JP2005029637A - Heat-resistant synthetic paper and manufacturing method therefor - Google Patents

Heat-resistant synthetic paper and manufacturing method therefor Download PDF

Info

Publication number
JP2005029637A
JP2005029637A JP2003194238A JP2003194238A JP2005029637A JP 2005029637 A JP2005029637 A JP 2005029637A JP 2003194238 A JP2003194238 A JP 2003194238A JP 2003194238 A JP2003194238 A JP 2003194238A JP 2005029637 A JP2005029637 A JP 2005029637A
Authority
JP
Japan
Prior art keywords
heat
synthetic paper
resin
resistant
resistant synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194238A
Other languages
Japanese (ja)
Inventor
Kazutake Okamoto
和丈 岡本
Keizo Kawahara
恵造 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003194238A priority Critical patent/JP2005029637A/en
Publication of JP2005029637A publication Critical patent/JP2005029637A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a heat-resistant synthetic paper sheet which is excellent in heat resistance, printability and surface smoothness and is suitably used as a substrate, or the like, of a heat-resistant label, a heat-resistant insulating material, and the like. <P>SOLUTION: The heat-resistant synthetic paper sheet comprises a resin having a glass transition temperature of ≥130°C and has a porosity of 20-98 vol.%. The synthetic paper sheet is manufactured by placing a resin solution comprising the resin having a glass transition temperature of ≥130°C between at least two carriers, processing the resin solution into a thin film by passing it through a roll, a slit or press equipment, introducing the thin film into a solidifying bath and releasing the carriers to solidify the thin film in the solidifying bath. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は耐熱性合成紙に関する。より詳しくは、耐熱性が要求されるラベル、絶縁シート等の基材等として好適に使用できる耐熱性合成紙およびその製造方法に関する。
【0002】
【従来の技術】
合成樹脂を主原料とした紙代替物である合成紙は、天然紙に比べて、耐水性、吸湿寸法安定性、表面平滑性、印刷の光沢性と鮮明性、機械的強度が優れており広い分野で使用されている。例えば、ポリエステル系樹脂を原料とした物としては、特開平6−179765号公報、特開平11−35717号公報等に、またポリプロピレン系樹脂を原料とした物として、特開平5−490号公報、特開平7−102096、特開2002−178636号公報等にその製造法等が開示されている。前記した従来公知の合成紙は前記したような特徴を有しており広い分野で好適に使用されているが、耐熱性に劣るという欠点を有しており、例えば、高温の加工工程において、加工対象物を識別し、工程管理するためのバーコード用ラベルの基材等の耐熱性のラベル用基材や変圧器、高電圧ケーブル等の絶縁に用いられる耐熱性絶縁紙等の分野には展開することができなかった。
【0003】
近年生産体制が多品種少量生産へと変遷するなか、加工工程において加工対象物を識別し管理する工程管理システムとしてバーコード管理が普及してきている。プリント基板、自動車エンジン周り、鉄鋼製品、インジェクション成形用金型、ガラス、焼成セラミックス等の高温の製品や半製品を管理する時のバーコードラベル等のラベル類は、その工程の温度に対応した耐熱性が要求され、これらの要求を満足する耐熱性ラベルの開発が望まれている。この要求に答えるために耐熱性の優れたシートの表面に印刷層を積層した耐熱性ラベル用基材が特開平5−88616号公報、特開平5−104870号公報、特開平8−150680号公報、特開2000−321985号公報、特開2002−341769号公報等で開示されている。確かに、該耐熱性ラベル用基材は、前記した合成紙に比べて耐熱性は向上しているものの、ラベルとしての印刷性や印字性が市場要求を十分に満たしていない場合や工程で印刷層の剥離や欠落が起こるという課題を有している。
【0004】
また、変圧器、高電圧ケーブル等の絶縁に用いられる耐熱性絶縁紙としては、アラミド繊維等の耐熱性の繊維のフロックやフィブリットを混抄する等による抄紙タイプの合成紙が使用されており、特開平6−68711号公報、特開平6−68734号公報、特開平7−114825号公報、特開平8−92892号公報、特開平8−209584号公報、特開平9−50710号公報、特開平9−139113号公報等において開示されている。しかし、機器の小型化や高性能化の動きの中で、該タイプの合成紙では、表面の平滑性やバインダー樹脂の耐熱性等で市場要求が満たされなくなってきている。
【0005】
【特許文献1】
特開平6−179765号公報
【特許文献2】
特開平11−35717号公報
【特許文献3】
特開平5−490号公報
【特許文献4】
特開平7−102096号公報
【特許文献5】
特開2002−178636号公報
【特許文献6】
特開平5−88616号公報
【特許文献7】
特開平5−104870号公報
【特許文献8】
特開平8−150680号公報
【特許文献9】
特開2000−321985号公報
【特許文献10】
特開2002−341769号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術の課題を解決し、耐熱性、印刷性、印字性、表面平滑性に優れた耐熱性ラベルや耐熱性絶縁材の基材等として好適に使用できる耐熱性合成紙およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の耐熱性合成紙は、ガラス転移点が130℃以上である樹脂よりなり、かつ空隙率が20〜98体積%であることを特徴としている。好ましい実施態様は、(1)全光線透過率が50%以下であること、(2)平均表面粗さが0.3μm以下であること、(3)少なくとも片面が活性線で処理されてなること、(4)耐熱性ラベルの基材として用いること、である。
