JP2005056686A - Cathode of solid polymer fuel cell - Google Patents

Cathode of solid polymer fuel cell Download PDF

Info

Publication number
JP2005056686A
JP2005056686A JP2003286447A JP2003286447A JP2005056686A JP 2005056686 A JP2005056686 A JP 2005056686A JP 2003286447 A JP2003286447 A JP 2003286447A JP 2003286447 A JP2003286447 A JP 2003286447A JP 2005056686 A JP2005056686 A JP 2005056686A
Authority
JP
Japan
Prior art keywords
cathode
platinum
carbon
fuel cell
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286447A
Other languages
Japanese (ja)
Inventor
Hiroshi Shioyama
洋 塩山
Yusuke Yamada
裕介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003286447A priority Critical patent/JP2005056686A/en
Publication of JP2005056686A publication Critical patent/JP2005056686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a PEFC in which platinum quantity can be reduced, while using a carrier reforming the carbon material of conventional type. <P>SOLUTION: This is a method of improving the activity of a platinum and/or platinum alloy containing cathode in the solid polymer fuel cell. The carbon carrier constituting the cathode is heat treated for 3-70 hours in the oxygen containing atmosphere at 300-550°C. This is the cathode for the solid polymer fuel cell in which the carbon carrier obtained by this method carries platinum and/or platinum alloy. The solid polymer fuel cell comprises this cathode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池(Polymer Electrolyte Fuel Cell;以下「PEFC」と称
する)におけるカソード(酸素極)の活性改善方法、高活性を有するカソードおよび高活性
カソードを使用するPEFCに関する。
The present invention relates to a method for improving the activity of a cathode (oxygen electrode) in a polymer electrolyte fuel cell (hereinafter referred to as “PEFC”), a cathode having high activity, and a PEFC using a highly active cathode.

PEFCは、(1)小型・軽量である(出力密度が高い)、(2)エネルギー効率が高い、(3)常温
で起動でき、起動時間が短い、(4)フレキシブルな固体高分子電解質を用いるので、セル
設計の自由度が高い、(5)リニューワブルな燃料を使用できるので、地球温暖化などの環
境問題を軽減できる、などの種々の利点を備えており、世界的なスケールでその実用化への試みが始まりつつある。しかしながら、PEFCを広い分野で普及させるためには、解決すべき幾つかの問題点がある。
PEFC is (1) small and lightweight (high power density), (2) high energy efficiency, (3) can be started at room temperature, has a short start-up time, and (4) uses a flexible solid polymer electrolyte. Therefore, the cell design has a high degree of freedom, (5) Since it can use renewable fuel, it has various advantages such as reducing environmental problems such as global warming, and its practical use on a global scale An attempt to begin is underway. However, there are some problems to be solved in order to spread PEFC in a wide field.

PEFCの実用化に際しての問題点の一つとして、電極触媒として希少資源である白金または白金合金を使用しなければならないことが挙げられる。この問題の解決乃至軽減のためには、白金使用量を大幅に減少させる必要がある。   One of the problems in the practical application of PEFC is that platinum or a platinum alloy, which is a scarce resource, must be used as an electrode catalyst. In order to solve or alleviate this problem, it is necessary to greatly reduce the amount of platinum used.

白金使用量の低減のためには、白金触媒を担持するカーボン材料(実用上は、殆どカー
ボンブラックである)の比表面積を高めて、これに微粒子化した白金を担持することによ
り、白金の質量あたりの活性を高めることが重要である(非特許文献1)。
In order to reduce the amount of platinum used, the mass of platinum can be increased by increasing the specific surface area of the carbon material that supports the platinum catalyst (in practice, it is almost carbon black) and supporting it in the form of finely divided platinum. It is important to increase the activity around (Non-patent Document 1).

しかしながら、PEFCが実用化段階に到達した現状を考慮すると、その実用化を加速するためには、白金使用量をさらに一層減少させる新たな技術の出現が要望されている。
表面Vol.38, No.2(2000), pp1-14
However, considering the current situation where PEFC has reached the stage of practical use, in order to accelerate its practical use, the emergence of new technology that further reduces the amount of platinum used is desired.
Surface Vol.38, No.2 (2000), pp1-14

従って、本発明は、従来タイプのカーボン材料を改質した担体を使用して、白金使用量を低減しうるPEFC用の電極を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide an electrode for PEFC that can reduce the amount of platinum used by using a carrier obtained by modifying a conventional carbon material.

