JP2005023437A - Polymer alloy crimped yarn - Google Patents

Polymer alloy crimped yarn Download PDF

Info

Publication number
JP2005023437A
JP2005023437A JP2003186702A JP2003186702A JP2005023437A JP 2005023437 A JP2005023437 A JP 2005023437A JP 2003186702 A JP2003186702 A JP 2003186702A JP 2003186702 A JP2003186702 A JP 2003186702A JP 2005023437 A JP2005023437 A JP 2005023437A
Authority
JP
Japan
Prior art keywords
polymer
fiber
yarn
island
polymer alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186702A
Other languages
Japanese (ja)
Other versions
JP4292893B2 (en
Inventor
Shuichi Nonaka
修一 野中
Takashi Ochi
隆志 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003186702A priority Critical patent/JP4292893B2/en
Publication of JP2005023437A publication Critical patent/JP2005023437A/en
Application granted granted Critical
Publication of JP4292893B2 publication Critical patent/JP4292893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bulky polymer alloy crimped yarn scarcely containing coarse polymer aggregated particles as opposed to conventional polymer blend fibers and having excellent dispersion uniformity and good crimp quality. <P>SOLUTION: The polymer alloy crimped yarn comprises a sea-island structure in which a sparingly soluble polymer forms the sea and a readily soluble polymer forms islands. The polymer alloy crimped yarn has an area ratio of the island polymer having ≥200 nm diameter accounting for ≤3% of the whole island components and ≥20% value of CR. Furthermore, the polymer alloy crimped yarn is composed of ≥2 kinds of polymers having different solubility and has 0.1-50 nm average thickness of one layer of the readily soluble polymer, ≥50% of a layer structural region based on the fiber cross sectional area and ≥20% value of CR. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、易溶解性ポリマーが凝集した粗大ポリマー粒子をほとんど含まず分散均一性に優れ嵩高で捲縮品位良好なポリマーアロイ捲縮糸に関するものである。
【0002】
【従来の技術】
ナイロン6(N6)やナイロン66(N66)に代表されるポリアミド繊維やポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)に代表されるポリエステル繊維は力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されている。また、ポリエチレン(PE)やポリプロピレン(PP)等に代表されるポリオレフィン繊維は軽さを活かして産業用途に幅広く利用されている。
【0003】
しかし、単一のポリマーからなる繊維ではその性能に限界があるため、従来から共重合やポリマーブレンドといったポリマー改質、また複合紡糸や混繊紡糸による機能の複合化が検討されてきた。中でも、ポリマーブレンドは新しくポリマーを設計する必要が無く、しかも単成分紡糸機を用いても製造が可能であることから特に活発な検討が行われてきた。
【0004】
ところで、繊維に軽量感や吸水性を付与することを目的として、従来から中空繊維や多孔繊維の検討もなされてきた。中空繊維については高中空率を目指して開発が進められたが、仮撚り加工等で中空が潰れてしまう問題があった。このため、最近、水溶性ポリマーとの複合繊維を利用した多島中空繊維も開発されているが、中空径が1μm以上であるため中空部のポリマー/空気界面での可視光の散乱が多くなり、繊維の発色性が著しく低下する問題があった。
【0005】
一方、サブμmレベルの細孔を多数有する多孔繊維も検討されているが、この時は複合紡糸ではなくポリマーブレンド紡糸が利用されてきた。例えば、ナイロンに親水基共重合PETをブレンドして繊維化し、これから共重合PETを溶出することで多孔ナイロン繊維が得られることが知られている(特許文献1)。これにより、サブμmレベルの表面凹凸や細孔が形成されるためパール様光沢が得られるのであるが、逆に発色性は著しく低下してしまう問題があった。これは、細孔サイズが可視光の波長レベルであり、しかも細孔が多数あるため、多島中空繊維に比べても可視光の散乱が多くなるためである。また、細孔サイズが可視光より小さい細孔を有する例(特許文献2)もあるが、実際にはブレンド繊維中でPETの粗大な凝集粒子が存在し、この凝集粒子が溶出されサブμm〜1μmレベルの粗大孔となるため、やはり特許文献1同様に発色性低下の問題があった。実際、該文献2ページ目左上下から7行目には「ポリアミド中にポリエステル成分が大部分0.01〜0.1μの太さのすじとして存在し、溶出後もほぼその大きさの空洞が存在している。」と記載されており、PET凝集粒子の存在が暗示されている。この他にもナイロン/PETブレンド繊維を利用した多孔繊維の例(特許文献3、4)があるが、ナイロン中でのPETの分散サイズばらつきが大きく、0.1〜1μm近くまでの分布を持つものであり、粗大孔による発色性低下の問題を解決できなかった。
【0006】
上記公知技術のように、海島構造を持つポリマーブレンド繊維において、島ポリマーをサブμm以下まで超微分散化しようとすると、島ポリマーは本来非相溶であるため熱力学の基本法則に従い表面自由エネルギーを最小にするために、どうしても粗大な凝集ポリマー粒子を形成しやすくなってしまう。それにより、多孔繊維にした際に発色性が低下する問題は避けられないものであった。また、このような粗大な凝集ポリマー粒子を含んだものは、紡糸工程で安定したドラフトが掛けにくく糸斑のが出来やすいため、後に仮撚加工を施しても毛羽、未解撚の発生によって品位が低下したり、高捲縮糸を得ることは困難であった。
【0007】
また、特に島ポリマーにアルキレングリコール誘導体のような融点や軟化点が100℃以下のものを用い、これが粗大な凝集粒子となると、捲縮や撚糸といった糸加工や布帛加工時の熱によって単繊維間の融着が発生し、断糸、毛羽、品位低下等のトラブルとなってしまう問題もあった。実際、捲縮加工の一種である仮撚り加工ではヒーター温度は160〜220℃程度、布帛加工ではヒートセット温度は160〜180℃程度が採用される場合が多く、島ポリマーに低融点ポリマーを用いた場合には粗大な凝集粒子は致命的な欠点となっていた。
【0008】
ところで、PETにエチレンナフタレートを多量に共重合した共重合ポリエステルにポリエーテルイミド(PEI)を多量ブレンドする極めて限定された特殊なポリマーアロイ繊維とすることで、通常は、ブレンドポリマーが筋状に分散するのに対し、このポリマーアロイ繊維中ではブレンドポリマー(PEI)が粒状に分散するという極めて例外的なポリマーアロイ形態とすることで、PEIが共重合ポリエステル中に数十nmオーダーで分散できることが知られていた(特許文献5)。しかしながら、該公報では混練温度や紡糸温度はPEIの溶融温度に合わせ、それぞれ320℃、315℃と共重合ポリエステルには高すぎるものとなっており、共重合ポリエステルの熱分解が著しく、糸斑が極めて大きくしかも強度の低い繊維しか得られなかった。このため、これに仮撚り加工等の捲縮加工を施しても糸切れや毛羽が多発し、実質的に捲縮加工を施すことができなかった。また、わずかに捲縮加工できたとしても、原糸であるポリマーアロイ繊維の糸斑が大きいため、未解撚が多発し、満足な捲縮性能を得ることができなかった。
【0009】
このように、超多孔繊維としても発色性を低下させず、粗大なポリマー凝集粒子をほとんど含まず分散均一性に優れ、嵩高で捲縮品位良好なポリマーアロイ捲縮糸が求められていた。
【0010】
【特許文献1】
特開平2−175965号公報(1〜5ページ)
【0011】
【特許文献2】
特開昭56−107069号公報(1〜3ページ)
【0012】
【特許文献3】
特開平8−158251号公報(1〜7ページ)
【0013】
【特許文献4】
特開平8−296123号公報(1〜7ページ)
【0014】
【特許文献5】
特開平8−113829号公報(7〜10ページ)
【0015】
【発明が解決しようとする課題】
本発明は、従来のポリマーブレンド繊維とは異なり、粗大なポリマー凝集粒子をほとんど含まず分散均一性に優れ嵩高で捲縮品位良好なポリマーアロイ捲縮糸を提供するものである。
【0016】
【課題を解決するための手段】
上記目的は、難溶解性ポリマーが海、易溶解性ポリマーが島の海島構造を形成し、島成分全体に占める直径200nm以上の島ポリマーの面積比が3%以下で、CR値が20%以上であるポリマーアロイ捲縮糸、または溶解性の異なる2種以上のポリマーからなり、易溶解ポリマー1層の平均厚みが0.1〜50nmであり、かつ層状構造領域を繊維横断面積あたり50%以上有し、CR値が20%以上であるポリマーアロイ捲縮糸により達成される。
【0017】
【発明の実施の形態】
本発明でいうポリマーとはポリエステルやポリアミド、またポリオレフィンに代表される熱可塑性ポリマーやフェノール樹脂等のような熱硬化性ポリマー、ポリビニルアルコール、ポリアクリロニトリルに代表される熱可塑性に乏しいポリマーや生体ポリマー等のことを言うが、熱可塑性ポリマーが成形性の点から好ましい。
【0018】
中でもポリエステルやポリアミドに代表される重縮合系ポリマーは融点が高いものが多く、より好ましい。ポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。例えば、ポリ乳酸(PLA)は170℃、PETは255℃、N6は220℃である。また、ポリマーには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良い。
【0019】
またポリマーの性質を損なわない範囲で他の成分が共重合されていても良いが、難溶解性ポリマーとしてはポリマー本来の耐熱性や力学特性を保持するためには共重合率は5mol%あるいは5重量%以下であることが好ましい。また、ポリマーの分子量は、繊維形成能や力学特性の点から数平均分子量で1万〜50万であることが好ましい。特に衣料、インテリア、車両内装等に用いる場合には、難溶解性ポリマーとしては共重合率が5mol%または5重量%以下の相対粘度2以上のN6、N66、極限粘度0.50以上のPET、ポリトリメチレンテレフタレート(PTT)、PBT、PLAがより好ましい。ただし、易溶解性ポリマーは後で除去することを考慮すると、本願目的を達成する範囲であれば数平均分子量は3000以上であっても良い。
【0020】
本発明では、2つの様態のポリマーアロイ捲縮糸があるが、第1の様態は、難溶解性ポリマーが海、易溶解性ポリマーが島の海島構造ポリマーアロイである。これにより、易溶解性ポリマーを溶剤で除去することで多孔性繊維を容易に得ることができるのである。ここで海島構造とは2種以上のポリマーが相分離構造を採り、メジャー成分あるいは低粘度成分がマトリックス、マイナー成分あるいは高粘度成分がドメインとなる構造を言うものである。その一例を図1(繊維横断面TEM写真)に示すが、濃い部分が難溶解性ポリマー、淡い部分が易溶解性ポリマーである。なお、相溶性の比較的良いポリマーアロイ系では、島が10nm程度まで超微細化され、これらが一部集合した数珠状の島形状を採る場合もある(図5)。ポリマーアロイ繊維中のポリマー種類は溶解性の異なる2種以上であれば良く、必要に応じて難溶解性ポリマー、易溶解性ポリマーの種類を増やすことができ、また相溶化剤を併用することももちろん可能である。
【0021】
さらに、直径200nm以上の島、すなわち粗大な凝集ポリマー粒子の存在比が島成分全体に対し面積比で3%以下であることが重要である。可視光の波長は400〜800nm程度であるため、直径200nm以上の島がほとんど存在しないことにより、多孔性繊維とした時の発色性低下を著しく低減することができるのである。ここで、島はややひずんだ楕円形状となる場合があり必ずしも真円とは限らないため、直径は島面積から円換算で求めたものとする。また、島全体に対する面積は、繊維断面中に存在する全ての島ポリマーを合計した面積であり、繊維断面観察やポリマーブレンド比から見積もることができる。直径200nm以上の島ポリマーの面積比は好ましくは1%以下である。より好ましくは直径100nm以上の島ポリマーの面積比は3%以下であり、さらに好ましくは直径100nm以上の島ポリマーの面積比は1%以下である。
【0022】
さらに、捲縮特性の指標であるCR値が20%以上であることが重要である。ここでCR値とは以下のようにして定義されるものである。すなわち、繊維糸条をかせ取りし、無荷重下にて難溶解性ポリマーがナイロンの場合は60℃、ポリエステルの場合は90℃の水で20分間処理し、その後、一昼夜風乾させたものを水中で0.0018cN/dtex(2mg/デニール)の初荷重と0.088cN/dtex(0.1g/デニール)の伸長荷重を掛け2分後のかせ長を測定し(L1(mm))、その後伸長荷重を除重してから2分後のかせ長を測定する(L2(mm))。そして、以下の式にしたがい計算を行う。
