JP2005039177A - Surface mounting semiconductor electronic part and its manufacturing method - Google Patents

Surface mounting semiconductor electronic part and its manufacturing method Download PDF

Info

Publication number
JP2005039177A
JP2005039177A JP2003404753A JP2003404753A JP2005039177A JP 2005039177 A JP2005039177 A JP 2005039177A JP 2003404753 A JP2003404753 A JP 2003404753A JP 2003404753 A JP2003404753 A JP 2003404753A JP 2005039177 A JP2005039177 A JP 2005039177A
Authority
JP
Japan
Prior art keywords
hole
resin
electronic component
semiconductor electronic
bare chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003404753A
Other languages
Japanese (ja)
Other versions
JP3876250B2 (en
Inventor
Kozo Tanaka
弘三 田中
Hiroshi Nakajima
中島  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2003404753A priority Critical patent/JP3876250B2/en
Publication of JP2005039177A publication Critical patent/JP2005039177A/en
Application granted granted Critical
Publication of JP3876250B2 publication Critical patent/JP3876250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a surface mounting semiconductor electronic part having an electrode which ensures soldering to a mount board, and to provide the surface mounting semiconductor electronic part manufactured using the method. <P>SOLUTION: Conductive patterns 3 which are disposed on both surfaces of an insulating substrate 2 are electrically connected via through holes each formed with a metal conductive film 4 formed in the inner peripheral surface thereof. Then, an opening of each through hole is covered with two layers 6, 7 of resist with the resist filled to the midway of the through hole, to form a double-sided through hole printed board. An LED bare chip 10 and a light receiving bare chip 11 are fixed to respective conductive patterns 3 connected to the through holes so as to allow electrical connection between each of the bare chips 10, 11 and its lower electrode. An upper electrode of each of the bare chips is electrically connected via a wire 12 to the conductive pattern 3 connected to a through hole 5 which is isolated from the conductive patterns 3 where the bare chips are disposed. The individual bare chips and wires are covered with optically transparent resins for sealing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面実装型半導体電子部品の製造方法に関し、詳しくは、半導体ベアチップが配置されたプリント基板をセットした成形金型内に流動性樹脂を圧入して半導体ベアチップを樹脂封止する工程を有する表面実装型半導体電子部品の製造方法に関する。   The present invention relates to a method for manufacturing a surface-mounted semiconductor electronic component, and more specifically, a step of resin-sealing a semiconductor bare chip by press-fitting a fluid resin into a molding die in which a printed circuit board on which a semiconductor bare chip is arranged is set. The present invention relates to a method for manufacturing a surface-mounted semiconductor electronic component.

近年の電子機器の小型・軽量化に伴い、電子部品においても小型化、表面実装化への取組みが強力に推進されている。表面実装型の小型電子部品の一例として発光ダイオード(LED)が挙げられるが、表面実装型の発光ダイオード(以降、チップタイプLEDと言う)の製造方法は、絶縁基板の両面に導体パターンが配設されたプリント基板の一方の導体パターン上に導電性接着剤を介して縦および横に一定の間隔で多数のLEDベアチップを配置し、LEDベアチップをプリント基板に固定すると同時にLEDベアチップの下部電極と導体パターンとを電気的に接続する。また、LEDベアチップの上部電極は、LEDベアチップが配置された導体パターンとは分離された導体パターンにワイヤを介して接続され、電気的な導通が図られている。なお、プリント基板を作製するに当たっては、LEDベアチップが配置される導体パターンおよびワイヤが接続される導体パターンは、内周面にメッキ等によって金属導電膜が施されたスルーホールを介して反対面の導体パターンによる電極パッドと電気的に接続される。   Along with the recent reduction in size and weight of electronic devices, efforts have also been made to reduce the size and surface mounting of electronic components. Light emitting diodes (LEDs) can be cited as an example of surface mount type small electronic components. The surface mount type light emitting diodes (hereinafter referred to as chip type LEDs) are manufactured by arranging conductor patterns on both sides of an insulating substrate. A large number of LED bare chips are arranged at regular intervals vertically and horizontally on one conductor pattern of the printed circuit board, and the LED bare chip is fixed to the printed circuit board, and at the same time, the lower electrode and the conductor of the LED bare chip Connect the pattern electrically. Further, the upper electrode of the LED bare chip is connected to a conductor pattern separated from the conductor pattern on which the LED bare chip is disposed via a wire, thereby achieving electrical conduction. In producing the printed circuit board, the conductor pattern on which the LED bare chip is arranged and the conductor pattern to which the wire is connected are arranged on the opposite surface through a through hole in which a metal conductive film is applied to the inner peripheral surface by plating or the like. It is electrically connected to the electrode pad by the conductor pattern.

そして、プリント基板のLEDベアチップが配置された面(以降、部品面と言う)は、LEDベアチップおよびワイヤを振動や衝撃等の外部応力および水分や塵埃等の外部環境から保護すると同時に、LEDベアチップから放射される光の配光を制御するレンズ機能を持たせるように光透過性樹脂で封止されている。但し、この封止工程では光透過性樹脂がスルーホールに進入し、プリント基板の裏面(以降、半田面と言う)まで回り込んで電極パッドを覆うことになり、電極パッドへの半田付けが不良な製品になってしまう。これを防止するために、光透過性樹脂で封止する前にスルーホールを全長に亘って導電部材で充填し、光透過性樹脂がスルーホールの部品面からプリント基板の半田面に回り込まないようにしたものがある(例えば、特許文献1および特許文献2参照。)。   The surface of the printed circuit board on which the LED bare chip is disposed (hereinafter referred to as the component surface) protects the LED bare chip and the wire from external stresses such as vibration and shock and the external environment such as moisture and dust, and at the same time from the LED bare chip. It is sealed with a light-transmitting resin so as to have a lens function for controlling the light distribution of the emitted light. However, in this sealing process, the light-transmitting resin enters the through hole and goes around to the back surface of the printed circuit board (hereinafter referred to as the solder surface) to cover the electrode pad, so that the soldering to the electrode pad is poor. It becomes a product. In order to prevent this, the through hole is filled with the conductive member over the entire length before sealing with the light transmissive resin, so that the light transmissive resin does not enter the solder surface of the printed circuit board from the component surface of the through hole. (For example, see Patent Document 1 and Patent Document 2).

また、両面に導体パターンが形成されたプリント基板のスルーホールを設ける位置にある半田面の導体パターンを取り除き、半田面側からレーザ、ドリル等の加工によって部品面の導体パターンを残してスルーホール用の穴をあけ、その後、穴の内周面にメッキ等によって金属導電膜を施すと共に、半田面の導体パターンが取り除かれた位置にも金属導電膜を施して電極パッドを再形成し、部品面の導体パターンと半田面の電極パッドとをスルーホールを介して導通させたものもある(例えば、特許文献2および特許文献3参照。)。   Also, remove the conductor pattern on the solder surface at the position where the through hole of the printed circuit board with the conductor pattern formed on both sides is to be provided, and leave the conductor pattern on the component surface by processing with a laser, drill, etc. from the solder surface side. After that, a metal conductive film is applied to the inner peripheral surface of the hole by plating or the like, and a metal conductive film is also applied to the position where the conductor pattern on the solder surface is removed to re-form the electrode pad. In some cases, the conductor pattern is electrically connected to the electrode pad on the solder surface through a through hole (see, for example, Patent Document 2 and Patent Document 3).

このような処理を施したプリント基板が光透過樹脂で封止された後は、各LEDベアチップ単位でスルーホールを均等に2分割するように縦、横にダイシングされて1枚のプリント基板から多数のチップタイプLEDが生産される。
特開平11−74410号公報(第4−6頁、第1図) 特開平8−213660号公報(第4−8頁、第1,8図) 特開平9−181359号公報(第2−3頁、第1図)
After the printed circuit board that has been subjected to such treatment is sealed with a light-transmitting resin, each LED bare chip unit is diced vertically and horizontally so as to divide the through hole into two equally, and a large number of the printed circuit boards are formed. The chip type LED is produced.
Japanese Patent Laid-Open No. 11-74410 (page 4-6, FIG. 1) Japanese Patent Laid-Open No. 8-213660 (pages 4-8, FIGS. 1 and 8) JP-A-9-181359 (page 2-3, FIG. 1)