本発明者は、上記の課題を解決するために、鋭意研究を行った結果、従来から担体として使用されているカーボン材料を特定の条件下に加熱して、その表面改質を行った後、これに白金または白金合金を担持させる場合には、その目的を達成しうることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have heated the carbon material that has been conventionally used as a carrier under specific conditions, and after performing surface modification thereof, It was found that the object can be achieved when platinum or a platinum alloy is supported thereon.

すなわち、本発明は、下記に示す通り、PEFCにおけるカソードの活性改善方法、高活性を有するPEFC用カソードおよび高活性カソードを使用するPEFCを提供する。
1.固体高分子形燃料電池における白金および/または白金合金含有カソードの活性を向上させる方法であって、カソードを構成するカーボン担体を酸素含有雰囲気中300〜800℃で10分〜100時間熱処理することを特徴とする方法。
2.カーボン担体の熱処理を350〜550℃で3〜66時間行う上記項1に記載の方法。
3.熱処理によるカーボン担体の重量減少を50%以下とする上記項1または2に記載の方法。
4.熱処理によるカーボン担体の重量減少を0.5〜35%とする上記項3に記載の方法。
5.上記項1〜4のいずれかに記載の方法により得られたカーボン担体に白金および/または白金合金を担持したことを特徴とする固体高分子形燃料電池におけるカソード。
6.上記項5に記載のカソードを備えたことを特徴とする固体高分子形燃料電池。
That is, the present invention provides a method for improving cathode activity in PEFC, a cathode for PEFC having high activity, and a PEFC using a highly active cathode, as described below.
1. A method for improving the activity of a platinum and / or platinum alloy-containing cathode in a polymer electrolyte fuel cell, wherein the carbon support constituting the cathode is heat-treated at 300 to 800 ° C. for 10 minutes to 100 hours in an oxygen-containing atmosphere. Feature method.
2. Item 2. The method according to Item 1, wherein the carbon support is heat-treated at 350 to 550 ° C for 3 to 66 hours.
3. Item 3. The method according to Item 1 or 2, wherein the weight loss of the carbon support by heat treatment is 50% or less.
4). Item 4. The method according to Item 3, wherein the weight loss of the carbon support by heat treatment is 0.5 to 35%.
5). 5. A cathode in a polymer electrolyte fuel cell, wherein platinum and / or a platinum alloy are supported on a carbon carrier obtained by the method according to any one of items 1 to 4 above.
6). 6. A polymer electrolyte fuel cell comprising the cathode according to item 5.

本発明による改質カーボン担体を使用するカソードをPEFCにおいては、所定の電池性能を発揮させるために必要な白金または白金合金の担持量を大幅に減少させることができる。   When the cathode using the modified carbon support according to the present invention is a PEFC, the amount of platinum or a platinum alloy supported for exhibiting a predetermined battery performance can be greatly reduced.

従って、本発明は、PEFCの製造コストを大幅に低下させることにより、PEFCの実用化および普及に大きく貢献するものである。   Therefore, the present invention greatly contributes to the practical use and popularization of PEFC by significantly reducing the manufacturing cost of PEFC.

本発明においては、従来のPEFCにおける電極触媒(白金或いは白金合金)の担体材料として使用されている公知のカーボン材料(カーボンブラックなど)、ならびに天然黒鉛粉末、メソカーボンマイクロビーズ(MCMB)などを熱処理改質して、使用する。天然黒鉛粉末およびMCMBは、従来電極触媒の担体としては、殆ど実用化されていない。   In the present invention, a known carbon material (carbon black, etc.) used as a support material for an electrocatalyst (platinum or platinum alloy) in a conventional PEFC, natural graphite powder, mesocarbon microbeads (MCMB), etc. are heat treated. Reform and use. Natural graphite powder and MCMB have hardly been put to practical use as conventional electrode catalyst carriers.

熱処理は、カーボン材料の種類などにより異なりうるが、酸素含有雰囲気中(好ましく
は、空気中)、通常300〜800℃程度の温度で3〜100時間程度の条件下に行う。処理効率、
収率などを考慮すれば、熱処理は、350〜550℃程度で3〜66時間程度行うことがより好ま
しい。
The heat treatment may vary depending on the type of the carbon material, but is performed in an oxygen-containing atmosphere (preferably in the air), usually at a temperature of about 300 to 800 ° C. for about 3 to 100 hours. Processing efficiency,
Considering the yield and the like, the heat treatment is more preferably performed at about 350 to 550 ° C. for about 3 to 66 hours.