【0023】
CR値(%)=[(L1−L2)/L1]×100
本発明のようにポリマーアロイ捲縮糸のCR値が20%以上であれば該ポリマーアロイ捲縮糸を製織、製編などして布帛化し易溶解性ポリマーを除去した繊維製品はウールや綿などの天然繊維のように嵩高なものとなる。CR値は好ましくは30%以上、より好ましくは40%以上である。
【0024】
また、島の平均直径が1〜100nmであると、島ポリマーを除去することにより従来の多孔繊維よりも孔サイズの小さなナノポーラスファイバーが得られるため好ましい。細孔サイズがナノレベルになると、可視光の散乱がほとんど起こらなくなるために発色性が著しく向上するだけでなく、有害な紫外線を大きく散乱するようになり、UVカットという新たな機能が発現する。さらに、繊維表面積が飛躍的に増大するために、従来の多孔繊維では予想できなかった優れた吸湿性や吸着性が発現するという大きな利点がある。島の平均直径は、より好ましくは1〜50nmである。
【0025】
上記のように島ポリマーが均一に超微分散化することによって、島ポリマーに低融点や低軟化点のポリマーを用いても、高温処理が行われる捲縮加工や撚糸等の糸加工や布帛加工の工程通過性を向上し、さらに得られる製品の品位も向上できるという利点もある。
【0026】
本発明の第2の様態は、溶解性の異なる2種以上のポリマーからなり、1層の平均厚みが0.1〜50nmであり、かつ層状構造領域を繊維横断面積あたり50%以上有し、CR値が20%以上であるポリマーアロイ捲縮糸である。ここで層状構造とは、繊維横断面を透過型電子顕微鏡(TEM)で観察した時、以下の状態を示すものである。すなわち、ブレンドされた異種ポリマー同士が層を形成し互いに入り組み合って存在している状態である(図7、繊維横断面TEM写真)。ここで、TEMのサンプルは、濃い部分が難溶解性ポリマー、淡い部分が易溶解性ポリマーである。また、層を形成するという点でいわゆる海海構造(図10、繊維横断面TEM写真)とも明確に区別されるものである。海海構造はポリマーブレンドにおいて海/島が逆転する近傍のブレンド比で現れる極めて不安定な構造であり、当然この領域では安定紡糸を行うのは極めて困難である。
【0027】
ここで、繊維横断面に占める層状構造領域の割合は50%以上であることが重要である。これにより、後述するようなナノポーラスファイバーの形成が容易となり合成繊維の永年の課題であった吸湿・吸着性に優れた繊維を得ることができるとともに、力学特性や耐熱性を著しく向上することが可能なのである。繊維横断面に占める層状構造の割合は好ましくは95%以上である。なお、ここで繊維横断面に占める層状構造領域の割合は繊維横断面のTEM写真から求めることができる。例えば、図8に示すように、点線で囲んだ部分が層状構造領域であり、それ以外(繊維表層部分)は海島構造である。この場合には、繊維横断面積と層状構造部分の面積から、繊維横断面に占める層状構造の割合を計算することができる。
【0028】
ここで、繊維横断面方向における易溶解性ポリマー1層の平均厚みは1〜50nmであれば、異種ポリマーが十分超微分散しており、ブレンドポリマーの性能を十分発揮できる点から好ましい。また、この層は繊維長手方向には筋として伸びているものである(図9、繊維縦断面TEM写真)。
【0029】
本発明のポリマーアロイ捲縮糸において易溶解性ポリマーはアルカリ易溶解性ポリマーであると、島ポリマー除去による多孔化工程を通常の繊維の後加工工程であるアルカリ処理工程を利用できるため好ましい。例えば、易溶解性ポリマーとしてポリスチレン等の有機溶媒溶解性ポリマーを用いた場合は防爆設備が必要であることを考えると大きなメリットである。易溶解性ポリマーは熱水可溶性ポリマーであると、繊維の精練工程で島ポリマー除去できるためさらに好ましい。アルカリ易溶解性ポリマーとしては例えばポリエステルやポリカーボネート等を挙げることができ、熱水可溶性ポリマーとしては親水基を多量に共重合したポリエステル、またアルキレンオキサイドやポリビニルアルコール、またそれらの変性物等を挙げることができる。
【0030】
難溶解性ポリマーと易溶解性ポリマーのブレンド比は特に制限は無いが、本発明のポリマーアロイ捲縮糸からナノポーラスファイバーを得る場合には難溶解性ポリマーのブレンド比を40〜95重量%とすることが好ましい。難溶解性ポリマーのブレンド比は、より好ましくは70〜90重量%である。
【0031】
また、本発明のポリマーアロイ捲縮糸は粗大な凝集ポリマー粒子を含まないため紡糸工程が公知技術(特許文献1〜4)よりも安定化し、糸斑の小さな繊維が得られやすいという特徴を有する。糸斑はウースター斑(U%)で評価することが可能であるが、ポリマーアロイ捲縮糸の加工原糸のU%を0.1〜5%とすると、後に行う仮撚等の捲縮加工工程で毛羽、未解撚の発生を抑制することができ本発明の目的である嵩高で捲縮品位が良好な捲縮糸を得ることができ、得られた捲縮糸のU%も0.1〜5%とすることができ好ましい。また、アパレルやインテリア、車両内装等の繊維製品にした際、染色斑が小さく品位の高い物が得られ好ましい。特に仮撚り加工の場合はU%の小さな原糸を用いることで解撚工程が安定化するため、高捲縮でしかも未解撚などの無い品位の良い仮撚り加工糸が得られるのである。捲縮糸および捲縮加工原糸のU%はより好ましくは0.1〜2%、さらに好ましくは0.1〜1.5%である。また、特にアパレル用途で杢調を出す場合には、U%が3〜10%の太細糸とすることもできる。
【0032】
本発明のポリマーアロイ捲縮糸の強度は2cN/dtex以上とすることで、撚糸や製織・製編工程等での工程通過性を向上することができ好ましい。強度は好ましくは3cN/dtex以上である。また、伸度は15〜70%であれば、やはり撚糸や製織・製編工程等での工程通過性を向上することができ好ましい。
【0033】
本発明のポリマーアロイ捲縮糸は、三葉断面、十字断面、中空断面等様々な繊維断面形状を採用することができる。また、長繊維、短繊維、不織布、熱成形体等様々な繊維製品形態を採ることができる。そして、シャツやブルゾン、パンツ、コートといった快適衣料用途のみならず、カップやパッド等の衣料資材用途、カーテンやカーペット、マット、家具等のインテリア用途、さらにフィルター等の産業資材用途、車両内装用途にも好適に用いることができる。
【0034】
本発明のポリマーアロイ捲縮糸の製造方法は特に制限されるものではないが、例えば下記のような方法を採用することができる。
【0035】
すなわち、難溶解性ポリマーと易溶解性ポリマーを溶融混練し、難溶解性ポリマーおよび/または易溶解性ポリマーが微分散化した難溶解性ポリマー/易溶解性ポリマーからなるポリマーアロイを得る。そして、これを溶融紡糸後、仮撚等の捲縮加工を施すことにより本発明のポリマーアロイ捲縮糸を得ることができる。ここで、溶融混練方法が重要であり、押出混練機や静止混練器等により強制的に混練する事により粗大な凝集ポリマー粒子の生成を大幅に抑制することができるのである。公知技術(特許文献1〜4)ではいずれもチップブレンド(ドライブレンド)を用いているため、ブレンド斑が大きく島ポリマーの凝集を防ぐことができなかったのである。強制的に混練する観点から、混練装置としては二軸押出混練機、あるいは分割数100万分割以上の静止混練器を用いることが好ましい。二軸押出混練機を用いる場合には、ニーディングディスクから成る混練部長はスクリュー有効長の20〜40%とすることで、高混練と滞留時間短縮によるポリマーの熱劣化抑制を両立させることができる。また、混練するポリマーの供給方法としては、ポリアミドとポリエステルを別々に計量、供給することで経時的なブレンド比の変動を抑制できる。この時、ペレットとして別々に供給しても、溶融状態で別々に供給しても良い。また、2種のポリマーを押出混練機の根本に供給しても良いし、一方を押出混練機の途中から供給するサイドフィードとしても良い。
【0036】
一方、島ポリマーの再凝集を抑制する観点からポリマーアロイ形成、溶融から紡糸口金から吐出するまでの滞留時間も重要であり、ポリマーアロイの溶融部先端から紡糸口金から吐出するまでの時間は30分以内とすることが好ましい。特にナイロンと親水基共重合PETのアロイの場合は、親水基共重合PETが再凝集し易いため注意が必要である。
【0037】
また、島直径の微小化にはポリマーの組み合わせも重要であり、難溶解性ポリマーと易溶解性ポリマーの親和性を上げることで島となる易溶解性ポリマーを超微分散化し易くなる。例えば、難溶解性ポリマーとしてナイロン、易溶解性ポリマーとしてPETを用いる場合には、PETに親水性成分である5−ナトリウムスルホイソフタル酸(SSIA)を共重合した親水基共重合PETを用いると、ナイロンとの親和性を向上させることができる。特にSSIAの共重合率が4mol%以上の親水化PETを用いることが好ましい。また、両者の溶融粘度比も重要であり、海ポリマー/島ポリマーの粘度比が大きくなるほど島ポリマーに大きな剪断力がかかり島が微分散化し易くなる。ただし、過度に粘度比が大きくなると混練斑や紡糸性悪化を引き起こすため、粘度比は0.1〜2程度とすることが好ましい。
【0038】
ところで、ポリアミドはポリエステルに比べ耐熱性に劣り、熱劣化によりゲル化する傾向があることが知られている。さらに、ポリアミドとポリエステルをポリマーアロイ化すると、ポリエステルの分子鎖末端が触媒的に働くためか、ポリアミド単独の場合よりもはるかにゲル化し易い傾向があることが本発明を検討する中から明らかになってきた。ポリアミドはゲル化すると、糸切れや糸斑が発生するだけでなく、ポリマーの濾過圧力や、口金背面圧力等の工程圧力が上昇し、吐出量の上限が低くなったり、パックライフが短くなるため、単位時間あたりの生産性が大幅に低下するだけでなく、糸切れが頻発するといった大きな問題を引き起こしていた。このため、ポリアミド/ポリエステルアロイ繊維を得る場合には、ゲル化を抑制することが重要であった。このため、ポリマーアロイに用いるポリアミドのアミン末端を酢酸等で封鎖し、アミン末端基量を5.5×10−3mol当量/g以下とすることが好ましい。
【0039】
上記したような紡糸法の特徴により、粗大な凝集ポリマー粒子の生成が抑制されるため、公知技術(特許文献1〜4)に比べ、ポリマーアロイの粘弾性バランスが崩れにくく紡糸吐出が安定し、曳糸性や糸斑を著しく向上できるという利点もある。さらに、口金孔径としては通常よりも大きい物を用いると、口金孔でのポリマーアロイへの剪断応力を低減し粘弾性バランスを保つことができるため、紡糸安定性が向上する。具体的にはポリマアロイの口金での吐出線速度を15m/分以下できる口金を用いることが好ましい。加えて、糸条の冷却も重要であり、口金から積極的な冷却開始位置までの距離は1〜15cmとすることで、伸長流動が不安定化しやすいポリマーアロイを迅速に固化させることで紡糸を安定化することができるのである。
【0040】
また、島ポリマーを微細化する観点からは紡糸ドラフトは100以上とすることが好ましい。さらに未延伸糸の寸法や物性の経時変化を抑制するためには紡糸速度は2500m/分以上として繊維構造を発達させることが好ましい。
【0041】
捲縮加工工程での加工条件は、特に限定されるものではなく、捲縮付与の方法としては仮撚法、擦過法、ケンネル法、スタッファ法、エアジェット法、賦型法など種々の方法を採用でき、中でも捲縮特性、糸掛け操作性、加工安定性の良好な仮撚法が好ましい。仮撚回転装置としては、スピンドル式、摩擦式、エアジェット式などが挙げられるが、糸掛け操作性、加工安定性の面から3軸外接型摩擦仮撚装置やベルトニップ仮撚装置が特に好ましい。仮撚のヒーター温度は仮撚するポリマーアロイ原糸のポリマー組成によって異なるが、強伸度の低下や単糸間の融着によるくびれや未解撚などの捲縮異常を起こさない最も高い温度に設定することが好ましい。これにより、熱セット性がよく、捲縮の強固なポリマーアロイ捲縮糸を得ることができる。例えば、難溶解性ポリマーとしてナイロン、易溶解性ポリマーとしてPETを用いたポリマーアロイ糸を仮撚加工原糸として用いた場合は、仮撚工程のヒーター温度範囲は130〜200℃が好適である。130℃以上として、捲縮耐久性を向上せしめ、捲縮を十分に発現させ、200℃以下として、ポリマーアロイ捲縮糸の強伸度低下を防止して、融着防止や未解撚防止を図り、仮撚残存トルクを抑制し取り扱い易い糸を提供する。また必要に応じて、仮撚加工工程後さらに熱セットすることにより、残存トルク軽減や熱寸法安定性向上を図ったり、交絡処理を施したり、追撚したりしてもよい。
【0042】
本発明のポリマーアロイ捲縮糸はそのままでも使用可能であるが、易溶解性ポリマーを溶媒により除去することによりナノレベルの細孔を無数に有するナノポーラスファイバーを得ることができる。ここで、ナノレベルの細孔とはTEMで観察できる細孔直径が50nm以下のものを言うものである。本発明のポリマーアロイ捲縮糸から作製したナノポーラスファイバーの一例を図3(繊維横断面TEM写真)に示すが、濃い部分は高密度領域、淡い部分は低密度領域を示している。ここで淡い部分が細孔に相当すると考えられる。これから分かるように本発明のポリマーアロイ捲縮糸を用いると、粗大細孔の無い発色性に優れたナノポーラスファイバーを得ることができるのである。
【0043】
このナノポーラスファイバーは無数のナノレベルの細孔により比表面積が増大し、優れた吸湿・吸着性を示すというメリットがある。実際に、N6ナノポーラスファイバーでは吸湿性の指標であるΔMRが5〜6%に達し、綿(ΔMR=4%)以上の優れた吸湿性を示すのである。また、このナノポーラスファイバーは水蒸気だけでなく種々の物質の吸着特性にも優れ、消臭繊維としても有用である。さらに、綿並の吸水性を発揮する場合もあるだけでなく、ウールのように糸長手方向に可逆的な水膨潤性を示す場合もあり、合成繊維でありながら天然繊維の機能を発現することも可能である。
【0044】
また、本発明のポリマーアロイ捲縮糸から得られるナノポーラスファイバーは、平均細孔径を100nm以下、また粗大細孔面積比を3%以下とできるため、従来の多孔繊維に比べ発色性低下が無く、高品質の染色布帛を提供することができる。なお、粗大細孔面積比とは細孔直径が50nm以上の細孔の細孔全体に対する面積比である。ナノポーラスファイバーの平均細孔直径は50nm以下、粗大細孔面積比は0.1%となると特に好ましい。なお、ここで言う細孔とは繊維中に含まれる無機粒子によるボイドは除くものとする。
【0045】
以上のように、本発明のポリマーアロイ捲縮糸から得られるナノポーラスファイバーは従来の合成繊維には無い優れた特性を有するため、シャツやブルゾン、パンツ、コートといった快適衣料用途のみならず、カップやパッド等の衣料資材用途、カーテンやカーペット、マット、家具等のインテリア用途、さらにフィルター等の産業資材用途、車両内装用途にも好適に用いることができる。さらに、機能性分子の吸着により燃料電池の電極や血球分離といったIT、メディカル関係のような最先端材料としても利用することができる。
【0046】
【実施例】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0047】
