JP2005052712A - Acidic malodorous gas removing agent - Google Patents

Acidic malodorous gas removing agent Download PDF

Info

Publication number
JP2005052712A
JP2005052712A JP2003284619A JP2003284619A JP2005052712A JP 2005052712 A JP2005052712 A JP 2005052712A JP 2003284619 A JP2003284619 A JP 2003284619A JP 2003284619 A JP2003284619 A JP 2003284619A JP 2005052712 A JP2005052712 A JP 2005052712A
Authority
JP
Japan
Prior art keywords
basic
basic metal
carbonate
removing agent
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003284619A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tajima
康宏 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2003284619A priority Critical patent/JP2005052712A/en
Publication of JP2005052712A publication Critical patent/JP2005052712A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an acidic malodorous gas removing agent which has a large effect when an acidic malodorous gas such as hydrogen sulfide is removed, the surface temperature of which is hardly raised even at high temperatures and which is safe. <P>SOLUTION: This acidic malodorous gas removing agent is obtained by depositing a basic metal carbonate and/or a basic metal sulfate on a porous substance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硫化水素などの酸性悪臭ガスを除去するための酸性悪臭ガス除去剤に関する。本発明の酸性悪臭ガス除去剤は、下水処理場などで発生する硫化水素などの酸性悪臭ガスを除去するのに効果を示すとともに、表面温度の上昇が小さいので、高温での乾燥が可能となり、工業的に有利に製造することができる。また、高温での保管にも耐えるので、安全に輸送可能である。   The present invention relates to an acid malodor gas removing agent for removing acid malodor gas such as hydrogen sulfide. The acidic malodor gas removing agent of the present invention is effective for removing acidic malodorous gas such as hydrogen sulfide generated in a sewage treatment plant and the like, and since the increase in surface temperature is small, drying at high temperature is possible, It can be produced industrially advantageously. In addition, it can withstand high temperature storage and can be transported safely.

下水処理場、屎尿処理施設、生ゴミ処理施設などで発生する悪臭ガスは、主に酸性の硫化水素、メチルメルカプタン、塩基性のアンモニア、トリメチルアミンなどが主体である。なかでも硫化水素は発生濃度が著しく高く、悪臭ガスの中で大きな問題になっている。従来酸性ガスを除去するための吸着剤として、アルカリ金属炭酸塩を活性炭に担持したアルカリ金属添着活性炭が知られている(特許文献1)。この吸着剤は、熱分解ガス中の微量の塩化水素を吸着させてほぼ完全に除去するとともに、長期間使用しても劣化が少ないことが記載されている。
特開平11−347398号公報
Malodorous gases generated in sewage treatment plants, manure treatment facilities, garbage treatment facilities, etc. are mainly acidic hydrogen sulfide, methyl mercaptan, basic ammonia, trimethylamine and the like. Among them, hydrogen sulfide has a remarkably high generation concentration, which is a major problem among malodorous gases. Conventionally, an alkali metal-impregnated activated carbon in which an alkali metal carbonate is supported on activated carbon is known as an adsorbent for removing acid gas (Patent Document 1). It is described that this adsorbent adsorbs a very small amount of hydrogen chloride in the pyrolysis gas and removes it almost completely, and is less deteriorated even when used for a long time.
JP-A-11-347398

しかしながら、この吸着剤は高温下での表面温度上昇が大きく、火災などの災害が起きやすいことが懸念される。また、高温下での保管は問題があるので、とくに外国への船舶や航空機などによる輸送には注意する必要がある。したがって、本発明の目的は、硫化水素などを主体とする酸性悪臭ガスを効率よく除去することができるとともに、高温下でも表面温度上昇が小さい安全な除去剤を提供することにある。   However, this adsorbent has a large surface temperature rise at high temperatures, and there is a concern that disasters such as fires are likely to occur. In addition, storage at high temperatures is problematic, so care must be taken especially when transporting to foreign countries by ship or aircraft. Accordingly, an object of the present invention is to provide a safe remover that can efficiently remove acidic malodorous gas mainly composed of hydrogen sulfide and the like, and has a small increase in surface temperature even at high temperatures.