熱処理に際しては、酸化により、カーボン材料の重量減少が生じる。許容される重量減少は、カーボン材料の種類により異なるが、過度の重量減少は、担体の製造コストを高くするので、好ましくない。従って、熱処理は、処理後のカーボン材料の重量減少を50%以下に抑制する様に、温度と時間とを設定することが望ましい。さらに、カーボン材料の特性改善を併せて考慮すれば、カーボン材料の重量減少を0.5〜35%程度とする様に、温度
と時間とを設定することがより望ましい。
During the heat treatment, the weight of the carbon material is reduced due to oxidation. The allowable weight loss varies depending on the type of carbon material, but excessive weight loss is undesirable because it increases the cost of manufacturing the carrier. Accordingly, in the heat treatment, it is desirable to set the temperature and time so as to suppress the weight loss of the carbon material after the treatment to 50% or less. Furthermore, considering the improvement of the characteristics of the carbon material, it is more desirable to set the temperature and time so that the weight loss of the carbon material is about 0.5 to 35%.

上記の熱処理により改質されたカーボン担体への白金および/または白金合金(白金-ルテニウムなど)の担持は、常法に従って行うことができる。例えば、カーボン担体をPt(NO2)2(NH3)2水溶液に浸漬して、所定量のPt前駆体を担持させた後、乾燥し、還元すること
により、所望のPEFC用のカソードを調製することができる。カソード材料として本発明による改質カーボン担体を使用する場合には、未改質カーボン担体を使用する場合に比して、所定の電池性能を発揮させるために必要な白金または白金合金の担持量を大幅に減少させることができる。より詳細には、既存のPEFCのカソードにおいて、カーボン担体に対する白金担持量は、通常30〜60質量%程度であるのに対し、本発明による改質カーボン担体を使用する場合には、同等の電池性能を達成するために必要な白金担持量を1/10〜1/20程度にまで大幅に低減させることができる。
Supporting platinum and / or a platinum alloy (platinum-ruthenium, etc.) on the carbon support modified by the above heat treatment can be performed according to a conventional method. For example, a desired PEFC cathode is prepared by immersing a carbon support in a Pt (NO 2 ) 2 (NH 3 ) 2 aqueous solution to support a predetermined amount of Pt precursor, and then drying and reducing. can do. When the modified carbon support according to the present invention is used as the cathode material, the amount of platinum or platinum alloy supported to exhibit a predetermined battery performance is higher than when the unmodified carbon support is used. Can be greatly reduced. More specifically, in the existing PEFC cathode, the amount of platinum supported on the carbon support is usually about 30 to 60% by mass, whereas when the modified carbon support according to the present invention is used, an equivalent battery is used. The amount of platinum supported to achieve performance can be greatly reduced to about 1/10 to 1/20.

本発明によるカソードは、公知の構成要素(固体高分子電解質膜、その両面に一体的に
接合されたアノードおよびカソード、アノード集電体、カソード集電体、水素供給機構、酸素含有ガス供給機構など)を備えたPEFCにおける従来のカソードに代替して、使用する
ことができる。
The cathode according to the present invention includes known constituent elements (solid polymer electrolyte membrane, anode and cathode integrally joined to both surfaces thereof, anode current collector, cathode current collector, hydrogen supply mechanism, oxygen-containing gas supply mechanism, etc. ) Can be used instead of the conventional cathode in PEFC with.

従来からPEFCにおけるカソード用のカーボン担体に用いられてきた各種の市販カーボン材料を開放型電気炉により熱処理した。表1にカーボン材料の種類および熱処理条件(温
度および保持時間)を示す。
Various commercially available carbon materials that have been used in the past as carbon supports for cathodes in PEFC were heat-treated in an open electric furnace. Table 1 shows the types of carbon materials and heat treatment conditions (temperature and holding time).