A.ポリマーの溶融粘度
東洋精機製キャピログラフ1Bにより、ポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
【0048】
B.ナイロンの相対粘度
98%硫酸を用い0.01g/mlの溶液を調製し、25℃で測定した。
【0049】
C.ポリエステルの極限粘度[η]
オルソクロロフェノール中25℃で測定した。
【0050】
D.融点
Perkin Elmaer DSC−7を用いて、2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。このときの昇温速度は16℃/分、サンプル量は10mgとした。
【0051】
E.ポリアミドのアミン末端基量
ポリマー1gをフェノール−エタノール混合溶媒に溶解し、滴定によりアミン末端基量をポリアミドの重量ベースで求めた。
【0052】
F.力学特性
室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
【0053】
G.ポリマーアロイ捲縮糸および捲縮加工原糸のウースター斑(U%)
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
【0054】
H.TEMによる繊維横断面観察
繊維の横断面方向に超薄切片を切り出し、透過型電子顕微鏡(TEM)で繊維横断面を観察した。また、必要に応じて金属染色を施した。
【0055】
TEM装置 : 日立社製H−7100FA型
I.島の平均直径
島の平均直径は以下のようにして求める。すなわち、TEMによる繊維横断面写真を画像処理ソフト(WINROOF)を用いて島ポリマーの円換算による直径を求めた。平均直径は、それらの単純な数平均値を求めた。この時、平均に用いる島ドメイン数は同一横断面内で無作為抽出した300以上の島ドメインを測定した。ただし、TEM観察用のサンプルは超薄切片とするため、サンプルに破れや穴あきが発生しやすい。このため、島直径解析時にはサンプルの状況と照らし合わせながら慎重に行った。ナノポーラスファイバーの細孔径の解析もこれに準じた。また、層状構造アロイの場合の1層の平均厚みは、層部分の厚みを300個所以上測定し、これの平均値を用いた。
【0056】
J.ポリマーアロイ捲縮糸のCR値
捲縮糸を50cm程度の10回巻きかせにし、一昼夜放置後、実質的に無荷重の状態で難溶解性ポリマーがナイロンの場合は60℃、ポリエステルの場合は90℃の水で20分間処理し、その後、一昼夜風乾させたものを準備した。次に水中で0.0018cN/dtex(2mg/デニール)の初荷重と0.088cN/dtex(0.1g/デニール)の伸長荷重を掛け2分後のかせ長を測定し(L1(mm))、その後伸長荷重を除重してから2分後のかせ長を測定した(L2(mm))。そして、以下の式によりCR値を計算した。
【0057】
CR値(%)=[(L1−L2)/L1]×100
K.繊維製品の嵩高度
織物、編物などの繊維製品の上から6.86×102Pa(7gf/cm)の圧力をかけ、10秒後の厚みを測定し(t(cm))、これとは別に布帛の単位面積あたりの質量を測定した(w(g/cm))。そして、以下の式にしたがい計算を行った。
【0058】
嵩高度(cm/g)=t/w
L.発色性評価
得られたサンプルを常法にしたがい染色し、同条件で染色した比較サンプルとの発色性を比較した。比較サンプルはポリマーアロイ繊維の海ポリマーを単独で製糸したものを用いた。目視判定で、比較とほぼ同等の発色性が得られたものを合格(○)とし、それよりも劣るものを不合格とした(△、×)。
【0059】
M.吸湿性(ΔMR)
サンプルを秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算を行う。
【0060】
MR65=[(W65−W0)/W0]×100% ・・・・・ (1)
MR90=[(W90−W0)/W0]×100% ・・・・・ (2)
ΔMR=MR90−MR65 ・・・・・・・・・・・ (3)
実施例1
相対粘度2.15、溶融粘度274poise(280℃、剪断速度2432sec−1)、融点220℃、アミン末端基量5.0×10−3mol当量/gのN6(80重量%)と極限粘度0.60、溶融粘度1400poise(280℃、剪断速度2432sec−1)、融点250℃の0.05重量%の酸化チタンを含有する5−ナトリウムスルホイソフタル酸5mol%共重合した共重合PET(20重量%)を二軸押出混練機で260℃で溶融混練してポリマーアロイチップを得た。この時、N6と共重合PETを別々に計量し、別々に混練機に供給した。また、混練機のスクリューの直径は37mm、有効長は1670mm、L/D=45.1であり、混練部(ニーディングディスク)長はスクリュー有効長の28%とした。そして、このポリマーアロイを270℃の溶融部2で溶融し、紡糸温度275℃のスピンブロックに導いた。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、溶融紡糸した(図15)。この時、溶融部2から吐出までの滞留時間は10分間であった。吐出孔径0.3mm、吐出孔長0.65mmの口金を用い、単孔あたりの吐出量は2.1g/分、ポリマーアロイの口金吐出線速度は28m/分であった。また、口金下面から冷却開始点(チムニー5の上端部)までの距離は9cmであった。吐出された糸条は20℃の冷却風で1mにわたって冷却固化され、口金4から1.8m下方に設置した給油ガイド7で給油された後、非加熱の第1引き取りローラー8および第2引き取りローラー9を介して3800m/分で巻き取られた。この時の紡糸性は良好であり、口金直下で吐出ポリマーが膨れるバラス現象や、曳糸性不足による断糸等は発生せず、24時間の連続紡糸の間の糸切れはゼロであった。また、ナイロンで問題となる巻き取りパッケージの経時膨潤によるパッケージ崩れも無く、優れた取り扱い性であった。また、このポリマーアロイ未延伸糸は強度2.6cN/dtex、伸度138%、U%0.9%の優れた物性を示した。これに図16の装置を用い延伸仮撚加工を施し、仮撚方向SおよびZのポリマーアロイ仮撚糸を得た。この時、延伸倍率は1.5倍、ヒーター23温度は165℃、仮撚回転子25としてウレタンディスクの3軸外接型摩擦仮撚装置を用い、ディスク表面速度/加工糸速度の比(D/Y比)は1.65とした。加工性は良好で、断糸やローラー、仮撚回転子への巻き付きは見られなかった。得られた87dtex、24フィラメントの仮撚り加工糸は強度3.5cN/dtex、伸度29%、熱収縮率8%、U%1.0%、CR38%の優れた物性を示し(表1)、未解撚もなく捲縮の品位も良好であった。得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、N6が海(濃い部分)、共重合PETが島(薄い部分)の海島構造を示し(図1)、島の平均直径は25nmであり、共重合PETが超微分散化したポリマーアロイ繊維が得られた。直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も0.9%以下であった。ここで、島成分全体に対する面積比とは島成分の面積の総和に対する比率のことを言い、粗大な凝集ポリマーの目安となるものである。また、繊維縦断面TEM観察から島は筋状構造を形成していることが分かった(図2)。なお、溶融混練したポリマーアロイチップの断面TEM写真を図4に示すが、島ポリマーが粒径20〜30nmまで超微分散化しており、繊維横断面での島ポリマー直径(図1)同等であった。口金吐出から延伸仮撚を通じてポリマーは200倍程度に引き延ばされ、本来、繊維横断面中では島ポリマー直径はポリマーアロイ中に比べ1/14以下になるはずであるが、原料であるチップと繊維横断面での島ポリマー直径がほぼ同じであるということは、ポリマーアロイの溶融から口金吐出されるまでに島ポリマーが再凝集したことを示しており、これを抑制しながら島ポリマーを超微分散させるためには本実施例のように紡糸条件を適切に選ぶことが重要であることがわかる。
【0061】
そして、仮撚方向SおよびZのポリマーアロイ仮撚糸を引き揃え、これを20Gの丸編みに製編し、3重量%の水酸化ナトリウム水溶液(95℃、浴比1:50)で1時間処理することにより、ポリマーアロイ仮撚糸から共重合PETの99%以上を溶解除去し、N6ナノポーラスファイバーからなる嵩高度63cm/gの繊維製品を得た。
【0062】
このN6ナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。さらにこれの吸湿率(ΔMR)を測定したところ、5.6%と綿を凌駕する優れた吸湿性を示した。
【0063】
このN6ナノポーラスファイバーを丸編みから引き出し、繊維側面をSEMにより観察したところ、倍率2000倍程度では繊維表面に凹凸は見られずきれいな表面形態であった。また、このN6ナノポーラスファイバーの繊維横断面をTEMで観察した(図3)ところ、直径20〜30nm程度の細孔の存在が確認できた。この細孔の平均値は25nmであり、直径が50nm以上の大きな細孔は皆無であった。また、図3から明らかなように、これは独立孔を有するものであった。さらに、これの力学特性を測定したところ、強度2.6cN/dtex、伸度30%であり、繊維製品として充分な力学特性を示した。N6ナノポーラスファイバーの物性は表2に示した。
【0064】
実施例2
N6と共重合PETブレンド比を95重量%/5重量%とし実施例1と同様に溶融混練を行った。そして、単孔あたりの吐出量、口金孔数を変更して実施例1と同様に溶融紡糸、延伸仮撚り加工を行い、90dtex、34フィラメントのポリマーアロイ捲縮糸を得た。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。得られた高配向未延伸糸は、強度2.7cN/dtex、U%0.8%と優れたものであった。また、延伸仮撚り加工工程での糸切れも無く、加工性も良好であった。さらに、CR値は45%と大きな嵩高性を示しただけでなく、未解撚も無く捲縮品位にも優れたものであった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察した結果、海島構造を示し、島の平均直径は25nmであり、共重合PETが超微分散化したポリマーアロイ繊維が得られた。直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。
【0065】
このポリマーアロイ捲縮糸に300T/mの甘撚りを施し、経糸および緯糸に用いて平織り物を作製し、実施例1と同様にアルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる織物を得た。このN6ナノポーラスファイバーからなる織物に染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。この織物からN6ナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm以下の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。N6ナノポーラスファイバーは表2に示すように優れた物性であった。
【0066】
実施例3
N6と共重合PETブレンド比を50重量%/50重量%とし実施例1と同様に溶融混練を行った。そして、単孔あたりの吐出量、口金孔数を変更して実施例1と同様に溶融紡糸、延伸仮撚り加工を行い、150dtex、34フィラメントのポリマーアロイ捲縮糸を得た。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。得られた高配向未延伸糸は、強度2.5cN/dtex、U%1.0%と優れたものであった。また、延伸仮撚り加工工程での糸切れも無く、加工性も良好であった。さらに、未解撚も無く捲縮品位にも優れたものであった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果を図5に示すが、共重合PETは直径10〜20nmの島が数珠状に連なって存在しており、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。また、糸物性は表1に示すとおり優れたものであった。
【0067】
このポリマーアロイ捲縮糸に300T/mの甘撚りを施し、経糸および緯糸に用いて平織り物を作製し、実施例1と同様にアルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる織物を得た。このN6ナノポーラスファイバーからなる織物に染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。この織物からN6ナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm以下の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。N6ナノポーラスファイバーは表2に示すように優れた物性であった。
【0068】
実施例4
N6と共重合PETの溶融粘度比を0.9、またN6のアミン末端基量を6.5×10−3mol当量/gとして実施例1と同様に溶融混練、溶融紡糸、延伸仮撚り加工を行った。この時、N6のアミン末端基量が多いため、24時間の連続紡糸で糸切れが2回と、問題になるほどではないが実施例1に比べると紡糸性がやや悪化し、得られた高配向未延伸糸のU%も2%とやや糸斑が大きくなった。なお、高配向未延伸糸の強度は2.5cN/dtexであった。また、延伸仮撚り加工工程でやや解撚が不安定となり、実施例1に比べるとやや未解撚が散見された。得られたポリマーアロイ捲縮糸は、いずれも粗大な凝集ポリマー粒子を含まず、直径200nm以上の島ポリマーは島成分全体に対し面積比で0.1%以下、直径100nm以上の島ポリマーも面積比で1%以下であり、CR値は32%であった。ただし、実施例1に比べると紡糸の際の糸斑がやや大きかったため、U%が2.2%と捲縮糸の糸斑も大きくなった。
【0069】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、アルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる丸編みを得た。このN6ナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れたものであったが、やや染色斑が見られた。N6ナノポーラスファイバーは表2に示すように優れた物性であった。
【0070】
実施例5
