JP2005056604A - 自発光型平面表示装置 - Google Patents

自発光型平面表示装置 Download PDF

Info

Publication number
JP2005056604A
JP2005056604A JP2003206248A JP2003206248A JP2005056604A JP 2005056604 A JP2005056604 A JP 2005056604A JP 2003206248 A JP2003206248 A JP 2003206248A JP 2003206248 A JP2003206248 A JP 2003206248A JP 2005056604 A JP2005056604 A JP 2005056604A
Authority
JP
Japan
Prior art keywords
self
electron source
luminous flat
emission
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206248A
Other languages
English (en)
Inventor
Makoto Okai
誠 岡井
Yasuhiko Muneyoshi
恭彦 宗吉
Tomio Yaguchi
富雄 矢口
Nobuaki Hayashi
伸明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2003206248A priority Critical patent/JP2005056604A/ja
Priority to KR1020040061782A priority patent/KR20050016177A/ko
Priority to US10/911,601 priority patent/US7196463B2/en
Publication of JP2005056604A publication Critical patent/JP2005056604A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Abstract

【課題】ゲート電極により数Vから数十Vの比較的低い電圧でゲート動作を可能とした自発光型平面表示装置を提供する。
【解決手段】カーボンナノチューブを電子源としたカソード電極701とゲート電極702を形成した背面基板601で構成した背面パネル1と蛍光体及びアノード電極602を形成した前面パネル2を封止枠3で封止した自発光型平面表示装置の電子源の必要最大エミッション電流密度を得るための電界強度Emaxと、最小エミッション電流密度となる電界強度Eminの差を1V/μm以下、好ましくは0.5V/μm以下とする。
【選択図】 図11

