway.
[0003]
In recent years, trench gates have been adopted to reduce the on-resistance of power MOSFETs and IGBTs. FIG. 2 is a diagram showing the structure of the trench MOSFET. A low-concentration p-type silicon carbide epilayer 22 is deposited on a low-resistance n-type silicon carbide substrate 21, and a high-concentration n + source region 23 is formed in a part of the epilayer by ion implantation. Reference numeral 25 denotes a trench that penetrates through the epi layer 22 and reaches the silicon carbide substrate 21. A gate oxide film 27 is formed on the surface of the trench 25, and a gate electrode 28 is formed inside the trench 25. A source electrode 210 is provided in the source region 23, and a drain electrode 211 is provided on the back surface. Usually, the source electrode is at ground potential, and a positive high voltage V is applied to the drain electrode. When the gate electrode is at the ground potential, there is no path through which carriers flow, and no current flows between the source and drain. By setting the gate electrode to a positive potential, a carrier inversion layer is formed in the epi layer directly under the gate oxide film, and a current flows between the source and drain.
[0004]
Trench etching is a very important process in the manufacturing method of trench MOS. The depth of the trench of the trench gate varies depending on the withstand voltage and the like, but requires several μm with a withstand voltage of several hundred volts. However, silicon carbide can hardly be wet-etched due to the strong bonding between silicon atoms and carbon atoms, and dry etching is used exclusively, but the etching rate is extremely low. For example, the etching rate when etching using a mixed gas of CF 4 and O 2 in RIE (reactive ion etching) of a parallel plate method is 50 nm / min. Before and after.
[0005]
Therefore, in recent years, dry etching has been performed using high-density plasma by an ECR (Electron Cyclotron Resonance) method, an ICP (Inductively Coupled Plasma) method, or the like. Compared to the conventional parallel plate type RIE, the plasma density is higher by one digit and the etching rate can be increased. For example, when a mixed gas of CF 4 and O 2 is used, the etching rate is 100 nm / min. More than that.
[0006]
However, etching with high-density plasma causes a problem of shape abnormality called trenching. FIG. 4 shows a cross-section when SiC trench etching is performed using a mixed gas of CF 4 and O 2 (O 2 flow ratio 20%) under conditions of gas pressure 0.6 Pa, antenna RF power 500 W, and bias RF power 20 W. It is the figure which showed the shape. As can be seen from FIG. 4, a small groove is seen at the bottom of the trench, which is called a microtrench. Since the micro-trench portion has a very small radius of curvature, when a voltage is applied between the gate electrode and the SiC substrate, the electric field concentrates on the micro-trench, and the gate oxide film is liable to cause dielectric breakdown in this portion, causing the breakdown voltage to decrease. Become. Therefore, it is necessary to eliminate trenching.
[0007]
The cause of the trenching is as follows. There are etching species and deposition species in the plasma during dry etching. The etching species are ions or radicals that cause a chemical reaction with the substrate atoms to be etched and promote etching. Deposition species are radicals, ions, atoms, and molecules that do not contribute to the chemical reaction of etching and play a role in forming a deposited film deposited on the substrate surface. For example, when a Freon gas such as CF 4 or C 3 F 8 is used, the etching species is F and the deposition species is C x F y (x and y are arbitrary integers).
[0008]
Etching species F ions or F radicals react with Si and C atoms of silicon carbide as follows, and etching proceeds.
[0009]
Si + 4F → SiF 4
C + 4F → CF 4
Further, the deposition species are polymerized to form a polymer of carbon fluoride (C x F y : x, y is an arbitrary integer), and this polymer is deposited on the substrate surface. The polymer does not chemically react with the etching species. Therefore, the substrate surface on which the polymer is deposited is not etched.
[0010]
However, the deposited polymer is physically removed by ions incident on the substrate, and the exposed SiC surface atoms react with the deposition species to proceed etching. A series of processes such as deposition and removal of a polymer that inhibits etching and reaction between etching species and surface atoms occur repeatedly, and dry etching proceeds. Therefore, the etching rate varies depending on the relative ratio between the deposition species and the etching species on the substrate surface. That is, the etching proceeds well where the ratio of the etching species to the deposition species is large, and conversely, it does not proceed much when the ratio is small.