電子機器に搭載された電子部品が長期に亘って完全な機能を維持するためには、電子機器に組込まれるプリント基板に電子部品を強固に取付けて電気的接続を確実なものにする必要があり、そのためには電極パッドに対する半田付けが重要な役割を担ってくる。その際、小型化された電子部品においては、電極パッドは非常に小さいものとなるため、電子部品の半田付に使用される電極の形状が半田付けの信頼性に大きく影響することになる。特に上述したようなスルーホールの全長に亘って導電部材を充填した表面実装型の電子部品をスルーホールの面を電子機器のプリント基板に対向するように実装する場合には、スルーホールが半分にダイシングされて(以降、ハーフスルーホールと言う)平面となった導電部材の表面は半田付けに必要なフラックスが十分に行き渡らず、半田付が不完全な状態でプリント基板に固定されることになる。さらに、平面状の電極パッドのみの半田付部は、充填されていないハーフスルーホールと電極パッドが連結した立体的な半田付部を形成した場合に比較してフラックスおよび半田の延びが不十分で半田付性に劣るところがある。   In order for an electronic component mounted on an electronic device to maintain its complete function over a long period of time, it is necessary to firmly attach the electronic component to a printed circuit board incorporated in the electronic device to ensure electrical connection. For this purpose, soldering to the electrode pad plays an important role. At that time, in the miniaturized electronic component, since the electrode pad is very small, the shape of the electrode used for soldering the electronic component greatly affects the reliability of soldering. In particular, when mounting a surface mount type electronic component filled with a conductive member over the entire length of the through hole as described above so that the surface of the through hole faces the printed circuit board of the electronic device, the through hole is halved. The surface of the conductive member that has been diced (hereinafter referred to as a half-through hole) is flat on the surface of the conductive member, and the flux required for soldering does not reach the surface sufficiently, and is fixed to the printed circuit board with incomplete soldering. . Furthermore, the soldered portion of the planar electrode pad only has insufficient flux and solder extension compared to the case where a three-dimensional soldered portion is formed by connecting the unfilled half through hole and the electrode pad. There are places where solderability is inferior.

また、両面に導体パターンが形成されたプリント基板のスルーホールを設ける位置にある半田面の導体パターンを取り除き、レーザ或いはドリルによって導体パターンまで到達する穴を設け、穴の内周面にメッキ等によって金属導電膜を施してスルーホールを形成する方法は、プリント基板を作製する過程に導体パターンを除去する工程が必要になること、また、1枚のプリント基板で電子部品の多数取りを行なうためにプリント基板には多数のスルーホールが設けてあり、それをレーザで形成するには多くの時間を有すること、また、ドリルによってスルーホール用の穴を形成する場合は導体パターンをドリルの歯が貫通しないように、しかも導体パターンにプリント基板の絶縁物が残らないように加工することが要求され、穴の深さの設定、再現性およびこれらを満足するために必要とされる作業精度等を考慮すると製品の歩留まりが大きな問題となる。従って、このような方法でスルーホールを形成するには、加工工数に係わる時間や手間の増加および完成品の歩留まりの低下による製品コストの上昇が問題となる。また、スルーホールのダイシング時に発生するバリによってスルーホールに直角な方向に設けられた電極パッドに半田が上がるのが阻害され、電極パッド全面まで半田が十分行き渡らず、固定強度が弱い半田付けになってしまうという問題点がある。
本発明は上記問題に鑑みて創案なされたもので、電子機器に組み込まれるプリント基板に実装するときに信頼性の高い半田付けが確保できるような表面実装型半導体電子部品を低コストで製造する方法およびそれを用いて製造される表面実装型半導体電子部品を提供することを目的とするものである。
Also, remove the conductor pattern on the solder surface at the position where the through hole of the printed circuit board with the conductor pattern formed on both sides is provided, provide a hole reaching the conductor pattern with a laser or a drill, and by plating on the inner peripheral surface of the hole The method of forming a through hole by applying a metal conductive film requires a step of removing a conductor pattern in the process of producing a printed circuit board, and also for taking a large number of electronic components on one printed circuit board. The printed circuit board has a large number of through holes, and it takes a lot of time to form them with a laser. Also, when drilling holes for through holes, the teeth of the drill penetrate the conductor pattern. In order to prevent the printed circuit board insulation from remaining on the conductor pattern. , The yield of the consideration of product working accuracy and the like which are required to satisfy reproducibility and these become a big problem. Therefore, in order to form a through hole by such a method, there is a problem of an increase in product cost due to an increase in processing time and labor and a decrease in the yield of finished products. Also, the burr generated during dicing of the through hole prevents the solder from going up to the electrode pad provided in the direction perpendicular to the through hole, so that the solder does not reach the entire surface of the electrode pad and the fixing strength is weak. There is a problem that.
The present invention was devised in view of the above problems, and a method for manufacturing a surface-mounted semiconductor electronic component capable of ensuring reliable soldering when mounted on a printed circuit board incorporated in an electronic device at a low cost. It is another object of the present invention to provide a surface mount semiconductor electronic component manufactured using the same.

上記課題を解決するために、本発明の請求項1に記載された発明は、絶縁基板の両面に多数の独立した導体パターンが配設され、内周面に金属導電膜が施されたスルーホールを介して前記両面の導体パターンが導通するようにした両面スルーホールプリント基板の前記スルーホールの一方の開口部を塞ぐ工程と、前記両面スルーホール基板の前記スルーホールの開口部を塞いだ面の導体パターン上に半導体ベアチップを配置する工程と、前記半導体ベアチップを配置した前記両面スルーホール基板がセットされた成形金型内に第1の樹脂を圧入することによって前記半導体ベアチップを覆うように樹脂封止を行なう工程とを有することを特徴とするものである。   In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is a through-hole in which a large number of independent conductor patterns are arranged on both surfaces of an insulating substrate and a metal conductive film is applied to the inner peripheral surface. A step of closing one opening portion of the through-hole of the double-sided through-hole printed circuit board in which the conductive patterns on both sides are made to be conductive through a surface of the double-sided through-hole substrate, Placing the semiconductor bare chip on the conductor pattern; and sealing the resin so as to cover the semiconductor bare chip by press-fitting a first resin into a molding die in which the double-sided through-hole substrate on which the semiconductor bare chip is placed is set And a step of stopping.

また、本発明の請求項2に記載された発明は、請求項1において、前記開口部を塞ぐ工程は、前記開口部から前記スルーホールの途中までを第2の樹脂により塞ぐことを特徴とするものである。   Further, the invention described in claim 2 of the present invention is characterized in that, in the invention, in the step of closing the opening, the second resin is closed from the opening to the middle of the through hole. Is.

また、本発明の請求項3に記載された発明は、請求項2において、前記第2の樹脂は、前記第1の樹脂を圧入する際の成形温度より高いガラス転移温度を有する樹脂であることを特徴とするものである。   In the invention described in claim 3 of the present invention, in claim 2, the second resin is a resin having a glass transition temperature higher than a molding temperature at the time of press-fitting the first resin. It is characterized by.

また、本発明の請求項4に記載された発明は、請求項2または3の何れか1項において、前記第2の樹脂は、エポキシ樹脂であることを特徴とするものである。   The invention described in claim 4 of the present invention is characterized in that, in any one of claims 2 and 3, the second resin is an epoxy resin.

また、本発明の請求項5に記載された発明は、請求項1において、前記開口部を塞ぐ工程は、前記スルーホールの上部に第1レジスト膜を形成し、該第1レジスト膜の上面に第2レジスト膜を形成して2層のレジスト膜で構成されることを特徴とするものである。請求項1に記載の表面実装型半導体電子部品の製造方法。   According to a fifth aspect of the present invention, in the first aspect, in the step of closing the opening, a first resist film is formed on an upper portion of the through hole, and the upper surface of the first resist film is formed. The second resist film is formed to be composed of two layers of resist films. A method for manufacturing a surface-mounted semiconductor electronic component according to claim 1.

また、本発明の請求項6に記載された発明は、請求項5において、前記第1レジスト膜は、前記スルーホールの途中までを塞ぐことを特徴とするものである。   According to a sixth aspect of the present invention, in the fifth aspect, the first resist film blocks the middle of the through hole.

また、本発明の請求項7に記載された発明は、請求項1において、前記開口部を塞ぐ工程は、前記両面スルーホールプリント基板において、前記導体パターンの少なくとも前記半導体ベアチップが配置される位置の近傍および前記半導体ベアチップに一方の端部が接続されたワイヤの他方の端部が接続される位置の近傍を除いた部分に接着シートを備えた絶縁シートが貼着されることを特徴とするものである。   According to a seventh aspect of the present invention, in the first aspect, in the step of closing the opening, in the double-sided through-hole printed circuit board, at least the semiconductor bare chip of the conductor pattern is disposed. An insulating sheet having an adhesive sheet is attached to a portion other than the vicinity and the vicinity of the position where the other end of the wire connected to one end of the semiconductor bare chip is connected. It is.