また、本発明は少なくとも二枚の支持体の間に挟んだガラス転移点が130℃以上である樹脂よりなる樹脂溶液をロールやスリットまたはプレスを介して薄膜化したものを凝固浴に導き、凝固浴中で支持体を剥離し凝固させることを特徴とする上記記載の耐熱性合成紙の製造方法である。
【0008】
【発明の実施の形態】
本発明におけるガラス転移点が130℃以上である樹脂は、ガラス転移点が130℃であることを満足すれば限定なく市場要求に合う樹脂を適宜選択すれば良い。例えば、ポリベンザゾール、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド、アラミド、ポリエーテルエーテルケトン、ポリパラバン酸、ポリスルフォン、全芳香族ポリエステル等のスーパーエンプラ樹脂等を挙げることができる。ガラス転移点が150℃以上の樹脂であることがより好ましい。ガラス転移点が130℃未満では耐熱性が不十分であり好ましくない。上記樹脂は単独であっても良いし、2種以上を混合使用しても構わない。また、30%以下であればガラス転移点が130℃未満の樹脂を併用しても良い。
【0009】
本発明の耐熱性合成紙は、請求項1に記載のごとく空孔率が20〜98体積%である必要がある。25〜80体積%が好ましく、30〜50体積%がより好ましい。20体積%未満では、クッション性や筆記性等の紙代替としての基本特性が低下し、かつ染料、顔料、インキ等の着色剤の吸塵性が劣り着色性が悪化するので好ましくない。一方、98体積%を越えた場合は機械的強度が低下するので好ましくない。
【0010】
本発明においては、空孔率を上記範囲にする方法は限定なく任意であるが、請求項4に記載のごとく、少なくとも二枚の支持体の間に挟んだガラス転移点が130℃以上である樹脂溶液を対向ロール、圧延装置あるいはプレス装置等を介して支持体/ガラス転移点が130℃以上である樹脂溶液/支持体のサンドイッチ状の複合積層体に形成する。得られたサンドイッチ状の複合積層体は凝固浴に導かれ、凝固浴中で少なくとも片側の支持体を剥離、凝固させる方法で製造する方法を採用するのが好ましい実施態様である。対向ロール、圧延装置およびプレス装置等の構成および配置はさまざまな組合わせをとることができる。望ましくは、少なくとも二枚の支持体の間に挟んだガラス転移点が130℃以上である樹脂溶液を、少なくとも一対の対向ロールにはさみ、向かい合ったロールを反対方向に回転させ、支持体/ガラス転移点が130℃以上である樹脂溶液/支持体のサンドイッチ状の複合積層体を形成する方式である。得られた支持体/ガラス転移点が130℃以上である樹脂溶液/支持体のサンドイッチ状の複合積層体は、ガイドロール等を経て凝固浴に導かれ、凝固浴中で少なくとも片側の支持体を剥離することにより、該ガラス転移点が130℃以上である樹脂溶液は凝固される。上記支持体としてはPETフィルムに代表されるポリエステル系フィルムやポリプロピレン(PPともいう)フィルムなどのポリオレフィン系フィルム等のプラスチックフィルムを用いることが出来る。さらに支持体として透湿性を有する多孔質フィルムや布帛、不織布をそのまま、あるいは上記プラスチックフィルム支持体と併用してもよい。
【0011】
上記した方法において支持体が多孔質体であることがより好ましい実施態様である。支持体として多孔質体を用いることにより、フイルムの表裏の均一化を図ることができる。
上記した支持体の片側は、剥離することなく最終製品の複合材として用いても構わない。該方法により耐熱性合成紙複合体を1プロセスで製造することができ、耐熱性合成紙の機能を向上させることができ、かつ経済性の点に於いても有利であり好ましい実施態様として推奨される。
【0012】
上記した方法で製造する場合において用いられるガラス転移点が130℃以上である樹脂を溶解させることのできる溶媒は、選択された樹脂の種類により適宜選択すれば良い。例えば、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ―ブチロラクトン、ジメチルスルホキシド、ヘキサメチレンホスホアミド、エチレンカーボネート等の極性溶剤やメタンスルホン酸、ジメチル硫酸、ポリ燐酸、硫酸、トリフルオロ酢酸等の酸等が挙げられる。
【0013】
上記した溶媒に溶解した溶液は、選択された樹脂を前記した溶媒に溶解しても良いし、該選択された樹脂が溶液法で重合された場合は、該重合で得られた溶液をそのまま、あるいは希釈をして用いても良い。該方法の場合、重合時あるいは重合終了後に孔径調整剤等の配合剤を添加することや樹脂濃度の調整等を実施することも何ら制限を受けない。
【0014】
上記した方法で製造する場合は、凝固液と接触させることにより凝固される。該凝固液の組成は限定なく任意であるが、前記したガラス転移点が130℃以上である樹脂を溶解する溶媒と相溶する該樹脂の非溶媒あるいは前記した溶媒と非溶媒との混合物が挙げられる。例えば、水またはメタノール、エタノール、プロパノール等の低級アルコールおよび水とこれらの低級アルコールとの混合体あるいはガラス転移点が130℃以上である樹脂を溶解する溶媒を水で希釈し樹脂の溶解性を低下させたものであることが好ましい。
【0015】
上記した製造方法においては、凝固浴は上記した液体状でなく気体状で行うことができる。例えば、空気中、水蒸気中および制御された雰囲気下暴露により凝固させることができる。本方法における雰囲気の成分は限定無く任意であるが、水または水とメタノール、エタノール、プロパノール等の低級アルコールとの混合体あるいはさらに有機系の樹脂を溶解させる溶媒の混合体が好ましい。
【0016】
上記した製造方法においては、空孔率の制御は、選択された樹脂溶液の樹脂組成、孔径調整剤、溶媒の種類、樹脂濃度、成形時の膜厚み、凝固液の種類および凝固条件等により行うことができる。該組成や条件の設定は任意であり、市場要求の特性の製品が得られる組成や条件を適宜設定することで対応するのが好ましい実施態様である。ポリアルキレングリコール等の凝固遅延剤等の配合剤を添加する等も何ら制限を受けない。
【0017】
上記した製造方法においては、凝固された凝固体あるいは凝固体と支持体との複合体は凝固浴を出た後に、洗浄工程や乾燥工程を入れるのが好ましい実施態様である。この場合、乾燥工程は、緊張下、定張下フィルムの収縮を制限して行うことが望ましい。自由収縮で乾燥させた場合には、部分収縮がおこるため厚み斑となったり、さらにはフィルムの平面性が損なわれる場合がある。収縮を制限しつつ乾燥するには、例えばテンター乾燥機や金属枠に挟んでの乾燥などを行うことができる。乾燥に懸かる他の条件は特に制限されるものではなく、空気、窒素などの加熱気体や常温気体を用いた乾燥方法や、ヒーターや赤外線ランプを用いた乾燥方法等が挙げられる。
上記した製造方法においては、フィルム状に成形する工程、凝固工程、洗浄工程および乾燥工程等は連続的に行ってもよく、また、バッチ式で行ってもよい。さらに各工程の間に、その他の特別な工程を加えてもよい。
【0018】
本発明の耐熱性合成紙は、請求項2に記載のごとく全光線透過率が50%以下であることが好ましい。45%以下が好ましく、40%以下がより好ましい。全光線透過率が50%を越えた場合は、耐熱性合成紙の光に対する隠蔽が低下し、該合成紙を染色、印刷、印字等により着色した場合の文字や模様の発色性が低下するので好ましくない。また、印字性や印刷性も悪化する。
本発明においては、全光線透過率を上記範囲にする方法は制限なく任意であるが、空孔率を前記範囲にすることによって達成できるが、例えば、酸化チタン等の光線を遮蔽する添加剤をガラス転移点が130℃以上である樹脂やガラス転移点が130℃以上である樹脂溶液に添加をし制御する方法を取り入れることも何ら制限を受けない。
【0019】