[0011]
The inventor considered as the cause of the occurrence of trenching as follows. FIG. 6 is a trench cross-sectional view showing the distribution of etching species during trench etching. In the Al mask region 61 next to the trench, the etching seed 62 is not consumed, and a part of this flows through the trench side wall 63 and flows into the trench bottom end 64. Therefore, the distribution of the etching species on the bottom surface of the trench is slightly larger than the others at the end of the bottom surface of the trench. Since etching proceeds well where the relative amount of the etching species relative to the deposition species is large, a micro-trench can be formed at the trench bottom end 54. When the amount of the deposition species is considerably larger than the etching species, even if there is some distribution of the etching species, the relative amount distribution with respect to the deposition species is not so large, so that trenching is difficult to occur. However, methods that can generate high-density plasma efficiently, such as the ECR method and ICP method, promote the dissociation of F from CF 4, and therefore the amount of etching species is larger than that of the depot species, and the distribution of the etching species remains as is. Distribution and easy to trench.
[0012]
Therefore, in order to prevent trenching, it is only necessary to increase the deposition species and reduce the distribution of the relative amount of etching species relative to the deposition species. As a general countermeasure against trenching, the power required for generating plasma is lowered and gas dissociation does not progress so much, or a gas with a large number of carbon atoms (C / F) relative to the number of fluorine atoms in the molecule. use. For example, C 3 F 8 (C / F = 0.375) is used from CF 4 (C / F = 0.25).
[0013]
[Problems to be solved by the invention]
However, the etching rate is naturally low under such conditions, and the etching of SiC having a low etching rate naturally requires a longer etching time, which lowers the device production throughput and causes an industrial problem. In addition, when the deposition type is increased, the polymer is attached to the inside of the chamber and the state of the plasma is changed, so that the etching rate is not stable. An object of the present invention is to provide a SiC dry etching method that is stable without a trenching and at a sufficient etching rate, and a method for manufacturing a SiC power device using the method.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a method of forming a deep trench in a silicon carbide semiconductor substrate, wherein a patterned mask is formed on the silicon carbide semiconductor substrate, and the silicon carbide semiconductor substrate is dry etched. A deep carbonization is provided on the surface of the silicon carbide semiconductor substrate by a second etching step of removing the mask from the semiconductor substrate and isotropically dry etching the silicon carbide semiconductor substrate after removing the mask from the semiconductor substrate. It is a manufacturing method of a silicon semiconductor device.
[0015]
More preferably, dry etching is performed using plasma obtained by ionizing a gas containing fluoride, and the mask material is made of a material containing aluminum or nickel.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Several embodiments of the present invention will be described below.
[0017]
(First embodiment)
FIG. 3 is a process diagram showing a method of manufacturing a conventional silicon carbide trench MOSFET.
[0018]
A P-type SiC epilayer 22 having an impurity concentration of 2 × 10 16 cm −3 is grown on the low resistance SiC substrate 21 having an impurity concentration of 1 × 10 18 cm −3 by a thickness of 2.5 μm by a thermal CVD method. Thereafter, although not shown, nitrogen ions were implanted through a patterned SiO 2 mask while the substrate was kept at a high temperature of 500 ° C. to 1000 ° C. to form the source region 23. The implantation dose is 1 × 10 18 to 1 × 10 19 cm −3 . After removing the SiO 2 mask, activation annealing at 1500 ° C. or higher is performed.
[0019]
Next, trench etching is performed. After Al is deposited on the surface of 200 nm, photolithography is performed to remove Al in a region where a trench is to be formed by ion milling, wet etching, or the like. Dry etching was performed using the Al mask 24 thus patterned. In this embodiment, an ICP dry etching apparatus is used. CF 4 is flowed at 32 sccm and O 2 is flowed at 8 sccm in a vacuum chamber (not shown), and the pressure is kept at 0.6 Pa. RF power of 13.56 MHz was input to the antenna coil provided on the vacuum chamber, and 20 W of RF power of 13.56 MHz was input to the bias electrode under the substrate. The SiC etching rate under these conditions is 0.06 μm / min. It took 50 minutes to perform the trench etching with a depth of 3 μm. At this time, when the shape of the trench 25 was confirmed by a cross-sectional SEM, it was found that a micro trench 26 having a depth of about 0.3 μm was formed at the edge near the side wall on the bottom surface. After dry etching, the Al mask 24 was removed by wet etching with sulfuric acid (H 2 SO 4 : H 2 O 2 = 3: 1). Subsequently, thermal oxidation was performed at 1100 ° C. for 3 hours in a wet O 2 atmosphere to form a gate oxide film 27 on the surface of the trench 25.