また、本発明の請求項8に記載された発明は、請求項7において、前記接着シートは、プリプレグであり、該プリプレグに含浸された熱硬化性樹脂が前記スルーホールの途中までを塞ぐことを特徴とするものである。   Further, the invention described in claim 8 of the present invention is that in claim 7, the adhesive sheet is a prepreg, and the thermosetting resin impregnated in the prepreg blocks the middle of the through hole. It is a feature.

また、本発明の請求項9に記載された発明は、請求項7または8の何れか1項において、前記絶縁シートは、前記両面スルーホールプリント基板の絶縁基板と同一部材であることを特徴とするものである。   The invention described in claim 9 of the present invention is characterized in that, in any one of claims 7 and 8, the insulating sheet is the same member as the insulating substrate of the double-sided through-hole printed circuit board. To do.

また、本発明の請求項10に記載された発明は、請求項1から9の何れか1項において、前記半導体ベアチップを配置する工程は、前記半導体ベアチップが発光素子と受光素子のうち何れか一方または両方の組合わせであることを特徴とするものである。   According to a tenth aspect of the present invention, in the method according to any one of the first to ninth aspects, the step of disposing the semiconductor bare chip includes either the light emitting element or the light receiving element. Or it is a combination of both.

また、本発明の請求項11に記載された発明は、請求項1から10の何れか1項において、前記半導体ベアチップを配置した前記両面スルーホール基板がセットされた前記成形金型内に第1の樹脂を圧入することによって前記樹脂封止を行なう方法は、トランスファ成形であることを特徴とするものである。   According to an eleventh aspect of the present invention, in any one of the first to tenth aspects, the first mold is formed in the molding die in which the double-sided through-hole substrate on which the semiconductor bare chip is disposed is set. The method of sealing the resin by press-fitting the resin is transfer molding.

また、本発明の請求項12に記載された発明は、請求項11において、前記樹脂封止によって光学レンズ部が形成されることを特徴とするものである。   The invention described in claim 12 of the present invention is characterized in that in claim 11, an optical lens portion is formed by the resin sealing.

また、本発明の請求項13に記載された発明は、請求項1から12の何れか1項に記載の表面実装型半導体電子部品の製造方法を用いて製造されたことを特徴とするものである。   The invention described in claim 13 of the present invention is characterized in that it is manufactured by using the method for manufacturing a surface mount semiconductor electronic component according to any one of claims 1 to 12. is there.

また、本発明の請求項14に記載された発明は、絶縁基板の両面に多数の独立した導体パターンが配設され、内周面に金属導電膜が施されたハーフスルーホールを介して前記両面の導体パターンが導通するようにした両面スルーホールプリント基板の前記ハーフスルーホールの一方の開口部から前記ハーフスルーホールの途中まで充填材で塞ぎ、前記開口部を塞いだ面の導体パターン上に半導体ベアチップを配置し、前記半導体ベアチップを覆うように樹脂封止が行なわれていることを特徴とするものである。   According to the fourteenth aspect of the present invention, a plurality of independent conductor patterns are disposed on both surfaces of an insulating substrate, and the both surfaces are disposed through a half through hole in which a metal conductive film is applied to an inner peripheral surface. The conductive pattern of the double-sided through-hole printed circuit board in which the conductive pattern of the double-sided through-hole printed circuit board is filled with a filling material from one opening of the half-through hole to the middle of the half-through hole, and the semiconductor is formed on the conductive pattern of the surface blocking the opening A bare chip is arranged, and resin sealing is performed so as to cover the semiconductor bare chip.

また、本発明の請求項15に記載された発明は、請求項14において、前記充填材はレジスト材、樹脂、もしくはプリプレグであることを特徴とするものである。   The invention described in claim 15 of the present invention is characterized in that, in claim 14, the filler is a resist material, a resin, or a prepreg.

以下、この発明の好適な実施の形態を図1から図7を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 7 (the same reference numerals are given to the same portions). The embodiments described below are preferred specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.

本発明に係わる第1実施例は、最初に絶縁基板の両面に導体パターンが配設されたプリント基板において図1の(a)から(e)に示す工程によってスルーホールの部品面側の開口部を塞ぐ処理を行なう。まず、(a)に示すように、絶縁基板2の両面に導体パターン3と導体パターンで形成された電極パッド19が配設された両面プリント基板に貫通穴を設け、穴の内周面にメッキ等によって金属導電膜4を施してスルーホール5を形成し、スルーホール5を介して両面の導体パターン3と電極パッド19を導通させる。次に(b)に示すように、導体パターン3、電極パッド19およびスルーホール5の金属導電膜4の各表面をケミカルエッチングやサンドブラスト等によって荒らして(粗化処理)表面積を大きくする。そして、アクリル系の液状レジスト(第1レジスト)6をスルーホール5の貫通穴全体に充填すると同時に両面スルーホールプリント基板1両面のスルーホール開口部9、9′周辺部の導体パターン3および電極パッド19を覆う。次に(c)に示すように、両面スルーホールプリント基板1の半田面の方向から300mJ/cm程度のエネルギーの紫外線で露光した後、有機溶剤で現像して半田面側の電極パッド19を覆った第1レジスト6およびスルーホール5に充填された第1レジスト6を半田面側からスルーホール5の途中まで除去する。スルーホール5内の第1レジスト6を除去する深さDは、紫外線のエネルギー、紫外線を照射する時間等を制御することにより調整する。なお、第1レジスト6と接触する面を粗化処理して表面積を大きくしてあるため、第1レジスト6の接着強度が強く、強固なものになっている。次に(d)に示すように、両面スルーホールプリント基板1の部品面のスルーホール5の開口部9を塞ぐように覆った第1レジスト6を更にアクリル系の第2レジスト7で覆う。そして最後に(e)に示すように、半田面側のスルーホール5の第1レジスト6が除去されて露出した金属導電膜4と電極パッド(図2に示す半田面方向からみた斜視図の電極パッド19)19に金メッキ8を施してプリント基板の処理が完了する。ここで、両面スルーホールプリント基板1の絶縁基板2の厚み0.72mm、導電パターン3および電極パッド19(Cu膜上にNiおよびAu膜を形成した状態)の厚み18〜45μm、スルーホール5用貫通穴の直径0.35mmにおいては、スルーホール5内の第1レジスト6が除去される深さDは約0.4mm、部品面の導体パターン3表面から第2レジスト7の表面までの厚みは約70μmが好ましいが必ずしもこの値に拘る必要はない。 In the first embodiment according to the present invention, an opening portion on the component surface side of a through hole is first formed on a printed circuit board in which conductor patterns are disposed on both surfaces of an insulating substrate by the steps shown in FIGS. The process of closing is performed. First, as shown in (a), a through-hole is provided in a double-sided printed board in which the conductive pattern 3 and the electrode pad 19 formed of the conductive pattern are provided on both sides of the insulating substrate 2, and plating is performed on the inner peripheral surface of the hole. The metal conductive film 4 is applied by, for example, to form the through hole 5, and the conductive pattern 3 on both sides and the electrode pad 19 are conducted through the through hole 5. Next, as shown in (b), the surfaces of the conductive pattern 3, the electrode pad 19 and the metal conductive film 4 of the through hole 5 are roughened by chemical etching or sandblasting (roughening treatment) to increase the surface area. Then, an acrylic liquid resist (first resist) 6 is filled in the entire through hole of the through hole 5, and at the same time, the conductor pattern 3 and the electrode pad around the through hole openings 9, 9 'on both sides of the double-sided through-hole printed circuit board 1. 19 is covered. Next, as shown in (c), after being exposed with ultraviolet rays having an energy of about 300 mJ / cm 2 from the direction of the solder surface of the double-sided through-hole printed circuit board 1, the electrode pad 19 on the solder surface side is developed with an organic solvent. The covered first resist 6 and the first resist 6 filled in the through hole 5 are removed from the solder surface side to the middle of the through hole 5. The depth D for removing the first resist 6 in the through-hole 5 is adjusted by controlling the energy of ultraviolet rays, the time of irradiation with ultraviolet rays, and the like. In addition, since the surface area is increased by roughening the surface in contact with the first resist 6, the adhesive strength of the first resist 6 is strong and strong. Next, as shown in (d), the first resist 6 that covers the opening 9 of the through hole 5 on the component surface of the double-sided through-hole printed circuit board 1 is further covered with an acrylic second resist 7. Finally, as shown in (e), the metal conductive film 4 and the electrode pads (the electrodes in the perspective view shown in FIG. 2 as seen from the solder surface direction) exposed by removing the first resist 6 of the through hole 5 on the solder surface side. The pad 19) 19 is plated with gold 8 to complete the processing of the printed circuit board. Here, the thickness of the insulating substrate 2 of the double-sided through-hole printed circuit board 1 is 0.72 mm, the thickness of the conductive pattern 3 and the electrode pad 19 (when Ni and Au films are formed on the Cu film) is 18 to 45 μm, for the through-hole 5 When the diameter of the through hole is 0.35 mm, the depth D from which the first resist 6 in the through hole 5 is removed is about 0.4 mm, and the thickness from the surface of the conductor pattern 3 on the component surface to the surface of the second resist 7 is About 70 μm is preferable, but it is not always necessary to be concerned with this value.

