JP2014047087A - Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon - Google Patents

Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon Download PDF

Info

Publication number
JP2014047087A
JP2014047087A JP2012189521A JP2012189521A JP2014047087A JP 2014047087 A JP2014047087 A JP 2014047087A JP 2012189521 A JP2012189521 A JP 2012189521A JP 2012189521 A JP2012189521 A JP 2012189521A JP 2014047087 A JP2014047087 A JP 2014047087A
Authority
JP
Japan
Prior art keywords
activated carbon
mesopores
supported
chemical
supported activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012189521A
Other languages
Japanese (ja)
Inventor
Takashi Hirose
孝 廣瀬
Masatake Kushibiki
正剛 櫛引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Original Assignee
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER, Aomori Prefectural Industrial Technology Research Center filed Critical AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Priority to JP2012189521A priority Critical patent/JP2014047087A/en
Publication of JP2014047087A publication Critical patent/JP2014047087A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a chemical-carrying active carbon which can enhance the removal performance for bad smells, e.g. tobacco smell, a chemical-carrying active carbon and a filter using the active carbon.SOLUTION: A chemical-carrying carbon 30 can be obtained by a production method comprising an active carbon production step P1 of producing an active carbon 10 having a large number of mesopores and a chemical carrying process P2 of causing the active carbon 10 to carry a chemical 20 for removal of bad smell causative substances. The active carbon production step P1 comprises, as illustrate, a carbonization process S1 of carbonizing a raw material 1 of the active carbon and a gas activation process S2 of carrying out gas activation. As the raw material 1 of the active carbon, generally available are a wide variety of tree branches, including pruned apple tree branches and other branches of Rosaceae fruit trees, produced in large amounts during management of apple orchards, and branches of broad- and needle-leaved trees.

Description

本発明は担持活性炭の製造方法、担持活性炭、およびそれを用いたフィルタに係り、特に、フィルタに用いた場合に除去物性を高めることのできる、担持活性炭の製造方法等に関する。   The present invention relates to a method for producing a supported activated carbon, a supported activated carbon, and a filter using the same, and more particularly to a method for producing a supported activated carbon capable of enhancing removal properties when used in a filter.

一般に活性炭は、ヤシガラや木材等を、炭素化・賦活の二段階処理して製造され、具体的な用途としては、分離プロセス、精製、触媒、溶剤回収における利用等がある。活性炭は高比表面積であって、かつ多くの細孔を有した多機能材料である。   In general, activated carbon is produced by two-stage carbonization / activation of coconut husk, wood, etc., and specific uses include separation process, purification, catalyst, and solvent recovery. Activated carbon is a multifunctional material having a high specific surface area and having many pores.

賦活のプロセスとしては、〈1〉炭素化によって得られた炭素質(以下:炭素化物)を熱処理する過程でガス等を注入するガス賦活法、〈2〉出発原料または炭素化物に塩化亜鉛等を含浸後、熱処理する薬品賦活法 の二つが一般的である。ガス賦活法は、炭素化された原料を高温で水蒸気、炭酸ガス、酸素、その他の酸化ガス等と接触反応させて微細な多孔質炭素質吸着剤をつくる方法であり、水蒸気賦活は750℃、炭酸ガス賦活は850℃よりも高い温度条件で進行するとされている。一方、薬品賦活法は、原料に塩化亜鉛等を含浸して焼成することで炭素質を侵食して脱水酸化、炭素化温度を低下させ、吸着機能を発現させる方法であり、賦活温度は400〜700℃とされている。   The activation process includes <1> a gas activation method in which gas or the like is injected in the process of heat treating the carbonaceous material obtained by carbonization (hereinafter referred to as carbonized product), and <2> zinc chloride or the like is added to the starting material or carbonized product. There are two general methods of chemical activation: heat treatment after impregnation. The gas activation method is a method in which a carbonized raw material is brought into contact with water vapor, carbon dioxide gas, oxygen, and other oxidizing gas at a high temperature to produce a fine porous carbonaceous adsorbent. The carbon dioxide activation is supposed to proceed under a temperature condition higher than 850 ° C. On the other hand, the chemical activation method is a method in which the raw material is impregnated with zinc chloride or the like and baked to erode the carbonaceous material, thereby reducing the dehydration oxidation, carbonization temperature, and expressing the adsorption function. 700 ° C.

一方、木材中の微量な金属および非金属元素(以下、微量元素)は、空気賦活時に触媒的な作用によってガス化反応を促進すると考えられており、木材を炭素化処理する際には、賦活を促進する効果を期待できる。そのような原料の候補として、幹の7〜10倍程度の微量元素を含有している木材の「枝」があり、シダレヤナギ(非特許文献1)、ケヤキ・サクラ(非特許文献2)等の「枝」を原料として、比表面積1000m/gの活性炭が得られたとする報告や、竹炭の低温空気酸化によって得る多孔質竹炭の比表面積に微量元素が関与しているとする報告(非特許文献3)がある。 On the other hand, trace amounts of metals and non-metallic elements (hereinafter referred to as trace elements) in wood are considered to promote gasification reaction by catalytic action during air activation, and are activated when wood is carbonized. We can expect effect to promote. As such raw material candidates, there are “branches” of wood containing trace elements of about 7 to 10 times the trunk, such as weeping willow (Non-patent Document 1), zelkova cherry (Non-patent Document 2), etc. Reports that activated carbon with a specific surface area of 1000 m 2 / g was obtained using “branches” as raw materials, and reports that trace elements are involved in the specific surface area of porous bamboo charcoal obtained by low-temperature air oxidation of bamboo charcoal (non-patented There is literature 3).

安部郁夫,岩崎訓,住野健一,川口雅之:シダレヤナギからの木炭および活性炭の製造とその特性,科学と工業,Vol.77,No. 9, pp.478-484(2003)Abe Ikuo, Iwasaki Kunori, Sumino Kenichi, Kawaguchi Masayuki: Production and Characteristics of Charcoal and Activated Carbon from Weeping Willow, Science and Industry, Vol. 77, No. 9, pp. 478-484 (2003) 石田哲夫,川村和弘,湯川茂夫,三沢隆弘,飯田雅敏:せん定枝の炭化による有効利用の研究,川崎市公害研究所年報,No.28 ,pp.29-34(2001)Tetsuo Ishida, Kazuhiro Kawamura, Shigeo Yukawa, Takahiro Misawa, Masatoshi Iida: Research on the effective use of carbonized carbon fiber, Kawasaki City Institute of Environmental Studies, No.28, pp.29-34 (2001) 山下範之,町田 基,相川正美,立本英機:低温空気酸化による多孔質竹炭の調製,木材学会誌,Vol.55,No.5,pp.299-304(2009)Noriyuki Yamashita, Motoshi Machida, Masami Aikawa, Hideki Tachimoto: Preparation of porous bamboo charcoal by low temperature air oxidation, Journal of the Wood Society, Vol.55, No.5, pp.299-304 (2009)

さて本願発明者は、市販の空気清浄機50機種がどのような「悪臭」をターゲットとしているのかを調査した。その結果、タバコ臭が最も多かった。タバコ臭の主な吸着質はアンモニア・アセトアルデヒド・酢酸の3種類であり、アンモニア吸着用としてリン酸、アセトアルデヒド用としてアミンやリン酸、酢酸用として水酸化カリウムを担持した活性炭が既に報告されている。   The inventor of the present application has investigated what “bad odor” is targeted by 50 types of commercially available air purifiers. As a result, the tobacco smell was the most. There are three main adsorbates of tobacco odor: ammonia, acetaldehyde, and acetic acid, and activated carbon carrying phosphoric acid for ammonia adsorption, amine and phosphoric acid for acetaldehyde, and potassium hydroxide for acetic acid has already been reported. .