Description

【0001】
【発明の属する技術分野】
本発明は、真空中への電子放出を利用した表示装置に係り、特に、ナノチューブで構成した電子源を有するカソード電極とこの電子源からの電子の放出量を制御するゲート電極を備えた背面パネルとから取り出された電子の励起で発光する複数色の蛍光体層とアノード電極を有する前面パネルとを具備した自発光型平面表示装置に関する。
【0002】
【従来の技術】
高輝度、高精細に優れたディスプレイデバイスとして従来からカラー陰極線管が広く用いられている。しかし、近年の情報処理装置やテレビ放送の高画質化に伴い、高輝度、高精細の特性をもつと共に軽量、省スペースの平面型表示装置の要求が高まっている。
【0003】
その典型例として液晶表示装置、プラズマ表示装置などが実用化されている。また、特に、高輝度化が可能なものとして、電子源から真空への電子放出を利用した電子放出型表示装置、または電界放出型表示装置や、低消費電力を特徴とする有機ELディスプレイなど、種々の型式のパネル型表示装置の実用化も近い。なお、補助的な照明光源を必要としないプラズマ表示装置、電子放出型表示装置あるいは有機EL表示装置を自発光型平面表示装置と称する。
【0004】
このような平面型の表示装置のうち、上記電界放出型の表示装置には、C.A.Spindtらにより発案されたコーン状の電子放出構造をもつもの、メタル−インシュレータ−メタル(MIM)型の電子放出構造をもつもの、量子論的トンネル効果による電子放出現象を利用する電子放出構造(表面伝導型電子源とも呼ばれる)をもつもの、さらにはダイアモンド膜やグラファイト膜、カーボンナノチューブに代表されるナノチューブなどが持つ電子放出現象を利用するもの、等が知られている。
【0005】
自発光平面型表示装置の一例である電界放出型の表示装置は、内面に電界放出型の電子源と制御電極であるゲート電極を形成した背面パネルと、この背面パネルと対向する内面に複数色の蛍光体層とアノード電極(陽極)とを備えた前面パネルの両者の内周縁に封止枠を介挿して封止し、当該背面パネルと前面パネルおよび封止枠で形成される内部を真空にして構成される。背面パネルは、ガラスあるいはアルミナ等を好適とする背面基板の上に、第1の方向に延在しこの第1の方向と交差する第2の方向に延在し第1の方向に並設されて電子源をもつ複数の陰極配線と、第2の方向に延在し第1の方向に並設して設けたゲート電極を有する。そして、カソード電極とゲート電極との間の電位差で電子源からの電子の放出量(放出のオン・オフを含む)を制御する。
【0006】
また、前面パネルはガラス等の光透過性の材料で形成された前面基板の上に蛍光体層とアノード電極を有する。封止枠は背面パネルと前面パネルとの内周縁にフリットガラスなどの接着材で固着される。背面パネルと前面パネルおよび封止枠で形成される内部の真空度は、例えば10−5〜10−7Torrである。表示面サイズが大きいものでは、背面パネルと前面パネルの間に間隙保持部材(スペーサ)を介挿して固定し、両基板間の間を所定の間隔に保持している。
【0007】
なお、ナノチューブとしての典型例であるカーボンナノチューブを電子源とした自発光型平面表示装置に関する従来技術を開示したものとして、「非特許文献1」等、数多く報告されている。
【0008】
【非特許文献1】
SID 99 Digest pp.1134−1137
【0009】
【発明が解決しようとする課題】
カーボンナノチューブ等のナノチューブを利用した電子放出素子、およびそれを用いた自発光型平面表示装置は数多く報告されている。前記「非特許文献1」には印刷で形成したカーボンナノチューブ電子源で公称4.5インチの自発光型平面表示装置を作成した例が開示されている。従来、カーボンナノチューブを電子源とした自発光型平面表示装置においては、必要な最大エミッション電流密度を得るための電界強度Emaxと、最小エミッション電流密度(最大エミッション電流密度の1/1000と定義する)となる電界強度Eminの差(Emax−Emin)が2V/μm以上と大きいため、カーボンナノチューブの比較的近傍にゲート構造(ゲート電極、制御電極)を設置しても、ゲート電極によるオン・オフ動作に必要な電圧が100V程度と高くなってしまう。
【0010】
特に、スクリーン印刷等の安価な塗布方法でゲート電極を製作する場合、カーボンナノチューブとゲート電極との距離は、当該印刷方法の精度により数十μm程度になるため、Emax−Eminが2V/μm以上となってしまい、ゲート電極によるオン・オフ動作(エミッション制御動作(ゲート動作))に必要な電圧が高くなる。なお、本発明の説明における具体的数値は限定的なものではなく、その近傍を含むことに留意すべきである。
【0011】
本発明の第1の目的は、ゲート電極により数Vから数十Vの比較的低い電圧でゲート動作を可能とした自発光型平面表示装置を提供することにある。
【0012】
また、従来、そのエミッションサイトの密度が数千個/cm程度と非常に低いため、表示画面がザラついて見え、不均一な表示になっていた。エミッションサイトの密度が低い主な原因は、エミッション領域の表面にカーボンナノチューブは沢山あるが、電界集中が大きくエミッションする直径の小さいカーボンナノチューブの量が少ないためと考えられる。
【0013】
本発明の第2の目的は、電子源を構成するエミッションサイトの密度を100万個/cm以上、好ましくは1000万個/cm以上とすることにより、ザラつきの無い均一な表示画像を実現した自発光型平面表示装置を提供することにある。
【0014】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明は、必要な最大エミッション電流密度を得るための電界強度Emaxと、最小エミッション電流密度となる電界強度Eminの差が1V/μm以下、好ましくは0.5V/μm以下であるカーボンナノチューブ電子源を用いることにより、数Vから数十Vの比較的低電圧でのゲート動作を可能とした。
【0015】
また、本発明は、前記最大エミッション電流密度を10mA/cm、好ましくは30mA/cmとし、前記表示領域内の全ての画素のエミッション電流密度と電界強度が前記関係を満足するようにした。
【0016】
そして、上記第2の目的を達成するため、本発明は、直径分布の狭いナノチューブを電子源として用いることにより、エミッションサイト密度を増大させる。特に、最小直径から最小直径の1.2倍、好ましくは1.1倍までの直径を有するナノチューブの平均的な密度が1000万本/cm以上として、エミッションサイト密度を100万個/cm以上、好ましくは1000万個/cm以上とすることを可能とした。
【0017】