[0020]
Boron-doped P-type polysilicon as the gate electrode 28 was deposited on the surface of the oxide film 27 by the CVD method, and after photolithography, it was dry-etched and patterned into a desired pattern. Subsequently, 0.5 μm of SiO 2 is deposited as an interlayer insulating film 28 by the CVD method, and photolithography is performed to form a source electrode. Then, dry etching is performed and a part of the interlayer insulating film 28 and one of the thermal oxide films 27 are formed. Part was removed. Subsequently, nickel was vacuum-deposited on the surface as the source electrode 210, photolithography was performed, and wet etching was performed for patterning. Further, nickel is deposited on the entire back surface as the drain electrode 211, and 1000 ° C., 5 min. Annealing was performed.
[0021]
When a voltage was applied between the gate and source of the trench MOSFET thus completed and the leakage current of the gate oxide film was measured, it was found that the leakage current increased rapidly when the gate-source voltage was 10 V or more.
[0022]
When the cross section of the completed trench MOSFET was observed with a scanning electron microscope (SEM), it was found that a micro trench having a depth of about 0.3 μm and an upper width of about 0.3 μm was formed at the edge of the trench bottom. did.
[0023]
(Second Embodiment)
This embodiment basically uses the same steps as those in the first embodiment, but the conditions for dry etching of the trench are changed so that micro-trench is not generated. In order to lower the ratio of the etching species to the deposition species, the RF power input to the antenna coil of the ICP-RIE apparatus was lowered from 500 W to 400 W. The conditions were such that the dissociation of F from CF 4 did not progress much. Other processes are the same as those in the first embodiment.
[0024]
Since the RF power input to the antenna coil was lowered to 400 W, the etching rate was 0.02 μm / min. It took 150 minutes to perform trench etching with a depth of 3 μm.
[0025]
When a voltage was applied between the gate and source of the completed trench MOSFET and the leakage current of the gate oxide film was measured, no rapid increase in leakage current was observed until the gate-source voltage reached 25V.
[0026]
Further, when the cross section of the completed trench MOSFET was observed with a scanning electron microscope (SEM), the micro trench was not seen, but the upper corner portion was sharp.
[0027]
As can be seen from this embodiment, microtrenching is not possible because gas dissociation does not proceed by reducing the RF power of the antenna coil even in one-step etching, and generation of etching species is suppressed. However, the etching time is long.
[0028]
(Third embodiment)
FIG. 1 is a process diagram showing a method for manufacturing a silicon carbide trench MOSFET of the present invention.
[0029]
On the low resistance SiC substrate 11 having an impurity concentration of 1 × 10 18 cm −3 , a P-type SiC epi layer 12 having an impurity concentration of 2 × 10 16 cm −3 is grown to a thickness of 3.5 μm by a thermal CVD method. The thickness of the epi layer is 1 μm thicker than that of the first embodiment because the entire etching of 1 μm is performed in the second etching step. Thereafter, although not shown, a source region 13 was formed by ion implantation of nitrogen ions through a patterned SiO 2 mask while maintaining the substrate at a high temperature of 500 ° C. to 1000 ° C. The implantation dose is 1 × 10 18 to 1 × 10 19 cm −3 . For the same reason as described above, the implantation depth is also made 1 μm deeper than in the first embodiment. After removing the SiO 2 mask, activation annealing at 1500 ° C. or higher is performed (FIG. 1A).
[0030]
Next, trench etching is performed. After Al is deposited on the surface of 200 nm, photolithography is performed to remove Al in a region where a trench is to be formed by ion milling, wet etching, or the like. A first etching process was performed using the Al mask 14 thus patterned. In this embodiment, an ICP dry etching apparatus is used. CF 4 is flowed at 32 sccm and O 2 is flowed at 8 sccm in a vacuum chamber (not shown), and the pressure is kept at 0.6 Pa. RF power of 13.56 MHz was input to the antenna coil provided on the vacuum chamber, and 20 W of RF power of 13.56 MHz was input to the bias electrode under the substrate. The SiC etching rate under these conditions is 0.06 μm / min. It took 50 minutes to perform trench etching with a depth of 3 μm (FIG. 1B).
[0031]
After dry etching, the Al mask 14 was removed by wet etching with sulfuric acid (H 2 SO 4 : H 2 O 2 = 3: 1). Subsequently, as the second etching process, using an ICP dry etching apparatus in the same manner as in the first etching process without an Al mask, CF 4 is flowed at 32 sccm, O 2 is flowed at 8 sccm, and the pressure is kept at 0.6 Pa. RF power of 13.56 MHZ was input to the coil at 500 W, and RF power of 13.56 MHz was input to the bias electrode at 20 W, and etching was performed for 10 minutes (FIG. 1C).