なお、スルーホール5にレジスト6,7を充填して部品面側の開口部9を塞ぐのは、上述したように、両面スルーホールプリント基板1に配置されたLEDベアチップ10、受光ベアチップ11およびワイヤ12を保護するために光透過性樹脂13で封止するが、そのときトランスファ成形で行われる場合、成形時の成形圧力(トランスファ成形の際の成形材料注入圧力)で光透過性樹脂13がスルーホール5に進入し、両面スルーホールプリント基板1の半田面まで回り込んで電極パッド19を覆うことになり、電極パッド19への半田付けが不可能な製品になってしまうことを防止するためのものである。但し、1層のレジストでは加圧された光透過性樹脂13がスルーホール5に浸入するのを阻止するには限界があるため、レジストを2層構造とし光透過樹脂13のスルーホール5への進入防止を確実なものにしている。   The through holes 5 are filled with the resists 6 and 7 to close the opening 9 on the component surface side, as described above, the LED bare chip 10, the light receiving bare chip 11 and the wires arranged on the double-sided through-hole printed circuit board 1. 12 is sealed with a light-transmitting resin 13, but when it is performed by transfer molding at that time, the light-transmitting resin 13 passes through at a molding pressure during molding (molding material injection pressure at the time of transfer molding). In order to prevent the product from entering the hole 5 and wrapping around the solder surface of the double-sided through-hole printed circuit board 1 to cover the electrode pad 19, so that the product cannot be soldered to the electrode pad 19. Is. However, since there is a limit in preventing the pressurized light-transmitting resin 13 from entering the through-hole 5 with a single-layer resist, the resist has a two-layer structure, and the light-transmitting resin 13 is connected to the through-hole 5. Ensure entry prevention.

このようにスルーホール5の処理が行なわれた両面スルーホールプリント基板1の部品面に1対の半導体ベアチップを配置する工程および半導体ベアチップを光透過性樹脂で封止する工程を経た状態が図3に示されており、スルーホール5に連結された各導体パターン3上にLEDベアチップ10と受光ベアチップ11が導電性接着剤(図示せず)を介して多数配置され、両面スルーホールプリント基板1に固定されると同時に各チップ10,11の下部電極と導体パターン3とが電気的に接続されている。また、各チップ10,11の上部電極は、各チップ10,11が配置された導体パターン3とは分離されたスルーホール5に連結された導体パターン3にワイヤ12を介して接続され、電気的な導通が図られている。   FIG. 3 shows a state after a step of placing a pair of semiconductor bare chips on the component surface of the double-sided through-hole printed circuit board 1 subjected to the treatment of the through holes 5 and a step of sealing the semiconductor bare chips with a light-transmitting resin. A large number of LED bare chips 10 and light receiving bare chips 11 are arranged on each conductor pattern 3 connected to the through hole 5 via a conductive adhesive (not shown). Simultaneously with the fixing, the lower electrodes of the chips 10 and 11 and the conductor pattern 3 are electrically connected. Further, the upper electrodes of the chips 10 and 11 are electrically connected to the conductor pattern 3 connected to the through hole 5 separated from the conductor pattern 3 on which the chips 10 and 11 are arranged via the wire 12. Continuity is achieved.

そして、多数のLEDベアチップ10および受光ベアチップ11が配置された面に各チップ10,11およびワイヤ12を振動や衝撃等の外部応力および水分や塵埃等の外部環境から保護すると同時に、LEDベアチップから放射される光の配光を制御するレンズ14機能を持たせるように両面スルーホールプリント基板1の部品面を覆うように光透過性樹脂13で封止されている。この光透過性樹脂13で封止する方法は、例えばトランスファ成形で行なわれ、各チップ10,11およびワイヤ12が配置された両面スルーホールプリント基板1を金型内にセットして型締めされ、金型内に流動性の光透過性樹脂13を圧入して成形によって行なわれる。尚、このときの成形条件としては、プレス機型締圧力は約20t、プランジャ径はφ35mm(プランジャ面積は9.6cm)、プランジャ射出圧力は約1t、金型温度は約160℃、成形圧力は各チップ10,11と電極を結ぶワイヤが変形しないこと等を考慮すると80kg/cmから120kg/cmが最適である。このような条件のトランスファ成形によって樹脂封止が行なわれた場合、上述したような第1レジスト膜のみでスルーホールの途中まで充填した時は、樹脂の成形圧力を受けてスルーホールに充填されたレジストがスルーホール内を半田面側に移動し、約20%の確率でスルーホール内に樹脂が浸入して樹脂漏れを発生し、半田付不良を誘発する原因となった。そこで、レジストを2層構造に形成することで、樹脂漏れの発生率を殆んど0%にすることができた。そして、光透過性樹脂13で封止が完了した後、1対のLEDベアチップ10および受光ベアチップ11単位でスルーホール5を均等に2分割するように2点鎖線に沿って縦、横にダイシングされて1枚のプリント基板から多数の図4に示すような表面実装型半導体電子部品15が生産される。 Then, on the surface on which a large number of LED bare chips 10 and light receiving bare chips 11 are arranged, the chips 10, 11 and the wires 12 are protected from external stresses such as vibration and impact and external environment such as moisture and dust, and at the same time radiated from the LED bare chips. It is sealed with a light-transmitting resin 13 so as to cover the component surface of the double-sided through-hole printed circuit board 1 so as to have a lens 14 function for controlling the light distribution. The method of sealing with the light-transmitting resin 13 is performed, for example, by transfer molding, and the double-sided through-hole printed circuit board 1 on which the chips 10 and 11 and the wires 12 are arranged is set in a mold and clamped. This is performed by press-fitting a fluid light-transmitting resin 13 into the mold. As molding conditions at this time, the press clamping pressure is about 20 t, the plunger diameter is 35 mm (plunger area is 9.6 cm 2 ), the plunger injection pressure is about 1 t, the mold temperature is about 160 ° C., the molding pressure Considering that the wires connecting the chips 10 and 11 and the electrodes are not deformed, the optimum is 80 kg / cm 2 to 120 kg / cm 2 . When resin sealing is performed by transfer molding under such conditions, when filling the through hole with only the first resist film as described above, the through hole is filled under the resin molding pressure. The resist moved to the solder surface side through the through hole, and the resin entered the through hole with a probability of about 20%, causing a resin leak, causing a soldering defect. Therefore, by forming the resist in a two-layer structure, the occurrence rate of resin leakage could be almost 0%. After the sealing with the light transmissive resin 13 is completed, the through hole 5 is diced vertically and horizontally along the two-dot chain line so as to equally divide the through hole 5 into two in units of a pair of the LED bare chip 10 and the light receiving bare chip 11. A large number of surface mounted semiconductor electronic components 15 as shown in FIG. 4 are produced from a single printed board.

そして、ダイシングによって分割された個々の表面実装型半導体電子部品15を電子機器に組み込まれるプリント基板に実装した状態を示した断面図が第5図である。表面実装型半導体電子部品は電子機器に組み込まれるプリント基板16に表面実装型半導体電子部品15のハーフスルーホール5′の面を対向するように配置され、プリント基板16の導電パターン17と表面実装型半導体電子部品15のハーフスルーホール5′の第1レジスト6が除去されて露出した金属導電膜4および電極パッド19とを半田18によって接合されて、固定と電気的導通が図られている。このような接合形態では、プリント基板16に対して表面実装型半導体電子部品15のハーフスルーホール5′面とそれに直角な面に設けられた電極パッド19との両面が立体的に半田18によって接続されるため、プリント基板16に対して強固な固定が確保されている。したがって、実装された表面実装型半導体電子部品15に振動や応力が加わることによる接触不良が原因で電子機器の不具合が生じる頻度が顕著に減少するものである。   FIG. 5 is a cross-sectional view showing a state in which the individual surface-mounted semiconductor electronic components 15 divided by dicing are mounted on a printed circuit board incorporated in an electronic device. The surface-mounted semiconductor electronic component is disposed so that the surface of the half-through hole 5 ′ of the surface-mounted semiconductor electronic component 15 faces the printed board 16 incorporated in the electronic device. The metal conductive film 4 and the electrode pad 19 exposed by removing the first resist 6 in the half-through hole 5 ′ of the semiconductor electronic component 15 are joined together by solder 18 so as to be fixed and electrically connected. In such a joining form, both surfaces of the half-through hole 5 ′ surface of the surface mount semiconductor electronic component 15 and the electrode pad 19 provided on a surface perpendicular to the surface of the printed circuit board 16 are three-dimensionally connected by the solder 18. Therefore, firm fixation to the printed circuit board 16 is ensured. Accordingly, the frequency of occurrence of defects in the electronic device due to contact failure due to vibration or stress applied to the mounted surface-mounted semiconductor electronic component 15 is remarkably reduced.