本発明者は、鋭意検討を重ね、多孔性物質に塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持した吸着剤により上記目的を解決することができることを見出し本発明に到達した。すなわち、本発明は、多孔性物質に塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持せしめた酸性悪臭ガス除去剤である。   The inventor has conducted extensive studies and found that the above object can be solved by an adsorbent in which a porous metal is loaded with basic metal carbonate and / or basic metal sulfate, and has reached the present invention. That is, the present invention is an acidic malodor gas removing agent in which a basic metal carbonate and / or a basic metal sulfate is supported on a porous material.

本発明の酸性悪臭ガス除去材は、硫化水素などの酸性悪臭ガスの除去効果が大きいことは勿論、表面温度上昇が小さく安全であるので、高温下での使用、保管、輸送に耐えることができる。また、表面温度の上昇が小さいので、高温での乾燥が可能となり、工業的に有利に製造することができる。   The acidic malodor gas removing material of the present invention has a large effect of removing acidic malodorous gas such as hydrogen sulfide, and of course has a small surface temperature rise and is safe, and can withstand use, storage and transportation at high temperatures. . Moreover, since the rise in surface temperature is small, drying at a high temperature is possible and it can be produced industrially advantageously.

本発明に使用する多孔性物質は、比表面積が100m/g以上のミクロ孔およびメソ孔を主体とした多孔性物質であり、具体的には、活性炭、シリカ、アルミナ、ゼオライトなどを例示することができる。なかでも活性炭は、比表面積が1000m/g以上と大きく、塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持するための担体として好ましい。 The porous material used in the present invention is a porous material mainly composed of micropores and mesopores having a specific surface area of 100 m 2 / g or more, and specific examples thereof include activated carbon, silica, alumina, zeolite, and the like. be able to. Among these, activated carbon has a large specific surface area of 1000 m 2 / g or more, and is preferable as a carrier for supporting basic metal carbonate and / or basic metal sulfate.

本発明に使用する塩基性金属炭酸塩は、遷移金属やアルカリ土類金属の炭酸塩のうち塩基性塩を言う。塩基性金属炭酸塩の具体例としては、塩基性炭酸銅、塩基性炭酸ニッケル、塩基性炭酸コバルト、塩基性炭酸亜鉛、塩基性炭酸マグネシウムなどを挙げることができる。なかでも、塩基性炭酸銅が効果の点で好ましい。   The basic metal carbonate used in the present invention is a basic salt among carbonates of transition metals and alkaline earth metals. Specific examples of the basic metal carbonate include basic copper carbonate, basic nickel carbonate, basic cobalt carbonate, basic zinc carbonate, basic magnesium carbonate and the like. Among these, basic copper carbonate is preferable in terms of effects.

本発明に使用する塩基性金属硫酸塩は、遷移金属の硫酸塩のうち、塩基性塩を言う。塩基性金属硫酸塩の具体例としては、塩基性硫酸銅、塩基性硫酸鉄、塩基性硫酸コバルトなどを挙げることができる。塩基性金属炭酸塩と塩基性金属硫酸塩はそれぞれ単独でも十分な効力を発揮するが、複数の塩を組み合わせて用いても差し支えない。   The basic metal sulfate used in the present invention refers to a basic salt among the transition metal sulfates. Specific examples of the basic metal sulfate include basic copper sulfate, basic iron sulfate, basic cobalt sulfate and the like. A basic metal carbonate and a basic metal sulfate each exhibit a sufficient effect, but a plurality of salts may be used in combination.

多孔性物質に塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持する方法としては、先ず所望の金属の硫酸塩、塩酸塩の水溶液などに多孔性物質を浸漬し、その後多孔性物質を炭酸ナトリウム水溶液などに浸漬し、化学反応によって多孔性物質に塩基性金属炭酸塩および/または塩基性金属硫酸塩担持させる方法を挙げることができる。   As a method of supporting basic metal carbonate and / or basic metal sulfate on the porous material, first, the porous material is immersed in an aqueous solution of a desired metal sulfate or hydrochloride, and then the porous material is added. A method of immersing in an aqueous solution of sodium carbonate or the like and allowing a porous metal to carry a basic metal carbonate and / or basic metal sulfate by a chemical reaction can be mentioned.