[0032]
Subsequently, thermal oxidation was performed at 1100 ° C. for 3 hours in a wet O 2 atmosphere to form a gate oxide film 17 on the surface of the trench 15.
[0033]
Boron-doped P-type polysilicon as the gate electrode 18 was deposited on the surface of the oxide film 17 by the CVD method, photolithography was performed, and then dry etching was performed to form a desired pattern (FIG. 1D).
[0034]
Subsequently, 0.5 μm of SiO 2 is deposited as an interlayer insulating film 18 by a CVD method, and photolithography is performed to form a source electrode. Then, dry etching is performed and a part of the interlayer insulating film 19 and one of the thermal oxide films 17 are formed. Part was removed. Subsequently, nickel was vacuum-deposited on the surface as the source electrode 110, photolithography was performed, and wet etching was performed for patterning. Further, nickel is deposited on the entire back surface as the drain electrode 111, and 1000 ° C., 5 min. Annealing was performed.
[0035]
When a voltage was applied between the gate and source of the trench MOSFET thus completed and the leakage current of the gate oxide film was measured, the leakage current was substantially constant until the gate-source voltage reached 30 V, and the gate-source breakdown voltage was 30V.
[0036]
When the cross section of the completed trench MOSFET was observed with a scanning electron microscope (SEM), it was found that a micro trench having a depth of about 0.3 μm and an upper width of about 0.3 μm was formed at the edge of the trench bottom. did.
[0037]
Cross-sectional SEM observation was performed in order to confirm the trench shape after completion of the first etching step and after completion of the second etching step. FIG. 5 shows the comparison.
[0038]
As can be seen from FIG. 5, in the trench shape after the completion of the second etching step, the depth of the microtrench is shallow, the width is wide, and the curvature radius of the upper corner is also large. Since etching species are consumed on the surface next to the trench when etching the entire surface without a mask, excessive distribution of the etching species at the bottom end of the trench is eliminated. In addition, since the RF power applied to the bias electrode is as low as 20 W and the ion energy is as low as several eV, isotropic etching can be performed, so that the upper corner with a small radius of curvature and protrusions such as micro-trench are also etched from the tip. As a result, the radius of curvature is increased, and as a result, trenching is relaxed.
[0039]
In this embodiment, a trench MOS having a high gate-source breakdown voltage is obtained, and the etching time is 50 minutes for the first etching and 10 minutes for the second etching, which is 60 minutes in total. The etching time can be greatly reduced as compared to 150 minutes in the embodiment.
[0040]
In this embodiment, a mixed gas of CF 4 and O 2 is used as an etching gas. However, if a mixed gas of SF 6 and O 2 is used, etching can be performed at a higher speed. For example, the SiC etching rate is 0.16 μm / min. Under the conditions of SF 6 = 20 sccm, O 2 = 0 to 20 sccm, 0.6 Pa, antenna coil RF 500 W, and bias RF 20 W. Met. Further, although aluminum is used as a mask material, nickel may be used.
[0041]
【The invention's effect】
As described above, the present invention can alleviate a shape abnormality called a micro-trench that occurs during deep trench etching of a silicon carbide semiconductor substrate. As a result, the gate-source breakdown voltage of the trench MOS can be improved.
[0042]
Further, the two-stage etching of the present invention can be performed in a shorter time than the one-stage etching under the condition that the amount of etching species is suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing process of a trench MOS according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a structure of the trench MOS. FIG. 3 is a diagram showing a manufacturing process of a conventional trench MOS. FIG. 5 is a cross-sectional view showing the shape of a trench obtained by a conventional trench MOS manufacturing process. FIG. 5 shows a trench after a first etching process and a second etching process of a trench MOS according to an embodiment of the present invention. FIG. 6 is a cross-sectional view showing the shape change. FIG. 6 is a diagram showing the distribution of etching species during trench etching.