共重合PETを5−ナトリウムスルホイソフタル酸を12.5mol%、イソフタル酸を26mol%共重合したPETとして、N6と共重合PETの重量比を50重量%/50重量%とし、混練温度を245℃、仮撚り加工でのヒーター13温度を150℃とし実施例3と同様にして溶融混練、溶融紡糸、延伸仮撚り加工を行った。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。得られた高配向未延伸糸は、強度2.5cN/dtex、U%1.0%と優れたものであった。また、延伸仮撚り加工性も良好であり、未解撚の無い品位に優れた捲縮糸が得られた。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果を図6に示すが、共重合PETは短軸10〜30nm、長軸50〜100nm程度の層状の島として存在しており、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。また、糸物性は表1に示すとおり優れたものであった。
【0071】
このポリマーアロイ捲縮糸を実施例3と同様に製織後、アルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる織物を得た。このN6ナノポーラスファイバーからなる織物に染色を施し発色性評価を行ったが、発色性に優れたものであった。また、この織物からN6ナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm以下の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。N6ナノポーラスファイバーは表2に示すように優れた物性であった。
【0072】
実施例6
共重合PETの代わりにポリアルキレンオキサイド誘導体の熱水可溶性ポリマーである第一工業製薬株式会社製“パオゲンPP−15”(融点55℃、溶融粘度10000poise、280℃、2432sec−1)を用い混練温度を245℃として実施例1と同様に溶融混練した。そして、単孔あたりの吐出量と口金孔数を変更、紡糸速度を4000m/分として、実施例1と同様に溶融紡糸を行い66dtex、68フィラメント、強度2.7cN/dtex、U%1.2%のポリマーアロイ繊維を得た。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。これに延伸倍率を1.2倍として実施例1と同様に延伸仮撚り加工を施したが、島ポリマーの融点が55℃であるため、仮撚り工程での解撚がやや不安定となり、得られた捲縮糸も実施例1に比べると未解撚が散見されるものであった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は1.3%であった。また、糸物性は表1に示すとおり優れたものであった。
【0073】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、100℃の熱水で2時間処理することにより熱水可溶性ポリマーの99%以上を除去し、N6ナノポーラスファイバーからなる丸編みを得た。また、このN6ナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れたものであった。
【0074】
この丸編みからN6ナノポーラスファイバーを引き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径30nm程度の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。
【0075】
実施例7
共重合PETの代わりに重量平均分子量12万、溶融粘度340poise(240℃、2432sec−1)、融点170℃のポリL乳酸(光学純度99.5%以上)を用い混練温度を220℃として実施例1と同様に溶融混練した。
【0076】
ポリ乳酸の重量平均分子量は以下のようにして求めた。試料のクロロホルム溶液にTHF(テトロヒドロフラン)を混合し測定溶液として、これをWaters社製ゲルパーミテーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。なお、実施例1で用いたN6の240℃、2432sec−1での溶融粘度は570poiseであった。
【0077】
そして、単孔あたりの吐出量と口金孔数を変更、紡糸速度を3500m/分として、実施例1と同様に溶融紡糸を行い105dtex、36フィラメント、強度3.1cN/dtex、伸度107%、U%1.2%のポリマーアロイ繊維を得た。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。これに延伸倍率を1.4倍として実施例1と同様に延伸仮撚り加工を施し、76dtex、36フィラメント、強度4.0cN/dtex、伸度29%、U%1.3%、CR35%の仮撚り加工糸を得た。この時、ポリL乳酸の融点を考慮し、ヒーター温度を160℃としたため、未解撚がほとんど無い品位にも優れた仮撚り加工糸が得られ、延伸仮撚りでの工程通過性も良好であった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の島の面積比は1%以下であった。また、糸物性は表1に示すとおり優れたものであった。
【0078】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、アルカリ処理することによりポリL乳酸の99%以上を除去し、N6ナノポーラスファイバーからなる丸編みを得た。また、このN6ナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れたものであった。
【0079】
この丸編みからN6ナノポーラスファイバーを引き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径30nm程度の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。また、得られたナノポーラスファイバーの強度は実施例1に比べても高いものであった。
【0080】
実施例8
実施例1で用いたN6と共重合PETを図17の装置を用いてそれぞれ270℃、290℃で溶融した後、紡糸パック3内に設置した静止混練器18(東レエンジニアリング社製“ハイミキサー”10段)により104万分割して混合した。そして、これを絶対濾過径20μmの金属不織布フィルターで濾過した後、実施例1と同様に紡糸、延伸仮撚り加工し、ポリマーアロイ捲縮糸を得た。この時、24時間の紡糸で糸切れはゼロであり、得られた高配向未延伸糸は、強度2.7cN/dtex、U%0.8%と優れたものであった。また、延伸仮撚り加工性も良好であり、未解撚の無い品位に優れた捲縮糸が得られた。
【0081】
得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果を図7に示すが、N6と共重合PETは層状の構造を示し、PET層部分の平均厚みは20nmであり、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーあるいは層厚み200nm以上の部分の共重合PET全体に対する面積比は0.1%以下、直径100nm以上あるいは層厚み100nm以上の部分の面積比も1%以下であった。また、層状構造領域の面積を見積もったところ、繊維横断面全体に対して98%であり、繊維断面のほとんどが層状構造領域を形成していた。また、このポリマーアロイ繊維の縦断面をTEMで観察したところ層が筋状になっていた(図9)。また、糸物性は表1に示すとおり優れたものであった。
【0082】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、アルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる丸編みを得た。また、このN6ナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れたものであった。N6ナノポーラスファイバーは表2に示すように優れた物性であった。
【0083】
この丸編みからN6ナノポーラスファイバーを引き出し、繊維横断面をTEMで観察した結果、10〜20nm程度の微細な濃淡パターンを示し、直径20nm以下の細孔が多数存在することが示唆された。また、直径が50nm以上の大きな細孔は皆無であった。
【0084】
実施例9
N6をN66として実施例8と同様に溶融紡糸、延伸仮撚り加工を行った。この時、紡糸温度は280℃、延伸仮撚り加工のヒーター温度は180℃、N66/熱水可溶性ポリマーのブレンド比は80重量%/20重量%とした。紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。得られた高配向未延伸糸は、強度3.0cN/dtex、U%0.8%と優れたものであった。また、延伸仮撚り加工性も良好であり、未解撚の無い品位に優れた捲縮糸が得られた。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。また、糸物性は表1に示すとおり優れたものであった。
【0085】
このポリマーアロイ捲縮糸に300T/mの甘撚りを施し、経糸および緯糸に用いて平織り物を作製し、実施例4と同様にアルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる織物を得た。このN66ナノポーラスファイバーからなる織物に染色を施し発色性評価を行ったが、発色性に優れたものであった。この織物からN66ナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm以下の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。N66ナノポーラスファイバーは表2に示すように優れた物性であった。
【0086】
比較例1
共重合PETをイソフタル酸を7mol%、ビスフェノールAエチレンオキサイド付加物を4mol%共重合したPETとして、N6と共重合PETの重量比を50重量%/50重量%、口金孔径を0.7mm、紡糸速度を1000m/分として実施例1と同様にして溶融混練、溶融紡糸を行った。問題となるほどではないが実施例1に比べると紡糸が不安定化し、24時間の連続紡糸の間の糸切れは2回であった。ここで得られた未延伸糸を予熱温度85℃、熱処理温度130℃、延伸倍率3倍で延伸し、強度3.0cN/dtex、U%2.3%のポリマーアロイ延伸糸を得た。これを用いて回転子15をスピナーピンとし、延伸倍率を1.01倍として仮撚り加工を行ったが、解撚がやや不安定となり、未解撚がやや多く品位に劣る物であった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察結果を図11に示すが、粗大な凝集ポリマー粒子はわずかであったが、島の平均直径が143nmと大きく、直径が200nm以上の島ポリマーの島成分全体に対する面積比は5%であった。糸物性は表1に示した。
【0087】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、アルカリ処理により共重合PETの99%以上を除去し、N6ナノポーラスファイバーからなる丸編みを得た。これの発色性評価を行ったが、実施例1に比べると発色性に劣るものであった。
【0088】
この丸編みからN6ナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果を図12に示すが、島ポリマーが抜けた跡(金属染料が凝集し黒く見える)が潰れ幅10〜30nm、長さ100nm程度の細孔となっており、直径が50〜100nmの大きな細孔も散見された。
【0089】
比較例2
混練方法を二軸押出混練機ではなく単純なチップブレンドとして図15の装置を用い、実施例1と同様に溶融紡糸を行った。紡糸中のポリマーの吐出が安定せず、紡糸性は劣悪であり紡糸中に糸切れが頻発し、安定して糸を巻き取ることができなかった。しかし、わずかに得た未延伸糸を用い、ヒーター温度を160℃として実施例1と同様に延伸仮撚り加工を行ったが、糸切れが頻発しただけでなく未解撚が多く品位に劣る物であった。また、これのCR値は15%と低い物であった。得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、ブレンド斑が大きく、粗大な凝集ポリマー粒子が散見され、直径が200nm以上の島ポリマーの島成分全体に対する面積比は10%であった。これを用いて実施例1同様にN6多孔性繊維を得たが、散乱光が多く白っぽいものであり、発色性に劣るものであった。
【0090】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、アルカリ処理により共重合PETの99%以上を除去すると、N6ナノポーラスファイバーからなる嵩高度18cm/gの繊維製品が得られた。
【0091】
比較例3
実施例2で用いたN6を50重量%と5−ナトリウムスルホイソフタル酸を2.5mol%、ビスフェノールAエチレンオキサイド付加物3.5mol%共重合したポリエチレンテレフタレートを50重量%を単純にチップブレンドした後、290℃で溶融し、孔径0.6mmの丸孔口金から吐出し、図15の装置を用い、紡糸速度1200m/分で溶融紡糸を行った。しかし、紡糸中のポリマーの吐出が安定せず、紡糸性は劣悪であり紡糸中に糸切れが頻発し、安定して糸を巻き取ることができなかった。わずかに得た未延伸糸を用いて120℃の熱プレートを用い延伸倍率2.7倍で延伸した。これにより、85dtex、24フィラメントのポリマーアロイ繊維を得た。これを用いて回転子15をスピナーピンとし、延伸倍率を1.01倍として仮撚り加工を行ったが、糸切れが頻発しただけでなく未解撚が多く品位に劣る物であった。また、これのCR値は16%と低い物であった。得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、ブレンド斑が大きく、粗大な凝集ポリマー粒子が散見され、直径が200nm以上の島ポリマーの島成分全体に対する面積比は10%であった。これを用いて比較例2同様にN6多孔性繊維を得たが、散乱光が多く白っぽいものであり、発色性に劣るものであった。
【0092】
比較例4
実施例2で用いたN6を70重量%、極限粘度0.60の5−ナトリウムスルホイソフタル酸を4.5mol%、分子量4000のポリエチレングリコールを8.5重量%共重合したポリエチレンテレフタレートを30重量%を単純にチップブレンドして280℃で溶融し、孔径0.6mmの丸孔口金から吐出し、図15の装置を用い、紡糸速度1000m/分で溶融紡糸を行った。しかし、紡糸中のポリマーの吐出が安定せず、紡糸性は劣悪であり紡糸中に糸切れが頻発し、安定して糸を巻き取ることができなかった。わずかに得た未延伸糸を用いて延伸倍率3.35倍、予熱温度90℃、熱処理温度130℃で延伸・熱処理した。これにより、85dtex、24フィラメントのポリマーアロイ繊維を得た。これを用いて比較例3と同様に仮撚り加工を行ったが、糸切れが頻発しただけでなく未解撚が多く品位に劣る物であった。また、これのCR値は16%と低い物であった。得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、ブレンド斑が大きく、粗大な凝集ポリマー粒子が散見され、直径が200nm以上の島ポリマーの島成分全体に対する面積比は8%であった。これを用いて比較例2同様にN6多孔性繊維を得たが、散乱光が多く白っぽいものであり、発色性に劣るものであった。