本発明に係わる第2実施例は、上述した第1実施例において示した図1の(a)〜(c)の工程によってスルーホールの部品面側の開口部9を塞ぐ処理を行う。この工程は第1実施例においては、レジスト材料によって二層の膜を形成するものであったが、本実施例では、スルーホール5にエポキシ樹脂を充填し、その後レーザ加工等により半田面側のエポキシ樹脂の一部を除去してスルーホール内壁の金属導電膜4を露出させるものである。従って、スルーホール5に充填する充填材にエポキシ樹脂を用いることによって1回の充填工程で処理できるために製造工数の低減が図られるという利点がある。ところで、スルーホール5に充填するエポキシ樹脂は光透過性樹脂のトランスファ成形時の成形温度よりも高いガラス転移温度を有することが望ましく、本実施例では、ガラス転移温度が180〜220℃のエポキシ樹脂を使用した。その後、第1実施例と同様の工程で部品面に半導体ベアチップを載置した後、光透過性樹脂で封止して表面実装型半導体電子部品を組み上げる。   In the second embodiment of the present invention, the process of closing the opening 9 on the component surface side of the through hole is performed by the steps (a) to (c) of FIG. 1 shown in the first embodiment. In the first embodiment, this process is to form a two-layer film with a resist material. In this embodiment, the through hole 5 is filled with an epoxy resin, and then laser processing or the like is performed on the solder surface side. A part of the epoxy resin is removed to expose the metal conductive film 4 on the inner wall of the through hole. Therefore, there is an advantage that the number of manufacturing steps can be reduced because an epoxy resin can be used for the filling material to fill the through hole 5 because it can be processed in one filling process. By the way, it is desirable that the epoxy resin filling the through hole 5 has a glass transition temperature higher than the molding temperature at the time of transfer molding of the light transmitting resin. In this embodiment, the epoxy resin having a glass transition temperature of 180 to 220 ° C. It was used. Thereafter, a semiconductor bare chip is placed on the component surface in the same process as in the first embodiment, and then sealed with a light-transmitting resin to assemble a surface mount semiconductor electronic component.

ここで、トランスファ成形によって光透過性樹脂で半導体ベアチップを封止する成形温度が150℃程度の高温であるのに対して、第1実施例でスルーホールを塞ぐために使用したアクリル系レジスト材料のガラス転移温度は110〜120℃、本実施例でスルーホールに充填するために使用したエポキシ樹脂のガラス転移温度は180〜220℃であった。成形温度よりも転移温度が高い方が軟化やトランスファ成形による光透過性樹脂のスルーホールへの浸入を確実に防止することができる。さらに、本実施例の利点は、封止樹脂となる光透過性成樹脂との密着性がレジストよりもエポキシ樹脂のほうが良く、歩留まりの向上および耐久性の向上が期待できることである。また、プリント基板の材質がエポキシ樹脂である場合には、基板と充填材料との熱膨張係数差を低減できるため、デバイスの耐熱性の向上も期待できる。   Here, the glass of the acrylic resist material used to close the through-hole in the first embodiment, whereas the molding temperature for sealing the semiconductor bare chip with the light transmissive resin by transfer molding is as high as about 150 ° C. The transition temperature was 110 to 120 ° C., and the glass transition temperature of the epoxy resin used for filling the through holes in this example was 180 to 220 ° C. When the transition temperature is higher than the molding temperature, the penetration of the light-transmitting resin into the through hole due to softening or transfer molding can be reliably prevented. Furthermore, the advantage of the present embodiment is that the epoxy resin has better adhesion to the light-transmitting resin as the sealing resin than the resist, and an improvement in yield and durability can be expected. Further, when the material of the printed board is an epoxy resin, the difference in thermal expansion coefficient between the board and the filling material can be reduced, so that improvement in the heat resistance of the device can also be expected.

図6は、本発明に係わる第3実施例の表面実装型半導体電子部品が1枚の両面スルーホールプリント基板上に多数個取りで形成された状態を示す部分平面図である。両面スルーホールプリント基板1にLEDベアチップ10および受光ベアチップ11を配置し、光透過性樹脂13で部品面を封止するのは上述した第1実施例と同様であるが、光透過性樹脂13で封止するときにスルーホール5に光透過性樹脂13が流れ込まないようにスルーホール5を塞ぐ方法が異なっている。この場合、接着性を有する樹脂フィルム(プリプレグ)20をスルーホール5の部品面側の開口部9に配置し、プリプレグ20を介してさらにその上に両面スルーホールプリント基板1の絶縁基板2と同一の部材からなる絶縁材シート21を熱圧着する。このように、2層にスルーホール5の開口部9を塞ぐことにより封止成形時の射出圧力によって光透過樹脂13がスルーホー13へ進入することを確実に防止している。ここで使用されるプリプレグ20は炭素繊維、ガラス繊維或いはアラミド繊維等にエポキシ樹脂等の未硬化の熱硬化性樹脂を含浸させたものであり、これを、スルーホール5の開口部9に設けることにより、流れ出した熱硬化性樹脂によってスルーホールの途中までが充填される。このとき、スルーホール5への充填の深さは繊維に含浸される熱硬化性樹脂の量を調整することにより制御される。また、光透過性樹脂13のスルーホール5への流れ込み防止の効果が損なわれないように、充填された熱硬化性樹脂に気泡、クラックおよび異物の混入がないような管理が行なわれている。さらに、多数のスルーホール5の1ヵ所毎にこのような処理をすることは非常に時間を費やす作業になるため、プリプレグ20および絶縁シート21は必要な部分で構成されるシート状に形成されて両面スルーホールプリント基板1上に一括で貼り付けられる。なお、スルーホール5の開口部9を塞ぐ絶縁シート21を両面スルーホールプリント基板1の絶縁基板2と同一の部材にするのは、絶縁シート21を両面スルーホールプリント基板1に貼り付けるときに圧力および熱を加えるため、冷却過程で熱膨張係数の違いによって両者の間に応力が加わり、最悪の場合は剥離が生じる可能性がある。このため熱膨張係数が同一の材料を使用することにより応力の発生を防ぎ、貼り付けの確実性を確保するためである。   FIG. 6 is a partial plan view showing a state in which a plurality of surface-mounted semiconductor electronic components according to the third embodiment of the present invention are formed on a single double-sided through-hole printed circuit board. The LED bare chip 10 and the light receiving bare chip 11 are arranged on the double-sided through-hole printed circuit board 1 and the component surface is sealed with the light transmissive resin 13 as in the first embodiment. The method of closing the through-hole 5 is different so that the light-transmitting resin 13 does not flow into the through-hole 5 when sealing. In this case, a resin film (prepreg) 20 having adhesiveness is disposed in the opening 9 on the component surface side of the through hole 5, and the same as the insulating substrate 2 of the double-sided through-hole printed circuit board 1 is further disposed thereon via the prepreg 20. The insulating material sheet 21 made of the above member is subjected to thermocompression bonding. In this way, the opening 9 of the through hole 5 is closed in two layers, thereby reliably preventing the light transmitting resin 13 from entering the through hole 13 due to the injection pressure at the time of sealing molding. The prepreg 20 used here is obtained by impregnating carbon fiber, glass fiber, aramid fiber, or the like with an uncured thermosetting resin such as epoxy resin, and this is provided in the opening 9 of the through hole 5. Thus, the middle of the through hole is filled with the thermosetting resin that has flowed out. At this time, the depth of filling the through hole 5 is controlled by adjusting the amount of the thermosetting resin impregnated in the fiber. Moreover, management is performed so that bubbles, cracks, and foreign matters are not mixed in the filled thermosetting resin so that the effect of preventing the light-transmitting resin 13 from flowing into the through hole 5 is not impaired. Furthermore, since it is very time consuming to perform such processing for each of the many through holes 5, the prepreg 20 and the insulating sheet 21 are formed in a sheet shape composed of necessary portions. The double-sided through-hole printed circuit board 1 is pasted together. The insulating sheet 21 that closes the opening 9 of the through hole 5 is made the same member as the insulating substrate 2 of the double-sided through-hole printed circuit board 1 because the pressure is applied when the insulating sheet 21 is attached to the double-sided through-hole printed circuit board 1. Since heat is applied, stress is applied between the two due to the difference in thermal expansion coefficient during the cooling process, and in the worst case, peeling may occur. For this reason, the use of a material having the same thermal expansion coefficient prevents the generation of stress and ensures the certainty of attachment.