Figure 2005056686
なお、表1中のカーボン材料の詳細は、以下の通りである。
*カーボンブラック1:Cabot社製、“Vulcan XC72”
*カーボンブラック2:東海カーボン(株)製、“Tokablack 3855”
*カーボンブラック3:東海カーボン(株)製、“Tokablack 5500”
*カーボンブラック4:東海カーボン(株)製、“Tokablack 7240”
*カーボンブラック5:東海カーボン(株)製、“Tokablack 7350”
*カーボンブラック6:東海カーボン(株)製、“Tokablack 7700”
*天然黒鉛粉末1:Aldrich社製、粒径1-2μm
*天然黒鉛粉末2:エス・イー・シー社製、粒径2μm
*メソカーボンマイクロビーズ1:大阪ガス(株)製、粒径6μm、1000℃処理 品
*メソカーボンマイクロビーズ2:大阪ガス(株)製、粒径6μm、2800℃処理 品
Figure 2005056686
The details of the carbon material in Table 1 are as follows.
* Carbon black 1: “Vulcan XC72” manufactured by Cabot
* Carbon Black 2: “Tokablack 3855” manufactured by Tokai Carbon Co., Ltd.
* Carbon Black 3: “Tokablack 5500” manufactured by Tokai Carbon Co., Ltd.
* Carbon Black 4: “Tokablack 7240” manufactured by Tokai Carbon Co., Ltd.
* Carbon Black 5: “Tokablack 7350” manufactured by Tokai Carbon Co., Ltd.
* Carbon Black 6: “Tokablack 7700” manufactured by Tokai Carbon Co., Ltd.
* Natural graphite powder 1: Aldrich, particle size 1-2μm
* Natural graphite powder 2: S.C., particle size 2μm
* Mesocarbon microbeads 1: manufactured by Osaka Gas Co., Ltd., particle size 6 μm, processed at 1000 ° C * Mesocarbon microbeads 2: manufactured by Osaka Gas Co., Ltd., particle size 6 μm, processed at 2800 ° C

次いで、熱処理した各種カーボン材料を担体として作成した電極触媒の酸素還元に対する活性を、次のようにして評価した。
まず、カーボン試料0.5gと所定量のPt(NO2)2(NH3)2をエタノールに加えて30分間攪拌した後、ロータリーエバポレーターによりエタノールを除去することにより、Pt(NO2)2(NH3)2を担持したカーボン試料を得た。このカーボン試料を石英反応管に移し、10%H2-90%N2気流中において250℃で2時間熱処理することにより、白金微粒子担持カーボンを得た。
Next, the activity of the electrode catalyst prepared using various heat-treated carbon materials as a carrier was evaluated for oxygen reduction as follows.
First, 0.5 g of a carbon sample and a predetermined amount of Pt (NO 2 ) 2 (NH 3 ) 2 were added to ethanol and stirred for 30 minutes, and then ethanol was removed by a rotary evaporator to remove Pt (NO 2 ) 2 (NH 3 ) A carbon sample carrying 2 was obtained. This carbon sample was transferred to a quartz reaction tube and heat-treated at 250 ° C. for 2 hours in a 10% H 2 -90% N 2 stream to obtain carbon carrying platinum fine particles.

次いで、得られた白金微粒子担持カーボンを回転ディスク電極のガラス状カーボン上に載せて、その上に水とエタノールとの混合溶媒に溶かした固体高分子電解質材料(商標名
“ナフィオン”、デュポン社製)を滴下し、次いで加熱により溶媒を除去することにより
、PEFC用の電極(カソード)を調製した。
Subsequently, the obtained platinum fine particle-supported carbon was placed on a glassy carbon of a rotating disk electrode, and a solid polymer electrolyte material (trade name “Nafion”, manufactured by DuPont) dissolved in a mixed solvent of water and ethanol on the carbon. ) Was added dropwise, and then the solvent was removed by heating to prepare an electrode (cathode) for PEFC.

次いで、この電極を使ってアルゴン置換した0.5M硫酸水溶液中で水素吸脱着波を測定し、その面積を見積もることにより、作成した作用電極の白金表面積を求めた。
次いで、0.5M硫酸水溶液中にバブリングするガス種を酸素に変えて30分間酸素置換を行った後、1V vs. SCEから0V vs. SCEまで1mV/秒の速度で電位走査を行い、電流-電位曲
線を求めた。得られた曲線の1例(上記メソカーボンマイクロビーズ1を使用した例)を図
1に示す。
Next, using this electrode, hydrogen adsorption / desorption waves were measured in a 0.5 M sulfuric acid aqueous solution substituted with argon, and the area was estimated to determine the platinum surface area of the working electrode thus prepared.
Next, after changing the gas species to be bubbled in 0.5 M sulfuric acid aqueous solution to oxygen and performing oxygen substitution for 30 minutes, a potential scan was performed at a rate of 1 mV / sec from 1 V vs. SCE to 0 V vs. SCE, and the current-potential A curve was obtained. One example of the obtained curve (an example using the mesocarbon microbead 1) is shown in FIG.