塩基性金属炭酸塩および/または塩基性金属硫酸塩の担持量は特に限定されないが、担持量があまり少ないと十分な効果がなく、逆にあまり多すぎると細孔閉塞などの阻害が起こりやすいので、金属単体換算で0.1〜20重量%が好ましく、0.5〜10重量%がさらに好ましい。反応後は十分に水洗し、余剰の可溶塩を洗い流し、乾燥されるが、本発明の悪臭ガス除去材は高温下での乾燥に耐えられるので、乾燥を効率よく行うことができ、製造上有利である。   The supported amount of basic metal carbonate and / or basic metal sulfate is not particularly limited, but if the supported amount is too small, there is no sufficient effect, and conversely if too large, obstruction such as pore clogging tends to occur. In terms of simple metal, 0.1 to 20% by weight is preferable, and 0.5 to 10% by weight is more preferable. After the reaction, it is sufficiently washed with water to wash away excess soluble salts and dried, but the malodorous gas removing material of the present invention can withstand drying at high temperatures, so that drying can be carried out efficiently and in production. It is advantageous.

塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持した多孔性物質は酸性悪臭ガスを除去するために使用されるが、除去の対象となる酸性悪臭ガスとしては、硫化水素、メチルメルカプタンやエチルメルカプタンなどのメルカプタン類を挙げることができる。   Porous substances carrying basic metal carbonate and / or basic metal sulfate are used to remove acidic malodorous gases. Examples of acidic malodorous gases to be removed include hydrogen sulfide, methyl mercaptan, Examples include mercaptans such as ethyl mercaptan.

本発明の最大の特徴は、高温下でも表面の温度上昇が小さく、酸性の悪臭ガスを効率よく吸着除去できる除去材を提供することにある。本発明の塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持した多孔性物質が高温下でも表面の温度上昇が小さい理由を明確に説明することはできないが、アルカリ金属などに比べて酸素との反応性が小さいことが考えられる。   The most important feature of the present invention is to provide a removal material that has a small surface temperature increase even at high temperatures and can efficiently adsorb and remove acidic malodorous gases. The reason why the porous material carrying the basic metal carbonate and / or basic metal sulfate of the present invention has a small surface temperature increase even at high temperatures cannot be clearly explained. It is thought that the reactivity with is small.

また、本発明の塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持した多孔性物質は酸性悪臭ガスの除去に優れた効果を示す。この理由を明確に説明することはできないが、金属塩中に存在する水酸化物などの塩基性塩が酸性ガスの吸着効果に貢献していることが考えられる。また、吸着後は金属塩の触媒作用によって、酸性悪臭ガスが酸化作用を受け、より臭気強度の低い物質に変換されるか、より沸点が高い不揮発性の高い物質に変換されることで、酸性悪臭ガスの吸着に有利に働いていることが考えられる。   Further, the porous material carrying the basic metal carbonate and / or basic metal sulfate of the present invention exhibits an excellent effect in removing acidic malodorous gas. Although this reason cannot be clearly explained, it is considered that basic salts such as hydroxides present in the metal salt contribute to the acid gas adsorption effect. In addition, after the adsorption, the acidic malodorous gas is oxidized by the catalytic action of the metal salt, and is converted into a substance with a lower odor intensity or converted into a non-volatile substance with a higher boiling point. It is considered that it works favorably for the adsorption of malodorous gases.

本発明の吸着材は、例えば吸着塔にそのまま充填したり、あるいはフィルター状に加工し、硫化水素などの酸性ガスの発生が多い下水処理施設、し尿処理施設、動物舎などに設置して、脱臭材あるいは脱臭フィルターとして利用することができる。以下、実施例により、本発明を更に具体的に説明する。   The adsorbent of the present invention is deodorized by, for example, filling an adsorption tower as it is or processing it into a filter and installing it in a sewage treatment facility, a human waste treatment facility, an animal house, etc. where acid gases such as hydrogen sulfide are often generated. It can be used as a material or a deodorizing filter. Hereinafter, the present invention will be described more specifically with reference to examples.