このようにスルーホール5の処理が行なわれた両面スルーホールプリント基板1の部品面には実施例1と同様に、スルーホール5に連結された各導体パターン3上に1対のLEDベアチップ10と受光ベアチップ11が導電性接着剤(図示せず)を介して多数配置され、プリント基板に固定されると同時に各チップ10,11の下部電極と導体パターン3とが電気的に接続されている。また、各チップ10,11の上部電極は、各チップ10,11が配置された導体パターン3とは分離されたスルーホール5に連結された導体パターン3にワイヤ12を介して接続され、電気的な導通が図られている。   In the same manner as in the first embodiment, a pair of LED bare chips 10 and a pair of LED bare chips 10 are formed on each of the conductor patterns 3 connected to the through holes 5 on the component surface of the double-sided through-hole printed circuit board 1 subjected to the processing of the through holes 5 in this way. A large number of light receiving bare chips 11 are arranged via a conductive adhesive (not shown), and are fixed to the printed circuit board. At the same time, the lower electrodes of the chips 10 and 11 and the conductor pattern 3 are electrically connected. Further, the upper electrodes of the chips 10 and 11 are electrically connected to the conductor pattern 3 connected to the through hole 5 separated from the conductor pattern 3 on which the chips 10 and 11 are arranged via the wire 12. Continuity is achieved.

そして、両面スルーホールプリント基板1の部品面は、LEDベアチップ10および受光ベアチップ11を覆うように光透過性樹脂13で封止され、2点鎖線に沿ってスクライブされて図7に示すような個々の表面実装型半導体電子部品15に分割される。   Then, the component surface of the double-sided through-hole printed circuit board 1 is sealed with a light-transmitting resin 13 so as to cover the LED bare chip 10 and the light-receiving bare chip 11, and is scribed along a two-dot chain line, as shown in FIG. Are divided into surface-mounted semiconductor electronic components 15.

なお、本発明は上記実施例に限定されるものではない。例えば、スルーホールの開口部を塞ぐ充填材に関しては、ガラス転移温度が高い樹脂であれば使用可能であり、半導体ベアチップの封止工程において光透過性樹脂の種類、成形温度、後工程等の条件に対応して適宜選択されるものである。また、スルーホールを塞ぐ方法に関しても、治具等を使用してあらかじめスルーホールの途中まで樹脂を充填する方法、スルーホールに充填後にエッチングあるいはプラズマ照射等の手法によって半田面側の樹脂の一部を除去する方法等が考えられる。   In addition, this invention is not limited to the said Example. For example, with respect to the filler that closes the opening of the through hole, any resin having a high glass transition temperature can be used. In the semiconductor bare chip sealing process, conditions such as the type of light-transmitting resin, molding temperature, and post-process Is appropriately selected corresponding to the above. In addition, as for the method of closing the through hole, a part of the resin on the solder surface side is filled by filling the through hole with a resin in advance using a jig or the like, or by etching or plasma irradiation after filling the through hole. The method etc. which remove | eliminate can be considered.

上述したように、本発明では、スルーホールの開口部を2層に塞ぐことにより、LEDベアチップおよび受光ベアチップが配置された部品面をトランスファ成形によって封止するに当たり、成形時の成形圧力が80kg/cmから120kg/cmの光透過性樹脂がスルーホールに進入するのを確実に阻止することができる。従って、封止樹脂がスルーホールに進入してプリント基板の半田面まで回り込み、電極パッドを覆って電極パッドへの半田付けが不可能な製品になることを防止することができる。 As described above, according to the present invention, when the part surface where the LED bare chip and the light receiving bare chip are arranged is sealed by transfer molding by closing the opening of the through hole into two layers, the molding pressure during molding is 80 kg / It is possible to reliably prevent cm 2 to 120 kg / cm 2 of the light transmissive resin from entering the through hole. Accordingly, it is possible to prevent the sealing resin from entering the through hole and wrapping around the solder surface of the printed circuit board to cover the electrode pad and become a product that cannot be soldered to the electrode pad.

また、スルーホールを塞ぐ時に使用されるレジストは印刷、スプレー等の方法で、接着シートを有する絶縁シートは貼り付けで共に一括形成される。従って、作業工数が少なく、製造コストを安くできる。   Also, the resist used when closing the through hole is formed together by printing, spraying or the like, and the insulating sheet having the adhesive sheet is pasted together. Therefore, the number of work steps is small, and the manufacturing cost can be reduced.

また、スルーホールの開口部を覆う2層の部材のうち、スルーホールに接する部材がスルーホールの途中までしか充填されないため、多数個取りで構成されて個々の表面実装型半導体電子部品に分割されるときにスルーホールが半分に分割されたハーフスルーホールに絶縁材が充填されないで金属導電膜が露出した部分が存在する。これにより、表面実装型半導体電子部品が実装されるプリント基板に対して表面実装型半導体電子部品のハーフスルーホール面とそれに直角な面に設けられた電極パッドの両面に立体的に半田接続が行なわれるため、実装基板に対して強固な固定が確保される。また、スルーホールが均等に2分割されたハーフスルーホールの切断部に発生する導体パターンのバリは、スルーホールの穴を除いた部分に限定される。従って、バリによって電極パッドに半田が上がるのが阻害され、電極パッド全面まで半田が十分行き渡らず、固定強度が弱い半田付けになってしまうということが回避される。すなわち、電子機器に組み込まれたプリント基板に実装された表面実装型半導体電子部品に振動や応力が加わることで接触不良が発生し、それが原因で電子機器に不具合が生じるといったトラブルが少なくなる。などの優れた効果を奏するものである。   In addition, among the two-layer members covering the opening of the through hole, the member in contact with the through hole is filled only up to the middle of the through hole, so that it is composed of a large number of parts and divided into individual surface mount semiconductor electronic components. In this case, there is a portion where the metal conductive film is exposed without being filled with the insulating material in the half through hole in which the through hole is divided in half. As a result, a three-dimensional solder connection is made between the half-through hole surface of the surface mount semiconductor electronic component and the electrode pads provided on the surface perpendicular to the surface mount semiconductor electronic component on the printed circuit board on which the surface mount semiconductor electronic component is mounted. Therefore, firm fixation to the mounting substrate is ensured. Moreover, the burr | flash of the conductor pattern which generate | occur | produces in the cut part of the half through hole by which the through hole was equally divided into 2 is limited to the part except the hole of the through hole. Accordingly, it is possible to prevent the solder from rising to the electrode pad due to the burrs, the solder not sufficiently reaching the entire surface of the electrode pad, and soldering with low fixing strength. That is, contact failure occurs when vibration or stress is applied to the surface-mounted semiconductor electronic component mounted on the printed circuit board incorporated in the electronic device, and the trouble that the electronic device becomes defective due to this is reduced. It has excellent effects such as.

本発明の第1実施例に係わる両面スルーホールプリント基板の工程図を示す部分断面図であり、(a)はスルーホールの構成を示す図、(b)は第1レジストの形成を示す図、(c)は第1レジストの部分除去を示す図、(d)は第2レジストの形成を示す図、(e)はスルーホールの第1レジスト除去部の金属導電膜および電極パッドへの金メッキの形成を示す図である。It is a partial sectional view showing a process diagram of a double-sided through-hole printed circuit board according to the first embodiment of the present invention, (a) is a diagram showing the configuration of the through-hole, (b) is a diagram showing the formation of the first resist, (C) is a diagram showing the partial removal of the first resist, (d) is a diagram showing the formation of the second resist, (e) is a gold plating on the metal conductive film and the electrode pad of the first resist removal portion of the through hole. It is a figure which shows formation. 本発明の第1実施例に係わる表面実装型半導体電子部品を半田面方向から見た斜視図である。1 is a perspective view of a surface mount semiconductor electronic component according to a first embodiment of the present invention as viewed from the direction of a solder surface. 本発明の第1実施例に係わる表面実装型半導体電子部品をプリント基板上に多数個取りで形成した状態の平面図である。1 is a plan view showing a state in which a large number of surface-mounted semiconductor electronic components according to a first embodiment of the present invention are formed on a printed board. 本発明の第1実施例に係わる表面実装型半導体電子部品を部品面方向から見た斜視図である。1 is a perspective view of a surface-mounted semiconductor electronic component according to a first embodiment of the present invention when viewed from the component surface direction. 本発明の第1実施例に係わる表面実装型半導体電子部品の実装状態を示す断面図である。1 is a cross-sectional view showing a mounted state of a surface mount semiconductor electronic component according to a first embodiment of the present invention. 本発明の第3実施例に係わる表面実装型半導体電子部品をプリント基板上に多数個取りで形成した状態の平面図である。It is a top view of the state which formed many surface mount type semiconductor electronic components concerning the 3rd example of the present invention on a printed circuit board. 本発明の第3実施例に係わる表面実装型半導体電子部品を部品面方向から見た斜視図である。It is the perspective view which looked at the surface mounting type semiconductor electronic component concerning 3rd Example of this invention from the component surface direction.