電極触媒の活性は、この図における電流量によって決まるが、実際には白金微粒子近傍で物質が拡散する効果を補正しなければならない。このため、求めたいある電位における真の動力学的電流量i kinの値は、その電位で測定して得られた実測値i obsと、拡散限界電流i limを用いて、次の式で求めることができる(J. Electrochemical Soc., Vol. 143,
No.1, January 1966, pp18-23)。
The activity of the electrode catalyst is determined by the amount of current in this figure, but in reality, the effect of the substance diffusing near the platinum fine particles must be corrected. Therefore, the value of the true kinetic current amount i kin at a certain potential to be obtained is obtained by the following equation using the actual measurement value i obs obtained by measuring at the potential and the diffusion limit current i lim. (J. Electrochemical Soc., Vol. 143,
No.1, January 1966, pp18-23).

Figure 2005056686
ここでは、0.5V vs. SCEの電位でのi kinを計算して、各電極触媒の酸素還元に対する
活性とした。得られたi kinは、白金表面積あたりの数値を比較している。
Figure 2005056686
Here, i kin at a potential of 0.5 V vs. SCE was calculated and defined as the activity of each electrocatalyst for oxygen reduction. The obtained i kin compares numbers per platinum surface area.

各カーボン材料について求めた動力学的電気量を表2に示す。表2は、カーボン材料の熱処理前後の重量変化と比表面積の変化とを併せて示す。   Table 2 shows the kinetic electricity obtained for each carbon material. Table 2 shows the change in weight of the carbon material before and after heat treatment and the change in specific surface area.

Figure 2005056686
表2に示す結果から、既存のカーボン材料を特定の条件下に熱処理することにより、PEFCの性能を著しく向上させる新しいカーボン担体が得られることが明らかである。
Figure 2005056686
From the results shown in Table 2, it is clear that a new carbon support that significantly improves the performance of PEFC can be obtained by heat-treating an existing carbon material under specific conditions.

表2に示す結果を詳細に検討すると、カーボン担体の比表面積増大と電極性能向上との相関は、低いことが明らかである。このことから、電極性能向上の主な要因は、熱処理により改質されたカーボン担体の表面に含酸素官能基(OH基、COOH基、C=O基、ラクトン基
など)が導入されたことによるものと推測される。すなわち、これらの官能基が、担持さ
れている白金微粒子に電子的な作用を与えて白金の活性を向上させたと考えることもでき、或いはこれらの官能基が担体近傍での酸素還元反応に関与する化学種の密度を高めたとも考えることができる。
When the results shown in Table 2 are examined in detail, it is clear that the correlation between the increase in the specific surface area of the carbon support and the improvement in the electrode performance is low. Therefore, the main factor for improving the electrode performance is that oxygen-containing functional groups (OH group, COOH group, C = O group, lactone group, etc.) were introduced on the surface of the carbon support modified by heat treatment. Presumed to be. That is, it can be considered that these functional groups electronically acted on the supported platinum fine particles to improve the activity of platinum, or these functional groups are involved in the oxygen reduction reaction in the vicinity of the support. It can be considered that the density of chemical species is increased.

本発明による白金/カーボン担体複合体(白金触媒電極)を使用した場合に得られる電流-電位曲線の一例を示すグラフである。4 is a graph showing an example of a current-potential curve obtained when the platinum / carbon support composite (platinum catalyst electrode) according to the present invention is used.