硫酸銅の5水和物を金属銅換算で2.5g秤量し、100ミリリットル(mL)の蒸留水に溶解した。この硫酸銅水溶液を100gの活性炭(クラレケミカル株式会社製クラレコールGW32/60、比表面積1000m/g)に加えてよく攪拌し、その後1時間静置した。 2.5 g of copper sulfate pentahydrate was weighed in terms of metallic copper and dissolved in 100 milliliters (mL) of distilled water. This copper sulfate aqueous solution was added to 100 g of activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal GW 32/60, specific surface area 1000 m 2 / g) and stirred well, and then allowed to stand for 1 hour.

次いで、銅に対して1.2化学モル等量の炭酸ナトリウムを含んだ炭酸ナトリウム水溶液50mLを攪拌しながら滴下し、12時間静置した。濾過して液切りを行なった後、蒸留水100mLで2回洗浄を行ない、その後80℃の熱風乾燥器で4時間加熱乾燥した。液切りした濾液中の銅濃度を測定することにより、塩基性炭酸銅担持活性炭中の銅(金属換算)担持量を求めたところ、2.0重量%であった。この塩基性炭酸銅50gを空気中で160℃に設定した乾燥器に静置した。表面温度を測定したところ、8時間経過しても蓄熱による温度上昇は見られなかった。   Next, 50 mL of an aqueous sodium carbonate solution containing 1.2 mol equivalent of sodium carbonate relative to copper was added dropwise with stirring, and the mixture was allowed to stand for 12 hours. After filtering and draining, it was washed twice with 100 mL of distilled water and then heated and dried in a hot air dryer at 80 ° C. for 4 hours. The copper concentration in the basic copper carbonate-supported activated carbon was determined by measuring the copper concentration in the filtrate that had been drained, and found to be 2.0% by weight. 50 g of this basic copper carbonate was left in a drier set at 160 ° C. in air. When the surface temperature was measured, no temperature increase due to heat storage was observed even after 8 hours.

得られた塩基性炭酸銅担持活性炭0.2〜5.0gを4Lのデシケータ中に置き、硫化水素ガスを500〜10000ppmの濃度で含有する空気を注入した。この濃度範囲で複数の実験を行ない、25℃にて48時間静置して平衡状態になったところで残存硫化水素濃度を測定し、得られた各点を平衡濃度と平衡吸着量を両軸としたグラフにプロットして、硫化水素の平衡吸着容量を求めた。この時、平衡濃度1ppmの時点での硫化水素吸着量は78重量%であった。   0.2 to 5.0 g of the obtained basic copper carbonate-supported activated carbon was placed in a 4 L desiccator, and air containing hydrogen sulfide gas at a concentration of 500 to 10,000 ppm was injected. A plurality of experiments were conducted in this concentration range, and the remaining hydrogen sulfide concentration was measured when it was allowed to stand at 25 ° C. for 48 hours to reach an equilibrium state. The equilibrium adsorption capacity of hydrogen sulfide was determined by plotting on the graph. At this time, the amount of hydrogen sulfide adsorbed at an equilibrium concentration of 1 ppm was 78% by weight.

硫酸鉄(III)の水和物を金属鉄換算で2.0g秤量し、100mLの蒸留水に溶解した。この硫酸鉄水溶液を100gの活性炭(クラレケミカル株式会社製クラレコールGW−H32/60、比表面積1300m/g)に加えてよく攪拌し、その後1時間静置した。 2.0 g of iron (III) sulfate hydrate was weighed in terms of metallic iron and dissolved in 100 mL of distilled water. This iron sulfate aqueous solution was added to 100 g of activated carbon (Kuraray Chemical Co., Ltd. Kuraray Coal GW-H32 / 60, specific surface area 1300 m 2 / g), and stirred well, and then allowed to stand for 1 hour.