また、本発明は、画素の全エミッション領域における最小直径の1.2倍、好ましくは1.1倍までの直径を有するナノチューブの平均的な密度を1000万本/cm以上とした。そして、前記画素を赤、緑、青の副画素として、各副画素の前記電子原が1又は複数のエミッション領域を有するようにした。
【0018】
なお、本発明は上記の構成および後述する実施の形態に記載の構成に限定されるものではなく、本発明の技術思想を逸脱することなく種々の変形が可能であることは言うまでもない。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について、カーボンナノチューブを電子源とした実施例の図面を参照して詳細に説明する。図1はカーボンナノチューブの電子源のエミッション電流密度と電界強度との代表的な関係の説明図であり、横軸に電界強度E(V/μm)、縦軸にエミッション電流密度I(mA/cm)を取って示す。例えば、所謂40型クラスの大型の平面表示装置を実現するためには、10乃至30mA/cmの最大エミッション電流密度が必要である。図1では、10mA/cmの最大エミッション電流密度を得るために、5V/μmの電界が必要で、またそのエミッション電流密度が最小エミッション電流密度すなわち1/1000で充分ゼロに近づく電界は3V/μmであり、その電界強度差は2V/μmである。
【0020】
エミッション電流密度と電界強度との関係において、この電界強度差(Emax−Emin)が何によって決まるかを説明する。図2はエミッション電流密度と電界強度の関係式の説明図である。エミッション電流密度Iは、電界強度が比較的大きいところでは、図1に示したグラフの傾きが電界集中係数γの二乗に比例する。電界集中係数γはカーボンナノチューブの長さLに比例し、その直径dに反比例する。そこで、上記電界強度差をできるだけ小さくするためには、カーボンナノチューブの長さLを長く、直径dを小さくすればよいことになる。なお、図2に示した式におけるφは仕事関数、C1,C2,C3は定数である。
【0021】
図3は電子源を構成するカーボンナノチューブの理想的な配置の説明図である。参照符号301はカーボンナノチューブを固定する基板(具体的にはカソード電極)、302はカーボンナノチューブを示す。ここでは、図3に示すように、カーボンナノチューブ302を基板301に対して垂直に配置し、また、個々のカーボンナノチューブが直径dに比べて十分な距離で離れているものと仮定する。実際には、カーボンナノチューブ302が基板301に対して斜めに配向していたり、また密集している場合もあるが、電界強度差を小さくするために、カーボンナノチューブ302の長さLを長く、また直径dを小さく、さらにカーボンナノチューブをある程度以上の間隔で配置するという考え方は概ね正しいと考えされる。
【0022】
電界計算によれば、カーボンナノチューブ302の直径dが1mmで、長さLが1μmの場合、それぞれのカーボンナノチューブの間隔を1μm以上にすると、それぞれの先端で均等な電界集中が起こることが示されている。ここで、カーボンナノチューブ302の長さLは自立できる長さ、すなわち自立長によって決まり、直径dが1nm程度の場合、自立長は1μm程度である。また、十分な電界集中を得るためには、カーボンナノチューブ302の間隔は直径dに比例して広くする必要がある。
【0023】
図4はカーボンナノチューブ電子源のエミッション電流密度と電界強度との関係の説明図であり、横軸に電界強度(相対値)、縦軸にエミッション電流密度(相対値)を取って示す。必要な最大エミッション電流密度をImax、この最大エミッション電流密度を得るための電界強度をEmax(最大電界強度)とする。また、エミッション電流密度がImaxの1/1000の値、すなわち最小エミッション電流密度をIminとし、そのときの電界強度をEmin(最小電界強度)とする。カーボンナノチューブ電子源のエミッション電流密度と電界強度との関係は図4に示したようになる。
【0024】
図5はゲート動作電圧と最大電界強度と最小電界強度の差の関係の説明図であり、横軸に最大電界強度と最小電界強度の差(Emax−Emin)(相対値)を、縦軸にゲート動作電圧(相対値)を取って示す。図5のグラフの傾きは、ゲート構造に依存するが、Emax−Eminが小さい程ゲート動作電圧を小さくなることが示されている。
【0025】
次に、カーボンナノチューブを用いた電子源のエミッションサイトの密度と画面表示の関係について説明する。図6はカーボンナノチューブを用いた電子源に蛍光表示板を組み合わせてエミッションサイトからに電子による蛍光表示板上での表示の状態をエミッションサイト密度の相違で示す模式図である。図6における参照符号100は1mm×1mmの蛍光表示板、図6の左側に示した参照符号101はエミッションサイト密度が1000個/cmすなわち1mm×1mmに10個での蛍光表示板上でのエミッションイメージ、図6の右側に示した参照符号102はエミッションサイト密度が100万個/cmすなわち1mm×1mmに1000個での蛍光表示板上でのエミッションイメージを示す。図6に示されたように、均一な表示を実現するためには、100万個/cm以上のエミッションサイト密度が必要である。
【0026】
図7は本発明による自発光型平面表示装置の画素構造の一例を模式的に説明する平面図である。図7はカラー表示のための一画素の構造で、この場合は赤(R)の副画素201、緑(G)の副画素202、青(B)の副画素203でカラー一画素を構成する。各副画素にはカーボンナノチューブを電子源とするエミッション領域204を有している。なお、モノクロ表示の場合は副画素のそれぞれが一画素となる。
【0027】
図8は本発明による自発光型平面表示装置の画素構造の他例を模式的に説明する平面図である。図8も図7と同様のカラー表示のための一画素を示す。この画素構造では、赤(R)の副画素301、緑(G)の副画素302、青(B)の副画素303でカラー一画素を構成する。各副画素にはカーボンナノチューブを電子源とするエミッション領域304が複数個有している。なお、モノクロ表示の場合は副画素のそれぞれが一画素となる。
【0028】
図7および図8に示したもの以外に、各副画素の形状、およびエミッション領域の個数を任意とすることが可能である。そして、エミッション領域204、304のそれぞれの単位面積が前記したエミッションサイトに対応する。エミッション領域に設けるカーボンナノチューブには、シングルウオールとマルチウオールとがある。
【0029】