なお、活性炭等の細孔は、その直径によって分類や役割が異なっており、国際純正・応用化学連合(IUPAC)は直径50nm以上をマクロ孔、2〜50nmをメソ孔、2nm以下をミクロ孔と定めている。マクロ孔は吸着質を外から粒子内へ速やかに輸送する役割を果たすもので、導入、拡散あるいは輸送孔ともよばれているのに対して、メソ孔およびミクロ孔は吸着に関与する細孔であるとされている。   In addition, pores such as activated carbon have different classifications and roles depending on their diameters, and the International Pure and Applied Chemical Association (IUPAC) has a diameter of 50 nm or more as macropores, 2 to 50 nm as mesopores, and 2 nm or less as micropores. It has established. Macropores play a role in rapidly transporting adsorbate from the outside into the particles, and are also called introduction, diffusion or transport pores, whereas mesopores and micropores are pores involved in adsorption. It is said that.

したがって、上記リン酸等の薬品を担持した活性炭を吸着媒として用いた空気清浄機用フィルタの除去性能をより高く発揮させるためには、吸着質を吸着媒内部に導くマクロ孔やメソ孔等の比較的大きな孔を多く有したものの方が望ましいと、発明者は考える。しかしながら、担持した活性炭の細孔物性等とフィルタの除去性能に関する研究や発明は現在まで行われておらず、気相に対応するフィルタはミクロ孔を多く有するものに悪臭除去用薬品を担持したものしか提案・提供されていない。   Therefore, in order to achieve higher removal performance of an air purifier filter using activated carbon loaded with chemicals such as phosphoric acid as an adsorbent, the macropores and mesopores that lead the adsorbate into the adsorbent are used. The inventor believes that it is preferable to have a relatively large number of holes. However, there has been no research or invention on the properties of pores of the activated carbon and the filter removal performance so far, and the filter corresponding to the gas phase has a lot of micropores carrying malodor removal chemicals. Only proposed and offered.

そこで本発明が解決しようとする課題は、かかる従来技術の問題点を踏まえ、タバコ臭その他の悪臭の除去性能を従来よりも高めることのできる、担持活性炭の製造方法、担持活性炭、およびそれを用いたフィルタを提供することである。   Therefore, the problem to be solved by the present invention is based on the problems of the prior art, and a method for producing a supported activated carbon, a supported activated carbon, and a method for using the same, which can improve the removal performance of tobacco odor and other malodors than before. Is to provide a filter.

さて本願発明者は、リンゴの果樹園管理のために切られた枝(リンゴ剪定枝)から空気賦活で作製し、酸洗浄した活性炭について、スギから同様に調製した活性炭および酸洗浄した市販の活性炭と比較調査した結果、比表面積および細孔容積は他炭よりも大きく、特に孔径の大きいマイクロ孔や直径4nmよりも大きいメソ孔が生成されていることを明らかにした(リンゴ剪定枝等を活用した活性炭製造技術事業 灰分を除去したリンゴ剪定枝活性炭の物性、平成23年度青森県産業技術センター工業部門事業報告書 本願出願時未公開)。   Now, the inventors of the present application have made activated carbon from branches cut for apple orchard management (apple pruned branches) and acid-washed activated carbon, similarly prepared from cedar activated carbon and acid-washed commercial activated carbon As a result of comparison investigation, it was clarified that the specific surface area and pore volume were larger than other charcoal, and in particular, micropores with a large pore diameter and mesopores with a diameter larger than 4 nm were generated (using apple pruned branches, etc.) Activated charcoal manufacturing technology business Physical properties of apple pruned activated carbon from which ash has been removed, 2011 Aomori Prefectural Industrial Technology Center Industrial Division Business Report (not disclosed at the time of filing this application).

かかる知見を基礎とし、リンゴ剪定枝活性炭に薬品を担持させた、メソ孔の多い担持活性炭を用いることによって上記課題を解決できることに想到し、本発明の完成に至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下の通りである。   Based on this knowledge, the inventors have conceived that the above-mentioned problems can be solved by using supported activated carbon having a large number of mesopores, in which chemicals are supported on apple pruned activated carbon, and the present invention has been completed. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

[1] メソ孔(直径2〜50nmの孔。以下同じ。)を多く有する活性炭に、悪臭原因物質を除去するための薬品を担持して担持活性炭を得る、担持活性炭の製造方法。
[2] 前記活性炭の原料として、樹枝を用いることを特徴とする、[1]に記載の担持活性炭の製造方法。
[3] 前記活性炭の原料として、リンゴ剪定枝を用いることを特徴とする、[1]に記載の担持活性炭の製造方法。
[4] 前記活性炭は、前記原料を炭素化し、ガス賦活することにより得ることを特徴とする、[2]または[3]に記載の担持活性炭の製造方法。
[5] 前記活性炭は、比表面積に対する前記メソ孔の表面積比が5%以上の活性炭であることを特徴とする、[4]に記載の担持活性炭の製造方法。
[6] 前記活性炭は、比表面積に対する前記メソ孔の表面積比が15%以上の活性炭であることを特徴とする、[4]に記載の担持活性炭の製造方法。
[1] A method for producing supported activated carbon, in which activated carbon having many mesopores (pores having a diameter of 2 to 50 nm; the same applies hereinafter) is loaded with chemicals for removing malodor-causing substances to obtain supported activated carbon.
[2] The method for producing supported activated carbon according to [1], wherein a tree branch is used as a raw material of the activated carbon.
[3] The method for producing supported activated carbon according to [1], wherein apple pruned branches are used as a raw material for the activated carbon.
[4] The method for producing supported activated carbon according to [2] or [3], wherein the activated carbon is obtained by carbonizing the raw material and gas activation.
[5] The method for producing supported activated carbon according to [4], wherein the activated carbon is activated carbon having a surface area ratio of the mesopores to a specific surface area of 5% or more.
[6] The method for producing supported activated carbon according to [4], wherein the activated carbon is activated carbon having a surface area ratio of the mesopores to a specific surface area of 15% or more.

[7] 前記活性炭は、ミクロ孔(直径2nm以下の孔。以下同じ。)および前記メソ孔の容積合計に対する該メソ孔の容積比が10%以上の活性炭であることを特徴とする、[4]ないし[6]のいずれかに記載の担持活性炭の製造方法。
[8] 前記活性炭は、前記ミクロ孔および前記メソ孔の容積合計に対する該メソ孔の容積比が40%以上の活性炭であることを特徴とする、[4]ないし[6]のいずれかに記載の担持活性炭の製造方法。
[9] 前記薬品は、タバコ臭の原因物質を吸着可能な物質であることを特徴とする、[1]ないし[8]のいずれかに記載の担持活性炭の製造方法。
[10] 前記薬品として、アンモニア、アセトアルデヒド、酢酸、アルカリ性ガス、アルデヒド系ガスまたは酸性ガスの少なくともいずれかを吸着可能な物質を一または複数用いることを特徴とする、[1]ないし[8]のいずれかに記載の担持活性炭の製造方法。
[11] [1]ないし[10]のいずれかに記載の製造方法により得られる、悪臭除去用の担持活性炭。
[7] The activated carbon is activated carbon having micropores (pores having a diameter of 2 nm or less; the same shall apply hereinafter) and a volume ratio of the mesopores to a total volume of the mesopores of 10% or more. [4 ] To [6] A method for producing a supported activated carbon according to any one of [6].
[8] The activated carbon is activated carbon having a volume ratio of the mesopores to a total volume of the micropores and the mesopores of 40% or more, according to any one of [4] to [6] A method for producing supported activated carbon.
[9] The method for producing a supported activated carbon according to any one of [1] to [8], wherein the chemical is a substance capable of adsorbing a causative substance of tobacco odor.
[10] The method according to any one of [1] to [8], wherein one or a plurality of substances capable of adsorbing at least one of ammonia, acetaldehyde, acetic acid, alkaline gas, aldehyde gas, or acid gas are used as the chemical. A method for producing a supported activated carbon according to any one of the above.
[11] A supported activated carbon for malodor removal obtained by the production method according to any one of [1] to [10].