本発明の耐熱性合成紙は、請求項3に記載のごとく平均表面粗さが0.3μm以下であることが好ましい。0.25μm以下がより好ましい。平均表面粗さが0.3μmを超えた場合は、耐熱性合成紙表面の平滑性が劣るため、例えばラベル等の印刷を施して使用する用途において、印刷の光沢や鮮明性が悪化するので好ましくない。
本発明において、該表面粗さを上記した範囲にする方法は限定されないが、前記した製造方法をとることにより容易に達成することができる。
【0020】
本発明の耐熱性合成紙の厚みは、限定なく市場要求に従って任意に設定できるが、一般的には1〜200μmである。
本発明の耐熱性合成紙は、該耐熱性合成紙単独で用いても良いし、他素材と複合して用いても良い。
本発明の耐熱性合成紙には各種添加剤、たとえば、紫外線吸収剤、熱安定剤、延伸助剤、滑剤などが添加されていてもよい。
【0021】
本発明においては、請求項3に記載のごとく前記した方法で得られた耐熱性合成紙の少なくとも片面が活性線で処理されてなることが好ましい実施態様である。該活性線による処理方法は限定されないが、コロナ放電処理、紫外線照射処理、プラズマ処理、火炎処理、電子線処理、γ線等の放射線処理等の高エネルギーを有した活性線を照射することにより、耐熱性合成紙の表面を活性化する方法を挙げることができる。該処理により耐熱性合成紙の表面が活性化されるので、染料、顔料、インキ等の着色剤の耐熱性合成紙表面との親和性が向上し、該耐熱性合成紙に対する印字性や印刷性が向上する。
上記した活性線による表面処理は、前記した耐熱性合成紙の製造工程内で実施しても良いし、前記した方法により製造された耐熱性合成紙を用いて処理をしても構わない。
【0022】
本発明の耐熱性合成紙の用途は限定されないが、耐熱性、隠蔽性、表面平滑性、軽量性、クッション性、印字性、印刷性等に優れていることより、請求項5に記載のごとく耐熱性ラベルの基材に用いるのが好適である。
【0023】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例中で示される特性は、以下の方法で測定、評価したものである。
【0024】
(1)ガラス転移点
動的粘弾性測定により得られる損失正接tanδの主分散を示す温度をもって定義した。測定は、幅5mm、試長25mmのサンプルについて、動的粘弾性測定装置(アイティー計測制御製DVA−220)を用い、測定周波数10Hz、昇温速度5℃/分にて室温から300℃の範囲において行った。
(2)空孔率
測定対象のフイルムを直径60mmの円状に切り抜き、その体積と重量を求め、得られる結果から次式を用いて計算する。
空孔率(体積%)=100×[体積(cm)−重量(g)/樹脂の平均密度(g/cm)]/体積(cm)]
【0025】
(3)全光線透過率
濁度計(日本電色工業株式会社製「NDH−1001DH型」)を用いてJIS K6714に準じて行った。
(4)表面粗さ(Ra)
小坂製作所製SE−200型表面粗度計をもちいて、縦倍率:1000、横倍率:20、カットオフ:0.08mm、測定長:8mm、測定速度:0.1mm/分の条件で平均表面粗さ(Ra)を測定した。
【0026】
(5)耐熱性
空孔率測定用試料を200℃の恒温槽で1時間熱処理し、試料の形態変化を観察し、収縮や凹凸の発生の有無を目視観察で評価した。
(6)印字性
インクジェットプリンター(ENCAD製、NOVAJET・PRO)を使用し顔料タイプ水性インクでベタ印刷し、該印刷部を綿棒で10回擦り、インクの脱落の有無を目視観察で評価した。インクは黒色とした。
【0027】
(実施例1)
ポリ燐酸中に極限粘度IV=24dl/gのポリパラフェニレンシスベンゾビスオキサゾール樹脂を14重量%含んだドープにメタンスルホン酸を加えて希釈し、ポリパラフェニレンシスベンゾビスオキサゾール樹脂濃度1.5重量%の等方性溶液を調製した。この溶液を、公称目開き20μmフィルターを通してから、二本の対向ロールの間にある二枚のポリプロピレンからなる多孔質支持体の間に挟み、二本のロールにおいて、向かい合ったロールを反対方向に回転させ、ドープを圧延しながらポリプロピレンからなる多孔質支持体ごと送り出し、凝固浴に導いた。凝固液は60℃の水を用いた。このとき、対向ロール間のギャップを調整し、ポリマー溶液厚みで調整をした。凝固浴中でポリプロピレンからなる多孔質支持体を剥離し、ドープを凝固液に接触させてさらに凝固させた。図1に、製造法の模式図を示した。その後、生成した膜を洗液がpH7±0.5を示すまで水洗を行い、次いでテンターで両端を把持しつつ150℃で乾燥して多孔質ポリベンザゾール系フイルムよりなる耐熱性合成紙を得た。得られた耐熱性合成紙を電子線照射装置に導き、200KVの加速電圧で5Mradのエネルギーを照射し電子線照射処理を行った。得られた耐熱性合成紙の評価結果を表1に示す。
【0028】
(比較例1)
実施例1の方法において、ポリパラフェニレンシスベンゾビスオキサゾール樹脂濃度を5重量%とすること、支持体を188μm厚みのPETフイルムに変更することを変更する以外は、実施例1と同じ方法で比較例1のポリベンザゾールフィルムを得た。実施例1で実施した電子線照射処理は行わなかった。得られたフイルムの評価結果を表1に示した。
【0029】
(実施例2)
対数粘度6のポリパラフェニレンテレフタルアミドを3重量%の濃度で98重量%硫酸に溶解した溶液を、公称目開き20μmフィルターを通してから、二本の対向ロールの間にある二枚のポリプロピレンからなる多孔質支持体の間に挟み、二本のロールにおいて、向かい合ったロールを反対方向に回転させ、ドープを圧延しながらポリプロピレンからなる多孔質支持体ごと送り出し、凝固浴に導いた。凝固液は25℃の30%硫酸を用いた。このとき、対向ロール間のギャップを調整し、ポリマー溶液厚みが一定になるようにした。凝固浴中でポリプロピレンからなる多孔質支持体を剥離し、アラミド薄膜を凝固液に接触させ、さらに凝固させた。図1に、製造法の模式図を示した。その後、生成したフイルムを50℃の温水で水洗し、次いで緊張下、130℃で乾燥し、厚み25μmのアラミドフイルムよりなる耐熱性合成紙を得た。得られた耐熱性合成紙を常圧法プラズマ照射処理装置に導入し、処理面の水の接触角が80度になる条件で処理した。得られた耐熱性合成紙の評価結果を表1に示す。
【0030】
(比較例2)
実施例2において、アラミドの組成をジアミン成分の20モル%を4,4−ジアミノジフェニルスルホンとした共重合体とし、溶媒をジメチルホルムアミドに替え、かつアラミド濃度を10重量%とし、さらに2枚の無孔のPETフィルム支持体の間に挟んだ複合積層体を凝固液に接触させるように変更する以外は、実施例1と同様にして比較例2のアラミドフイルムを得た。実施例2で実施したプラズマ照射処理は行わなかった。得られたフイルムの評価結果を表1に示した。
【0031】
(実施例3)
温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、ジフェニルメタンジイソシアネート(MDI)1モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間攪拌した後180℃に昇温して更に約3時間攪拌を行いポリアミドイミド系樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.86dl/g、ガラス転移点は290℃であった。
【0032】
上記したポリアミドイミド系樹脂溶液を、公称目開き20μmフィルターを通してから、二本の対向ロールの間にある二枚のポリプロピレンからなる多孔質支持体の間に挟み、二本のロールにおいて、向かい合ったロールを反対方向に回転させ、ドープを圧延しながらポリプロピレンからなる多孔質支持体ごと送り出し、凝固浴に導いた。凝固液は25℃の水/イソプロパノール(4/1)を用いた。このとき、対向ロール間のギャップを調整し、ポリマー溶液厚みが一定になるようにした。凝固浴中でポリプロピレンからなる多孔質支持体を剥離し、ポリアミドイミド樹脂薄膜を凝固液に接触させてさらに凝固させた。図1に、製造法の模式図を示した。その後、生成したフイルムを緊張下、130℃で乾燥し、厚み25μmのポリアミドイミド系フイルムよりなる耐熱性合成紙を得た。得られた耐熱性合成紙を実施例1と同様にして電子線照射処理を行った。得られた耐熱性合成紙の評価結果を表1に示す。