DESCRIPTION OF SYMBOLS 1 Silicon carbide substrate 2 Epi layer 3 Source region 4 Al mask 5 Trench 6 Micro trench 7 Gate oxide film 8 Gate electrode 9 Interlayer insulating film 10 Source electrode 11 Drain electrode 21 Silicon carbide substrate 22 Epi layer 23 Source region 24 Al mask 25 Trench 26 Micro-trench 27 Gate oxide film 28 Gate electrode 29 Interlayer insulating film 210 Source electrode 211 Drain electrode 41 Micro-trench 42 Upper corner 51 Trench cross-sectional profile after the first etching step 52 Trench cross-sectional profile after the second etching step 61 Mask 62 Etching seed 63 Trench sidewall 64 Trench bottom end

Claims (3)

炭化珪素半導体基板に深いトレンチを形成する方法であって、前記炭化珪素半導体基板上にパターニングしたマスクを形成して前記炭化珪素半導体基板をドライエッチングする第1のエッチング工程と、前記マスクを半導体基板から除去した後、前記炭化珪素半導体基板を等方的にドライエッチングする第2のエッチング工程により炭化珪素半導体基板表面に深いトレンチを設けることを特徴とする炭化珪素半導体装置の製造方法。A method of forming a deep trench in a silicon carbide semiconductor substrate, comprising: a first etching step of forming a patterned mask on the silicon carbide semiconductor substrate and dry etching the silicon carbide semiconductor substrate; and the mask as a semiconductor substrate. A method of manufacturing a silicon carbide semiconductor device comprising: providing a deep trench on a surface of the silicon carbide semiconductor substrate by a second etching step of isotropically dry-etching the silicon carbide semiconductor substrate after removal from the substrate. フッ化物を含むガスを電離して得られるプラズマを用いてドライエッチングを行い、マスク材料がアルミまたはニッケルを含む材料からなることを特徴とする請求項1記載の炭化珪素半導体装置の製造方法。2. The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein dry etching is performed using plasma obtained by ionizing a gas containing fluoride, and the mask material is made of a material containing aluminum or nickel. 請求項1または2に記載の製造方法によって炭化珪素半導体基板にトレンチを形成し、前記トレンチの表面に絶縁膜を形成し、前記絶縁膜上にゲート電極を設けることを特徴とする炭化珪素パワートランジスタ。A silicon carbide power transistor comprising: a trench formed in a silicon carbide semiconductor substrate by the manufacturing method according to claim 1; an insulating film formed on a surface of the trench; and a gate electrode provided on the insulating film. .
JP2001167974A 2001-06-04 2001-06-04 Method of manufacturing silicon carbide semiconductor device Pending JP2005056868A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001167974A JP2005056868A (en) 2001-06-04 2001-06-04 Method of manufacturing silicon carbide semiconductor device
PCT/JP2002/005515 WO2002099870A1 (en) 2001-06-04 2002-06-04 Production method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167974A JP2005056868A (en) 2001-06-04 2001-06-04 Method of manufacturing silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
JP2005056868A true JP2005056868A (en) 2005-03-03

Family

ID=19010272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167974A Pending JP2005056868A (en) 2001-06-04 2001-06-04 Method of manufacturing silicon carbide semiconductor device

Country Status (2)

Country Link
JP (1) JP2005056868A (en)
WO (1) WO2002099870A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088168A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor device
JP2007324503A (en) * 2006-06-05 2007-12-13 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
JP2007329385A (en) * 2006-06-09 2007-12-20 Denso Corp Method for manufacturing silicon carbide semiconductor device
WO2008062729A1 (en) 2006-11-21 2008-05-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and process for producing the same
JP2009065150A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Trench transistor, and its formation method
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
US8071482B2 (en) 2007-05-21 2011-12-06 Fuji Electric Co., Ltd. Manufacturing method of a silicon carbide semiconductor device
WO2012137526A1 (en) * 2011-04-01 2012-10-11 住友電気工業株式会社 Silicon carbide semiconductor device
JP2013048160A (en) * 2011-08-29 2013-03-07 Panasonic Corp Dry etching method
CN103794489A (en) * 2012-10-03 2014-05-14 Spts科技有限公司 Method of plasma etching
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
JP2017117963A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Semiconductor device manufacturing method
US10249732B1 (en) 2017-10-19 2019-04-02 Hyundai Motor Company Manufacturing method of semiconductor device to uniformly form thickness of gate insulating layer
JP2021077713A (en) * 2019-11-06 2021-05-20 富士電機株式会社 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396553B2 (en) * 1994-02-04 2003-04-14 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
DE19651108C2 (en) * 1996-04-11 2000-11-23 Mitsubishi Electric Corp High breakdown voltage gate trench type semiconductor device and its manufacturing method
JP2956602B2 (en) * 1996-08-26 1999-10-04 日本電気株式会社 Dry etching method
JPH10125904A (en) * 1996-10-17 1998-05-15 Denso Corp Silicon carbide semiconductor device
JP3371763B2 (en) * 1997-06-24 2003-01-27 株式会社日立製作所 Silicon carbide semiconductor device