図9は電子源を構成するシングルウオールカーボンナノチューブの直径分布の説明図である。横軸は直径(nm)で、縦軸は頻度(%)を示す。シングルウオールカーボンナノチューブの場合は、既知の作製方法では最小直径は0.7nm(五員環が隣り合わないというルールに従う)であり、直径の大きい方には制限がないので、一般的には図10に示したような直径分布となる。したがって、シングルウオールカーボンナノチューブの場合は、特に分級処理をしなくても、ある程度の密度があれば最小直径から最小直径の1.2倍(好ましくは1.1倍)までの直径を有するカーボンナノチューブの平均的な密度を1000万本/cm以上にすることが可能である。
【0030】
図10は電子源を構成するマルチウオールカーボンナノチューブの直径分布の説明図である。電子源を構成するマルチウオールカーボンナノチューブの直径分布の説明図である。横軸は直径(nm)で、縦軸は頻度(%)を示す。マルチウオールカーボンナノチューブの場合は、一般的に左右対象な直径分布となる。最小直径から最小直径の1.2倍(好ましくは1.1倍)までの直径を有するカーボンナノチューブの平均的な密度を1000万本/cm以上にするためには、フィルタ処理等の手法により、分布ピークよりも細い部分の分布を狭くすることが必要である。
【0031】
次に、本発明による自発光型平面表示装置の第一実施例を図11乃至図17を参照して説明する。図11は本発明による自発光型平面表示装置の第一実施例の全体構造を示す斜め上から見た展開斜視図である。また、図12は図11の自発光型平面表示装置の全体構成を展開して説明する斜め下方から見た模式図である。
【0032】
図11および図12において、本実施例の自発光型平面表示装置は、背面パネル1および前面パネル2を封止枠3で封止して一体化して構成される。背面パネル1は、ガラスを好適とする背面基板601の内面に電子放出・制御構造として第1の方向に延在し第1の方向と交差する第2の方向に並設された多数のカソード電極701と、第2の方向に延在し第1の方向に平成された多数のゲート電極702を有する。カソード電極701には映像信号(図中、走査信号と表記)が印加され、ゲート電極702には選択信号(図中、ゲート信号と表記)が印加される。
【0033】
前面パネル2を構成する前面基板103は透明ガラスを好適とし、その内面に複数の(ここでは、赤(R)、緑(G)、青(B)の3色)蛍光体層800が第1の方向にストライブ状に塗布され、その上に透明導電膜としてアルミニウムを数十乃至数百nm厚に蒸着したアノード電極602を全面に形成してある。このアノード電極602には加速電圧が印加される。蛍光体層800は図示したようなストライブ状に限らず、各色毎にドット状としてもよい。なお、封止枠3は背面パネル1と前面パネル2の貼り合わせ内部を真空状態に保つ機能と共に対向面の間隙を所定値に維持する機能を有する。また、画面サイズが大きい場合には、封止枠3で封止される両パネル間にガラスビーズやプラスチックビーズもしくはフォトリソグラフィー法で形成したレジストからんる柱状スペーサを介在して対向面の間隙を所定値に保持することが行われる。なお、封止枠3もガラスとするのが好適である。
【0034】
図13は本発明の自発光型平面表示装置を構成する背面パネルの構成例の模式的な説明図であり、図13(a)は平面図、図13(b)は図13(a)の要部である一画素の構成を示す。背面基板601の表示領域700には、前記したカソード電極701とゲート電極702がマトリクス状に配置されている。カソード電極701とゲート電極702は図示しない絶縁層で電気的に絶縁されており、図13(b)に示したように各交差部にカーボンナノチューブで形成した電子源(ここでは、カーボンナノチューブ)703を有している。この電子源703はカソード電極202上に形成され、ゲート電極201に設けた制御開口(後述)から露呈している。
【0035】
図14は本発明の自発光型平面表示装置を構成する前面パネルの構成例の模式的な説明図であり、図14(a)は平面図、図14(b)は図14(a)の要部である蛍光体層の配列例を示す。なお、この蛍光体層の上面には前記したアノード電極が形成されているが、図示は省略した。前面パネル2は映像観察面であり、前面基板603はガラスを好適とする。前面基板603の内面には、ストライプ状に繰り返し配列した3色の蛍光体801(赤)、802(緑)、803(青)を有し、各蛍光体801、802、803の境界には遮光層すなわちブラックマトリクス804が配置されている。各蛍光体801、802、803は前記した電子源を有する一画素(ここでは、カラーの副画素に相当)すなわちカソード電極とゲート電極の交差部のそれぞれと対向して配置される。これら蛍光体801、802、803とブラックマトリクス804からなる蛍光体層は次のようにして形成される。
【0036】
先ず、前面基板603上に公知のリフトオフ法でブラックマトリクス804を形成する。次に、同じく公知のスラリー法を用い各蛍光体がブラックマトリクス804で区画されるように赤(R)、緑(G)、青(B)の3色の蛍光体を順に形成する。その上を覆って前記したアノード電極を形成する。
【0037】
こうして製作した前面パネル2を前記の背面パネル1に対して電子源と蛍光体の位置決めを行い、封止枠3を介して重ね合わせ、フリットガラスで接着する。フリットガラスは前面パネル2、背面パネル1、封止枠3の各対向面の何れかあるいは双方に塗布され、450°Cで加熱し、その後の温度低下で硬化させる。両パネルと封止枠で構成される内部空間は図示しない排気管から真空に引きした後、排気管を封じ切る。排気管は背面基板601の一部あるいは封止枠3の一部に設けるのが好ましい。そして、カソード電極に映像信号を、ゲート電極に制御信号を、アノード電極に陽極電圧(アノード電圧:高電圧)を与えることで所望の映像(画像)を表示させることができる。
【0038】
次に、背面パネルの詳細構造の第一実施例を図15乃至図17を参照して説明する。図15は背面パネルの要部構造を模式的に説明する平面図であり、2×2の画素部分を示す。図16は図15のA−A’線に沿った断面図、図17は図15のB−B’線に沿った断面図である。図15乃至図17において、ガラスからなる背面基板909(図11、図12の参照符号601に相当)の表面に、厚さは0.2乃至10μmで幅が300μmのストアイプ状のカソード電極901(図11、図12の参照符号701に相当)を間隔60μmで600本形成する。次に、カソード電極901を覆って絶縁層905を形成する。この絶縁層905の厚みは1乃至50μmである。この絶縁層の画素部分すなわち後述するゲート電極との交差部には直径1乃至50μmの絶縁層開口906が設けられている。
【0039】