【0033】
(比較例3)
市販の厚み50μmのPETフイルム系合成紙(東洋紡績(株)製、クリスパー(R))を評価し、表1に特性を表示した。
【0034】
実施例1〜3で得られた耐熱性合成紙は、光線透過率が低く光線の遮断性を有し、また、多孔質であるためクッション性、筆記性に優れており、合成紙としての性能を有している。その上に耐熱性が高く、かつ多孔質であるため染料、顔料、インキ等の着色剤による着色性が優れているので、耐熱性ラベルや耐熱性絶縁材等の基材等として好適に用いることができる。一方、比較例1および2で得られたフイルムは光線透過率が高く、空孔率が低く合成紙としての特性を有しておらず、かつ印字性も劣っており、上記用途用としては実用性の低いものである。また、比較例3のPET系合成紙は耐熱性が劣っていた。
【0035】
【表1】

Figure 2005029637
【0036】
【発明の効果】
以上のとおり、本発明の耐熱性合成紙は、光線透過率が低く光線の遮断性を有し、また多孔質であるためクッション性、筆記性に優れており、合成紙としての性能を有し、その上に耐熱性が高く、かつ多孔質であるため染料、顔料、インキ等の着色剤による着色性が優れているので、耐熱性ラベルや耐熱性絶縁材等の基材等として好適に用いることができる。
【図面の簡単な説明】
【図1】本発明の耐熱性合成紙製造法の模式図
【符号の説明】
1:溶液供給配管
2:溶液
3:支持体1
4:支持体2
5:支持体1送り出しロール
6:支持体2送り出しロール
7:対向ロール
8:支持体/溶液/支持体複合積層体
9:ガラス転移点が130℃以上である樹脂の湿潤フイルム
10:ガラス転移点が130℃以上である樹脂の湿潤フィルム巻き上げロール
11:支持体2巻き上げロール
12:支持体1巻き上げロール
13:凝固浴[0001]
BACKGROUND OF THE INVENTION
The present invention relates to heat resistant synthetic paper. More specifically, the present invention relates to a heat-resistant synthetic paper that can be suitably used as a substrate such as a label or an insulating sheet that requires heat resistance, and a method for producing the same.
[0002]
[Prior art]
Synthetic paper, which is a paper substitute made mainly of synthetic resin, is superior in water resistance, hygroscopic dimensional stability, surface smoothness, gloss and clarity of printing, and mechanical strength compared to natural paper. Used in the field. For example, as a material using a polyester-based resin as a raw material, JP-A-6-179765, JP-A-11-35717 and the like, and as a material using a polypropylene-based resin as a raw material, JP-A-5-490, JP-A-7-102096, JP-A-2002-178636, etc. disclose the production method thereof. The above-described conventionally known synthetic paper has the above-described characteristics and is suitably used in a wide range of fields, but has a disadvantage that it is inferior in heat resistance. Developed in the fields of heat-resistant label base materials such as barcode label base materials for identifying objects and process management, and heat-resistant insulating paper used for insulation of transformers, high-voltage cables, etc. I couldn't.
[0003]
In recent years, bar code management has become widespread as a process management system for identifying and managing objects to be processed in a machining process as the production system has changed to high-mix low-volume production. Labels such as barcode labels when managing high-temperature products and semi-finished products such as printed circuit boards, automobile engines, steel products, injection molds, glass, and fired ceramics are heat resistant corresponding to the temperature of the process. Therefore, the development of a heat-resistant label that satisfies these requirements is desired. In order to meet this requirement, heat-resistant label base materials in which a printed layer is laminated on the surface of a sheet having excellent heat resistance are disclosed in JP-A-5-88616, JP-A-5-104870, and JP-A-8-150680. JP-A-2000-321985, JP-A-2002-341769, and the like. Although the heat-resistant label base material has improved heat resistance compared to the synthetic paper described above, it can be printed when the printability and printability of the label do not sufficiently meet market requirements. There is a problem that peeling or missing of the layer occurs.
[0004]
In addition, as heat-resistant insulating paper used for insulation of transformers, high-voltage cables, etc., paper-making type synthetic paper by mixing flocks and fibrates of heat-resistant fibers such as aramid fibers is used. JP-A-6-68711, JP-A-6-68734, JP-A-7-114825, JP-A-8-92892, JP-A-8-209584, JP-A-9-50710, JP 9-139113 and the like. However, with the trend toward miniaturization and high performance of equipment, the synthetic paper of this type has not been able to meet market demands due to the smoothness of the surface and the heat resistance of the binder resin.
[0005]
[Patent Document 1]
JP-A-6-179765 [Patent Document 2]
JP 11-35717 A [Patent Document 3]
JP-A-5-490 [Patent Document 4]
JP 7-102096 A [Patent Document 5]
JP 2002-178636 A [Patent Document 6]
JP-A-5-88616 [Patent Document 7]
JP-A-5-104870 [Patent Document 8]
Japanese Patent Laid-Open No. 8-150680 [Patent Document 9]
JP 2000-321985 [Patent Document 10]
JP-A-2002-341769 [0006]
[Problems to be solved by the invention]
The present invention solves the above-described problems of the prior art, and can be suitably used as a heat-resistant label excellent in heat resistance, printability, printability, and surface smoothness, a base material of a heat-resistant insulating material, and the like. And it aims at providing the manufacturing method.
[0007]
[Means for Solving the Problems]
The heat-resistant synthetic paper of the present invention is characterized by being made of a resin having a glass transition point of 130 ° C. or higher and a porosity of 20 to 98% by volume. Preferred embodiments are (1) the total light transmittance is 50% or less, (2) the average surface roughness is 0.3 μm or less, and (3) at least one surface is treated with actinic radiation. (4) Use as a base material for heat-resistant labels.
In the present invention, a resin solution made of a resin having a glass transition point of 130 ° C. or higher sandwiched between at least two supports is thinned through a roll, slit, or press into a coagulation bath to be coagulated. The method for producing heat-resistant synthetic paper as described above, wherein the support is peeled off and solidified in a bath.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The resin having a glass transition point of 130 ° C. or higher in the present invention may be appropriately selected from resins that meet market requirements without limitation as long as the glass transition point is 130 ° C. Examples thereof include super engineering plastic resins such as polybenzazole, polyimide, polyamideimide, polyetherimide, polyesterimide, aramid, polyetheretherketone, polyparabanic acid, polysulfone, and wholly aromatic polyester. A resin having a glass transition point of 150 ° C. or higher is more preferable. A glass transition point of less than 130 ° C. is not preferable because of insufficient heat resistance. The above resins may be used alone or in combination of two or more. Moreover, if it is 30% or less, you may use together resin with a glass transition point of less than 130 degreeC.
[0009]
The heat-resistant synthetic paper of the present invention needs to have a porosity of 20 to 98% by volume as described in claim 1. 25-80 volume% is preferable and 30-50 volume% is more preferable. If it is less than 20% by volume, the basic properties as a substitute for paper such as cushioning properties and writing properties are deteriorated, and the color absorbability of dyes, pigments, inks and other colorants is inferior and the colorability deteriorates. On the other hand, if it exceeds 98% by volume, the mechanical strength decreases, which is not preferable.
[0010]
In the present invention, the method for bringing the porosity into the above range is not limited, and as described in claim 4, the glass transition point sandwiched between at least two supports is 130 ° C. or higher. The resin solution is formed into a sandwich-like composite laminate of resin solution / support having a support / glass transition point of 130 ° C. or higher via an opposing roll, a rolling device, a press device, or the like. In a preferred embodiment, the obtained sandwich composite laminate is introduced into a coagulation bath, and a method of manufacturing by a method of peeling and coagulating at least one support in the coagulation bath is adopted. The configuration and arrangement of the facing roll, the rolling device, the pressing device, and the like can be variously combined. Desirably, a resin solution having a glass transition point of 130 ° C. or more sandwiched between at least two supports is sandwiched between at least a pair of opposed rolls, and the opposed rolls are rotated in the opposite direction, whereby the support / glass transition is performed. This is a method of forming a sandwich composite laminate of resin solution / support having a point of 130 ° C. or higher. The obtained support / glass sandwich of the resin solution / support having a glass transition point of 130 ° C. or higher is guided to the coagulation bath through a guide roll or the like, and at least one side of the support is placed in the coagulation bath. By peeling off, the resin solution having a glass transition point of 130 ° C. or higher is solidified. As the support, a plastic film such as a polyester film typified by a PET film or a polyolefin film such as a polypropylene (also referred to as PP) film can be used. Further, a porous film, fabric or nonwoven fabric having moisture permeability as a support may be used as it is or in combination with the plastic film support.
[0011]
In the above-described method, the support is more preferably a porous body. By using a porous body as the support, the front and back of the film can be made uniform.
One side of the above support may be used as a composite material of the final product without peeling off. According to this method, a heat-resistant synthetic paper composite can be produced in one process, the function of the heat-resistant synthetic paper can be improved, and it is advantageous in terms of economy and is recommended as a preferred embodiment. The
[0012]
The solvent capable of dissolving the resin having a glass transition point of 130 ° C. or higher used in the production by the above-described method may be appropriately selected depending on the kind of the selected resin. For example, polar solvents such as N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, dimethyl sulfoxide, hexamethylenephosphoamide, ethylene carbonate, methanesulfonic acid, dimethyl Examples include acids such as sulfuric acid, polyphosphoric acid, sulfuric acid, and trifluoroacetic acid.
[0013]
The solution dissolved in the above-mentioned solvent may dissolve the selected resin in the above-mentioned solvent. When the selected resin is polymerized by the solution method, the solution obtained by the polymerization is used as it is. Or you may dilute and use. In the case of this method, there is no limitation on adding a compounding agent such as a pore size adjusting agent or adjusting the resin concentration at the time of polymerization or after completion of polymerization.
[0014]
When manufacturing by the above-mentioned method, it solidifies by making it contact with coagulating liquid. The composition of the coagulation liquid is not particularly limited, and examples thereof include a non-solvent of the resin that is compatible with a solvent that dissolves the resin having a glass transition point of 130 ° C. or higher, or a mixture of the solvent and the non-solvent. It is done. For example, water or a lower alcohol such as methanol, ethanol or propanol and a mixture of water and these lower alcohols or a solvent that dissolves a resin having a glass transition point of 130 ° C. or higher is diluted with water to reduce the solubility of the resin. It is preferred that
[0015]
In the manufacturing method described above, the coagulation bath can be carried out in a gaseous state instead of the liquid state described above. For example, it can be solidified by exposure in air, water vapor and controlled atmosphere. The components of the atmosphere in this method are not particularly limited, but water or a mixture of water and a lower alcohol such as methanol, ethanol, or propanol, or a mixture of a solvent that dissolves an organic resin is preferable.
[0016]
In the manufacturing method described above, the porosity is controlled by the resin composition of the selected resin solution, the pore size adjusting agent, the type of solvent, the resin concentration, the film thickness during molding, the type of coagulation liquid, the coagulation conditions, and the like. be able to. The setting of the composition and conditions is arbitrary, and it is a preferred embodiment to cope with this by appropriately setting the composition and conditions for obtaining a product having the characteristics required in the market. Addition of a compounding agent such as a coagulation retarder such as polyalkylene glycol is not limited.
[0017]
In the production method described above, the solidified solidified body or the complex of the solidified body and the support is preferably subjected to a washing step and a drying step after leaving the coagulation bath. In this case, the drying step is desirably performed under tension and by restricting shrinkage of the film under constant tension. When the film is dried by free shrinkage, partial shrinkage occurs, resulting in uneven thickness, and the flatness of the film may be impaired. In order to dry the film while restricting the shrinkage, for example, drying with a tenter dryer or a metal frame can be performed. Other conditions related to drying are not particularly limited, and examples include a drying method using a heated gas such as air or nitrogen or a room temperature gas, a drying method using a heater or an infrared lamp, and the like.
In the manufacturing method described above, the step of forming a film, the coagulation step, the washing step, the drying step and the like may be performed continuously or in a batch manner. Furthermore, you may add another special process between each process.
[0018]
The heat-resistant synthetic paper of the present invention preferably has a total light transmittance of 50% or less as described in claim 2. 45% or less is preferable and 40% or less is more preferable. When the total light transmittance exceeds 50%, the concealment of the heat-resistant synthetic paper to light is reduced, and the color development of characters and patterns when the synthetic paper is colored by dyeing, printing, printing, etc. is reduced. It is not preferable. Also, printability and printability are deteriorated.
In the present invention, the method for bringing the total light transmittance into the above range is arbitrary without limitation, but it can be achieved by making the porosity in the above range. For example, an additive for shielding light such as titanium oxide is added. There is no limitation to adopt a method of adding and controlling a resin having a glass transition point of 130 ° C. or higher or a resin solution having a glass transition point of 130 ° C. or higher.
[0019]
The heat-resistant synthetic paper of the present invention preferably has an average surface roughness of 0.3 μm or less as described in claim 3. More preferably, it is 0.25 μm or less. When the average surface roughness exceeds 0.3 μm, the heat-resistant synthetic paper surface is inferior in smoothness. For example, in applications where labels are printed, the gloss and sharpness of printing deteriorate, which is preferable. Absent.
In the present invention, the method for bringing the surface roughness into the above-mentioned range is not limited, but can be easily achieved by adopting the above-described production method.
[0020]
The thickness of the heat-resistant synthetic paper of the present invention can be arbitrarily set according to market requirements without limitation, but is generally 1 to 200 μm.
The heat resistant synthetic paper of the present invention may be used alone or in combination with other materials.
Various additives, for example, ultraviolet absorbers, heat stabilizers, stretching aids, lubricants and the like may be added to the heat-resistant synthetic paper of the present invention.
[0021]
In the present invention, it is a preferred embodiment that at least one side of the heat-resistant synthetic paper obtained by the above-described method as described in claim 3 is treated with active rays. The treatment method by the active ray is not limited, but by irradiating an active ray having high energy such as corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, flame treatment, electron beam treatment, and radiation treatment such as γ-ray, The method of activating the surface of heat resistant synthetic paper can be mentioned. Since the surface of the heat-resistant synthetic paper is activated by the treatment, the affinity of the coloring agent such as dye, pigment, and ink with the surface of the heat-resistant synthetic paper is improved, and the printability and printability of the heat-resistant synthetic paper are improved. Will improve.
The surface treatment with active rays described above may be carried out in the manufacturing process of the heat resistant synthetic paper described above, or may be performed using the heat resistant synthetic paper manufactured by the method described above.
[0022]
Although the use of the heat resistant synthetic paper of the present invention is not limited, the heat resistant synthetic paper is excellent in heat resistance, hiding property, surface smoothness, light weight, cushioning property, printability, printability, and the like. It is suitable to use for the base material of a heat-resistant label.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The characteristics shown in the examples are measured and evaluated by the following methods.
[0024]
(1) Glass transition point Defined with a temperature indicating the main dispersion of loss tangent tan δ obtained by dynamic viscoelasticity measurement. Measurement is performed on a sample having a width of 5 mm and a test length of 25 mm using a dynamic viscoelasticity measuring apparatus (DVA-220 manufactured by IT Measurement Control Co., Ltd.) at a measurement frequency of 10 Hz and a heating rate of 5 ° C./min. Done in range.
(2) Cut out a film for measuring the porosity into a circle with a diameter of 60 mm, determine its volume and weight, and calculate from the obtained results using the following equation.
Porosity (volume%) = 100 × [volume (cm 3 ) −weight (g) / average density of resin (g / cm 3 )] / volume (cm 3 )]
[0025]
(3) The total light transmittance was measured according to JIS K6714 using a turbidimeter (“NDH-1001DH type” manufactured by Nippon Denshoku Industries Co., Ltd.).
(4) Surface roughness (Ra)
Using an SE-200 type surface roughness meter manufactured by Kosaka Manufacturing Co., Ltd., average magnification under conditions of longitudinal magnification: 1000, lateral magnification: 20, cut-off: 0.08 mm, measurement length: 8 mm, measurement speed: 0.1 mm / min Roughness (Ra) was measured.
[0026]
(5) The heat-resistant porosity measurement sample was heat-treated in a thermostatic bath at 200 ° C. for 1 hour, the shape change of the sample was observed, and the presence or absence of shrinkage or unevenness was evaluated by visual observation.
(6) Solid printing was performed with a pigment-type water-based ink using a printable inkjet printer (manufactured by ENCAD, NOVAJET • PRO), and the printed portion was rubbed 10 times with a cotton swab, and the presence or absence of ink dropout was evaluated by visual observation. The ink was black.