JP3180895B2 (en) * 1997-08-18 2001-06-25 富士電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP2001007326A (en) * 1999-06-18 2001-01-12 Toshiba Corp Insulated-gate trench semiconductor device and manufacture thereof
JP4244456B2 (en) * 1999-08-04 2009-03-25 株式会社デンソー Manufacturing method of semiconductor device, manufacturing method of insulated gate bipolar transistor, and insulated gate bipolar transistor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088168A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor device
JP2007324503A (en) * 2006-06-05 2007-12-13 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
US7510977B2 (en) 2006-06-05 2009-03-31 Fuji Electric Holdings Co., Ltd. Method for manufacturing silicon carbide semiconductor device
JP2007329385A (en) * 2006-06-09 2007-12-20 Denso Corp Method for manufacturing silicon carbide semiconductor device
WO2008062729A1 (en) 2006-11-21 2008-05-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and process for producing the same
US8198675B2 (en) 2006-11-21 2012-06-12 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing the same
US8071482B2 (en) 2007-05-21 2011-12-06 Fuji Electric Co., Ltd. Manufacturing method of a silicon carbide semiconductor device
JP2009065150A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Trench transistor, and its formation method
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
US9054022B2 (en) 2010-08-03 2015-06-09 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor device
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
US8686435B2 (en) 2011-04-01 2014-04-01 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US9177804B2 (en) 2011-04-01 2015-11-03 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
WO2012137526A1 (en) * 2011-04-01 2012-10-11 住友電気工業株式会社 Silicon carbide semiconductor device
JP2012216701A (en) * 2011-04-01 2012-11-08 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device
JP2013048160A (en) * 2011-08-29 2013-03-07 Panasonic Corp Dry etching method
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
CN103794489A (en) * 2012-10-03 2014-05-14 Spts科技有限公司 Method of plasma etching
JP2017117963A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Semiconductor device manufacturing method
US10249732B1 (en) 2017-10-19 2019-04-02 Hyundai Motor Company Manufacturing method of semiconductor device to uniformly form thickness of gate insulating layer
JP2021077713A (en) * 2019-11-06 2021-05-20 富士電機株式会社 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
US11430870B2 (en) 2019-11-06 2022-08-30 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
WO2002099870A1 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
JP6720962B2 (en) Annealing apparatus for trench of vertical silicon carbide semiconductor device, method of manufacturing vertical silicon carbide semiconductor device, and vertical silicon carbide semiconductor device
US11710792B2 (en) Semiconductor structure with improved source drain epitaxy
JP2005056868A (en) Method of manufacturing silicon carbide semiconductor device
JP4872217B2 (en) Method for manufacturing silicon carbide semiconductor element
JP5589263B2 (en) Method for forming trench in silicon carbide semiconductor substrate
CN108364861B (en) Method for manufacturing semiconductor device
JP5309587B2 (en) Trench etching method for silicon carbide semiconductor substrate
KR100232711B1 (en) Manufacturing method of semiconductor device
KR20130076791A (en) Method for manufacturing silicon carbide semiconductor device and apparatus for manufacturing silicon carbide semiconductor device
CN112103186B (en) Process method for improving cell density of trench MOSFET and trench MOSFET structure
US11127840B2 (en) Method for manufacturing isolation structure for LDMOS
US11315824B2 (en) Trench isolation structure and manufacturing method therefor
CN116013989A (en) With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method
CN102916043A (en) MOS-HEMT (Metal-oxide-semiconductor High-electron-mobility Transistor) device and manufacturing method thereof
KR100373460B1 (en) Dry etching process for the high Efficient SiC devices
JP2002525850A (en) Apparatus and method for etching a spacer formed on an integrated circuit gate conductor
CN117438299B (en) Etching method of III-V compound semiconductor material
Lin Towards Microstructures with Ultrahigh Aspect-Ratio and Verticality in Deep Silicon Etching
CN109216172A (en) The manufacturing method of the division grid structure of semiconductor devices
JP2006019610A (en) Manufacturing method of semiconductor wafer
CN105140285A (en) Vertical conductive structurized SiC metal-oxide-semiconductor field-effect transistor (MOSFET) power device
CN113496884A (en) Method for thickening bottom oxide layer of silicon carbide substrate
CN117558622A (en) Groove etching method and groove type gate device
CN113496883A (en) Method for thickening bottom oxide layer of silicon carbide substrate
CN113496880A (en) Method for thickening bottom oxide layer of silicon carbide substrate