【0093】
比較例5
実施例2で用いたN6を77重量%、ホモPETを20重量%、相溶化剤としてブロックポリエーテルポリアミド(ポリエチレングリコール部分45重量%+ポリ−ε−カプロラクタム部分55重量%)を3重量%を単純にチップブレンドして図15の装置を用い、比較例1と同様に溶融紡糸を行った。しかし、紡糸中のポリマーの吐出が安定せず、紡糸性は劣悪であり紡糸中に糸切れが頻発し、安定して糸を巻き取ることができなかった。わずかに得た未延伸糸を用いて比較例1と同様に延伸・熱処理した。これにより、77dtex、24フィラメントのポリマーアロイ繊維を得た。これを用いて比較例3と同様に仮撚り加工を行ったが、糸切れが頻発しただけでなく未解撚が多く品位に劣る物であった。また、これのCR値は15%と低い物であった。得られたポリマーアロイ捲縮糸の横断面をTEMで観察したところ、ブレンド斑が大きく、粗大な凝集ポリマー粒子が散見され、直径が200nm以上の島ポリマーの島成分全体に対する面積比は14%であった。これを用いて比較例2同様にN6多孔性繊維を得たが、散乱光が多く白っぽいものであり、発色性に劣るものであった。
【0094】
比較例6
N6/共重合PETブレンド比を25重量%/75重量%として比較例3と同様に溶融紡糸を行った。しかし、紡糸中のポリマーの吐出が安定せず、紡糸性は劣悪であり紡糸中に糸切れが頻発し、安定して糸を巻き取ることができなかった。わずかに得た未延伸糸を用いて120℃の熱プレートを用い延伸倍率2.7倍で延伸した。これにより、85dtex、24フィラメントのポリマーアロイ繊維を得た。これの横断面をTEMで観察したところ、比較例3とは異なりアルカリ難溶解性のN6が島、アルカリ易溶解性の共重合PETが海を形成していた。また、ブレンド斑が大きく、粗大な凝集ポリマー粒子が散見され、直径が200nm以上の島ポリマーの島成分全体に対する面積比は10%であった。
【0095】
これを実施例1同様にアルカリ処理を施し、海共重合PETを除去したところ、N6極細繊維が強固に接着した繊維が得られた。しかし、この繊維は強度を測定することも困難であり、実用的な繊維として取り扱うことは困難であった。
【0096】
次に、ポリマーアロイ繊維をギ酸で処理し島N6を溶解除去したが、同時に共重合PETの脆化も著しく、ぼろぼろと崩れやすい物であり実用的な繊維として取り扱うことは困難であった。このようにこのポリマーアロイ繊維は実質的に多孔性繊維を得ることができず、本発明の目的を達成できない物であった。
【0097】
比較例7
エチレンナフタレートを全酸成分に対し10mol%共重合した共重合PET(極限粘度0.60)とポリエーテルイミド(ゼネラルエレクトリック社製“ウルテム”−1000)を30mφの二軸押出混練機を用い、320℃で混練した。この時、共重合PETを70重量%、ポリエーテルイミドを30重量%として混練を行った。
【0098】
ここで得られたポリマーアロイチップを十分乾燥後、口金孔数6ホール、単孔吐出量0.6g/分、紡糸温度315℃、紡糸速度500m/分で溶融紡糸した。海ポリマーである共重合PETの融点に比べ紡糸温度が高すぎたため紡糸が不安定化し、12時間の紡糸で10回の糸切れと紡糸性は不良であった。わずかに得られた未延伸糸を用いて、予熱ローラー温度90℃、ホットプレート温度120℃、延伸倍率3.0倍で延伸を行ったが、糸切れが頻発した。ここで得られた延伸糸の強度は1.3cN/dtexと低いものであった。これは、混練温度、紡糸温度がメジャー成分である共重合PETにとって高すぎたため熱分解によるポリマー劣化が発生したためと考えられる。また、これのU%も16%と極度に悪いものであった。
【0099】
この糸を用いてヒーター温度を200℃として比較例3と同様に仮撚り加工を行ったが、糸切れが頻発し実質的に仮撚り加工不能であった。そこで、ヒーター温度を120℃まで低温化することでわずかに仮撚り加工糸を得ることができたが、CR値は8%と極端に低い物しか得られなかった。
【0100】
このように、ポリマーに適した混練、紡糸条件を設定しないと高強度で糸斑の小さな糸が得られず、捲縮加工が不能となってしまった。以上のように、混練、紡糸条件をポリマー毎に最適化して初めて実用に耐えうる繊維が得られるのである。
【0101】
【表1】

Figure 2005023437
【0102】
【表2】
Figure 2005023437
【0103】
実施例10
融点255℃のホモPET(溶融粘度1110poise、280℃、2432sec−1)を80重量%、実施例6で用いた熱水可溶性ポリマーを20重量%として275℃で実施例1と同様に二軸押出混練機を用いて溶融混練を行った。これを溶融部2の温度を280℃、紡糸温度を280℃とし、単孔吐出量と口金孔数を変更して実施例1と同様に溶融紡糸を行ったところ、紡糸性は良好で24時間の連続紡糸の間の糸切れはゼロであった。
得られた高配向未延伸糸は、強度2.7cN/dtex、U%1.0%の優れたものであった。これにヒーター13温度を180℃として延伸仮撚り加工を行い、90dtex、36フラメント、CR値30%、強度3.3cN/dtex、伸度30%、U%1.5%、熱収縮率7%のポリマーアロイ繊維を得た。しかし、島ポリマーの融点が55℃であるため、仮撚り工程での解撚がやや不安定となり、得られた捲縮糸も実施例1に比べると問題となるほどではないが未解撚が散見されるものであった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察した結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった(図13)。また、糸物性は表3に示すとおり優れたものであった。
【0104】
このポリマーアロイ捲縮糸を実施例1と同様に丸編み後、100℃の熱水で2時間処理し熱水可溶性ポリマーの99%以上を除去し、PETナノポーラスファイバーからなる丸編みを得た。このPETナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。
【0105】
この丸編みからPETナノポーラスファイバーを抜き出し繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm程度の細孔となっており、直径が50nm以上の大きな細孔は皆無であった(図14)。
【0106】
実施例11
ホモPETをPEG1000を8重量%、イソフタル酸を7mol%共重合したPET(融点235℃、溶融粘度1000poise、280℃、2432sec−1)として255℃で実施例10と同様に溶融混練を行った。これを溶融部2の温度を255℃、紡糸温度を255℃として実施例10と同様に溶融紡糸を行ったところ、紡糸性は良好で24時間の連続紡糸の間の糸切れはゼロであった。得られた高配向未延伸糸は、強度2.7cN/dtex、U%1.0%の優れたものであった。これに実施例10と同様に延伸仮撚り加工を行い、CR値30%のポリマーアロイ捲縮糸を得たが、島ポリマーとして融点が55℃の低融点ポリマーを用いているため、仮撚り加工時にやや未解撚を生じやすいものであった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察した結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。糸物性は表3に示すとおり優れたものであった。
【0107】
このポリマーアロイ繊維を実施例10と同様に丸編み後、100℃の熱水で2時間処理し熱水可溶性ポリマーの99%以上を除去し、PETナノポーラスファイバーからなる丸編みを得た。このPETナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。また、ΔMR=2%とPETとしては優れた吸湿性を示した。
【0108】
この丸編みからPETナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm程度の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。
【0109】
実施例12
延伸仮撚り加工時のヒーター13温度を120℃として、実施例10と同様に延伸仮撚りを行ったところ、未解撚はゼロになったが、CR値が25%とやや低くなった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察した結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も0.1%以下であった。
【0110】
このポリマーアロイ繊維を実施例9と同様に丸編み後、100℃の熱水で2時間処理し熱水可溶性ポリマーの99%以上を除去し、PETナノポーラスファイバーからなる丸編みを得た。このPETナノポーラスファイバーからなる丸編みに染色を施し発色性評価を行ったが、発色性に優れ、染色斑も無かった。また、ΔMR=2%とPETとしては優れた吸湿性を示した。
【0111】
この丸編みからPETナノポーラスファイバーを抜き出し、繊維横断面をTEMで観察した結果、島ポリマーが抜けた跡は直径20nm程度の細孔となっており、直径が50nm以上の大きな細孔は皆無であった。
【0112】
【表3】
Figure 2005023437
【0113】
実施例13
実施例1および7で作製したポリマーアロイ捲縮糸を鞘糸として用いて、東レ(株)製ポリウレタン繊維糸である“ライクラ(登録商標)”をカバリングした。そして、このカバリング糸を用いてタイツ用の編み地を作製した後、実施例1と同様にアルカリ処理を行いN6ナノポーラスファイバーからなるタイツ用編み地を作製した。このタイツ用編み地の目付は100g/mでああり、N6ナノファイバーとポリウレタン繊維糸の重量比率はそれぞれ95%と5%であった。これにシリコーン処理、揉布処理を行った。そして、このタイツ用編み地を縫製し、タイツを作製した。このタイツは実施例1のものを使用した場合はΔMRが5.6%、実施例7のものを使用した場合はΔMRが5.1%と吸湿性に富み、また繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示し、非常に着用快適性の高いものであった。
【0114】
このタイツを1日着用後、家庭洗濯を行い、さらに着用するというサイクルで、10サイクルの着用耐久試験を行ったところ、実施例1のものを使用した場合はつま先部に若干白化が見られたが、実施例7のものを使用した場合は白化は見られなかった。これは、実施例7のナノポーラスファイバーの方が強度が高いためと考えられる。
【0115】
実施例14
単孔吐出量、孔数を変更し、実施例1と同様に溶融紡糸を行い、400dtex、96フィラメントのN6/共重合PETポリマーアロイ繊維を得た。このポリマーアロイ繊維の強度は2.5cN/dtex、伸度は100%、U%は1.2%であった。これに実施例1と同様に延伸仮撚りを施し、333dtex、96フィラメントの仮撚り加工糸を得た。得られた仮撚り加工糸は、強度3.0cN/dtex、伸度30%であった。得られたポリマーアロイ捲縮糸の繊維横断面をTEMで観察した結果、粗大な凝集ポリマー粒子を含まず、直径が200nm以上の島ポリマーの島成分全体に対する面積比は0.1%以下、直径100nm以上の面積比も1%以下であった。また、島の平均直径は27nmであった。
【0116】
この仮撚り加工糸に300ターン/mの甘撚りを施し、S撚り/Z撚り双糸で経糸および緯糸に用いて、2/2のツイル織物を作製した。そして、得られたツイル織物に実施例9と同様にアルカリ処理を施し、N6ナノポーラスファイバーからなる目付150g/mのカーテン用生地を得た。
【0117】
また、これの吸湿率(ΔMR)は5.5%と十分な吸湿性を示した。そして、この生地を用いてカーテンを作製し6畳間に吊したところ、爽やかな室内環境とすることができ、さらに結露も抑制できるものであった。このカーテンを家庭用洗濯機で洗濯ネットに入れて洗濯・脱水したが形くずれは発生せず、良好な寸法安定性を示した。
【0118】
【発明の効果】
本発明の粗大な凝集ポリマー粒子を含まないポリマーアロイ捲縮糸により、発色性が良好で、吸着特性に優れたナノポーラスファイバーからなる嵩高布帛を容易に得ることができる。
【図面の簡単な説明】
【図1】実施例1のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図2】実施例1のポリマーアロイ捲縮糸の繊維縦断面を示すTEM写真である。
【図3】実施例1のナノポーラスファイバーの繊維横断面を示すTEM写真である。
【図4】実施例1のポリマーアロイペレットの断面を示すTEM写真である。
【図5】実施例3のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図6】実施例5のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図7】実施例8のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図8】層状構造ポリマーアロイ繊維の繊維横断面を示すTEM写真である。
【図9】実施例8のポリマーアロイ捲縮糸の繊維縦断面を示すTEM写真である。
【図10】海海構造の繊維横断面を示すTEM写真である。
【図11】比較例1のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図12】比較例1の多孔性繊維の繊維横断面を示すTEM写真である。
【図13】実施例10のポリマーアロイ捲縮糸の繊維横断面を示すTEM写真である。
【図14】実施例10のナノポーラスファイバーの繊維横断面を示すTEM写真である。
【図15】紡糸装置を示す図である。
【図16】仮撚り装置を示す図である。
【図17】紡糸装置を示す図である。
【符号の説明】
1:ホッパー
2:溶融部
3:紡糸パック
4:口金
5:チムニー
6:糸条
7:集束給油ガイド
8:第1引き取りローラー
9:第2引き取りローラー
10:巻き取り糸
11:未延伸糸
12:フィードローラー
13:ヒーター
14:冷却板
15:回転子
16:デリバリーローラー
17:仮撚加工糸
18:静止混練器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer alloy crimped yarn that contains almost no coarse polymer particles in which easily soluble polymers are aggregated, has excellent dispersion uniformity, is bulky, and has good crimp quality.
[0002]
[Prior art]
Polyamide fibers such as nylon 6 (N6) and nylon 66 (N66), and polyester fibers such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) have excellent mechanical properties and dimensional stability, so they are used only for clothing. It is widely used for interiors, vehicle interiors, and industrial applications. In addition, polyolefin fibers represented by polyethylene (PE), polypropylene (PP) and the like are widely used for industrial applications by taking advantage of lightness.
[0003]
However, since the performance of a single polymer fiber is limited, conventionally, polymer modification such as copolymerization and polymer blending, and composite functions by composite spinning and mixed fiber spinning have been studied. In particular, polymer blends do not require a new polymer design and can be produced using a single-component spinning machine, and thus have been actively studied.
[0004]
By the way, for the purpose of imparting lightness and water absorption to the fibers, studies have been made on hollow fibers and porous fibers. The hollow fiber has been developed with the aim of high hollowness, but there has been a problem that the hollow is crushed by false twisting or the like. For this reason, a multi-island hollow fiber using a composite fiber with a water-soluble polymer has recently been developed, but since the hollow diameter is 1 μm or more, scattering of visible light at the polymer / air interface in the hollow portion increases. There has been a problem that the color developability of the fiber is significantly lowered.
[0005]
On the other hand, porous fibers having many sub-μm level pores have been studied, but at this time, polymer blend spinning has been used instead of composite spinning. For example, it is known that a porous nylon fiber can be obtained by blending nylon with hydrophilic group copolymerized PET to form a fiber and then eluting the copolymerized PET from this (Patent Document 1). As a result, surface irregularities and pores at the sub-μm level are formed, so that a pearly luster can be obtained. On the contrary, there is a problem that the color developability is remarkably lowered. This is because the pore size is the wavelength level of visible light, and there are many pores, so that the scattering of visible light is larger than that of multi-island hollow fibers. In addition, there is an example (Patent Document 2) in which the pore size is smaller than visible light. However, in reality, coarse aggregated particles of PET are present in the blend fiber, and the aggregated particles are eluted and sub-μm to Since it is a 1 μm level coarse hole, there was a problem of color development deterioration as in Patent Document 1. In fact, the 7th line from the top left and right of the second page of the document “Polyester component is present in polyamide as a streak having a thickness of about 0.01 to 0.1 μm, and a cavity of about that size is still present after elution. Is present ”, which implies the presence of PET agglomerated particles. In addition to this, there are examples of porous fibers using nylon / PET blend fibers (Patent Documents 3 and 4), but the dispersion size of PET in nylon is large, and the distribution is close to 0.1 to 1 μm. Therefore, the problem of color development deterioration due to coarse pores could not be solved.
[0006]
As in the above known technology, in a polymer blend fiber having a sea-island structure, if the island polymer is to be microdispersed to sub-μm or less, the island polymer is inherently incompatible, and therefore the surface free energy is in accordance with the basic laws of thermodynamics. Therefore, it becomes easy to form coarse aggregated polymer particles. Thereby, the problem that the color developability deteriorates when the porous fiber is formed is inevitable. In addition, those containing such coarse agglomerated polymer particles are difficult to be drafted stably in the spinning process, and are likely to cause yarn spots. It was difficult to decrease or to obtain a high crimped yarn.
[0007]
In particular, the island polymer having a melting point or softening point of 100 ° C. or less, such as an alkylene glycol derivative, becomes coarse aggregated particles. There is also a problem in that fusing occurs, resulting in troubles such as yarn breakage, fluff, and deterioration in quality. In fact, a heater temperature of about 160-220 ° C is often used for false twisting, which is a type of crimping, and a heat-set temperature of about 160-180 ° C is often used for fabric processing. In such a case, coarse aggregated particles are a fatal defect.
[0008]
By the way, the blended polymer usually has a streak shape by making it a very limited special polymer alloy fiber that blends a large amount of polyetherimide (PEI) with a copolymerized polyester obtained by copolymerizing a large amount of ethylene naphthalate with PET. In contrast to the dispersion, in this polymer alloy fiber, PEI can be dispersed in the copolymer polyester on the order of several tens of nanometers by adopting a very exceptional polymer alloy form in which the blend polymer (PEI) is dispersed in a granular form. It was known (Patent Document 5). However, in this publication, the kneading temperature and the spinning temperature are 320 ° C. and 315 ° C., respectively, which are too high for the copolyester according to the melting temperature of the PEI, and the thermal degradation of the copolyester is remarkable, and the yarn unevenness is extremely Only large and low strength fibers were obtained. For this reason, even if this was subjected to crimping such as false twisting, yarn breakage and fluff frequently occurred, and the crimping could not be substantially performed. Further, even if the crimping process could be performed slightly, the yarns of the polymer alloy fiber as the original yarn were large, so that untwisting occurred frequently, and satisfactory crimping performance could not be obtained.
[0009]
As described above, there has been a demand for a polymer alloy crimped yarn which does not deteriorate color developability even as a superporous fiber, has almost no coarse polymer aggregated particles, has excellent dispersion uniformity, is bulky and has a good crimp quality.
[0010]
[Patent Document 1]
JP-A-2-175965 (1-5 pages)
[0011]
[Patent Document 2]
Japanese Patent Laid-Open No. 56-107069 (pages 1 to 3)
[0012]
[Patent Document 3]
JP-A-8-158251 (pages 1-7)
[0013]
[Patent Document 4]
JP-A-8-296123 (pages 1-7)
[0014]
[Patent Document 5]
JP-A-8-113829 (pages 7 to 10)
[0015]
[Problems to be solved by the invention]
Unlike the conventional polymer blend fiber, the present invention provides a polymer alloy crimped yarn that contains almost no coarse polymer aggregated particles, has excellent dispersion uniformity, is bulky, and has a good crimp quality.
[0016]
[Means for Solving the Problems]
The purpose is to form a sea-island structure where the poorly soluble polymer is the sea and the easily soluble polymer is the island, and the area ratio of the island polymer having a diameter of 200 nm or more occupying the entire island component is 3% or less, and the CR value is 20% or more. The polymer alloy crimped yarn or two or more polymers having different solubility, the average thickness of one layer of the easily soluble polymer is 0.1 to 50 nm, and the layered structure region is 50% or more per cross-fiber area And a polymer alloy crimped yarn having a CR value of 20% or more.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The polymer referred to in the present invention is a thermosetting polymer such as polyester or polyamide, a thermoplastic polymer typified by polyolefin or a phenol resin, a poorly thermoplastic polymer typified by polyvinyl alcohol or polyacrylonitrile, or a biopolymer. However, a thermoplastic polymer is preferable from the viewpoint of moldability.
[0018]
Among them, many polycondensation polymers represented by polyester and polyamide are more preferable because they have a high melting point. The melting point of the polymer is preferably 165 ° C. or higher because the heat resistance is good. For example, polylactic acid (PLA) is 170 ° C, PET is 255 ° C, and N6 is 220 ° C. The polymer may contain additives such as particles, flame retardant, antistatic agent and the like.
[0019]
In addition, other components may be copolymerized as long as the properties of the polymer are not impaired. However, as a hardly soluble polymer, the copolymerization rate is 5 mol% or 5 in order to maintain the inherent heat resistance and mechanical properties of the polymer. It is preferable that it is below wt%. The molecular weight of the polymer is preferably 10,000 to 500,000 in terms of number average molecular weight from the viewpoint of fiber forming ability and mechanical properties. In particular, when used for clothing, interiors, vehicle interiors, etc., as the hardly soluble polymer, the copolymerization rate is 5 mol% or 5 wt% or less relative viscosity 2 or more N6, N66, intrinsic viscosity 0.50 or more PET, Polytrimethylene terephthalate (PTT), PBT, and PLA are more preferable. However, in consideration of removing the easily soluble polymer later, the number average molecular weight may be 3000 or more as long as the object of the present application is achieved.
[0020]
In the present invention, there are two modes of polymer alloy crimped yarns. The first mode is a sea-island structure polymer alloy in which the hardly soluble polymer is the sea and the easily soluble polymer is the island. Thereby, a porous fiber can be easily obtained by removing an easily soluble polymer with a solvent. Here, the sea-island structure means a structure in which two or more kinds of polymers adopt a phase separation structure in which a major component or a low viscosity component is a matrix and a minor component or a high viscosity component is a domain. An example thereof is shown in FIG. 1 (fiber cross-sectional TEM photograph), where the dark portion is a hardly soluble polymer and the light portion is an easily soluble polymer. In addition, in the polymer alloy system having relatively good compatibility, the islands may be made ultrafine to about 10 nm, and a bead-like island shape in which these are partly assembled may be employed (FIG. 5). The polymer type in the polymer alloy fiber may be two or more with different solubility, and the number of the hardly soluble polymer and the easily soluble polymer can be increased as necessary, and a compatibilizer can be used in combination. Of course it is possible.
[0021]
Furthermore, it is important that the abundance ratio of islands having a diameter of 200 nm or more, that is, coarse aggregated polymer particles is 3% or less in terms of the area ratio with respect to the entire island component. Since the wavelength of visible light is about 400 to 800 nm, since there are almost no islands having a diameter of 200 nm or more, it is possible to remarkably reduce a decrease in color development when a porous fiber is used. Here, since the island may have a slightly distorted elliptical shape and is not necessarily a perfect circle, the diameter is calculated from the island area in terms of a circle. Moreover, the area with respect to the whole island is a total area of all the island polymers existing in the fiber cross section, and can be estimated from the fiber cross section observation and the polymer blend ratio. The area ratio of island polymers having a diameter of 200 nm or more is preferably 1% or less. More preferably, the area ratio of island polymers having a diameter of 100 nm or more is 3% or less, and more preferably, the area ratio of island polymers having a diameter of 100 nm or more is 1% or less.