Claims (6)

固体高分子形燃料電池における白金および/または白金合金含有カソードの活性を向上させる方法であって、カソードを構成するカーボン担体を酸素含有雰囲気中300〜800℃で10分〜100時間熱処理することを特徴とする方法。 A method for improving the activity of a platinum and / or platinum alloy-containing cathode in a polymer electrolyte fuel cell, wherein the carbon support constituting the cathode is heat-treated at 300 to 800 ° C. for 10 minutes to 100 hours in an oxygen-containing atmosphere. Feature method. カーボン担体の熱処理を350〜550℃で3〜66時間行う請求項1に記載の方法。 The method according to claim 1, wherein the heat treatment of the carbon support is performed at 350 to 550 ° C for 3 to 66 hours. 熱処理によるカーボン担体の重量減少を50%以下とする請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the weight loss of the carbon support by heat treatment is 50% or less. 熱処理によるカーボン担体の重量減少を0.5〜35%とする請求項3に記載の方法。 The method according to claim 3, wherein the weight loss of the carbon support by heat treatment is 0.5 to 35%. 請求項1〜4のいずれかに記載の方法により得られたカーボン担体に白金および/または白金合金を担持したことを特徴とする固体高分子形燃料電池におけるカソード。 A cathode in a polymer electrolyte fuel cell, wherein platinum and / or a platinum alloy are supported on the carbon support obtained by the method according to claim 1. 請求項5に記載のカソードを備えたことを特徴とする固体高分子形燃料電池。 A solid polymer fuel cell comprising the cathode according to claim 5.
JP2003286447A 2003-08-05 2003-08-05 Cathode of solid polymer fuel cell Pending JP2005056686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286447A JP2005056686A (en) 2003-08-05 2003-08-05 Cathode of solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286447A JP2005056686A (en) 2003-08-05 2003-08-05 Cathode of solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2005056686A true JP2005056686A (en) 2005-03-03

Family

ID=34365737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286447A Pending JP2005056686A (en) 2003-08-05 2003-08-05 Cathode of solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2005056686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269850A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Catalyst for electrode of polymer electrolyte fuel cell
JP2018538667A (en) * 2015-11-13 2018-12-27 アヴァロン バッテリー(カナダ)コーポレイションAvalon Battery(Canada)Corporation Improved redox flow battery electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269850A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Catalyst for electrode of polymer electrolyte fuel cell
JP2018538667A (en) * 2015-11-13 2018-12-27 アヴァロン バッテリー(カナダ)コーポレイションAvalon Battery(Canada)Corporation Improved redox flow battery electrode

Similar Documents

Publication Publication Date Title
US10483552B2 (en) Catalyst comprising cobalt core and carbon shell for alkaline oxygen reduction and method for preparing the same
KR20200099046A (en) Manufacturing method of nitrogen doped metal-carbon catalyst for fuel cell
US20100310950A1 (en) Catalyst for fuel cell, ful cell systems including the same, and associated methods
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
CN113540481B (en) Platinum-cobalt alloy carbon catalyst for proton exchange membrane fuel cell and preparation method thereof
CN113097502A (en) Preparation method of carbon-supported platinum catalyst with nitrogen-doped carbon as carrier
CN109216716B (en) Preparation method of Pt/C catalyst for fuel cell with high Pt loading
CN112002912A (en) Preparation method of nitrogen-doped carbon paper oxygen reduction reaction catalyst
CN112142037A (en) Cobalt and nitrogen doped carbon nano tube and preparation method and application thereof
CN113571713A (en) PtZn-loaded nitrogen-doped carbon catalyst, preparation method thereof and hydrogen-oxygen fuel cell
CN101976737A (en) Preparation of load-type Pt-Fe intermetallic compound nanoparticle catalyst
CN109546166B (en) Pt/metallic carbide/carbon nano material catalyst and preparation method thereof
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
CN109873174B (en) Preparation method of three-dimensional carrier supported platinum-palladium-cobalt alloy structure catalyst for low-temperature fuel cell
JP2018190545A (en) Electrode catalyst for fuel cell and method for producing the same
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
CN110600752B (en) H2Method for preparing carbon-supported Pt alloy catalyst by gas-phase thermal reduction
JP2005056686A (en) Cathode of solid polymer fuel cell
JP2010161034A (en) Method of manufacturing metal catalyst-supporting carbon powder
CN113871645A (en) Preparation method of uniformly-loaded carbon nanotube platinum-loaded electrocatalyst
JPWO2015045083A1 (en) Fuel cell electrode catalyst and membrane electrode assembly using the same
JP2006278217A (en) Fuel cell and membrane electrode assembly
JP4963080B2 (en) Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell
CN1604368A (en) A catalyst material for hydrogen-oxygen fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304