絶縁層905を焼成後、その上に厚さが0.2乃至10μmで、幅が90μm、間隔が30μmのストアイプ状のゲート電極902(図11、図12の参照符号702に相当)を2400本形成する。カソード電極901とゲート電極902の交差部に直径1乃至50μmの制御開口903を有する。なお、ゲート電極902にはカソード電極901との交差部で上記絶縁層905の絶縁層開口906とゲート電極902の制御開口903は同軸となっており、この両開口の底部すなわちカソード電極901にカーボンナノチューブの電子源が設けられる。
【0040】
このように構成された電子放出・制御構造を有する背面パネルに前記した前面パネルを重ね合わせ、封止枠で封止して自発光型平面表示装置を製作した。そして、カソード電極901に走査信号(映像信号)を、ゲート電極902にゲート信号(制御信号)を入力し、前面パネルのアノード電極に加速電圧を印加することで均一に発光する映像を表示させることができた。
【0041】
次に、図18乃至図21を参照して背面基板に電子源を形成するプロセスの第一実施例を説明する。図18乃至図21は本発明の第一実施例における背面基板上に電子源を形成するプロセスの説明図である。図18乃至図21の(a)は電子源部分の上面図、(b)は各図(a)のA−A’線の沿った断面図、また図21(c)は図21(a)のB−B’線断に沿った断面図である。
【0042】
先ず、図18に示したように、前面基板1009(図14の参照符号909に相当)上に幅が300μm、間隔60μmのカソード電極1001(図15の参照符号901に相当)を600本形成する。カソード電極1001はカーボンナノチューブを含有した導電性ペーストをスクリーン印刷で塗布する。その厚みは1μmである。次に、図19に示したように、感光性誘電体ペーストを全面にスクリーン印刷後、通常のフォトリソグラフィープロセスで電子源開口となる絶縁層開口1003(図16の絶縁層開口906に相当)を形成する。これを大気中で550°C、30分間の焼成を行うことで絶縁層1005(図16の絶縁層開口905に相当)とする。絶縁層1005の厚みは10μmである。
【0043】
図20に示したように、感光性銀ペーストを全面にスクリーン印刷する。通常のフォトリソグラフィープロセスで図21に示したゲート電極1002(図16のゲート電極902に相当)を形成し、大気中で550°C、30分間の焼成を行うことでゲート電極を得る。ゲート電極1002の幅は90μm、間隔は30μmであり、これを2400本形成した。また、このゲート電極1002の厚みは5μmであり、絶縁層開口と同じ部分に同じ大きさ、あるいはやや大きめの制御開口が形成される。
【0044】
なお、本実施例では、カソード電極1001およびゲート電極1002を特定の金属で形成したが、必要な電気伝導性を有するものであれば、どのような金属または導電性材料であってもよい。また、本実施例では、フォトリソグラフィー法を用いてゲート電極を製作するものとしたが、スクリーン印刷法などの他の方法を用いることも可能である。さらに、本実施例では、カーボンナノチューブを電子源としたが、このカーボンナノチューブはシングルウオールでもマルチウオール、あるいはそれらの混合材料、もしくはカーボン以外の他の材料でできたナノチューブでもよい。
【0045】
ここでは、30mA/cmのエミッション電流密度を得るための電界強度が1V/μm、エミッション電流密度がその1/1000になる時の電界強度が0.6V/μmであり、その電界強度差が0.4V/μmのカーボンナノチューブ電子源を用いたため、上記した電子源の開口の直径が10μmの場合、数ボルトの電圧でゲート動作を実現できた。
【0046】
また、ここでは、直径の揃ったカーボンナノチューブを電子源の材料として用いたため、各画素の全エミッション領域の表面において、最小直径から最小直径の1.2倍(好ましくは1.1倍)までの直径を有するカーボンナノチューブの平均的な密度が1000万本/cm以上である電子源を製作できた。その結果、各画素の全エミッション領域における平均的なエミッションサイトの密度を100万個/cm以上、好ましくは1000万個/cm以上とすることができた。そして、自発光型平面表示装置の隣接画素間の輝度のばらつきを1%以下にすることができた。
【0047】
次に、背面パネルの詳細構造の第二実施例を図22乃至図24を参照して説明する。図22は本発明の自発光型平面表示装置の背面パネルの要部構造を模式的に説明する平面図であり、2×2の画素部分を示す。図23は図22のA−A’線に沿った断面図、図24は図22のB−B’線に沿った断面図である。図22乃至図24において、ガラスを好適とする背面基板1109(図11、図12の参照符号601に相当)の表面に、厚さは0.2乃至10μmで幅が300μmのカソード電極1101(図15乃至図17の参照符号901に相当)を間隔60μmで600本形成する。次に、カソード電極1101を覆って絶縁層1105(図15乃至図17の参照符号905に相当)を形成する。この絶縁層905の厚みは1乃至50μmである。この絶縁層の画素部分すなわち後述するゲート電極との交差部には直径1乃至50μmの絶縁層開口1103が設けられている。
【0048】
絶縁層1103を焼成後、その上に厚さが0.2乃至10μmで、幅が90μm、間隔が30μmのゲート電極1102(図15乃至図17の参照符号1102に相当)を2400本形成する。カソード電極1101とゲート電極1102の交差部に直径1乃至50μmの制御開口1104を有する。なお、ゲート電極1102にはカソード電極1101との交差部で上記絶縁層1103の絶縁層開口1103とゲート電極1102の制御開口1104は同軸となっており、この両開口の底部すなわちカソード電極1101にカーボンナノチューブの電子源1106が設けられる。
【0049】
このように構成された電子放出・制御構造を有する背面パネルに前記した前面パネルを重ね合わせ、封止枠で封止して自発光型平面表示装置を製作した。そして、カソード電極1101に走査信号(映像信号)を、ゲート電極1102にゲート信号(制御信号)を入力し、前面パネルのアノード電極に加速電圧を印加することで均一に発光する映像を表示させることができた。
【0050】
次に、図25乃至図28を参照して背面基板に電子源を形成するプロセスの第二実施例を説明する。図25乃至図28は本発明の第二実施例の背面基板上に電子源を形成するプロセスの説明図である。図25乃至図28の(a)は電子源部分の上面図、(b)は各図(a)のA−A’線の沿った断面図、また図28(c)は図28(a)のB−B’線断に沿った断面図である。
【0051】