[12] 比表面積に対する前記メソ孔の表面積比が15%以上であることを特徴とする、[11]に記載の担持活性炭。
[13] 前記ミクロ孔および前記メソ孔の容積合計に対する該メソ孔の容積比が40%以上であることを特徴とする、[11]または[12]に記載の担持活性炭。
[14] [11]ないし[13]のいずれかに記載の担持活性炭を用いたフィルタ。
[15] アンモニア吸着用の担持活性炭、アセトアルデヒド用の担持活性炭、および酢酸吸着用の担持活性炭を用いることを特徴とする、[14]に記載のフィルタ。
[16] 悪臭原因物質除去作用の速効性が高いことを特徴とする、[14]または[15]に記載のフィルタ。
[17] 特にアンモニア除去性能に優れていることを特徴とする、[14]ないし[16]のいずれかに記載のフィルタ。
[12] The supported activated carbon according to [11], wherein a surface area ratio of the mesopores to a specific surface area is 15% or more.
[13] The supported activated carbon according to [11] or [12], wherein a volume ratio of the mesopores to a total volume of the micropores and the mesopores is 40% or more.
[14] A filter using the supported activated carbon according to any one of [11] to [13].
[15] The filter according to [14], wherein a supported activated carbon for ammonia adsorption, a supported activated carbon for acetaldehyde, and a supported activated carbon for acetic acid adsorption are used.
[16] The filter according to [14] or [15], wherein the effect of removing malodorous substances is high.
[17] The filter according to any one of [14] to [16], which is particularly excellent in ammonia removal performance.

本発明の担持活性炭の製造方法、担持活性炭、およびそれを用いたフィルタは上述のように構成されるため、これによればメソ孔を多く有する活性炭に悪臭(アンモニア、アセトアルデヒド、酢酸等)を除去するための薬品を担持した担持活性炭を得ることができ、担持活性炭におけるタバコ臭その他の悪臭の除去性能を従来よりも高めることができ、従来より高い悪臭除去性能を有した空気清浄機用のフィルタを得ることができる。   Since the method for producing supported activated carbon, the supported activated carbon, and the filter using the same according to the present invention are configured as described above, bad smell (ammonia, acetaldehyde, acetic acid, etc.) is removed from activated carbon having many mesopores. A filter for an air purifier having a higher ability to remove tobacco odors and other malodors from the supported activated carbon than in the past, and having a higher ability to remove malodors than in the past. Can be obtained.

しかも本発明によれば、リンゴ園において廃材として大量に産出されているリンゴ剪定枝の新規なる有効利用用途を開発でき、また、廃材減量の効果も得られる。   Moreover, according to the present invention, it is possible to develop a new effective utilization application of apple pruned branches that are produced in large quantities as waste materials in apple orchards, and to obtain an effect of reducing waste materials.

本発明の担持活性炭製造方法の基本的構成を示すフロー図である。It is a flowchart which shows the basic composition of the carrying | support activated carbon manufacturing method of this invention. 実施例フィルタの作製方法を示す説明図である。(以下の各図は全て実施例に係るもの)It is explanatory drawing which shows the preparation methods of an Example filter. (The following figures are all related to the examples) 洗浄前および担持前における活性炭の灰分の量を示すグラフである。It is a graph which shows the quantity of ash content of activated carbon before washing and before carrying. 担持リンゴ剪定枝活性炭を用いたフィルタの試験回数と除去率との関係を示すグラフである。It is a graph which shows the relationship between the test frequency of a filter using carrying | supporting apple pruned branch activated carbon, and a removal rate. 担持C−活性炭を活用したフィルタの試験回数と除去率との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of a test using the support | carrier C-activated carbon, and a removal rate. 担持リンゴ剪定枝活性炭および担持C−活性炭を用いたフィルタについて、試験時間によるアンモニア除去率を示すグラフである。It is a graph which shows the ammonia removal rate by test time about the filter using carrying | supporting apple pruned branch activated carbon and carrying | support C-activated carbon. 担持リンゴ剪定枝活性炭および担持C−活性炭を用いたフィルタについて、試験時間によるアセトアルデヒド除去率を示すグラフである。It is a graph which shows the acetaldehyde removal rate by test time about the filter using carrying | supporting apple pruned branch activated carbon and carrying | support C-activated carbon. 担持リンゴ剪定枝活性炭および担持C−活性炭を用いたフィルタについて、試験時間による酢酸除去率を示すグラフである。It is a graph which shows the acetic acid removal rate by test time about the filter using carrying | supporting apple pruned branch activated carbon and carrying | support C-activated carbon.

本発明について、図表を用いつつさらに詳細に説明する。
図Q1は、本発明の担持活性炭製造方法の基本的構成を示すフロー図である。図示するように本製造方法は、メソ孔を多く有する活性炭10を製造する活性炭製造工程P1と、活性炭10に悪臭原因物質を除去するための薬品20を担持する薬品担持工程P2とからなり、これによって担持活性炭30を得るものであることを、主たる構成とする。
The present invention will be described in more detail with reference to the drawings.
FIG. Q1 is a flowchart showing the basic configuration of the supported activated carbon production method of the present invention. As shown in the figure, this production method includes an activated carbon production process P1 for producing activated carbon 10 having many mesopores, and a chemical loading process P2 for carrying a chemical 20 for removing malodorous substances on the activated carbon 10. The main structure is to obtain the supported activated carbon 30 by the above.

これにより、まず活性炭製造工程P1において活性炭原料1から活性炭10が製造され、ついで薬品担持工程P2において活性炭10に薬品20が担持されて、悪臭原因物質を除去可能な担持活性炭30が得られる。担持活性炭30もまた、本発明の範囲内である。なお活性炭原料1としては、広葉樹・針葉樹の樹枝を含め、広く樹枝全般を好適に用いることができる。したがって、リンゴの樹枝やその他のバラ科果樹の樹枝も好適に用いるものとすることができる。殊に後述するように、リンゴ園管理において大量に廃材として産出されるリンゴ剪定枝は、最適な活性炭原料の一つとして、用いることができる。   Thereby, activated carbon 10 is first manufactured from the activated carbon raw material 1 in the activated carbon manufacturing process P1, and then the chemical 20 is supported on the activated carbon 10 in the chemical supporting process P2, and the supported activated carbon 30 capable of removing the malodor causing substance is obtained. Supported activated carbon 30 is also within the scope of the present invention. As the activated carbon raw material 1, a wide variety of tree branches can be suitably used, including broad-leaved trees and coniferous trees. Therefore, apple tree branches and other rose family fruit tree branches can also be preferably used. As will be described later, apple pruned branches produced in large quantities as waste materials in apple orchard management can be used as one of the most suitable activated carbon raw materials.