符号の説明Explanation of symbols

1 両面スルーホールプリント基板
2 絶縁基板
3 導体パターン
4 金属導電膜
5 スルーホール
5′ ハーフスルーホール
6 第1レジスト
7 第2レジスト
8 金メッキ
9 開口部
9′ 開口部
10 LEDベアチップ
11 受光ベアチップ
12 ワイヤ
13 光透過性樹脂
14 レンズ
15 表面実装型半導体電子部品
16 プリント基板
17 導体パターン
18 半田
19 電極パッド
20 プリプレグ
21 絶縁シート
1 Double-sided through-hole printed circuit board 2 Insulating board 3 Conductor pattern 4 Metal conductive film 5 Through-hole
5 ′ half-through hole 6 first resist 7 second resist 8 gold plating 9 opening 9 ′ opening 10 LED bare chip 11 light receiving bare chip 12 wire 13 light transmitting resin 14 lens 15 surface mount semiconductor electronic component 16 printed circuit board 17 conductor pattern 18 Solder 19 Electrode pad 20 Prepreg 21 Insulating sheet

Claims (15)

絶縁基板の両面に多数の独立した導体パターンが配設され、内周面に金属導電膜が施されたスルーホールを介して前記両面の導体パターンが導通するようにした両面スルーホールプリント基板の前記スルーホールの一方の開口部を塞ぐ工程と、前記両面スルーホール基板の前記スルーホールの開口部を塞いだ面の導体パターン上に半導体ベアチップを配置する工程と、前記半導体ベアチップを配置した前記両面スルーホール基板がセットされた成形金型内に第1の樹脂を圧入することによって前記半導体ベアチップを覆うように樹脂封止を行なう工程とを有することを特徴とする表面実装型半導体電子部品の製造方法。 The double-sided through-hole printed circuit board in which a large number of independent conductor patterns are arranged on both sides of the insulating substrate, and the conductive patterns on both sides are conducted through a through-hole in which a metal conductive film is applied to the inner peripheral surface. A step of closing one opening of a through hole, a step of disposing a semiconductor bare chip on a conductor pattern of a surface of the double-sided through-hole substrate where the opening of the through hole is blocked, and the double-sided through in which the semiconductor bare chip is disposed And a step of sealing the resin so as to cover the semiconductor bare chip by press-fitting a first resin into a molding die on which a hole substrate is set. . 前記開口部を塞ぐ工程は、前記開口部から前記スルーホールの途中までを第2の樹脂により塞ぐことを特徴とする請求項1に記載の表面実装型半導体電子部品の製造方法。 2. The method for manufacturing a surface-mount type semiconductor electronic component according to claim 1, wherein the step of closing the opening includes closing the portion from the opening to the middle of the through hole with a second resin. 前記第2の樹脂は、前記第1の樹脂を圧入する際の成形温度より高いガラス転移温度を有する樹脂であることを特徴とする請求項2に記載の表面実装型半導体電子部品の製造方法。 3. The method for manufacturing a surface-mounted semiconductor electronic component according to claim 2, wherein the second resin is a resin having a glass transition temperature higher than a molding temperature when the first resin is press-fitted. 前記第2の樹脂は、エポキシ樹脂であることを特徴とする請求項2または3の何れか1項に記載の表面実装型半導体電子部品の製造方法。 The method for manufacturing a surface-mount type semiconductor electronic component according to claim 2, wherein the second resin is an epoxy resin. 前記開口部を塞ぐ工程は、前記スルーホールの上部に第1レジスト膜を形成し、該第1レジスト膜の上面に第2レジスト膜を形成して2層のレジスト膜で構成されることを特徴とする請求項1に記載の表面実装型半導体電子部品の製造方法。 The step of closing the opening includes a two-layer resist film in which a first resist film is formed on the through hole and a second resist film is formed on the upper surface of the first resist film. A method for manufacturing a surface-mounted semiconductor electronic component according to claim 1. 前記第1レジスト膜は、前記スルーホールの途中までを塞ぐことを特徴とする請求項5に記載の表面実装型半導体電子部品の製造方法。 6. The method of manufacturing a surface-mount type semiconductor electronic component according to claim 5, wherein the first resist film blocks up to the middle of the through hole. 前記開口部を塞ぐ工程は、前記両面スルーホールプリント基板において、前記導体パターンの少なくとも前記半導体ベアチップが配置される位置の近傍および前記半導体ベアチップに一方の端部が接続されたワイヤの他方の端部が接続される位置の近傍を除いた部分に接着シートを備えた絶縁シートが貼着されることを特徴とする請求項1に記載の表面実装型半導体電子部品の製造方法。 The step of closing the opening includes, in the double-sided through-hole printed circuit board, at least the position of the conductor pattern near the position where the semiconductor bare chip is disposed and the other end of the wire having one end connected to the semiconductor bare chip. 2. The method for manufacturing a surface-mounted semiconductor electronic component according to claim 1, wherein an insulating sheet provided with an adhesive sheet is attached to a portion excluding the vicinity of a position where the surface is connected. 前記接着シートは、プリプレグであり、該プリプレグに含浸された熱硬化性樹脂が前記スルーホールの途中までを塞ぐことを特徴とする請求項7に記載の表面実装型半導体電子部品の製造方法。 The method for manufacturing a surface-mount type semiconductor electronic component according to claim 7, wherein the adhesive sheet is a prepreg, and a thermosetting resin impregnated in the prepreg closes partway through the through hole. 前記絶縁シートは、前記両面スルーホールプリント基板の絶縁基板と同一部材であることを特徴とする請求項7または8の何れか1項に記載の表面実装型半導体電子部品の製造方法。 The method for manufacturing a surface-mount type semiconductor electronic component according to claim 7, wherein the insulating sheet is the same member as the insulating substrate of the double-sided through-hole printed circuit board. 前記半導体ベアチップを配置する工程は、前記半導体ベアチップが発光素子と受光素子のうち何れか一方または両方の組合わせであることを特徴とする請求項1から9の何れか1項に記載の表面実装型半導体電子部品の製造方法。 The surface mounting according to any one of claims 1 to 9, wherein in the step of arranging the semiconductor bare chip, the semiconductor bare chip is one of a light emitting element and a light receiving element or a combination of both. Type semiconductor electronic component manufacturing method. 前記半導体ベアチップを配置した前記両面スルーホール基板がセットされた前記成形金型内に第1の樹脂を圧入することによって前記樹脂封止を行なう方法は、トランスファ成形であることを特徴とする請求項1から10の何れか1項に記載の表面実装型半導体電子部品の製造方法。 The method for sealing the resin by press-fitting a first resin into the molding die on which the double-sided through-hole substrate on which the semiconductor bare chip is disposed is set is transfer molding. 11. A method for manufacturing a surface-mounted semiconductor electronic component according to any one of 1 to 10. 前記樹脂封止によって光学レンズ部が形成されることを特徴とする請求項11に記載の表面実装型半導体電子部品の製造方法。 12. The method for manufacturing a surface-mounted semiconductor electronic component according to claim 11, wherein an optical lens portion is formed by the resin sealing. 前記請求項1から12の何れか1項に記載の表面実装型半導体電子部品の製造方法を用いて製造された表面実装型半導体電子部品。 A surface-mounted semiconductor electronic component manufactured using the method for manufacturing a surface-mounted semiconductor electronic component according to any one of claims 1 to 12. 絶縁基板の両面に多数の独立した導体パターンが配設され、内周面に金属導電膜が施されたハーフスルーホールを介して前記両面の導体パターンが導通するようにした両面スルーホールプリント基板の前記ハーフスルーホールの一方の開口部から前記ハーフスルーホールの途中まで充填材で塞ぎ、前記開口部を塞いだ面の導体パターン上に半導体ベアチップを配置し、前記半導体ベアチップを覆うように樹脂封止が行なわれていることを特徴とする表面実装型半導体電子部品。 A double-sided through-hole printed circuit board in which a large number of independent conductor patterns are arranged on both sides of an insulating substrate, and the conductive patterns on both sides are made conductive through a half-through hole in which a metal conductive film is applied to the inner peripheral surface. Filled with a filler from one opening of the half-through hole to the middle of the half-through hole, a semiconductor bare chip is disposed on the conductor pattern on the surface covering the opening, and resin-sealed so as to cover the semiconductor bare chip A surface-mounting semiconductor electronic component characterized by the above. 前記充填材はレジスト材、樹脂、もしくはプリプレグであることを特徴とする請求14に記載の表面実装型半導体電子部品。 15. The surface mount semiconductor electronic component according to claim 14, wherein the filler is a resist material, a resin, or a prepreg.
JP2003404753A 2003-06-24 2003-12-03 Surface mount semiconductor electronic component and manufacturing method Expired - Fee Related JP3876250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404753A JP3876250B2 (en) 2003-06-24 2003-12-03 Surface mount semiconductor electronic component and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003179632 2003-06-24
JP2003404753A JP3876250B2 (en) 2003-06-24 2003-12-03 Surface mount semiconductor electronic component and manufacturing method