次いで、鉄に対して1.2化学モル等量の炭酸カリウムを含んだ炭酸カリウム水溶液50mLを攪拌しながら滴下し、12時間静置した。濾過して液切りを行なった後、蒸留水100mLで2回洗浄を行ない、その後80℃の熱風乾燥器で4時間加熱乾燥した。液切りした濾液中の鉄濃度を測定することにより、塩基性硫酸鉄担持活性炭中の鉄(金属換算)担持量を求めたところ、1.6重量%であった。この塩基性硫酸鉄50gを空気中で160℃に設定した乾燥器に静置した。表面温度を測定したところ、8時間経過しても蓄熱による温度上昇は見られなかった。   Next, 50 mL of an aqueous potassium carbonate solution containing 1.2 chemical mole equivalent of potassium carbonate with respect to iron was added dropwise with stirring, and allowed to stand for 12 hours. After filtering and draining, it was washed twice with 100 mL of distilled water and then heated and dried in a hot air dryer at 80 ° C. for 4 hours. By measuring the iron concentration in the drained filtrate, the amount of iron (in metal conversion) supported in the activated carbon supported on basic iron sulfate was determined to be 1.6% by weight. 50 g of this basic iron sulfate was left in a drier set at 160 ° C. in air. When the surface temperature was measured, no temperature increase due to heat storage was observed even after 8 hours.

得られた塩基性硫酸鉄担持活性炭0.3〜10.0gを4Lのデシケータ中に置き、硫化水素ガスを500〜10000ppmの濃度で含有する空気を注入した。この濃度範囲で複数の実験を行ない、25℃にて48時間静置して平衡状態になったところで残存硫化水素濃度を測定し、得られた各点を平衡濃度と平衡吸着量を両軸としたグラフにプロットして、硫化水素の平衡吸着容量を求めた。この時、平衡濃度1ppmの時点での硫化水素吸着量は72重量%であった。   0.3 to 10.0 g of the obtained basic iron sulfate-supported activated carbon was placed in a 4 L desiccator, and air containing hydrogen sulfide gas at a concentration of 500 to 10,000 ppm was injected. A plurality of experiments were conducted in this concentration range, and the remaining hydrogen sulfide concentration was measured when it was allowed to stand at 25 ° C. for 48 hours to reach an equilibrium state. The equilibrium adsorption capacity of hydrogen sulfide was determined by plotting on the graph. At this time, the amount of hydrogen sulfide adsorbed at an equilibrium concentration of 1 ppm was 72% by weight.

比較例1
活性炭(クラレケミカル株式会社製クラレコールGW32/60、比表面積1000m/g)を用いて、実施」例1と同様にして硫化水素の平衡吸着容量を求めたところ、平衡濃度1ppmの時点での硫化水素吸着量は23重量%であった。
Comparative Example 1
Using activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal GW 32/60, specific surface area 1000 m 2 / g), the equilibrium adsorption capacity of hydrogen sulfide was determined in the same manner as in Example 1. As a result, the equilibrium concentration was 1 ppm. The amount of adsorbed hydrogen sulfide was 23% by weight.

比較例2
炭酸カリウムを5.0g量り取り、40mLの蒸留水に溶解させた。この溶液を活性炭(クラレケミカル株式会社製クラレコールGW32/60、比表面積1000m/g)100gに加えてよく攪拌した。その後、60℃の熱風乾燥器中で2時間加熱乾燥した。得られた炭酸カリウム添着炭50gを空気中で120℃の乾燥器中に静置した。表面温度を測定したところ、90分で5℃、120分では25℃の表面温度上昇が観測された。
Comparative Example 2
5.0 g of potassium carbonate was weighed and dissolved in 40 mL of distilled water. This solution was added to 100 g of activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal GW 32/60, specific surface area 1000 m 2 / g) and stirred well. Then, it heat-dried for 2 hours in a 60 degreeC hot air dryer. 50 g of the obtained potassium carbonate-impregnated charcoal was allowed to stand in a drier at 120 ° C. in the air. When the surface temperature was measured, an increase in surface temperature of 5 ° C. in 90 minutes and 25 ° C. in 120 minutes was observed.