先ず、図25に示したように、前面基板1209(図22乃至図24の参照符号1109に相当)上に幅が300μm、間隔60μmのカソード電極1201(図22乃至図24の参照符号1101に相当)を600本形成する。カソード電極1201は感光性銀ペーストのスクリーン印刷で塗布する。その厚みは1μmである。次に、図26に示したように、絶縁層1205をスクリーン印刷で形成する。これを通常のフォトリソグラフィープロセスで電子源開口となる絶縁層開口1103(図23の絶縁層開口1103に相当)を形成する。これを大気中で550°C、30分間の焼成を行うことで絶縁層1105とする。絶縁層1105の厚みは10μmである。
【0052】
図27に示したように、感光性銀ペーストを全面にスクリーン印刷する。通常のフォトリソグラフィープロセスで図28に示したゲート電極1202を形成し、大気中で550°C、30分間の焼成を行うことでゲート電極を得る。ゲート電極1202の幅は90μm、間隔は30μmであり、これを2400本形成した。また、このゲート電極1002の厚みは5μmであり、絶縁層開口と同じ部分に同じ大きさ、あるいはやや大きめの制御開口が形成される。最後に、絶縁層開口の底部にカーボンナノチューブを含有したインクをインクジェット法で塗布し、電子源1206を形成した。
【0053】
なお、本実施例では、カソード電極1201およびゲート電極1202を特定の金属で形成したが、必要な電気伝導性を有するものであれば、どのような金属または導電性材料であってもよい。また、本実施例では、フォトリソグラフィー法を用いてゲート電極を製作するものとしたが、スクリーン印刷法などの他の方法を用いることも可能である。さらに、本実施例では、カーボンナノチューブを含有したインクをインクジェット法で塗布したが、これをスクリーン印刷等の他の塗布法を用いて塗布してもよい。さらに、このカーボンナノチューブはシングルウオールでもマルチウオール、あるいはそれらの混合材料、もしくはカーボン以外の他の材料でできたナノチューブでもよい。
【0054】
ここでは、30mA/cmのエミッション電流密度を得るための電界強度が1V/μm、エミッション電流密度がその1/1000になる時の電界強度が0.6V/μmであり、その電界強度差が0.4V/μmのカーボンナノチューブ電子源を用いたため、上記した電子源の開口の直径が10μmの場合、数ボルトの電圧でゲート動作を実現できた。
【0055】
また、ここでは、直径の揃ったカーボンナノチューブを電子源の材料として用いたため、各画素の全エミッション領域の表面において、最小直径から最小直径の1.2倍(好ましくは1.1倍)までの直径を有するカーボンナノチューブの平均的な密度が1000万本/cm以上である電子源を製作できた。その結果、各画素の全エミッション領域における平均的なエミッションサイトの密度を100万個/cm以上、好ましくは1000万個/cm以上とすることができた。そして、自発光型平面表示装置の隣接画素間の輝度のバラツキを1%以下にすることができた。
【0056】
【発明の効果】
以上説明したように、本発明によれば、数ボルトから数十ボルトの比較的低い電圧でゲート動作すなわち電子の取り出し制御を可能とした自発光型平面表示装置を提供することができる。また、各画素の全エミッション領域における平均的なエミッションサイトの密度を100万個/cm以上、さらに好ましくは1000万個/cm以上とすることが可能となり、隣接画素(もしくは隣接する副画素)間の輝度のバラツキを1%以下として高品質の画像表示を可能とした自発光型平面表示装置を提供することができる。
【図面の簡単な説明】
【図1】カーボンナノチューブの電子源のエミッション電流密度と電界強度との代表的な関係の説明図である。
【図2】エミッション電流密度と電界強度の関係式の説明図である。
【図3】電子源を構成するカーボンナノチューブの理想的な配置の説明図である。
【図4】カーボンナノチューブ電子源のエミッション電流密度と電界強度との関係の説明図である。
【図5】ゲート動作電圧と最大電界強度と最小電界強度の差の関係の説明図である。
【図6】カーボンナノチューブを用いた電子源に蛍光表示板を組み合わせてエミッションサイトからに電子による蛍光表示板上での表示の状態をエミッションサイト密度の相違で示す模式図である。
【図7】本発明による自発光型平面表示装置の画素構造の一例を模式的に説明する平面図である。
【図8】本発明による自発光型平面表示装置の画素構造の他例を模式的に説明する平面図である。
【図9】電子源を構成するシングルウオールカーボンナノチューブの直径分布の説明図である。
【図10】電子源を構成するマルチウオールカーボンナノチューブの直径分布の説明図である。
【図11】本発明による自発光型平面表示装置の第一実施例の全体構造を示す斜め上から見た展開斜視図である。
【図12】図11の自発光型平面表示装置の全体構成を展開して説明する斜め下方から見た模式図である。
【図13】本発明の自発光型平面表示装置を構成する背面パネルの構成例の模式的な説明図である。
【図14】本発明の自発光型平面表示装置を構成する前面パネルの構成例の模式的な説明図である。
【図15】背面パネルの要部構造を模式的に説明する平面図である。
【図16】図15のA−A’線に沿った断面図である。
【図17】図15のB−B’線に沿った断面図である。
【図18】本発明の第一実施例における背面基板上に電子源を形成するプロセスの説明図である。
【図19】本発明の第一実施例における背面基板上に電子源を形成する図18に続くプロセスの説明図である。
【図20】本発明の第一実施例における背面基板上に電子源を形成する図19に続くプロセスの説明図である。
【図21】本発明の第一実施例における背面基板上に電子源を形成する図20に続くプロセスの説明図である。
【図22】本発明の自発光型平面表示装置の背面パネルの要部構造を模式的に説明する平面図である。
【図23】図22のA−A’線に沿った断面図である。
【図24】図22のB−B’線に沿った断面図である。
【図25】本発明の第二実施例の背面基板上に電子源を形成するプロセスの説明図である。
【図26】本発明の第二実施例の背面基板上に電子源を形成する図25に続くプロセスの説明図である。
【図27】本発明の第二実施例の背面基板上に電子源を形成する図26に続くプロセスの説明図である。
【図28】本発明の第二実施例の背面基板上に電子源を形成する図27に続くプロセスの説明図である。
【符号の説明】
1・・・背面パネル、2・・・前面パネル、3・・・封止枠、100・・・1mm×1mmの蛍光表示板、101,102・・・エミッションイメージ、301・・・カーボンナノチューブを固定する基板(具体的にはカソード電極)、302・・・カーボンナノチューブ、601・・・背面基板、701・・・カソード電極、702・・・ゲート電極、800・・・蛍光体層、801・・・赤(R)蛍光体、802・・・緑(G)蛍光体、803・・・青(B)蛍光体、804・・・ブラックマトリクス。