Publications (2)

Publication Number Publication Date
JP2005039177A true JP2005039177A (en) 2005-02-10
JP3876250B2 JP3876250B2 (en) 2007-01-31

Family

ID=34220188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404753A Expired - Fee Related JP3876250B2 (en) 2003-06-24 2003-12-03 Surface mount semiconductor electronic component and manufacturing method

Country Status (1)

Country Link
JP (1) JP3876250B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088959A1 (en) * 2006-02-02 2007-08-09 Nec Corporation Optical module
WO2007135764A1 (en) * 2006-05-24 2007-11-29 Sharp Kabushiki Kaisha Light emitting device, illuminating apparatus having it, and liquid crystal display
JP2008546192A (en) * 2005-05-30 2008-12-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Casing body and method of manufacturing casing body
GB2452121A (en) * 2007-08-21 2009-02-25 Ko-Hsin Lee Packaging structure of a light emitting diode
JP2010123654A (en) * 2008-11-18 2010-06-03 Stanley Electric Co Ltd Optical semiconductor apparatus
US8053796B2 (en) 2007-10-09 2011-11-08 Foxsemicon Integrated Technology, Inc. Solid state light emitting device
WO2012020796A1 (en) * 2010-08-13 2012-02-16 株式会社オプトエレクトロニクス Optical detecting device, optical device, optical information reading device, and light source affixing method
EP2483939A1 (en) * 2009-10-01 2012-08-08 Excelitas Canada Inc. Optoelectronic devices with laminate leadless carrier packaging in side-looker or top-looker device orientation
KR101358215B1 (en) 2013-09-13 2014-02-06 주식회사 루멘스 Substrate for light emitting device, module for light emitting device and its manufacturing method of substrate for light emitting device
US8798447B2 (en) 2005-08-10 2014-08-05 Mitsubishi Electric Corporation Recording medium, reproducing apparatus, and reproducing method
CN103968287A (en) * 2014-05-20 2014-08-06 贵州光浦森光电有限公司 LED light machine module with vertically arranged big chips
KR101524004B1 (en) * 2008-03-17 2015-05-29 코닌클리케 필립스 엔.브이. Underfill process for flip-chip leds
JP2020161697A (en) * 2019-03-27 2020-10-01 ローム株式会社 Semiconductor light emitting device
US10903406B2 (en) 2015-07-28 2021-01-26 Osram Oled Gmbh Housing comprising a semiconductor body and a method for producing a housing with a semiconductor body
JP2022062937A (en) * 2020-10-09 2022-04-21 Nissha株式会社 Injection molded article and method for producing the same
CN115360186A (en) * 2022-08-23 2022-11-18 深圳市天成照明有限公司 CHIP LED packaging structure and processing technology

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772065B2 (en) 2005-05-30 2014-07-08 Osram Opto Semiconductors Gmbh Housing body and method for production thereof
JP2008546192A (en) * 2005-05-30 2008-12-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Casing body and method of manufacturing casing body
US8798447B2 (en) 2005-08-10 2014-08-05 Mitsubishi Electric Corporation Recording medium, reproducing apparatus, and reproducing method
WO2007088959A1 (en) * 2006-02-02 2007-08-09 Nec Corporation Optical module
WO2007135764A1 (en) * 2006-05-24 2007-11-29 Sharp Kabushiki Kaisha Light emitting device, illuminating apparatus having it, and liquid crystal display
US8698976B2 (en) 2006-05-24 2014-04-15 Sharp Kabushiki Kaisha Light emitting device, illuminating apparatus having the same, and liquid crystal display apparatus
GB2452121A (en) * 2007-08-21 2009-02-25 Ko-Hsin Lee Packaging structure of a light emitting diode
US8053796B2 (en) 2007-10-09 2011-11-08 Foxsemicon Integrated Technology, Inc. Solid state light emitting device
KR101524004B1 (en) * 2008-03-17 2015-05-29 코닌클리케 필립스 엔.브이. Underfill process for flip-chip leds
JP2010123654A (en) * 2008-11-18 2010-06-03 Stanley Electric Co Ltd Optical semiconductor apparatus
EP2483939A1 (en) * 2009-10-01 2012-08-08 Excelitas Canada Inc. Optoelectronic devices with laminate leadless carrier packaging in side-looker or top-looker device orientation
WO2012020796A1 (en) * 2010-08-13 2012-02-16 株式会社オプトエレクトロニクス Optical detecting device, optical device, optical information reading device, and light source affixing method
US8654425B2 (en) 2010-08-13 2014-02-18 Optoelectronics Co., Ltd. Optical detection device, optical device, optical information reading device, and light source fixing method
KR101358215B1 (en) 2013-09-13 2014-02-06 주식회사 루멘스 Substrate for light emitting device, module for light emitting device and its manufacturing method of substrate for light emitting device
CN103968287A (en) * 2014-05-20 2014-08-06 贵州光浦森光电有限公司 LED light machine module with vertically arranged big chips
US10903406B2 (en) 2015-07-28 2021-01-26 Osram Oled Gmbh Housing comprising a semiconductor body and a method for producing a housing with a semiconductor body
JP2020161697A (en) * 2019-03-27 2020-10-01 ローム株式会社 Semiconductor light emitting device
US11532773B2 (en) 2019-03-27 2022-12-20 Rohm Co., Ltd. Semiconductor light emitting device
JP7283938B2 (en) 2019-03-27 2023-05-30 ローム株式会社 semiconductor light emitting device
JP2022062937A (en) * 2020-10-09 2022-04-21 Nissha株式会社 Injection molded article and method for producing the same
JP7102481B2 (en) 2020-10-09 2022-07-19 Nissha株式会社 Injection molded product and its manufacturing method
US11877386B2 (en) 2020-10-09 2024-01-16 Nissha Co., Ltd. Injection molded article and method for producing same
CN115360186A (en) * 2022-08-23 2022-11-18 深圳市天成照明有限公司 CHIP LED packaging structure and processing technology
CN115360186B (en) * 2022-08-23 2024-01-26 深圳市天成照明有限公司 CHIP LED packaging structure and processing technology

Also Published As

Publication number Publication date
JP3876250B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3876250B2 (en) Surface mount semiconductor electronic component and manufacturing method
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2003017518A (en) Method for manufacturing hybrid integrated circuit device
JP2013101996A (en) Substrate, light emitting device, and manufacturing method of substrate
US7807510B2 (en) Method of manufacturing chip integrated substrate
JP2007207802A (en) Electronic circuit module and method of manufacturing same
US20120119358A1 (en) Semicondiuctor package substrate and method for manufacturing the same
KR102356810B1 (en) Printed circuit board having embedded electronic devices and method of manufacturing the same
JP2006165411A (en) Semiconductor device and manufacturing method thereof
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2001068740A (en) Method for interconnecting electronic devices
KR20160084666A (en) Printed circuit board, semiconductor package and method of manufacturing the same
JP4942452B2 (en) Circuit equipment
JP4100685B2 (en) Semiconductor device
CN100511611C (en) Surface mounted semiconductor electronic parts and producing method
KR20160010246A (en) Electric component module and manufacturing method threrof
KR20080082365A (en) Pcb with metal core and method for fabricaiton of the same and method for fabrication of semiconductor package using pcb with metal core
JP2017037863A (en) Electronic device
KR100239387B1 (en) Ball grid array semiconductor package and the manufacture method
JP7477154B2 (en) Circuit device
JP2009152372A (en) Printed circuit board and semiconductor device, and manufacturing methods thereof
KR101922873B1 (en) Manufacturing method of electronic component modul
JP3818591B2 (en) Electronic component with through-hole electrode and method for manufacturing the same
KR100303392B1 (en) Circuit Board Structure of Semiconductor Package and Manufacturing Method Thereof
KR100515101B1 (en) manufacturing method of semiconductor package and its semiconductor package

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees