JP2005026144A - Air cell - Google Patents

Air cell Download PDF

Info

Publication number
JP2005026144A
JP2005026144A JP2003192041A JP2003192041A JP2005026144A JP 2005026144 A JP2005026144 A JP 2005026144A JP 2003192041 A JP2003192041 A JP 2003192041A JP 2003192041 A JP2003192041 A JP 2003192041A JP 2005026144 A JP2005026144 A JP 2005026144A
Authority
JP
Japan
Prior art keywords
carbon dioxide
air
dioxide absorbent
air battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003192041A
Other languages
Japanese (ja)
Inventor
Hitoshi Koda
仁 甲田
Akihiro Tashiro
明弘 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003192041A priority Critical patent/JP2005026144A/en
Publication of JP2005026144A publication Critical patent/JP2005026144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/128

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cell superior in reliability in which cell characteristics are not deteriorated even if a carbon dioxide absorbent is contained. <P>SOLUTION: In the air cell provided with an air electrode and a diffusing paper having a structure in which a water repellent membrane is stuck together with a catalyst layer to which a positive electrode catalyst layer having metal oxide, graphite, active carbon, and fluorine-based adhesive binder as main components is joined to a current collector, because the carbon dioxide absorbent contained in a resin film is arranged between the water-repellent film of the air electrode and the diffusing paper, influence of carbon dioxide can be reduced, and the air cell of high reliability can be provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素吸収剤を内包した高寿命の空気電池に関する。
【0002】
【従来の技術】
アルカリ電解液を用いた一次電池では、最もエネルギー密度が高いのが空気電池である。この空気電池の特長は、空気中の酸素を正極活物質とするため、同型の電池サイズであれば、正極合剤を充填する必要がなく、大きな放電容量が得られる。しかし、空気電池は正極缶に空気を取込む空気孔が必要で、酸素以外の大気中の成分である二酸化炭素や水蒸気などの影響を受けやすく、このことは空気電池のエネルギー密度は高いが、開封時の電池特性が極端に低下することになり、問題となっていた。
【0003】
以下、空気電池の劣化を化学式で示す。
▲1▼ アルカリ電解液による二酸化炭素の吸収
OH(−)+CO→CO(2−)+H(+)
▲2▼ 吸湿による電解液濃度の低下
KOH(aq)+HO→KOH(aq)
【0004】
本発明者等が空気電池の劣化機構を鋭意研究を重ねたところ、▲1▼による二酸化炭素吸収の影響が大きいことが解った。二酸化炭素を吸収することで、炭酸塩の析出と同時に電解液濃度の低下も伴うためである。
【0005】
この電池を分析した結果から、二酸化炭素を吸収することで、触媒シート内で局所的に電解液中に低濃度分布が起こる。このとき触媒シート内の相対湿度が外気湿度にくらべて高くなり、外気へ水分を蒸発する。その結果、溶解していた炭酸塩が結晶として析出することにより、電池特性が劣化するものと考えられる。このような理由で、二酸化炭素吸収を軽減する対策が急がれている。
【0006】
従来、二酸化炭素吸収剤としては、特許文献1に記載のようにアミン基をもつ有機化合物または水酸基をもつ無機化合物や特許文献2に記載のように酸化カルシウムあるいは水酸化リチウムなどが開示されている。しかし、現実には酸化カルシウムやアミン類は使われていない。一方水酸化リチウムを用いた二酸化炭素吸収剤は、潜水艦内や宇宙服などに組み入れられており、二酸化炭素の吸収性の高いことが既に知られている。
【0007】
【特許文献1】
特開平7−37624号公報
【特許文献2】
特開2000−3735号公報
【0008】
【発明が解決しようとする課題】
しかしながら、二酸化炭素の影響を軽減するために、二酸化炭素吸収剤を使用した場合、次のような問題がある。水酸化リチウムなどは潮解性を示すため、長期実装において電池内に組み入れると、空気孔から二酸化炭素吸収剤が漏出しやすく、また、拡散紙などに目詰まりが発生して十分な電池特性が得られなくなるという問題がある。
【0009】
また、二酸化炭素吸収剤を触媒シート内に添加する方法もあるが、二酸化炭素吸収剤が二酸化炭素を吸収して空気極内に炭酸塩が析出して放電特性が低下しやすい状態となるので、触媒シート内の添加は電池特性上好ましくない。
【0010】
本発明は、上記情況に対処するためになされたもので、その課題は二酸化炭素吸収剤を内包しても電池特性は低下せず、信頼性の高い空気電池を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明は、金属酸化物、黒鉛、活性炭、フッ素系結着剤を主成分とする正極触媒層を集電体に合わせた触媒シートに撥水膜を貼り合わせた構造の空気極と拡散紙を備えた空気電池において、空気極の撥水膜面と拡散紙との間に樹脂フィルムに内包した二酸化炭素吸収剤を配置したことを特徴とする。
【0012】
本発明では、二酸化炭素吸収剤として水酸化リチウムを用いるとともに、二酸化炭素吸収剤の潮解性を抑えるために水酸化リチウムの添加量について検討した。
従来の空気電池の構成では、空気孔を通して二酸化炭素が侵入して、触媒シートと撥水膜との間に炭酸カリウムの結晶が発生しやすい。そこで、拡散紙と撥水膜側の空気極の間に二酸化炭素吸収剤を内包することで、二酸化炭素の影響を軽減するようにしたものである。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態であるボタン型空気電池について説明をする。
図1は本発明が適用されるPR2330タイプの空気電池の断面図、図2は図1の触媒レートおよび拡散紙の拡大断面図である。
【0014】
図に示すように、空気孔1を有する底面に段部を設けた正極ケース2の内側部に、拡散紙3、撥水膜4、触媒シート5およびセパレータ6が収納されている。撥水膜4と触媒シート5を合わせたものを空気極と呼び、触媒シート5は活性炭、テフロン(登録商標)、導電剤、マンガン酸化物からなる正極触媒粉をニッケルメッキされたステンレスネット製の正極集電体7に圧着充填により一体化した構造となっている。セパレータ6の上部には絶縁ガスケット8を介してニッケル−ステンレス−銅の三層クラッド材を成形加工した負極ケース9が配されており、通常は絶縁ガスケット8と負極ケース9との間には苛性カリ電解液の漏液防止をするためポリアミド樹脂等のシール材が塗布されている。更に、負極ケース9の内部にはアルカリ電解液と金属粉末を主成分としたゲル状の負極活物質10が充填され、セパレータ6に接している。ここで好ましく用いられる負極活物質は、安価な亜鉛が用いられるが、これのみに限らず他の金属も使用できる。
【0015】
本実施形態の空気電池が従来の空気電池構造と異なる構成は、二酸化炭素吸収剤11として水酸化リチウムを用いた風袋12を拡散紙と空気極との間に備えている点である。また図3に示すように、二酸化炭素吸収剤11は、直接風袋12内に納め、開口部を熱融着する方法を用いた。なお風袋として使われる物性は、多孔質な樹脂で低融点のものが好ましい。これは、二酸化炭素を吸収するための微細孔を持つとともに、風袋内から水分の漏出による拡散紙の目詰まりを抑え、風袋の一部を熱圧着することで二酸化炭素吸収剤を風袋内に保持するようにした。
【0016】
以下に、本発明の実施例を説明する。
【表1】

Figure 2005026144
【0017】
(実施例1)
二酸化炭素吸収剤を0.01g秤取り、樹脂製の風袋に納めた後、風袋の四辺を熱により圧着した。この風袋は拡散紙を挿入した後挿入し、空気極およびセパレータを装着した正極缶を作り、負極を充填したギャップと嵌合・クリンプして、空気電池PR2330を20個作製した。
【0018】
(実施例2)
表1のように二酸化炭素吸収剤を0.02g秤取り、実施例1と同様に空気電池を組立て、実施例2とした。
【0019】
(実施例3)
表1のように二酸化炭素吸収剤を0.08g秤取り、実施例1と同様に空気電池を組立て、実施例3とした。
【0020】
(従来例)
二酸化炭素吸収剤を挿入しないで、空気電池を組立て比較例とした。
【0021】
(比較例1)
表1のように二酸化炭素吸収剤を0.005g秤取り、実施例1と同様に空気電池を組立て、比較例1とした。
【0022】
(比較例2)
表3のように二酸化炭素吸収剤を0.1g秤取り、実施例1と同様に空気電池を組立て、比較例2とした。
【0023】
このような形態で作製した空気電池20個を、20℃60%RHの環境で開封放置のまま二酸化炭素濃度1000ppmにて開封放置を行った。開封評価期間は40日間で10日間ごとに放電評価をした。放電評価は300Ωの放電を行い、初度放電に対する放電容量の維持率を計算した。また、開封放置時は、空気孔が暴露するように正極缶を上向きとして放置した。表2に放電容量の維持率の結果を示す。
【0024】
【表2】
Figure 2005026144
【0025】
表2において、実施例1から実施例3において、二酸化炭素吸収剤を配置することで従来例に比べて維持率が高くなったことが確認できた。
【0026】
すなわち、従来例では二酸化炭素の影響で電池特性が著しく低下する。また、従来例の電池を分解すると空気極内に炭酸塩が析出して、空気供給が不足したことで放電がほとんどできなかったことと考える。また比較例1では、30daysにおいて二酸化炭素吸収剤の量が過剰であったことから、潮解した水溶液が風袋から染み出して拡散紙まで達していた。このことから、拡散紙の目詰まりによって空気供給が妨げられたことと考えられる。また、比較例2では、二酸化炭素吸収剤の量が少なかったため、吸収効果が得られなかった。
【0027】
以上のように二酸化炭素吸収剤の添加量を0.01〜0.08gで樹脂フィルムに内包した風袋を、拡散紙と撥水膜側の空気極との間に配置することで、二酸化炭素の影響を軽減できることが確認できた。
【0028】
【発明の効果】
以上説明したように、本発明によると、二酸化炭素吸収剤を内包することで、二酸化炭素による影響を軽減することができる信頼性の高い空気電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の断面図。
【図2】図1の触媒シートおよび拡散紙の拡大断面図。
【図3】二酸化炭素吸収剤からなる風袋を作る手順を示す図。
【図4】30daysにおける容量維持率を示す図。
【図5】放電期間別の容量維持率を示す図。
【符号の説明】
1…空気孔、2…正極ケース、3…拡散紙、4…撥水膜、5…触媒シート、6…セパレータ、7…正極集電体、8…絶縁ガスケット、9…負極ケース、10…負極活物質、11…二酸化炭素吸収剤、12…風袋。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a long-life air battery containing a carbon dioxide absorbent.
[0002]
[Prior art]
In a primary battery using an alkaline electrolyte, an air battery has the highest energy density. A feature of this air battery is that oxygen in the air is used as a positive electrode active material. Therefore, if the battery size is the same type, there is no need to fill the positive electrode mixture, and a large discharge capacity can be obtained. However, the air battery requires an air hole for taking air into the positive electrode can and is easily affected by carbon dioxide and water vapor, which are atmospheric components other than oxygen, which means that the energy density of the air battery is high, The battery characteristics at the time of opening would be extremely lowered, which was a problem.
[0003]
Hereinafter, the deterioration of the air battery is represented by a chemical formula.
(1) Absorption of carbon dioxide by alkaline electrolyte OH (−) + CO 2 → CO 3 (2-) + H (+)
( 2 ) Decrease in electrolyte concentration due to moisture absorption KOH (aq) + H 2 O → KOH (aq)
[0004]
The present inventors conducted extensive research on the deterioration mechanism of the air battery, and found that the influence of carbon dioxide absorption due to (1) is large. This is because absorption of carbon dioxide causes a decrease in electrolyte concentration simultaneously with the precipitation of carbonate.
[0005]
As a result of analyzing this battery, by absorbing carbon dioxide, a low concentration distribution occurs locally in the electrolyte within the catalyst sheet. At this time, the relative humidity in the catalyst sheet becomes higher than the outside air humidity, and moisture is evaporated to the outside air. As a result, it is considered that the battery characteristics deteriorate due to precipitation of dissolved carbonate as crystals. For these reasons, measures to reduce carbon dioxide absorption are urgently needed.
[0006]
Conventionally, as a carbon dioxide absorbent, an organic compound having an amine group or an inorganic compound having a hydroxyl group as described in Patent Document 1 and calcium oxide or lithium hydroxide as disclosed in Patent Document 2 have been disclosed. . However, in reality, calcium oxide and amines are not used. On the other hand, carbon dioxide absorbents using lithium hydroxide are already incorporated into submarines and space suits, and are already known to have high carbon dioxide absorbability.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-37624 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-3735
[Problems to be solved by the invention]
However, when a carbon dioxide absorbent is used to reduce the influence of carbon dioxide, there are the following problems. Lithium hydroxide, etc. shows deliquescence, so when incorporated in a battery for long-term mounting, carbon dioxide absorbent can easily leak from the air holes, and clogging occurs in diffusion paper etc., and sufficient battery characteristics are obtained. There is a problem that it becomes impossible.
[0009]
In addition, there is a method of adding a carbon dioxide absorbent into the catalyst sheet, but since the carbon dioxide absorbent absorbs carbon dioxide and carbonates are deposited in the air electrode, the discharge characteristics are likely to deteriorate, Addition in the catalyst sheet is not preferable in terms of battery characteristics.
[0010]
The present invention has been made in order to cope with the above-described situation, and an object thereof is to provide a highly reliable air battery which does not deteriorate battery characteristics even when a carbon dioxide absorbent is included.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a structure in which a water repellent film is bonded to a catalyst sheet in which a positive electrode catalyst layer mainly composed of metal oxide, graphite, activated carbon, and a fluorine-based binder is combined with a current collector. In the air battery including the air electrode and the diffusion paper, a carbon dioxide absorbent included in a resin film is disposed between the water repellent film surface of the air electrode and the diffusion paper.
[0012]
In the present invention, lithium hydroxide was used as the carbon dioxide absorbent, and the amount of lithium hydroxide added was examined in order to suppress the deliquescence of the carbon dioxide absorbent.
In the configuration of a conventional air battery, carbon dioxide enters through the air holes, and crystals of potassium carbonate tend to be generated between the catalyst sheet and the water repellent film. Therefore, the influence of carbon dioxide is reduced by enclosing a carbon dioxide absorbent between the diffusion paper and the air electrode on the water repellent film side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a button type air battery according to an embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view of a PR2330 type air cell to which the present invention is applied, and FIG. 2 is an enlarged cross-sectional view of the catalyst rate and diffusion paper of FIG.
[0014]
As shown in the figure, a diffusion paper 3, a water repellent film 4, a catalyst sheet 5, and a separator 6 are accommodated in an inner portion of a positive electrode case 2 having a step portion on the bottom surface having the air holes 1. A combination of the water-repellent film 4 and the catalyst sheet 5 is called an air electrode. The catalyst sheet 5 is made of a stainless steel net plated with a positive electrode catalyst powder made of activated carbon, Teflon (registered trademark), a conductive agent, and manganese oxide. The structure is integrated with the positive electrode current collector 7 by pressure filling. A negative electrode case 9 in which a nickel-stainless-copper three-layer clad material is formed through an insulating gasket 8 is disposed above the separator 6. Normally, a caustic potash is provided between the insulating gasket 8 and the negative electrode case 9. A sealing material such as polyamide resin is applied to prevent leakage of the electrolyte. Further, the negative electrode case 9 is filled with a gelled negative electrode active material 10 mainly composed of an alkaline electrolyte and metal powder and is in contact with the separator 6. The negative electrode active material preferably used here is inexpensive zinc, but is not limited to this, and other metals can also be used.
[0015]
The structure in which the air battery of this embodiment is different from the conventional air battery structure is that a tare 12 using lithium hydroxide as the carbon dioxide absorbent 11 is provided between the diffusion paper and the air electrode. Further, as shown in FIG. 3, the carbon dioxide absorbent 11 was directly placed in the tare 12 and the opening was heat-sealed. In addition, the physical property used as a tare is preferably a porous resin having a low melting point. It has fine holes to absorb carbon dioxide, suppresses clogging of diffusion paper due to moisture leakage from the inside of the tare, and holds the carbon dioxide absorbent in the tare by thermocompression of part of the tare. I tried to do it.
[0016]
Examples of the present invention will be described below.
[Table 1]
Figure 2005026144
[0017]
(Example 1)
0.01 g of carbon dioxide absorbent was weighed and placed in a resin tare, and then the four sides of the tare were pressure-bonded by heat. This tare was inserted after diffusing paper was inserted to make a positive electrode can fitted with an air electrode and a separator, and fitted and crimped with a gap filled with the negative electrode to produce 20 air batteries PR2330.
[0018]
(Example 2)
As shown in Table 1, 0.02 g of carbon dioxide absorbent was weighed and an air battery was assembled in the same manner as in Example 1 to obtain Example 2.
[0019]
(Example 3)
As shown in Table 1, 0.08 g of carbon dioxide absorbent was weighed, and an air battery was assembled in the same manner as in Example 1 to obtain Example 3.
[0020]
(Conventional example)
An air battery was assembled as a comparative example without inserting a carbon dioxide absorbent.
[0021]
(Comparative Example 1)
As shown in Table 1, 0.005 g of carbon dioxide absorbent was weighed, and an air battery was assembled in the same manner as in Example 1 to obtain Comparative Example 1.
[0022]
(Comparative Example 2)
As shown in Table 3, 0.1 g of carbon dioxide absorbent was weighed and an air battery was assembled in the same manner as in Example 1 to obtain Comparative Example 2.
[0023]
Twenty air batteries manufactured in such a form were left unsealed at a carbon dioxide concentration of 1000 ppm while being left unsealed in an environment of 20 ° C. and 60% RH. The opening evaluation period was 40 days, and discharge evaluation was performed every 10 days. In the discharge evaluation, a discharge of 300Ω was performed, and the maintenance ratio of the discharge capacity with respect to the initial discharge was calculated. In addition, when left open, the positive electrode can was left facing upward so that the air holes were exposed. Table 2 shows the results of the discharge capacity retention rate.
[0024]
[Table 2]
Figure 2005026144
[0025]
In Table 2, in Example 1 to Example 3, it was confirmed that the maintenance rate was higher than that of the conventional example by disposing the carbon dioxide absorbent.
[0026]
That is, in the conventional example, the battery characteristics are significantly deteriorated due to the influence of carbon dioxide. In addition, when the battery of the conventional example is disassembled, carbonate is precipitated in the air electrode, and it is considered that almost no discharge was possible due to insufficient air supply. In Comparative Example 1, since the amount of carbon dioxide absorbent was excessive at 30 days, the deliquescent aqueous solution oozed out of the tare and reached the diffusion paper. From this, it is considered that the air supply was hindered by the clogging of the diffusion paper. In Comparative Example 2, since the amount of carbon dioxide absorbent was small, an absorption effect could not be obtained.
[0027]
By disposing the tare enclosed in the resin film with the addition amount of the carbon dioxide absorbent of 0.01 to 0.08 g as described above between the diffusion paper and the air electrode on the water repellent film side, It was confirmed that the impact could be reduced.
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a highly reliable air battery that can reduce the influence of carbon dioxide by including a carbon dioxide absorbent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the catalyst sheet and diffusion paper of FIG.
FIG. 3 is a diagram showing a procedure for making a tare made of a carbon dioxide absorbent.
FIG. 4 is a diagram showing a capacity retention rate at 30 days.
FIG. 5 is a diagram showing a capacity retention rate for each discharge period.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air hole, 2 ... Positive electrode case, 3 ... Diffusion paper, 4 ... Water-repellent film, 5 ... Catalyst sheet, 6 ... Separator, 7 ... Positive electrode collector, 8 ... Insulating gasket, 9 ... Negative electrode case, 10 ... Negative electrode Active material, 11 ... carbon dioxide absorbent, 12 ... tare.

Claims (3)

金属酸化物、黒鉛、活性炭、フッ素系結着剤を主成分とする正極触媒層を集電体に合わせた触媒シートに撥水膜を貼り合わせた構造の空気極と拡散紙を備えた空気電池において、前記空気極の撥水膜面と拡散紙との間に樹脂フィルムに内包した二酸化炭素吸収剤を配置したことを特徴とする空気電池。An air battery comprising an air electrode and a diffusion paper having a structure in which a water repellent film is bonded to a catalyst sheet in which a positive electrode catalyst layer mainly composed of metal oxide, graphite, activated carbon, and a fluorine-based binder is combined with a current collector. A carbon dioxide absorbent encapsulated in a resin film is disposed between the water repellent film surface of the air electrode and the diffusion paper. 二酸化炭素吸収剤は水酸化リチウムを主成分とすることを特徴とする請求項1記載の空気電池。2. The air battery according to claim 1, wherein the carbon dioxide absorbent is mainly composed of lithium hydroxide. 二酸化炭素吸収剤の添加量が0.01〜0.08gであることを特徴とする請求項1記載の空気電池。The air battery according to claim 1, wherein the amount of carbon dioxide absorbent added is 0.01 to 0.08 g.
JP2003192041A 2003-07-04 2003-07-04 Air cell Pending JP2005026144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192041A JP2005026144A (en) 2003-07-04 2003-07-04 Air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192041A JP2005026144A (en) 2003-07-04 2003-07-04 Air cell

Publications (1)

Publication Number Publication Date
JP2005026144A true JP2005026144A (en) 2005-01-27

Family

ID=34189451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192041A Pending JP2005026144A (en) 2003-07-04 2003-07-04 Air cell

Country Status (1)

Country Link
JP (1) JP2005026144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086269A1 (en) * 2006-05-23 2011-04-14 Sony Corporation Anode and method of manufacturing the same, and battery and method of manufacturing the same
CN104241731A (en) * 2013-06-07 2014-12-24 铃木株式会社 Cathode structre of lithium-air battery and method for manufacturing cathode of lithium-air battery
CN106063025A (en) * 2015-02-06 2016-10-26 古河电池株式会社 Metal-air battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737624A (en) * 1993-07-27 1995-02-07 Matsushita Electric Ind Co Ltd Air battery
JP2002535818A (en) * 1999-01-26 2002-10-22 ハイ−デンシティ エナジー インコーポレイテッド Catalytic air cathode for air-metal batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737624A (en) * 1993-07-27 1995-02-07 Matsushita Electric Ind Co Ltd Air battery
JP2002535818A (en) * 1999-01-26 2002-10-22 ハイ−デンシティ エナジー インコーポレイテッド Catalytic air cathode for air-metal batteries

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086269A1 (en) * 2006-05-23 2011-04-14 Sony Corporation Anode and method of manufacturing the same, and battery and method of manufacturing the same
US8932761B2 (en) * 2006-05-23 2015-01-13 Sony Corporation Anode and method of manufacturing the same, and battery and method of manufacturing the same
US9166221B2 (en) * 2006-05-23 2015-10-20 Sony Corporation Anode and battery with improved charge-discharge efficiency and method manufacturing the same
US9431650B2 (en) 2006-05-23 2016-08-30 Sony Corporation Method of manufacturing anode active material with oxide coating on active particles
US10205163B2 (en) 2006-05-23 2019-02-12 Murata Manufacturing Co., Ltd. Battery with anode active material with oxide coating on active particles
CN104241731A (en) * 2013-06-07 2014-12-24 铃木株式会社 Cathode structre of lithium-air battery and method for manufacturing cathode of lithium-air battery
CN106063025A (en) * 2015-02-06 2016-10-26 古河电池株式会社 Metal-air battery

Similar Documents

Publication Publication Date Title
JP3607612B2 (en) Galvanic battery and manufacturing method thereof
CN101682078B (en) Rechargeable lithium batteries comprising means for the sorption of harmful substances
JP2015079692A (en) Metal air battery
CN103943879A (en) Rechargeable lithium batteries comprising means for the sorption of harmful substances in the form of a multilayer polymeric sheet
JP2009518801A (en) Zinc / air battery
BRPI0617932A2 (en) zinc / air cell
US20100119919A1 (en) Electrochemical Air Breathing Voltage Supply and Power Source Having in-situ Neutral-pH Electrolyte
US4350745A (en) Electrochemical cells having hydrogen gas absorbing agent
JP2004509445A (en) battery
CN102057525A (en) Alkaline batteries
WO2005057695A1 (en) Alkaline button cell and method for producing same
JP2005026144A (en) Air cell
JP6366958B2 (en) Magnesium primary battery
JP2006302597A (en) Button type alkaline battery
JPWO2019065029A1 (en) Waterproof device
JPH09274936A (en) Air cell
JP4493059B2 (en) Alkaline battery
JP4277327B2 (en) Air zinc battery
JP2003092147A (en) Nonaqueous electrolyte secondary battery
JP6446283B2 (en) Laminated lithium primary battery
JP2008103135A (en) Air zinc battery
JP7441092B2 (en) nickel zinc secondary battery
EP3509708B1 (en) Cartridge and breathing apparatus containing the same
KR101198029B1 (en) Zinc-air cell
WO2021200398A1 (en) Flat battery and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406