[0027]
(Example 1)
A dope containing 14% by weight of a polyparaphenylene cis bisbisoxazole resin having an intrinsic viscosity of IV = 24 dl / g in polyphosphoric acid is diluted by adding methane sulfonic acid to obtain a polyparaphenylene cis benzobisoxazole resin concentration of 1.5% by weight. % Isotropic solution was prepared. This solution is passed through a filter with a nominal opening of 20 μm, and then sandwiched between two polypropylene porous supports between two opposing rolls. In the two rolls, the opposite rolls are rotated in opposite directions. Then, while rolling the dope, the whole porous support made of polypropylene was sent out and led to a coagulation bath. As the coagulation liquid, water at 60 ° C. was used. At this time, the gap between the opposing rolls was adjusted and adjusted with the polymer solution thickness. The porous support made of polypropylene was peeled off in a coagulation bath, and the dope was brought into contact with a coagulation solution to further coagulate. FIG. 1 shows a schematic diagram of the manufacturing method. Thereafter, the produced film is washed with water until the washing solution shows pH 7 ± 0.5, and then dried at 150 ° C. while holding both ends with a tenter to obtain a heat-resistant synthetic paper made of a porous polybenzazole film. It was. The obtained heat-resistant synthetic paper was guided to an electron beam irradiation apparatus, and irradiated with 5 Mrad of energy at an acceleration voltage of 200 KV to perform electron beam irradiation treatment. Table 1 shows the evaluation results of the resulting heat-resistant synthetic paper.
[0028]
(Comparative Example 1)
In the method of Example 1, a comparison was made in the same manner as in Example 1 except that the polyparaphenylene cis bisbisoxazole resin concentration was changed to 5% by weight and the support was changed to a 188 μm thick PET film. The polybenzazole film of Example 1 was obtained. The electron beam irradiation treatment performed in Example 1 was not performed. The evaluation results of the obtained film are shown in Table 1.
[0029]
(Example 2)
A solution in which polyparaphenylene terephthalamide having a logarithmic viscosity of 6 is dissolved in 98% by weight sulfuric acid at a concentration of 3% by weight is passed through a filter having a nominal opening of 20 μm, and then is made of two polypropylenes between two opposing rolls. The two rolls were rotated between opposite rolls in opposite directions, and the whole porous support made of polypropylene was fed out while rolling the dope and led to a coagulation bath. As the coagulation liquid, 30% sulfuric acid at 25 ° C. was used. At this time, the gap between the opposing rolls was adjusted so that the thickness of the polymer solution was constant. The porous support made of polypropylene was peeled off in the coagulation bath, and the aramid thin film was brought into contact with the coagulation liquid to further coagulate. FIG. 1 shows a schematic diagram of the manufacturing method. Thereafter, the produced film was washed with hot water of 50 ° C. and then dried under tension at 130 ° C. to obtain a heat-resistant synthetic paper made of an aramid film having a thickness of 25 μm. The obtained heat-resistant synthetic paper was introduced into an atmospheric pressure plasma irradiation treatment apparatus and treated under the condition that the contact angle of water on the treated surface was 80 degrees. Table 1 shows the evaluation results of the resulting heat-resistant synthetic paper.
[0030]
(Comparative Example 2)
In Example 2, the composition of aramid was a copolymer in which 20 mol% of the diamine component was 4,4-diaminodiphenylsulfone, the solvent was changed to dimethylformamide, the aramid concentration was 10 wt%, and two more sheets An aramid film of Comparative Example 2 was obtained in the same manner as in Example 1 except that the composite laminate sandwiched between non-porous PET film supports was changed to contact the coagulation liquid. The plasma irradiation treatment performed in Example 2 was not performed. The evaluation results of the obtained film are shown in Table 1.
[0031]
(Example 3)
A four-necked flask equipped with a thermometer, a condenser tube, and a nitrogen gas inlet tube contains 1 mole of trimellitic anhydride (TMA), 1 mole of diphenylmethane diisocyanate (MDI) and 0.01 mole of potassium fluoride with a solid content of 20 %, N-methyl-2-pyrrolidone was added to the mixture, stirred at 120 ° C. for 1.5 hours, heated to 180 ° C. and further stirred for about 3 hours to synthesize a polyamideimide resin. The obtained polyamideimide resin had a logarithmic viscosity of 0.86 dl / g and a glass transition point of 290 ° C.
[0032]
The above-mentioned polyamideimide resin solution is passed through a filter having a nominal opening of 20 μm, and sandwiched between two porous supports made of polypropylene between two opposing rolls. Was rotated in the opposite direction, and the porous support made of polypropylene was fed out while rolling the dope and led to a coagulation bath. As the coagulation liquid, water / isopropanol (4/1) at 25 ° C. was used. At this time, the gap between the opposing rolls was adjusted so that the thickness of the polymer solution was constant. The porous support made of polypropylene was peeled off in a coagulation bath, and the polyamideimide resin thin film was brought into contact with a coagulation liquid to further coagulate. FIG. 1 shows a schematic diagram of the manufacturing method. Thereafter, the produced film was dried under tension at 130 ° C. to obtain a heat-resistant synthetic paper made of a polyamideimide film having a thickness of 25 μm. The obtained heat resistant synthetic paper was subjected to electron beam irradiation treatment in the same manner as in Example 1. Table 1 shows the evaluation results of the resulting heat-resistant synthetic paper.
[0033]
(Comparative Example 3)
Commercially available PET film-based synthetic paper having a thickness of 50 μm (manufactured by Toyobo Co., Ltd., Crisper (R)) was evaluated.
[0034]
The heat-resistant synthetic papers obtained in Examples 1 to 3 have low light transmittance and light blocking properties, and are porous so that they have excellent cushioning properties and writing properties, and performance as synthetic papers. have. In addition, since it is highly heat-resistant and porous, it has excellent colorability with colorants such as dyes, pigments, and inks, so it can be used suitably as a base material for heat-resistant labels and heat-resistant insulating materials. Can do. On the other hand, the films obtained in Comparative Examples 1 and 2 have high light transmittance, low porosity, no properties as synthetic paper, and poor printability. It is low in nature. Moreover, the PET synthetic paper of Comparative Example 3 was inferior in heat resistance.