[0022]
Furthermore, it is important that the CR value, which is an index of crimp characteristics, is 20% or more. Here, the CR value is defined as follows. That is, the fiber yarn is scraped and treated with water at 60 ° C. for nylon when the hardly soluble polymer is nylon and 90 ° C. for polyester for 20 minutes under no load, and then air-dried for 24 hours. The initial load of 0.0018 cN / dtex (2 mg / denier) and the extension load of 0.088 cN / dtex (0.1 g / denier) were applied to measure the skein length after 2 minutes (L1 (mm)), and then stretched The skein length 2 minutes after the load is removed is measured (L2 (mm)). The calculation is performed according to the following formula.
[0023]
CR value (%) = [(L1-L2) / L1] × 100
If the CR value of the polymer alloy crimped yarn is 20% or more as in the present invention, the textile product obtained by removing the easily soluble polymer from the polymer alloy crimped yarn by weaving or knitting is used as wool or cotton. It becomes bulky like natural fiber. The CR value is preferably 30% or more, more preferably 40% or more.
[0024]
Moreover, it is preferable for the average diameter of the islands to be 1 to 100 nm because nanoporous fibers having a smaller pore size than conventional porous fibers can be obtained by removing the island polymer. When the pore size reaches the nano level, not only visible light scattering hardly occurs, but not only the color developability is remarkably improved, but also harmful ultraviolet rays are greatly scattered, and a new function of UV cut is exhibited. Furthermore, since the surface area of the fiber is remarkably increased, there is a great advantage that excellent hygroscopicity and adsorptivity that cannot be expected with conventional porous fibers are exhibited. The average diameter of the island is more preferably 1 to 50 nm.
[0025]
As described above, the island polymer is uniformly ultrafinely dispersed, so that even if a polymer having a low melting point or a low softening point is used as the island polymer, crimping processing, yarn processing such as twisted yarn, and fabric processing are performed. There is an advantage that the process passability can be improved and the quality of the obtained product can be improved.
[0026]
The second aspect of the present invention comprises two or more polymers having different solubility, the average thickness of one layer is 0.1 to 50 nm, and the layered structure region has 50% or more per fiber cross-sectional area, A polymer alloy crimped yarn having a CR value of 20% or more. Here, the layered structure indicates the following state when the fiber cross section is observed with a transmission electron microscope (TEM). That is, the blended dissimilar polymers are in a state of forming layers and intermingling with each other (FIG. 7, fiber cross-sectional TEM photograph). Here, in the TEM sample, the dark portion is a hardly soluble polymer, and the light portion is an easily soluble polymer. It is also clearly distinguished from a so-called sea-sea structure (FIG. 10, fiber cross-sectional TEM photograph) in that a layer is formed. The sea-sea structure is a very unstable structure that appears at a blend ratio in the vicinity of the sea / island reversal in the polymer blend, and naturally it is extremely difficult to perform stable spinning in this region.
[0027]
Here, it is important that the proportion of the layered structure region in the fiber cross section is 50% or more. This facilitates the formation of nanoporous fibers as described below, and can provide fibers with excellent moisture absorption and adsorption properties that have long been a problem for synthetic fibers, and can significantly improve mechanical properties and heat resistance. That's it. The proportion of the layered structure in the fiber cross section is preferably 95% or more. In addition, the ratio of the layered structure area | region occupied to a fiber cross section here can be calculated | required from the TEM photograph of a fiber cross section. For example, as shown in FIG. 8, the portion surrounded by a dotted line is a layered structure region, and the other portion (fiber surface layer portion) has a sea-island structure. In this case, the ratio of the layered structure in the fiber cross section can be calculated from the fiber cross-sectional area and the area of the layered structure portion.
[0028]
Here, if the average thickness of one layer of the easily soluble polymer in the fiber cross-sectional direction is 1 to 50 nm, the different polymers are sufficiently finely dispersed, which is preferable because the performance of the blend polymer can be sufficiently exhibited. In addition, this layer extends as a streak in the fiber longitudinal direction (FIG. 9, fiber longitudinal section TEM photograph).
[0029]
In the polymer alloy crimped yarn of the present invention, it is preferable that the easily soluble polymer is an alkali easily soluble polymer because a porous step by island polymer removal can be utilized in an alkali treatment step which is a post-processing step of a normal fiber. For example, when an organic solvent-soluble polymer such as polystyrene is used as the easily soluble polymer, it is a great merit in view of the necessity of explosion-proof equipment. The easily soluble polymer is more preferably a hot water-soluble polymer because the island polymer can be removed in the fiber scouring step. Examples of the alkali-soluble polymer include polyesters and polycarbonates, and examples of the hot water-soluble polymer include polyesters obtained by copolymerizing a large amount of hydrophilic groups, alkylene oxides and polyvinyl alcohols, and modified products thereof. Can do.
[0030]
The blend ratio of the hardly soluble polymer and the easily soluble polymer is not particularly limited. However, when the nanoporous fiber is obtained from the polymer alloy crimped yarn of the present invention, the blend ratio of the hardly soluble polymer is 40 to 95% by weight. It is preferable. The blend ratio of the hardly soluble polymer is more preferably 70 to 90% by weight.
[0031]
Moreover, since the polymer alloy crimped yarn of the present invention does not contain coarse agglomerated polymer particles, the spinning process is more stable than that of known techniques (Patent Documents 1 to 4), and fibers having small yarn spots are easily obtained. Yarn spots can be evaluated by Wooster spots (U%). If the U% of the polymer alloy crimped yarn is 0.1 to 5%, the subsequent crimping process such as false twisting is performed. Thus, it is possible to obtain a crimped yarn having a high bulkiness and a good crimp quality, which is the object of the present invention, and the U% of the obtained crimped yarn is 0.1%. It can be set to ˜5% and is preferable. In addition, when a textile product such as apparel, interior, or vehicle interior is used, an article having small dyeing spots and high quality is obtained. In particular, in the case of false twisting, since the untwisting process is stabilized by using a raw yarn having a small U%, a high-quality false twisted yarn that is highly crimped and has no untwisted yarn can be obtained. The U% of the crimped yarn and the crimped raw yarn is more preferably 0.1 to 2%, and still more preferably 0.1 to 1.5%. In particular, in the case of producing a tone for apparel use, it is also possible to use a thick yarn with U% of 3 to 10%.
[0032]
The strength of the polymer alloy crimped yarn of the present invention is preferably 2 cN / dtex or more, which can improve process passability in twisted yarns, weaving / knitting processes, and the like. The strength is preferably 3 cN / dtex or more. Further, if the elongation is 15 to 70%, it is also preferable because the process passability in the twisted yarn, weaving / knitting process and the like can be improved.
[0033]
The polymer alloy crimped yarn of the present invention can adopt various fiber cross-sectional shapes such as a trilobal cross section, a cross-shaped cross section, and a hollow cross section. Moreover, various fiber product forms, such as a long fiber, a short fiber, a nonwoven fabric, and a thermoforming body, can be taken. And not only for comfortable clothing such as shirts, blousons, pants and coats, but also for clothing materials such as cups and pads, interiors such as curtains, carpets, mats and furniture, industrial materials such as filters, and vehicle interiors Can also be suitably used.
[0034]
Although the manufacturing method of the polymer alloy crimped yarn of the present invention is not particularly limited, for example, the following method can be employed.
[0035]
That is, the hardly soluble polymer and the easily soluble polymer are melt-kneaded to obtain a polymer alloy composed of the hardly soluble polymer and / or the hardly soluble polymer in which the easily soluble polymer is finely dispersed. And after melt spinning this, the polymer alloy crimped yarn of this invention can be obtained by performing crimping processes, such as false twist. Here, the melt-kneading method is important, and the formation of coarse aggregated polymer particles can be greatly suppressed by forcibly kneading with an extrusion kneader or a static kneader. In any of the known techniques (Patent Documents 1 to 4), since chip blend (dry blend) is used, the blend spots are large and aggregation of island polymers cannot be prevented. From the viewpoint of forcibly kneading, it is preferable to use a twin-screw extrusion kneader or a static kneader having a division number of 1 million or more as the kneading apparatus. When using a twin screw extrusion kneader, the kneading section length of the kneading disk is 20 to 40% of the effective screw length, so that both high kneading and suppression of thermal degradation of the polymer due to shortened residence time can be achieved. . As a method for supplying the polymer to be kneaded, fluctuations in the blend ratio over time can be suppressed by separately measuring and supplying polyamide and polyester. At this time, you may supply separately as a pellet, or you may supply separately in a molten state. Two types of polymers may be supplied to the root of the extrusion kneader, or one of them may be a side feed that is supplied from the middle of the extrusion kneader.
[0036]
On the other hand, from the viewpoint of suppressing the reaggregation of the island polymer, the residence time from the formation of the polymer alloy, melting to the discharge from the spinneret is also important, and the time from the melted portion of the polymer alloy to the discharge from the spinneret is 30 minutes. It is preferable to be within. In particular, in the case of an alloy of nylon and hydrophilic group copolymerized PET, care must be taken because the hydrophilic group copolymerized PET easily reaggregates.
[0037]
In addition, the combination of polymers is also important for miniaturization of the island diameter. By increasing the affinity between the hardly soluble polymer and the easily soluble polymer, the easily soluble polymer that becomes the island can be easily ultra-dispersed. For example, when using nylon as the hardly soluble polymer and PET as the easily soluble polymer, using a hydrophilic group copolymerized PET obtained by copolymerizing 5-sodium sulfoisophthalic acid (SSIA), which is a hydrophilic component, with PET, Affinity with nylon can be improved. In particular, it is preferable to use hydrophilized PET having an SSIA copolymerization ratio of 4 mol% or more. Also, the melt viscosity ratio between the two is important. As the viscosity ratio of the sea polymer / island polymer increases, the island polymer is subject to a greater shearing force, and the islands are more easily dispersed. However, when the viscosity ratio becomes excessively large, kneading spots and spinnability are deteriorated, so the viscosity ratio is preferably about 0.1 to 2.
[0038]
By the way, it is known that polyamide is inferior in heat resistance compared to polyester and tends to gel due to thermal deterioration. Furthermore, it became clear from examining the present invention that the polymer alloy of polyamide and polyester tends to gel much more easily than the case of polyamide alone because the molecular chain end of the polyester works catalytically. I came. When polyamide gels, not only thread breakage and thread unevenness occur, but the process pressure such as polymer filtration pressure and back pressure of the base rises, the upper limit of the discharge amount becomes lower, and the pack life becomes shorter. Not only did the productivity per unit time drop significantly, but it caused major problems such as frequent thread breaks. For this reason, when obtaining a polyamide / polyester alloy fiber, it was important to suppress gelation. For this reason, the amine terminal of the polyamide used for the polymer alloy is blocked with acetic acid or the like, and the amine terminal group amount is 5.5 × 10 5. -3 It is preferable to set it as mol equivalent / g or less.
[0039]
Due to the characteristics of the spinning method as described above, the formation of coarse aggregated polymer particles is suppressed, so that the viscoelastic balance of the polymer alloy is less likely to be disrupted compared to known techniques (Patent Documents 1 to 4), and the spinning discharge is stable. There is also an advantage that the stringiness and the unevenness can be remarkably improved. Further, when a diameter larger than usual is used as the diameter of the die hole, the shear stress to the polymer alloy at the die hole can be reduced and the viscoelastic balance can be maintained, so that the spinning stability is improved. Specifically, it is preferable to use a die capable of a discharge linear velocity of 15 m / min or less at the polymer alloy die. In addition, the cooling of the yarn is also important. By setting the distance from the base to the active cooling start position to 1 to 15 cm, the polymer alloy that tends to destabilize the elongational flow can be quickly solidified to spin the yarn. It can be stabilized.
[0040]
Further, from the viewpoint of miniaturizing the island polymer, the spinning draft is preferably 100 or more. Furthermore, in order to suppress the time-dependent change in the dimensions and physical properties of the undrawn yarn, it is preferable to develop the fiber structure with a spinning speed of 2500 m / min or more.