活性炭製造工程P1は図示するように、活性炭原料1を炭素化する炭素化過程S1とガス賦活するガス賦活過程S2とにより構成される。これらの過程は具体的には、炭を800〜1000℃で加熱し、水蒸気や二酸化炭素等と反応させることによって比表面積等を大きくする処理方法である。かかる構成を備えるため、本発明によれば、一般的には活性炭のメソ孔を多くするために塩化亜鉛等の薬品を原料に添加する薬品賦活が必要であるところ、薬品添加をすることなくメソ孔の多い活性炭10を得ることができる。なお、炭素化過程S1とガス賦活過程S2は、別の炉を用いて行うことも、また両過程を同一炉にて連続で行うことも可能である。   As shown in the figure, the activated carbon production process P1 includes a carbonization process S1 for carbonizing the activated carbon raw material 1 and a gas activation process S2 for gas activation. Specifically, these processes are treatment methods in which the specific surface area and the like are increased by heating charcoal at 800 to 1000 ° C. and reacting it with water vapor, carbon dioxide and the like. In order to provide such a configuration, according to the present invention, in general, in order to increase the mesopores of the activated carbon, chemical activation such as adding zinc chloride or the like to the raw material is necessary. Activated carbon 10 having many pores can be obtained. The carbonization process S1 and the gas activation process S2 can be performed using different furnaces, or both processes can be performed continuously in the same furnace.

上述したリンゴ剪定枝は、炭素化・ガス賦活処理(S1、S2)することによって特にメソ孔を多く生成する特性を有している。実施例に詳述するとおり本願発明者は、メソ孔を多く有する材料としてリンゴ剪定枝由来活性炭を用い、それに薬品を担持して得た担持活性炭の物性を評価した結果、担持後もメソ孔を多く有する活性炭であることを明らかにした。   The above-mentioned apple pruned branch has a characteristic of generating a lot of mesopores by performing carbonization / gas activation treatment (S1, S2). As described in detail in the Examples, the present inventor used activated carbon derived from apple pruned branches as a material having many mesopores, and as a result of evaluating the physical properties of the supported activated carbon obtained by supporting the chemical on the mesopores, It was clarified that the activated carbon had a lot.

薬品担持工程P2において活性炭10に担持する薬品20としては、タバコ臭の原因物質を吸着可能な物質を用いるものとすることができる。具体的には、アンモニア、アセトアルデヒドまたは酢酸の少なくともいずれかを吸着可能な物質を一または複数用いるものとすることができる。これにより、一般的な空気清浄機の主要な除去対象である悪臭・タバコ臭の原因物質たるアンモニア、アセトアルデヒドや酢酸の吸着性能を高め、タバコ臭除去性能を高めることができる。   As the chemical 20 supported on the activated carbon 10 in the chemical loading process P2, a substance capable of adsorbing a causative substance of tobacco odor can be used. Specifically, one or a plurality of substances capable of adsorbing at least one of ammonia, acetaldehyde, and acetic acid can be used. Thereby, the adsorption | suction performance of ammonia, acetaldehyde, and acetic acid which are the causative substances of the malodor and tobacco odor which are main removal object of a general air cleaner can be improved, and tobacco odor removal performance can be improved.

なお活性炭10は、比表面積に対するメソ孔の表面積比が5%以上の活性炭とすることが望ましく、さらには15%以上の活性炭であることがより望ましい。また活性炭10は、ミクロ孔およびメソ孔の容積合計に対するメソ孔の容積比が10%以上の活性炭とすることが望ましく、さらには40%以上の活性炭であることがより望ましい。   The activated carbon 10 is preferably activated carbon having a mesopore surface area ratio with respect to the specific surface area of 5% or more, and more preferably 15% or more. The activated carbon 10 is preferably activated carbon having a volume ratio of mesopores to the total volume of micropores and mesopores of 10% or more, and more preferably 40% or more.

かかる構造的特徴を備えることにより、本発明の担持活性炭30の除去性能をより高度に実現できるからである。なお、かかる活性炭10は、上述したとおり、広葉樹・針葉樹の樹枝を含め、広く樹枝全般を活性炭原料1として好適に用いることができる。したがって、リンゴの樹枝やその他のバラ科果樹の樹枝、殊にリンゴ剪定枝も活性炭原料1として用いることができ、これによって活性炭10を容易かつ好適に製造することができる。なお実施例に述べるとおり、リンゴ剪定枝においては、既にかかる構造的特徴が活性炭製造工程P1に供する前に存在するか、または同工程によりかかる構造的特徴を得ることができ、活性炭10を容易かつ好適に製造することができる。   This is because the removal performance of the supported activated carbon 30 of the present invention can be realized to a higher degree by providing such structural features. In addition, as above-mentioned, the activated carbon 10 can use the whole tree branch widely including the branch of a broad-leaved tree and a conifer as the activated carbon raw material 1 suitably. Therefore, an apple tree branch or other rose family fruit tree branch, in particular, an apple pruned branch, can also be used as the activated carbon raw material 1, whereby the activated carbon 10 can be easily and suitably manufactured. In addition, as described in Examples, in apple pruning branches, such structural features already exist before being subjected to the activated carbon production step P1, or such structural features can be obtained by the same steps, and the activated carbon 10 can be easily and It can manufacture suitably.

本発明の担持活性炭30を用いたフィルタもまた本発明の範囲内であり、空気清浄機に搭載する吸着用のフィルタとして好適に用いることができる。フィルタは、アンモニア吸着用の担持活性炭、アセトアルデヒド用の担持活性炭、もしくは酢酸吸着用の担持活性炭の中から一種類、または適宜の組み合わせによる二種類、または三種類全てを用いて構成するものとすることができる。複数種類を用いる場合の混合比は、適宜に構成すればよい。   A filter using the supported activated carbon 30 of the present invention is also within the scope of the present invention, and can be suitably used as a filter for adsorption mounted on an air cleaner. The filter shall be composed of one type of supported activated carbon for ammonia adsorption, supported activated carbon for acetaldehyde, or supported activated carbon for acetic acid adsorption, or two or all three types in an appropriate combination. Can do. What is necessary is just to comprise suitably the mixing ratio in the case of using multiple types.

実施例において詳述するが、本発明に係るメソ孔を多く有する担持活性炭(実施例:リンゴ剪定枝由来活性炭)を用いたフィルタは、ミクロ孔を多く有する従来の活性炭(実施例:市販品活性炭)と比較して、アンモニアおよびアセトアルデヒド、酢酸の除去物性が高くなることが明らかになった。   As described in detail in the examples, the filter using the supported activated carbon having many mesopores (Example: activated carbon derived from apple pruned branches) according to the present invention is a conventional activated carbon having many micropores (Example: commercial activated carbon). It was revealed that the removal properties of ammonia, acetaldehyde, and acetic acid were higher than those of (1).

特に本発明フィルタは、従来技術と比較して、悪臭原因物質除去作用の速効性が高いことを特徴とする。実施例に後述するように、本発明フィルタを用いた悪臭除去試験では特に、試験開始直後10分間において、アンモニア、アセトアルデヒド、酢酸のいずれもが、従来技術よりも高い除去率を示した。   In particular, the filter of the present invention is characterized in that it has a rapid effect of removing the malodor-causing substance as compared with the prior art. As will be described later in Examples, particularly in the malodor removal test using the filter of the present invention, ammonia, acetaldehyde, and acetic acid all showed a higher removal rate than the prior art in 10 minutes immediately after the start of the test.

本発明フィルタはまた、従来技術と比較して、アンモニア・アセトアルデヒド・酢酸の中でも特に、アンモニア除去性能に優れていることを特徴とする。実施例に後述するように、本発明フィルタを用いた悪臭除去試験では、アンモニア除去率は常に、従来技術よりも高い除去率を示した。   The filter of the present invention is also characterized by excellent ammonia removal performance among ammonia, acetaldehyde and acetic acid as compared with the prior art. As will be described later in Examples, in the malodor removal test using the filter of the present invention, the ammonia removal rate always showed a higher removal rate than the conventional technology.

以下、本発明を実施例によってさらに説明するが、本発明はかかる実施例に限定されるものではない。なお本実施例は、本発明に至る実験および考察経過を示すものである。
<1 実験の目的>
リンゴ剪定枝から調製した活性炭を用い、タバコ臭をターゲットとして作製したフィルタの除去性能について調べ、市販の活性炭を用いたものと比較検討した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this Example. In addition, a present Example shows the experiment and consideration progress to reach this invention.
<1 Purpose of the experiment>
Using activated carbon prepared from apple pruned branches, the removal performance of the filter produced using tobacco odor as a target was examined and compared with that using commercially available activated carbon.

2. 実験方法
2.1 活性炭の調製
原料として、リンゴ剪定枝を自由粉砕機(奈良機械製作所製、M−4)で粉砕し、ふるいにかけた1〜2mmのものを用いた。炭素化は、炭化賦活炉(ウエーブ二十一社製、T−2000L)を用いて、105℃、24時間乾燥したチップを2Lキルン容器に450g投入し、窒素ガス5L/minを流通させながら、昇温速度5℃/min、最高到達温度600℃、保持時間1時間の条件で行った。
2. Experimental Method 2.1 Preparation of Activated Carbon As a raw material, an apple pruned branch was pulverized with a free pulverizer (M-4, manufactured by Nara Machinery Co., Ltd.) and sieved to 1 to 2 mm. Carbonization is performed by using a carbonization activation furnace (manufactured by Wave 21 Co., Ltd., T-2000L) while putting 450 g of chips dried at 105 ° C. for 24 hours into a 2 L kiln container and circulating nitrogen gas at 5 L / min. The temperature rising rate was 5 ° C./min, the maximum temperature reached 600 ° C., and the holding time was 1 hour.

賦活は、活性炭賦活試験装置(タナカテック社製、RK−S20)を用いて、ふるいにかけた0.5〜1mmの炭素化物を105℃、24時間乾燥後、6Lキルン容器に100g投入し、窒素ガス1L/minを流通させながら、キルン容器回転速度2.2rpm、最高到達温度1000℃に達した時点で、水1.67mL/minを130℃で加熱して窒素ガスに含ませ、1時間保持の条件で行った。また比較用として、市販の活性炭(クラレケミカル社製、クラレコール(登録商標)GG、以下:C−活性炭)を粉砕し、ふるいにかけた0.5〜1mmのものを用いた。   For activation, an activated carbon activation test apparatus (manufactured by Tanaka Tech Co., Ltd., RK-S20) was used. After drying a 0.5 to 1 mm carbonized product screened at 105 ° C. for 24 hours, 100 g was charged into a 6 L kiln container, While circulating 1 L / min of gas, when the kiln container rotational speed is 2.2 rpm and the maximum temperature reaches 1000 ° C., 1.67 mL / min of water is heated at 130 ° C. and included in nitrogen gas and held for 1 hour. It went on condition of. For comparison, commercially available activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal (registered trademark) GG, hereinafter referred to as C-activated carbon) was pulverized and sieved to 0.5 to 1 mm.

2.2 担持活性炭の調製
担持前の活性炭の調製は、前項で調製した活性炭(以下:洗浄前活性炭)30gおよび0.1mol/Lの塩酸(和光純薬工業社製、試薬特級)225mLを1000mLのビーカーに入れ、1時間放置後に2分間煮沸、蒸留水で洗浄・ろ過を5回繰り返して行った。また、洗浄前および担持前の活性炭の灰分:YAsh(%)は、活性炭1gを磁性皿に入れ、JIS K 1474に準じて110℃、24時間乾燥後の試料の質量:W(%)、および加熱炉(いすゞ製作所社製、ETP−26K)で800℃、2時間加熱後の試料の質量:W(%)から、下記(1)式より算出した。
Ash = W/W×100 (1)
2.2 Preparation of supported activated carbon 30% of the activated carbon (hereinafter referred to as activated carbon before washing) prepared in the previous section and 225 mL of 0.1 mol / L hydrochloric acid (made by Wako Pure Chemical Industries, reagent special grade) And then boiled for 2 minutes, washed with distilled water and filtered five times. The ash content of activated carbon before washing and before loading: Y Ash (%) is the mass of the sample after putting 1 g of activated carbon in a magnetic dish and drying at 110 ° C. for 24 hours according to JIS K 1474: W a (%) And the mass of the sample after heating at 800 ° C. for 2 hours in a heating furnace (ETP-26K, manufactured by Isuzu Seisakusho): W a (%) was calculated from the following formula (1).
Y Ash = W a / W a × 100 (1)

担持する薬品は、アンモニア用としてリン酸(関東化学社製、試薬特級))、アセトアルデヒド用として2−イミダゾリジノン(関東化学社製、試薬鹿一級)とリン酸(同上)、酢酸用として水酸化カリウム(関東化学社製、試薬特級)を用いた。また、担持活性炭の調製は、表1に示した薬品比率にてそれぞれの水溶液を調製し、ポットミキサー(アズワン社製、PM−01)を用いて回転させながら水溶液を噴霧、105℃で24時間乾燥して行った。   The chemicals supported are phosphoric acid (made by Kanto Chemical Co., Ltd., reagent grade) for ammonia, 2-imidazolidinone (manufactured by Kanto Chemical Co., Ltd., first grade reagent), phosphoric acid (same as above), water for acetic acid Potassium oxide (manufactured by Kanto Chemical Co., Ltd., reagent special grade) was used. The supported activated carbon was prepared by preparing each aqueous solution at the chemical ratio shown in Table 1, spraying the aqueous solution while rotating using a pot mixer (PM-01, manufactured by ASONE), and heating at 105 ° C. for 24 hours. Dried.

2.3 細孔構造の評価
担持前の活性炭の比表面積、細孔容積および分布は、比表面積/細孔分布測定装置(日本ベル社製、BELSORP−max)を用いて250℃、5時間脱気後に−196℃での窒素吸脱着等温線を測定し、BET法により比表面積:S(m/g)、t−プロット法によりマイクロ孔およびメソ孔表面積:StN(cm/g)、マイクロ孔およびメソ孔容積:ViN(cm/g)を算出した。担持後の活性炭は、測定前熱処理中において、熱分解等を起こす可能性の最も少ない水酸化カリウムを担持したものを用いた。
2.3 Evaluation of pore structure The specific surface area, pore volume and distribution of the activated carbon before loading were determined using a specific surface area / pore distribution measuring device (BELSORP-max, manufactured by Nippon Bell Co., Ltd.) at 250 ° C. for 5 hours. A nitrogen adsorption / desorption isotherm at −196 ° C. was measured after air, specific surface area: S N (m 2 / g) by BET method, and micropore and mesopore surface area: S tN (cm 2 / g) by t-plot method. ), Micropore and mesopore volume: V iN (cm 3 / g) was calculated. As the activated carbon after loading, the one loaded with potassium hydroxide having the least possibility of causing thermal decomposition or the like during the heat treatment before measurement was used.

2.4 フィルタの作製
図1は、本実施例フィルタの作製方法を示す説明図である。フィルタは、住宅やビルのドア等に用いられるセル構造を有したハニカムコア(新日本フエザーコア社製、B−140)を丸鋸昇降盤にて5mm厚に切断し、側面を木工用ボンドで接着することで目的とする388mm×346mmの大きさに成形し、熱融着性を有する不織布(日本バイリーン社製、GS−5−000)を片面に接着後、表2に示した比率で混合した担持活性炭100gをハニカムコアのセルへできるだけ均等に投入し、不織布をもう片方の面に接着して作製した。
2.4 Fabrication of Filter FIG. 1 is an explanatory view showing a fabrication method of the filter of this example. The filter is made by cutting a honeycomb core (B-140, manufactured by Nippon Steel Core Co., Ltd.) having a cell structure used for doors of houses and buildings into a 5 mm thickness with a circular saw elevator, and bonding the sides with wood bond. After forming the desired size of 388 mm x 346 mm, a non-woven fabric having a heat-sealing property (GS-5-000, manufactured by Nippon Vilene Co., Ltd.) was bonded to one side and mixed in the ratio shown in Table 2. 100 g of supported activated carbon was introduced into the cells of the honeycomb core as evenly as possible, and the nonwoven fabric was bonded to the other surface.

2.5 フィルタの除去性能の評価
除去性能の評価は、日本電機工業会規格JEM1467「空気清浄機」付属書1「脱臭性能試験」に準じて行った。試験は、空気清浄機(アイリスオーヤマ社製、IA−300)のファンに近い方より集塵フィルタ、前項で作製したフィルタの順にセットし、1mのアクリルボックス内でタバコ5本に火をつけ、8分後のアンモニア、アセトアルデヒド、酢酸の初期ガス濃度:G(ppm)および空気清浄をスタートした0.5分、1分、7分、10分、30分後のそれぞれの残存ガス濃度:G(ppm)をアンモニア用検知管(ガステック社製、3La)、アセトアルデヒド用検知管(ガステック社製、92L)、酢酸用検知管(ガステック社製、81L)にて測定し、式(2)よりそれぞれの除去率:R(%)を求めた。
=100− G/G×100 (2)
2.5 Evaluation of filter removal performance The removal performance was evaluated in accordance with JEM 1467 “Air Purifier” Annex 1 “Deodorization Performance Test”. The test, put air cleaner (Iris Co., IA-300) of the dust-collecting filter than closer to the fan, set in the order of the filter that was produced in the previous section, the fire to five cigarettes in the acrylic box of 1m 3 The initial gas concentrations of ammonia, acetaldehyde and acetic acid after 8 minutes: G f (ppm) and the remaining gas concentrations after 0.5 minutes, 1 minute, 7 minutes, 10 minutes and 30 minutes after starting the air cleaning: Gm (ppm) is measured with a detector tube for ammonia (made by Gastec, 3La), a detector tube for acetaldehyde (made by Gastec, 92L), and a detector tube for acetic acid (made by Gastech, 81L). Each removal rate: R t (%) was determined from (2).
R t = 100- G m / G f × 100 (2)

総合耐久本数:K(本)は、式(2)より得た値をプロットした直線近似式から除去率が50%となる試験本数を算出し、式(3)より求めた。
=(K+K+K)/4 (3)
=アンモニア耐久本数、K=アセトアルデヒド耐久本数、K=酢酸耐久本数
The total durability number: K t (book) was calculated from the formula (3) by calculating the number of test pieces with a removal rate of 50% from the linear approximation formula in which the values obtained from the formula (2) were plotted.
K t = (K 1 + K 2 + K 3 ) / 4 (3)
K 1 = durable ammonia number, K 2 = acetaldehyde durable number, K 3 = acetic acid durable number

3. 結果および考察
3.1 活性炭の物性評価
図2は、洗浄前および担持前における活性炭の灰分の量を示すグラフである。図示するように灰分は、両活性炭ともに担持前の方が低く、日本薬局方薬用炭よりも低い値となったため、担持前の試料としてこれらを用いることとした。表3に、担持前後の各活性炭の比表面積および細孔容積を示す。リンゴ剪定枝活性炭およびC−活性炭の比表面積、マイクロ孔容積、メソ孔容積は、担持前よりも担持後の方が小さい値を示した。これは、担持によって細孔が閉塞されたことが原因であると推察された。また、担持された活性炭の比較において、比表面積、ミクロ孔表面積および容積はC−活性炭が大きく、メソ孔表面積および容積はリンゴ剪定枝活性炭が大きかった。したがって本発明による担持活性炭は、従来のものとは細孔の大きさの異なる担持活性炭であることが明らかとなった。
3. 3. Results and Discussion 3.1 Physical property evaluation of activated carbon FIG. 2 is a graph showing the amount of activated carbon ash before washing and before loading. As shown in the figure, the ash content of both activated carbons was lower before loading, and was lower than that of Japanese pharmacopoeia charcoal, so these were used as samples before loading. Table 3 shows the specific surface area and pore volume of each activated carbon before and after loading. The specific surface area, micropore volume, and mesopore volume of apple pruned activated carbon and C-activated carbon showed smaller values after loading than before loading. This was presumed to be caused by the pores being blocked by the loading. Further, in comparison of the supported activated carbon, the specific surface area, micropore surface area and volume were large for C-activated carbon, and mesopore surface area and volume were large for apple pruned activated carbon. Therefore, it was clarified that the supported activated carbon according to the present invention is a supported activated carbon having a pore size different from that of the conventional one.

3.2 フィルタの除去性能の評価
図3は、担持リンゴ剪定枝活性炭を用いたフィルタの試験回数と除去率との関係を示すグラフである。また、図4は、担持C−活性炭を活用したフィルタの試験回数と除去率との関係を示すグラフである。いずれの担持活性炭ともアンモニアについては高い除去率の維持を示したのに対して、アセトアルデヒドおよび酢酸については、試験回数が増えるに従い除去率が徐々に低下した。また、これらのデータを基に除去率50%において耐久本数を計算したところ、リンゴ剪定枝活性炭が42.0本、C−活性炭が54.8本であり、前者の方が若干少なかった。しかしさほど大きな相違ではなく、実用性は十分に認められ、また、混合率を検討することによってC−活性炭と同等あるいはそれ以上に高めることができるものと考えられた。
3.2 Evaluation of Filter Removal Performance FIG. 3 is a graph showing the relationship between the number of tests of a filter using the supported apple pruned activated carbon and the removal rate. Moreover, FIG. 4 is a graph which shows the relationship between the frequency | count of the test of a filter using the support | carrier C-activated carbon, and a removal rate. Both supported activated carbons maintained a high removal rate for ammonia, whereas acetaldehyde and acetic acid gradually decreased as the number of tests increased. Moreover, when the durable number was calculated at a removal rate of 50% based on these data, apple pruned activated carbon was 42.0 and C-activated carbon was 54.8, and the former was slightly less. However, it was not a big difference, and the practicality was sufficiently recognized, and it was considered that the mixing rate could be improved to the same level or higher than that of C-activated carbon.

図5は、担持リンゴ剪定枝活性炭および担持C−活性炭を用いたフィルタについて、試験時間(処理時間)によるアンモニア除去率を示すグラフである。同様に図6、図7はそれぞれ、アセトアルデヒド、酢酸について試験時間による除去率を示すグラフである。全てのガスにおいて、いずれの担持活性炭とも、時間の経過とともに(すなわち試験時間が長くなるほど)除去率が高くなる傾向を示した。また全てのガスにおいて、試験回数20回程度まではリンゴ剪定枝の方がC−活性炭よりも高い値を示した。   FIG. 5 is a graph showing the ammonia removal rate according to the test time (treatment time) for a filter using the supported apple pruned activated carbon and the supported C-activated carbon. Similarly, FIG. 6 and FIG. 7 are graphs showing the removal rate depending on the test time for acetaldehyde and acetic acid, respectively. In all the gases, any supported activated carbon tended to have a higher removal rate with time (that is, the longer the test time). In all gases, apple pruned branches showed higher values than C-activated carbon up to about 20 tests.

このことから、本発明の担持リンゴ剪定枝活性炭は特に、使用初期からある一定期間において高い除去速度・除去性能を発揮できることが明らかとなった。従前、リン酸を担持した木炭と活性炭のアンモニア除去試験において木炭の方が優れた性能を示したことが報告されており(OYA A,W G IU:Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine, Carbon、pp.1391-1399(2002))、その理由として、木炭は大きな孔を有し、閉塞されなかったことがその理由であるとされている。本発明の薬品担持したリンゴ剪定枝活性炭はC−活性炭と比較してメソ孔が多いことから、これが要因となってリンゴ剪定枝活性炭の除去速度が高くなったものと考えられる。   From this, it became clear that the supported apple pruned activated carbon of the present invention can exhibit a high removal rate and removal performance in a certain period from the initial use. Previously, charcoal and charcoal particles loaded with orthophosphoric acid against ammonia and charcoal particles loaded in the ammonia removal test of charcoal and activated charcoal loaded with phosphoric acid have been reported to be superior (OYA A, WG IU). trimethylamine, Carbon, pp.1391-1399 (2002)). The reason is that charcoal has large pores and is not blocked. Since the apple pruned activated carbon loaded with the chemical of the present invention has more mesopores than C-activated carbon, it is considered that the removal rate of apple pruned activated carbon increased due to this factor.

なお本実験において本発明の担持活性炭は、従来のC−活性炭と比較して、アンモニア除去率は常に高い性能を発揮できることが確認された。また、試験回数おおむね30回までの使用に関しては、全てのガスについて試験開始10分での除去率が高いことも確認された。したがって本発明は、アンモニア臭除去を主とする空気清浄機能や、速効型の空気清浄機能にも適していると考えられる。   In this experiment, it was confirmed that the supported activated carbon of the present invention can always exhibit a high ammonia removal rate as compared with the conventional C-activated carbon. Moreover, regarding the use up to about 30 times of the test, it was also confirmed that the removal rate was high at 10 minutes from the start of all the gases. Therefore, the present invention is considered to be suitable for an air cleaning function mainly for removing ammonia odor and a fast-acting air cleaning function.

本発明の担持活性炭の製造方法、担持活性炭、およびそれを用いたフィルタによればメソ孔を多く有する活性炭に悪臭(アンモニア、アセトアルデヒド、酢酸等)を除去するための薬品を担持した担持活性炭を得ることができ、従来より高い悪臭除去性能を有した空気清浄機用のフィルタを得ることができる。特に、使用初期からある一定期間における除去性能に優れているとともに、アンモニア臭除去を主とする空気清浄機能や速効型の空気清浄機能といった機能特化型の用途にも適用できる。したがって、空気清浄機分野や広く環境・衛生分野、および関連する全産業分野において、利用性の高い発明である。   According to the method for producing supported activated carbon of the present invention, the supported activated carbon, and the filter using the same, activated carbon having a large number of mesopores is obtained which carries the activated carbon carrying chemicals for removing malodor (ammonia, acetaldehyde, acetic acid, etc.) Therefore, it is possible to obtain a filter for an air purifier having higher odor removal performance than before. In particular, it has excellent removal performance in a certain period from the beginning of use, and can also be applied to function-specific applications such as an air cleaning function mainly for removing ammonia odor and a fast-acting air cleaning function. Therefore, the invention is highly useful in the field of air purifiers, the field of environment and sanitation, and all related industrial fields.

1…活性炭原料
10…活性炭
20…薬品
30…担持活性炭
P1…活性炭製造工程
P2…薬品担持工程
S1…炭素化過程
S2…ガス賦活過程





















DESCRIPTION OF SYMBOLS 1 ... Activated carbon raw material 10 ... Activated carbon 20 ... Chemical 30 ... Supported activated carbon P1 ... Activated carbon manufacturing process P2 ... Chemical loaded process S1 ... Carbonization process S2 ... Gas activation process





















Claims (17)

メソ孔(直径2〜50nmの孔。以下同じ。)を多く有する活性炭に、悪臭原因物質を除去するための薬品を担持して担持活性炭を得る、担持活性炭の製造方法。 A method for producing supported activated carbon, in which activated carbon having many mesopores (pores having a diameter of 2 to 50 nm; the same applies hereinafter) is loaded with a chemical for removing malodor-causing substances to obtain supported activated carbon. 前記活性炭の原料として、樹枝を用いることを特徴とする、請求項1に記載の担持活性炭の製造方法。 The method for producing supported activated carbon according to claim 1, wherein a tree branch is used as a raw material of the activated carbon. 前記活性炭の原料として、リンゴ剪定枝を用いることを特徴とする、請求項1に記載の担持活性炭の製造方法。 The method for producing supported activated carbon according to claim 1, wherein an apple pruned branch is used as a raw material of the activated carbon. 前記活性炭は、前記原料を炭素化し、ガス賦活することにより得ることを特徴とする、請求項2または3に記載の担持活性炭の製造方法。 The said activated carbon is obtained by carbonizing the said raw material and activating gas, The manufacturing method of the supported activated carbon of Claim 2 or 3 characterized by the above-mentioned. 前記活性炭は、比表面積に対する前記メソ孔の表面積比が5%以上の活性炭であることを特徴とする、請求項4に記載の担持活性炭の製造方法。 The method for producing supported activated carbon according to claim 4, wherein the activated carbon is activated carbon having a surface area ratio of the mesopores to a specific surface area of 5% or more. 前記活性炭は、比表面積に対する前記メソ孔の表面積比が15%以上の活性炭であることを特徴とする、請求項4に記載の担持活性炭の製造方法。 The method for producing supported activated carbon according to claim 4, wherein the activated carbon is activated carbon having a surface area ratio of the mesopores to a specific surface area of 15% or more. 前記活性炭は、ミクロ孔(直径2nm以下の孔。以下同じ。)および前記メソ孔の容積合計に対する該メソ孔の容積比が10%以上の活性炭であることを特徴とする、請求項4ないし6のいずれかに記載の担持活性炭の製造方法。 The activated carbon is activated carbon having a volume ratio of 10% or more of micropores (pores having a diameter of 2 nm or less; the same shall apply hereinafter) and mesopores to the total volume of the mesopores. A method for producing a supported activated carbon according to any one of the above. 前記活性炭は、前記ミクロ孔および前記メソ孔の容積合計に対する該メソ孔の容積比が40%以上の活性炭であることを特徴とする、請求項4ないし6のいずれかに記載の担持活性炭の製造方法。 The supported activated carbon according to any one of claims 4 to 6, wherein the activated carbon is activated carbon having a volume ratio of the mesopores to a total volume of the micropores and the mesopores of 40% or more. Method. 前記薬品は、タバコ臭の原因物質を吸着可能な物質であることを特徴とする、請求項1ないし8のいずれかに記載の担持活性炭の製造方法。 9. The method for producing supported activated carbon according to claim 1, wherein the chemical is a substance capable of adsorbing a causative substance of tobacco odor. 前記薬品として、アンモニア、アセトアルデヒド、酢酸、アルカリ性ガス、アルデヒド系ガスまたは酸性ガスの少なくともいずれかを吸着可能な物質を一または複数用いることを特徴とする、請求項1ないし8のいずれかに記載の担持活性炭の製造方法。 The said chemical | medical agent uses the substance which can adsorb | suck at least any one of ammonia, acetaldehyde, an acetic acid, an alkaline gas, an aldehyde type gas, or an acidic gas, The one or more in any one of Claim 1 thru | or 8 characterized by the above-mentioned. Production method of supported activated carbon. 請求項1ないし10のいずれかに記載の製造方法により得られる、悪臭除去用の担持活性炭。 The supported activated carbon for malodor removal obtained by the manufacturing method in any one of Claims 1 thru | or 10. 比表面積に対する前記メソ孔の表面積比が15%以上であることを特徴とする、請求項11に記載の担持活性炭。 The supported activated carbon according to claim 11, wherein a surface area ratio of the mesopores to a specific surface area is 15% or more. 前記ミクロ孔および前記メソ孔の容積合計に対する該メソ孔の容積比が40%以上であることを特徴とする、請求項11または12に記載の担持活性炭。 The supported activated carbon according to claim 11 or 12, wherein a volume ratio of the mesopores to a total volume of the micropores and the mesopores is 40% or more. 請求項11ないし13のいずれかに記載の担持活性炭を用いたフィルタ。 A filter using the supported activated carbon according to claim 11. アンモニア吸着用の担持活性炭、アセトアルデヒド用の担持活性炭、および酢酸吸着用の担持活性炭を用いることを特徴とする、請求項14に記載のフィルタ。 15. The filter according to claim 14, wherein a supported activated carbon for ammonia adsorption, a supported activated carbon for acetaldehyde, and a supported activated carbon for acetic acid adsorption are used. 悪臭原因物質除去作用の速効性が高いことを特徴とする、請求項14または15に記載のフィルタ。 The filter according to claim 14 or 15, wherein the effect of removing malodorous substances is high. 特にアンモニア除去性能に優れていることを特徴とする、請求項14ないし16のいずれかに記載のフィルタ。












The filter according to any one of claims 14 to 16, wherein the filter is particularly excellent in ammonia removal performance.












JP2012189521A 2012-08-30 2012-08-30 Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon Pending JP2014047087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189521A JP2014047087A (en) 2012-08-30 2012-08-30 Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189521A JP2014047087A (en) 2012-08-30 2012-08-30 Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon

Publications (1)

Publication Number Publication Date
JP2014047087A true JP2014047087A (en) 2014-03-17

Family

ID=50607129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189521A Pending JP2014047087A (en) 2012-08-30 2012-08-30 Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon

Country Status (1)

Country Link
JP (1) JP2014047087A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564871A (en) * 2016-11-08 2017-04-19 广西大学 Whisker-shaped thin film biochar material and preparation method thereof
JP2018001057A (en) * 2016-06-28 2018-01-11 大阪ガスケミカル株式会社 Adsorbent for protein purification
KR20180069559A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Activated carbon and method for manufacturing the same
CN110697711A (en) * 2019-11-29 2020-01-17 湖南省格林森炭业股份有限公司 Preparation method of activated carbon
JP7333279B2 (en) 2020-01-21 2023-08-24 石塚硝子株式会社 Deodorants and deodorant complexes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070893A (en) * 2001-09-04 2003-03-11 Cataler Corp Adsorbent
JP2005052712A (en) * 2003-08-01 2005-03-03 Kuraray Chem Corp Acidic malodorous gas removing agent
JP2008212448A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Air cleaning filter
JP2011177656A (en) * 2010-03-01 2011-09-15 Aomori Prefectural Industrial Technology Research Center Adsorptive material originated from tree branch and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070893A (en) * 2001-09-04 2003-03-11 Cataler Corp Adsorbent
JP2005052712A (en) * 2003-08-01 2005-03-03 Kuraray Chem Corp Acidic malodorous gas removing agent
JP2008212448A (en) * 2007-03-06 2008-09-18 Toray Ind Inc Air cleaning filter
JP2011177656A (en) * 2010-03-01 2011-09-15 Aomori Prefectural Industrial Technology Research Center Adsorptive material originated from tree branch and method for manufacturing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6016017427; 廣瀬孝他: '酸洗浄したリンゴ剪定枝由来活性炭の物性' 木材学会誌 Vol.58, No.2, 20120326, p.63-68 *
JPN6016017429; 廣瀬孝他: 'リンゴ剪定枝から調製した活性炭の特性に及ぼす賦活温度の影響' 木材学会誌 Vol.57, No.3, 2011, p.136-142 *
JPN7015002965; 安部郁夫ほか: 'シダレヤナギ(Salix babylonica var. lavallei)からの木炭および活性炭の製造とその特性' 科学と工業 Vol.77, No.9, 20030920, p.478-484 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001057A (en) * 2016-06-28 2018-01-11 大阪ガスケミカル株式会社 Adsorbent for protein purification
CN106564871A (en) * 2016-11-08 2017-04-19 广西大学 Whisker-shaped thin film biochar material and preparation method thereof
KR20180069559A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Activated carbon and method for manufacturing the same
KR102496791B1 (en) * 2016-12-15 2023-02-06 현대자동차 주식회사 Activated carbon and method for manufacturing the same
CN110697711A (en) * 2019-11-29 2020-01-17 湖南省格林森炭业股份有限公司 Preparation method of activated carbon
JP7333279B2 (en) 2020-01-21 2023-08-24 石塚硝子株式会社 Deodorants and deodorant complexes

Similar Documents

Publication Publication Date Title
JP2014047087A (en) Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon
US11006664B2 (en) Graphene adsorbing material, preparation method therefor and application thereof, and cigarette filter tip and cigarette
JP2013539411A (en) Multi-aperture carbon particle air purifier and method for producing the same
KR101538639B1 (en) Manufacturing method of carbon-based carbon dioxide adsorbents
US20130207033A1 (en) Method for Preparing Carbon Dioxide Absorbent Based on Natural Biomass and Carbon Dioxide Absorbent Based on Natural Biomass Prepared by the Same
CN104907097A (en) Room temperature efficient carbon monoxide removing catalysis material
CN104028237A (en) Chitosan immobilized beta-cyclodextrin formaldehyde absorbent with fragrance release function
JP2017081769A (en) Rush carbide and rush active carbon
JP5420434B2 (en) Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same
JP2011177656A (en) Adsorptive material originated from tree branch and method for manufacturing the same
JP4484232B1 (en) Adsorbent for lower aldehydes and process for producing the same
JP3953671B2 (en) Method for producing activated charcoal
KR100985846B1 (en) Deodorizing filter for removing stench of food waste disposer system
KR20080027334A (en) Adsorbent and process for producing the same
JP5935039B2 (en) Activated carbon production method
JP3138749B2 (en) Method for producing carbides having deodorizing ability, ion exchange ability, and catalytic ability using plant materials
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
JP2007014857A (en) Adsorbent and its production method
CN211987849U (en) Remove formaldehyde purification part and contain its air purification device
JP2014113214A (en) Tobacco odor eliminating filter
JP5696338B2 (en) Ca-alkaline adsorbent material and method for producing the same
JPH10114510A (en) Method for modifying activated carbon
JP2950683B2 (en) Air purifier and air purifier
RU2400286C1 (en) Filter material for cleaning liquid and gaseous substances and method of obtaining said material
JP2017213118A (en) Deodorizing filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161104