本発明の酸性悪臭ガス除去材は、硫化水素などの酸性悪臭ガスの除去効果が大きく、安全であるので、下水処理場、屎尿処理施設、生ゴミ処理施設などで発生する悪臭ガス除去用として好適である。また、表面温度の上昇が小さいので、高温下での乾燥が可能であり、製造上有利である。また、高温下での保管、輸送も可能である。   The acidic malodor gas removing material of the present invention has a large effect of removing acidic malodorous gas such as hydrogen sulfide and is safe, and therefore suitable for removing malodorous gas generated in sewage treatment plants, manure treatment facilities, garbage disposal facilities, etc. It is. Further, since the increase in the surface temperature is small, drying at a high temperature is possible, which is advantageous in production. It can also be stored and transported at high temperatures.

Claims (3)

多孔性物質に塩基性金属炭酸塩および/または塩基性金属硫酸塩を担持せしめた酸性悪臭ガス除去剤。   An acidic malodor gas removing agent in which a basic metal carbonate and / or a basic metal sulfate is supported on a porous material. 該多孔性物質が活性炭である請求項1記載の酸性悪臭ガス除去剤。   The acidic malodor gas removing agent according to claim 1, wherein the porous substance is activated carbon. 該塩基性金属炭酸塩が塩基性炭酸銅である請求項1又は2記載の酸性悪臭ガス除去剤。
The acidic malodor gas removing agent according to claim 1 or 2, wherein the basic metal carbonate is basic copper carbonate.
JP2003284619A 2003-08-01 2003-08-01 Acidic malodorous gas removing agent Pending JP2005052712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284619A JP2005052712A (en) 2003-08-01 2003-08-01 Acidic malodorous gas removing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284619A JP2005052712A (en) 2003-08-01 2003-08-01 Acidic malodorous gas removing agent

Publications (1)

Publication Number Publication Date
JP2005052712A true JP2005052712A (en) 2005-03-03

Family

ID=34364485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284619A Pending JP2005052712A (en) 2003-08-01 2003-08-01 Acidic malodorous gas removing agent

Country Status (1)

Country Link
JP (1) JP2005052712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047087A (en) * 2012-08-30 2014-03-17 Aomori Prefectural Industrial Technology Research Center Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047087A (en) * 2012-08-30 2014-03-17 Aomori Prefectural Industrial Technology Research Center Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon

Similar Documents

Publication Publication Date Title
JP5094468B2 (en) Method for removing mercury vapor from gas
JP6372849B2 (en) Method for producing porous functional material and method for removing environmental pollutants using porous functional material
KR100840735B1 (en) Deodorizing agent and method for manufacturing same
JP2005052712A (en) Acidic malodorous gas removing agent
CA2430622C (en) Ph stable activated carbon
JP3830234B2 (en) Bromine impregnated activated carbon
Sahare et al. Adsorption studies of Co (II) from aqueous solution using Mangifera indica bark substrate
Reddy et al. Defluoridation of water using natural adsorbents
JPS5933410B2 (en) How to remove ozone
JP2007237169A (en) Adsorbent for treating liquid phase and its manufacturing method
JP6512855B2 (en) Composition for supporting iodine, deodorant prepared using the composition, method for producing the same, and method for deodorizing using the same
JP6762269B2 (en) Method for manufacturing catalyst component carrier and catalyst component carrier
Tan et al. Chemical Regeneration of Spent Empty Fruit Bunch Biochar for Sodium Ion Adsorption
JP3730987B2 (en) Bromine impregnated activated carbon and method for producing the same
CN110152622A (en) It is a kind of for adsorbing the biomass adsorbent and the preparation method and application thereof of PAHs in water
JP5266471B2 (en) Method for producing activated carbon from chicken manure
JP4728614B2 (en) Deodorizing adsorbent and deodorizing method
JPS62114632A (en) Adsorbent for mercury contained in gas
KR19990080619A (en) Photo Regenerative Deodorant and Deodorizing Method
JPH10192703A (en) Adsorbent
PL244193B1 (en) Method for regeneration of active carbons
JP7002649B2 (en) How to treat palm palm seed husks
JPS56113342A (en) Adsorbent for lower level aldehyde
JP2004337310A (en) Method for manufacturing activated charcoal for deodorant and activated charcoal for deodorant
JP2016112535A (en) Method for generating hydrogen arsenide adsorption active carbon