[0035]
[Table 1]
Figure 2005029637
[0036]
【The invention's effect】
As described above, the heat-resistant synthetic paper of the present invention has a low light transmittance and a light blocking property, and is porous so that it has excellent cushioning properties and writing properties, and has performance as a synthetic paper. In addition, since it is highly heat-resistant and porous, it is excellent in colorability with colorants such as dyes, pigments, inks, etc., so it is suitably used as a substrate for heat-resistant labels, heat-resistant insulating materials, etc. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the heat-resistant synthetic paper manufacturing method of the present invention.
1: Solution supply pipe 2: Solution 3: Support 1
4: Support body 2
5: Support 1 delivery roll 6: Support 2 delivery roll 7: Opposed roll 8: Support / solution / support composite laminate 9: Wet film of resin having a glass transition point of 130 ° C. or higher 10: Glass transition point Wet film winding roll of resin having a temperature of 130 ° C. or higher 11: Support 2 winding roll 12: Support 1 winding roll 13: Coagulation bath

Claims (6)

ガラス転移点が130℃以上である樹脂よりなり、かつ空隙率が20〜98体積%であることを特徴とする耐熱性合成紙。A heat-resistant synthetic paper comprising a resin having a glass transition point of 130 ° C. or higher and a porosity of 20 to 98% by volume. 全光線透過率が50%以下であることを特徴とする請求項1に記載の耐熱性合成紙。The heat-resistant synthetic paper according to claim 1, wherein the total light transmittance is 50% or less. 平均表面粗さが0.3μm以下であることを特徴とする請求項1または2に記載の耐熱性合成紙。The heat-resistant synthetic paper according to claim 1 or 2, wherein the average surface roughness is 0.3 µm or less. 前記合成紙の少なくとも片面が活性線で処理されてなることを特徴とする請求項1〜3のいずれかに記載の耐熱性合成紙。The heat-resistant synthetic paper according to any one of claims 1 to 3, wherein at least one surface of the synthetic paper is treated with active rays. 請求項1から4のいずれかに記載の耐熱性合成紙を基材とした耐熱性ラベル。A heat-resistant label using the heat-resistant synthetic paper according to any one of claims 1 to 4 as a base material. 少なくとも二枚の支持体の間に挟んだガラス転移点が130℃以上である樹脂よりなる樹脂溶液をロールやスリットまたはプレスを介して薄膜化したものを凝固浴に導き、凝固浴中で支持体を剥離し凝固させることを特徴とする請求項1〜3のいずれかに記載の耐熱性合成紙の製造方法。A resin solution made of a resin having a glass transition point of 130 ° C. or more sandwiched between at least two supports is thinned through a roll, slit, or press into a coagulation bath, and the support in the coagulation bath The method for producing a heat-resistant synthetic paper according to any one of claims 1 to 3, characterized in that it is peeled off and solidified.
JP2003194238A 2003-07-09 2003-07-09 Heat-resistant synthetic paper and manufacturing method therefor Pending JP2005029637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194238A JP2005029637A (en) 2003-07-09 2003-07-09 Heat-resistant synthetic paper and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194238A JP2005029637A (en) 2003-07-09 2003-07-09 Heat-resistant synthetic paper and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005029637A true JP2005029637A (en) 2005-02-03

Family

ID=34205462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194238A Pending JP2005029637A (en) 2003-07-09 2003-07-09 Heat-resistant synthetic paper and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005029637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154028A (en) * 2005-12-05 2007-06-21 Toyobo Co Ltd Porous film and flexible print circuit plate using the same
JP2010179422A (en) * 2009-02-06 2010-08-19 Fujibo Holdings Inc Manufacturing method of polishing pad

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH1096175A (en) * 1996-09-17 1998-04-14 Toyobo Co Ltd Highly heat resistant label
JP2001011311A (en) * 1999-06-30 2001-01-16 Toyobo Co Ltd Light-resistant polybenzazol composition, its fiber and film
JP2001248091A (en) * 2000-03-01 2001-09-14 Toyobo Co Ltd Highly heat resistant and highly flame retardant organic fiber paper and composite material using the same fiber paper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH1096175A (en) * 1996-09-17 1998-04-14 Toyobo Co Ltd Highly heat resistant label
JP2001011311A (en) * 1999-06-30 2001-01-16 Toyobo Co Ltd Light-resistant polybenzazol composition, its fiber and film
JP2001248091A (en) * 2000-03-01 2001-09-14 Toyobo Co Ltd Highly heat resistant and highly flame retardant organic fiber paper and composite material using the same fiber paper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154028A (en) * 2005-12-05 2007-06-21 Toyobo Co Ltd Porous film and flexible print circuit plate using the same
JP2010179422A (en) * 2009-02-06 2010-08-19 Fujibo Holdings Inc Manufacturing method of polishing pad

Similar Documents

Publication Publication Date Title
US4861644A (en) Printed microporous material
KR101419564B1 (en) Process for producing a non-transparent microvoided self-supporting film
JP3837457B2 (en) Microporous material of ethylene-vinyl alcohol copolymer and method for producing the same
US5047283A (en) Electrically conductive article
TWI485191B (en) A colored polyimide molded article and a method for producing the same
US7780014B2 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
EP0289859B1 (en) Printed microporous material
TWI465493B (en) Biaxially stretched polyamide resin film
JP4238416B2 (en) Porous carbonized film and method for producing the same
US20030018094A1 (en) Polyimide porous film
JPH0416078B2 (en)
JP6184823B2 (en) Stretched resin film, production method thereof, and laminate using stretched resin film
JP2005029637A (en) Heat-resistant synthetic paper and manufacturing method therefor
JP2015110854A (en) Poly(p-phenylene benzobisoxazole)fiber, manufacturing method thereof and mat therewith
US4927802A (en) Pressure-sensitive multi-part record unit
KR100687508B1 (en) Aromatic polyamide film
US20220380535A1 (en) Polyphenylene ether melt extrusion formed body and method for producing polyphenylene ether melt extrusion formed body
JP2004244463A (en) Easily colorable synthetic paper
JP6543966B2 (en) Biaxially oriented polyester film
JP2010228426A (en) Biaxially oriented polyester film for sublimation type thermosensitive transfer ribbon
JP2009077124A (en) Speaker vibrator
JP4214261B2 (en) Manufacturing method of resin film
JP2004269655A (en) Method for manufacturing aramid film
JP2005007787A (en) Polyester film for thermal transfer ribbon
JPS63243145A (en) Production of p-oriented type colored polyamide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Effective date: 20100513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100712

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524