Claims (7)

  1. 背面基板上に、第1の方向に延在し第1の方向と交差する第2の方向に並設され、ナノチューブからなる多数の電子源を有する複数のカソード電極と、前記カソード電極とは絶縁層を介して前記第2の方向に延在し第1の方向に並設されて前記電子源からの電子の取り出しを制御する複数のゲート電極を備え、前記カソード電極と前記ゲート電極の交差部に形成される多数の画素で表示領域を構成する背面パネルと、
    前記背面パネルの表示領域に有する前記電子源から取り出される電子の励起で発光する複数色の蛍光体層とアノード電極を有する前面パネルとを具備する自発光型平面表示装置であって、
    前記電子源の必要な最大エミッション電流密度を得るための電界強度Emaxと、エミッション電流密度が必要な最大エミッション電流密度の1/1000になる電界強度Eminとの関係として、
    Emax−Eminが1V/μm以下であることを特徴とする自発光型平面表示装置。
  2. 前記最大エミッション電流密度が10mA/cm、好ましくは30mA/cmであることを特徴とする請求項1に記載の自発光型平面表示装置。
  3. 前記表示領域内の全ての画素のエミッション電流密度と電界強度が前記関係を満足することを特徴とする請求項1又は2に記載の自発光型平面表示装置。
  4. 背面基板上に、第1の方向に延在し第1の方向と交差する第2の方向に並設され、ナノチューブからなる多数の電子源を有する複数のカソード電極と、前記カソード電極とは絶縁層を介して前記第2の方向に延在し第1の方向に並設されて前記電子源からの電子の取り出しを制御する複数のゲート電極を備え、前記カソード電極と前記ゲート電極の交差部に形成される多数の画素で表示領域を構成する背面パネルと、
    前記背面パネルの表示領域に有する前記電子源から取り出される電子の励起で発光する複数色の蛍光体層とアノード電極を有する前面パネルとを具備する自発光型平面表示装置であって、
    前記画素の全エミッション領域における平均的なエミッションサイト密度が100万個/cm以上であることを特徴とする自発光型平面表示装置。
  5. 背面基板上に、第1の方向に延在し第1の方向と交差する第2の方向に並設され、ナノチューブからなる多数の電子源を有する複数のカソード電極と、前記カソード電極とは絶縁層を介して前記第2の方向に延在し第1の方向に並設されて前記電子源からの電子の取り出しを制御する複数のゲート電極を備え、前記カソード電極と前記ゲート電極の交差部に形成される多数の画素で表示領域を構成する背面パネルと、
    前記背面パネルの表示領域に有する前記電子源から取り出される電子の励起で発光する複数色の蛍光体層とアノード電極を有する前面パネルとを具備する自発光型平面表示装置であって、
    前記画素の全エミッション領域における最小直径の1.2倍までの直径を有するナノチューブの平均的な密度が1000万本/cm以上であることを特徴とする自発光型平面表示装置。
  6. 前記画素は赤、緑、青の副画素を構成し、各副画素の前記電子原は1又は複数のエミッション領域を有することを特徴とする請求項4又は5に記載の自発光型平面表示装置。
  7. 前記ナノチューブはカーボンナノチューブであることを特徴とする請求項1、4又は5の何れかに記載の自発光型平面表示装置。
JP2003206248A 2003-08-06 2003-08-06 自発光型平面表示装置 Pending JP2005056604A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003206248A JP2005056604A (ja) 2003-08-06 2003-08-06 自発光型平面表示装置
KR1020040061782A KR20050016177A (ko) 2003-08-06 2004-08-05 자발광형 평면 표시 장치
US10/911,601 US7196463B2 (en) 2003-08-06 2004-08-05 Emissive flat panel display having electron sources with high current density and low electric field strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206248A JP2005056604A (ja) 2003-08-06 2003-08-06 自発光型平面表示装置

Publications (1)

Publication Number Publication Date
JP2005056604A true JP2005056604A (ja) 2005-03-03

Family

ID=34113707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206248A Pending JP2005056604A (ja) 2003-08-06 2003-08-06 自発光型平面表示装置

Country Status (3)

Country Link
US (1) US7196463B2 (ja)
JP (1) JP2005056604A (ja)
KR (1) KR20050016177A (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050096534A (ko) * 2004-03-31 2005-10-06 삼성에스디아이 주식회사 전자 방출 표시 장치의 캐소드 기판 및 그 제조 방법
JP2006059752A (ja) * 2004-08-23 2006-03-02 Hitachi Displays Ltd 自発光平面表示装置
CN100468155C (zh) * 2004-12-29 2009-03-11 鸿富锦精密工业(深圳)有限公司 背光模组和液晶显示器
US7803319B2 (en) * 2005-04-29 2010-09-28 Kimberly-Clark Worldwide, Inc. Metering technique for lateral flow assay devices
US7858384B2 (en) * 2005-04-29 2010-12-28 Kimberly-Clark Worldwide, Inc. Flow control technique for assay devices
KR20070010660A (ko) * 2005-07-19 2007-01-24 삼성에스디아이 주식회사 전자 방출 소자 및 이를 구비한 평판 디스플레이 장치
KR20070011804A (ko) * 2005-07-21 2007-01-25 삼성에스디아이 주식회사 전자 방출 소자 및 이를 구비한 평판 디스플레이 장치
KR20070011803A (ko) * 2005-07-21 2007-01-25 삼성에스디아이 주식회사 전자 방출 소자 및 이를 구비한 평판 디스플레이 장치
US7829347B2 (en) * 2005-08-31 2010-11-09 Kimberly-Clark Worldwide, Inc. Diagnostic test kits with improved detection accuracy
US7504235B2 (en) * 2005-08-31 2009-03-17 Kimberly-Clark Worldwide, Inc. Enzyme detection technique
US8003399B2 (en) * 2005-08-31 2011-08-23 Kimberly-Clark Worldwide, Inc. Nitrite detection technique
US7618810B2 (en) * 2005-12-14 2009-11-17 Kimberly-Clark Worldwide, Inc. Metering strip and method for lateral flow assay devices
US8012761B2 (en) * 2006-12-14 2011-09-06 Kimberly-Clark Worldwide, Inc. Detection of formaldehyde in urine samples
US7935538B2 (en) * 2006-12-15 2011-05-03 Kimberly-Clark Worldwide, Inc. Indicator immobilization on assay devices
US8377379B2 (en) 2006-12-15 2013-02-19 Kimberly-Clark Worldwide, Inc. Lateral flow assay device
US7846383B2 (en) * 2006-12-15 2010-12-07 Kimberly-Clark Worldwide, Inc. Lateral flow assay device and absorbent article containing same
CN101620454A (zh) * 2008-07-04 2010-01-06 清华大学 便携式电脑
CN101470558B (zh) * 2007-12-27 2012-11-21 清华大学 触摸屏及显示装置
CN101656769B (zh) * 2008-08-22 2012-10-10 清华大学 移动电话
CN101458599B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101458594B (zh) * 2007-12-12 2012-07-18 清华大学 触摸屏及显示装置
CN101464763B (zh) * 2007-12-21 2010-09-29 清华大学 触摸屏的制备方法
CN101676832B (zh) * 2008-09-19 2012-03-28 清华大学 台式电脑
CN101458598B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏及显示装置
CN101655720B (zh) * 2008-08-22 2012-07-18 清华大学 个人数字助理
CN101458608B (zh) * 2007-12-14 2011-09-28 清华大学 触摸屏的制备方法
CN101458604B (zh) * 2007-12-12 2012-03-28 清华大学 触摸屏及显示装置
CN101419519B (zh) * 2007-10-23 2012-06-20 清华大学 触摸屏
CN101458597B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101458603B (zh) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 触摸屏及显示装置
CN101470566B (zh) * 2007-12-27 2011-06-08 清华大学 触摸式控制装置
CN101470560B (zh) * 2007-12-27 2012-01-25 清华大学 触摸屏及显示装置
CN101470559B (zh) * 2007-12-27 2012-11-21 清华大学 触摸屏及显示装置
CN101458600B (zh) * 2007-12-14 2011-11-30 清华大学 触摸屏及显示装置
CN101458606B (zh) * 2007-12-12 2012-06-20 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101458595B (zh) * 2007-12-12 2011-06-08 清华大学 触摸屏及显示装置
CN101458609B (zh) * 2007-12-14 2011-11-09 清华大学 触摸屏及显示装置
CN101458593B (zh) * 2007-12-12 2012-03-14 清华大学 触摸屏及显示装置
CN101458605B (zh) * 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 触摸屏及显示装置
CN101458596B (zh) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 触摸屏及显示装置
KR100889527B1 (ko) * 2007-11-21 2009-03-19 삼성에스디아이 주식회사 발광 장치 및 이 발광 장치를 광원으로 사용하는 표시 장치
CN101458975B (zh) * 2007-12-12 2012-05-16 清华大学 电子元件
CN101458607B (zh) * 2007-12-14 2010-12-29 清华大学 触摸屏及显示装置
CN101458601B (zh) * 2007-12-14 2012-03-14 清华大学 触摸屏及显示装置
CN101464757A (zh) * 2007-12-21 2009-06-24 清华大学 触摸屏及显示装置
US8574393B2 (en) * 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
CN101464765B (zh) * 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 触摸屏及显示装置
CN101464766B (zh) * 2007-12-21 2011-11-30 清华大学 触摸屏及显示装置
CN101470565B (zh) * 2007-12-27 2011-08-24 清华大学 触摸屏及显示装置
CN101464764B (zh) * 2007-12-21 2012-07-18 清华大学 触摸屏及显示装置
CN101515091B (zh) * 2008-02-22 2012-07-18 清华大学 液晶显示屏的制备方法
US8237677B2 (en) * 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US20100290948A1 (en) * 2009-05-15 2010-11-18 Xuedong Song Absorbent articles capable of indicating the presence of urinary tract infections
CN101924816B (zh) * 2009-06-12 2013-03-20 清华大学 柔性手机
RU2524207C1 (ru) * 2012-11-28 2014-07-27 Николай Павлович Абаньшин Узел электровакуумного прибора с автоэмиссионным катодом
JP6810343B2 (ja) * 2016-10-17 2021-01-06 富士通株式会社 カーボンナノチューブ構造、放熱シート及びカーボンナノチューブ構造の製造方法
CN108447753B (zh) * 2018-03-26 2019-12-10 东南大学 用于降低电子截获的场发射高精度双栅结构及其安装方法
CN108493080B (zh) * 2018-03-26 2020-02-18 东南大学 用于降低电子截获的场发射高精度双栅结构及其加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG106651A1 (en) * 2001-11-27 2004-10-29 Univ Nanyang Field emission device and method of fabricating same
CN100407362C (zh) * 2002-04-12 2008-07-30 三星Sdi株式会社 场发射显示器
WO2004048263A1 (en) * 2002-11-26 2004-06-10 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof

Also Published As

Publication number Publication date
US20050029924A1 (en) 2005-02-10
US7196463B2 (en) 2007-03-27
KR20050016177A (ko) 2005-02-21

Similar Documents

Publication Publication Date Title
JP2005056604A (ja) 自発光型平面表示装置
US20080084156A1 (en) Anode panel and field emission device (FED) including the anode panel
JP2003178703A (ja) 平面ディスプレイ及びその製造方法
US7626325B2 (en) Image display apparatus
US7508125B2 (en) Field Emission Display (FED) having electron emission structure to improve focusing characteristics of electron beam
US20090295271A1 (en) Field Emission Display Having Multi-Layer Structure
JP4119279B2 (ja) 表示装置
US20060197435A1 (en) Emissive flat panel display device
US7692370B2 (en) Image display apparatus
JP4494301B2 (ja) 画像表示装置
US20040251813A1 (en) Emissive flat panel display device
US7242139B2 (en) Luminescence brightness compensation structure of field-emission display
US20070018563A1 (en) Self-luminous flat-panel display
JP3663171B2 (ja) Fedパネル及びその製造方法
US20070090749A1 (en) Image display apparatus and method of manufacturing the same
US20060049743A1 (en) Flat panel display
KR100869804B1 (ko) 발광 장치 및 표시 장치
JP3964600B2 (ja) 電界放出型表示装置
JP2005071625A (ja) 自発光型平面表示装置とその製造方法
JP2005005079A (ja) 自発光型平面表示装置とその製造方法
JP2006100173A (ja) 画像表示装置およびその製造方法
JP2006339007A (ja) 自発光平面表示装置
US20070080625A1 (en) Display device
KR20070074414A (ko) 구분자를 구비하는 전자 방출 표시소자 및 이를 이용한불량 화소 검수 방법
US20100301735A1 (en) Light emission device and display device using the same