[0041]
The processing conditions in the crimping process are not particularly limited, and various methods such as false twisting, rubbing, kennel, stuffer, air jet, molding, etc. can be used for crimping. Among these, false twisting is preferred because of its good crimp characteristics, threading operability, and processing stability. Examples of the false twist rotating device include a spindle type, a friction type, and an air jet type. A triaxial circumscribed friction false twist device and a belt nip false twist device are particularly preferable from the viewpoints of threading operability and processing stability. . The false-twisting heater temperature varies depending on the polymer composition of the false-twisting polymer alloy yarn, but it is the highest temperature that does not cause crimp anomalies such as squeezing and untwisting due to fusion between single yarns. It is preferable to set. As a result, a polymer alloy crimped yarn having good heat setting property and strong crimp can be obtained. For example, when a polymer alloy yarn using nylon as the hardly soluble polymer and PET as the easily soluble polymer is used as the false twisted raw yarn, the heater temperature range in the false twist process is preferably 130 to 200 ° C. When the temperature is 130 ° C or higher, the crimp durability is improved and the crimp is sufficiently developed. When the temperature is 200 ° C or lower, the strength and elongation of the polymer alloy crimped yarn are prevented from being lowered, thereby preventing fusion and preventing untwisting. It provides a yarn that is easy to handle while suppressing residual twisting torque. Further, if necessary, further heat setting may be performed after the false twisting process to reduce residual torque, improve thermal dimensional stability, perform an entanglement process, or perform additional twisting.
[0042]
Although the polymer alloy crimped yarn of the present invention can be used as it is, a nanoporous fiber having an infinite number of nano-level pores can be obtained by removing the easily soluble polymer with a solvent. Here, the nano-level pores are those having a pore diameter of 50 nm or less that can be observed by TEM. An example of the nanoporous fiber produced from the polymer alloy crimped yarn of the present invention is shown in FIG. 3 (fiber cross-sectional TEM photograph), where the dark portion indicates the high density region and the light portion indicates the low density region. Here, it is considered that the light portion corresponds to the pore. As can be seen from this, when the polymer alloy crimped yarn of the present invention is used, a nanoporous fiber having no coarse pores and excellent color development can be obtained.
[0043]
This nanoporous fiber has the merit that the specific surface area is increased by innumerable nano-level pores, and excellent moisture absorption / adsorption is exhibited. In fact, in N6 nanoporous fiber, ΔMR, which is an index of hygroscopicity, reaches 5 to 6%, and exhibits excellent hygroscopicity over cotton (ΔMR = 4%). Moreover, this nanoporous fiber is excellent not only in water vapor but also in the adsorption properties of various substances, and is useful as a deodorizing fiber. Furthermore, it may not only exhibit water absorption similar to cotton, but may also exhibit reversible water swellability in the longitudinal direction of the yarn like wool, and expresses the function of natural fibers while being a synthetic fiber. Is also possible.
[0044]
Moreover, since the nanoporous fiber obtained from the polymer alloy crimped yarn of the present invention can have an average pore diameter of 100 nm or less and a coarse pore area ratio of 3% or less, there is no deterioration in color development as compared with conventional porous fibers, A high-quality dyed fabric can be provided. The coarse pore area ratio is an area ratio of pores having a pore diameter of 50 nm or more to the whole pores. It is particularly preferable that the nanoporous fiber has an average pore diameter of 50 nm or less and a coarse pore area ratio of 0.1%. In addition, the pore mentioned here shall exclude the void by the inorganic particle contained in a fiber.
[0045]
As described above, since the nanoporous fiber obtained from the polymer alloy crimped yarn of the present invention has excellent properties not found in conventional synthetic fibers, it is not only used for comfortable clothing such as shirts, blousons, pants, and coats, It can be suitably used for apparel materials such as pads, interior materials such as curtains, carpets, mats and furniture, industrial materials such as filters, and vehicle interiors. Furthermore, it can be used as a state-of-the-art material such as IT and medical such as fuel cell electrodes and blood cell separation by adsorption of functional molecules.
[0046]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.
[0047]
A. Polymer melt viscosity
The polymer melt viscosity was measured with a Capillograph 1B manufactured by Toyo Seiki. The polymer storage time from sample introduction to measurement start was 10 minutes.
[0048]
B. Relative viscosity of nylon
A 0.01 g / ml solution was prepared using 98% sulfuric acid and measured at 25 ° C.
[0049]
C. Intrinsic viscosity of polyester [η]
Measured in orthochlorophenol at 25 ° C.
[0050]
D. Melting point
Using Perkin Elmaer DSC-7, the peak top temperature indicating the melting of the polymer at 2nd run was taken as the melting point of the polymer. At this time, the rate of temperature increase was 16 ° C./min, and the sample amount was 10 mg.
[0051]
E. Amine end group content of polyamide
1 g of the polymer was dissolved in a phenol-ethanol mixed solvent, and the amount of amine end groups was determined by titration based on the weight of the polyamide.
[0052]
F. Mechanical properties
At room temperature (25 ° C.), an initial sample length = 200 mm, a pulling speed = 200 mm / min, and a load-elongation curve was obtained under the conditions shown in JIS L1013. Next, the load value at break was divided by the initial fineness, which was used as the strength, and the elongation at break was divided by the initial sample length to obtain a strong elongation curve.
[0053]
G. Worcester spots of polymer alloy crimped yarn and crimped raw yarn (U%)
Measurement was performed in the normal mode at a yarn feeding speed of 200 m / min using a USTER TESTER 4 manufactured by Zerbegger Worcester.
[0054]
H. Fiber cross-sectional observation by TEM
An ultrathin section was cut in the cross-sectional direction of the fiber, and the fiber cross-section was observed with a transmission electron microscope (TEM). Moreover, the metal dyeing | staining was given as needed.
[0055]
TEM equipment: Hitachi H-7100FA type
I. Average diameter of the island
The average diameter of the island is obtained as follows. That is, the diameter of the island polymer in terms of a circle was determined from a fiber cross-sectional photograph by TEM using image processing software (WINROOF). The average diameter was determined by their simple number average value. At this time, the number of island domains used for averaging was measured for 300 or more island domains randomly extracted in the same cross section. However, since the sample for TEM observation is an ultrathin section, the sample is easily broken or perforated. For this reason, the analysis of the island diameter was carried out carefully with reference to the situation of the sample. The analysis of the pore diameter of the nanoporous fiber was also based on this. In the case of the layered structure alloy, the average thickness of one layer was determined by measuring the thickness of the layer portion at 300 or more locations and using the average value.
[0056]
J. et al. CR value of polymer alloy crimped yarn
The crimped yarn is wound about 10 times of about 50 cm, left standing for a whole day and night, and treated with water at 60 ° C. for nylon and 90 ° C. for 20 minutes when the hardly soluble polymer is in a substantially unloaded state for 20 minutes. After that, we prepared an air-dried one day and night. Next, multiply the initial load of 0.0018 cN / dtex (2 mg / denier) and the extension load of 0.088 cN / dtex (0.1 g / denier) in water and measure the skein length after 2 minutes (L1 (mm)) Thereafter, the skein length was measured 2 minutes after removing the extension load (L2 (mm)). And CR value was computed by the following formula | equation.
[0057]
CR value (%) = [(L1-L2) / L1] × 100
K. Bulkiness of textile products
6.86 × 102 Pa (7 gf / cm) from the top of textile products such as woven fabric and knitted fabric 2 ), The thickness after 10 seconds was measured (t (cm)), and the mass per unit area of the fabric was measured separately (w (g / cm) 2 )). The calculation was performed according to the following formula.
[0058]
Bulk height (cm 3 / G) = t / w
L. Color development evaluation
The obtained sample was dye | stained according to the conventional method, and the coloring property was compared with the comparative sample dye | stained on the same conditions. As a comparative sample, a polymer alloy fiber sea polymer made alone was used. In the visual judgment, a sample having a color developability almost equal to that of the comparison was determined to be acceptable (◯), and an inferior one was rejected (Δ, ×).
[0059]
M.M. Hygroscopicity (ΔMR)
The sample is weighed in a weighing bottle of about 1 to 2 g, dried at 110 ° C. for 2 hours, dried, and weighed (W0). (W65). And this is hold | maintained at 30 degreeC and relative humidity 90% for 24 hours, Then, a weight is measured (W90). The calculation is performed according to the following formula.
[0060]
MR65 = [(W65−W0) / W0] × 100% (1)
MR90 = [(W90−W0) / W0] × 100% (2)
ΔMR = MR90−MR65 (3)
Example 1
Relative viscosity 2.15, melt viscosity 274 poise (280 ° C., shear rate 2432 sec -1 ), Melting point 220 ° C., amine end group amount 5.0 × 10 -3 Mol equivalent / g N6 (80 wt%), intrinsic viscosity 0.60, melt viscosity 1400 poise (280 ° C., shear rate 2432 sec) -1 ), 5 mol% 5-sodium sulfoisophthalic acid copolymerized 0.05 wt% titanium oxide having a melting point of 250 ° C. was melt-kneaded at 260 ° C. with a twin screw extruder kneader. A polymer alloy chip was obtained. At this time, N6 and copolymerized PET were weighed separately and separately fed to the kneader. The screw diameter of the kneader was 37 mm, the effective length was 1670 mm, and L / D = 45.1. The kneading part (kneading disk) length was 28% of the screw effective length. The polymer alloy was melted in the melting part 2 at 270 ° C. and led to a spin block with a spinning temperature of 275 ° C. Then, the polymer alloy melt was filtered with a metal nonwoven fabric having a limit filtration diameter of 15 μm, and then melt-spun (FIG. 15). At this time, the residence time from the fusion | melting part 2 to discharge was 10 minutes. A die having a discharge hole diameter of 0.3 mm and a discharge hole length of 0.65 mm was used, the discharge amount per single hole was 2.1 g / min, and the die discharge linear velocity of the polymer alloy was 28 m / min. Further, the distance from the lower surface of the base to the cooling start point (the upper end portion of the chimney 5) was 9 cm. The discharged yarn is cooled and solidified with a cooling air of 20 ° C. over 1 m, and is supplied by an oil supply guide 7 installed 1.8 m below the base 4, and then the unheated first take-up roller 8 and second take-up roller 9 was wound up at 3800 m / min. The spinnability at this time was good, and the ballast phenomenon in which the discharged polymer swells directly under the die and the yarn breakage due to insufficient spinnability did not occur, and the yarn breakage during 24 hours of continuous spinning was zero. Further, there was no collapse of the package due to the time-lapse swelling of the wound package, which was a problem with nylon, and the handleability was excellent. Further, this unstretched polymer alloy yarn showed excellent physical properties of strength 2.6 cN / dtex, elongation 138%, U% 0.9%. This was subjected to stretch false twisting using the apparatus of FIG. 16 to obtain polymer alloy false twist yarns in the false twist directions S and Z. At this time, the draw ratio is 1.5 times, the heater 23 temperature is 165 ° C., and the false twisting rotor 25 is a triaxial circumscribed friction false twisting device for urethane disk, and the ratio of the disk surface speed / working yarn speed (D / Y ratio) was 1.65. The workability was good, and no yarn breakage, rollers, or wrapping around false twisting rotors were observed. The obtained 87 dtex, 24 filament false twisted yarn showed excellent physical properties of strength 3.5 cN / dtex, elongation 29%, thermal shrinkage 8%, U% 1.0%, CR 38% (Table 1). Also, there was no untwisted twist and the crimp quality was good. When the cross section of the obtained polymer alloy crimped yarn was observed by TEM, N6 was the sea (dark portion), and the copolymer PET was an island (thin portion), showing the sea-island structure (FIG. 1). A polymer alloy fiber having a thickness of 25 nm and ultra-dispersed copolymerized PET was obtained. The area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 0.1% or less, and the area ratio of the diameter of 100 nm or more was 0.9% or less. Here, the area ratio with respect to the whole island component means the ratio with respect to the sum total of the area of an island component, and becomes a standard of a coarse aggregation polymer. Moreover, it was found from the fiber longitudinal section TEM observation that the islands formed a streak structure (FIG. 2). A cross-sectional TEM photograph of the melt-kneaded polymer alloy chip is shown in FIG. 4. The island polymer is ultrafinely dispersed to a particle size of 20 to 30 nm and is equivalent to the island polymer diameter (FIG. 1) in the fiber cross section. It was. The polymer is stretched about 200 times from the die discharge through the drawing false twist. Originally, the island polymer diameter in the fiber cross section should be less than 1/14 compared with that in the polymer alloy. The fact that the island polymer diameter in the cross section of the fiber is almost the same indicates that the island polymer has re-agglomerated from the melting of the polymer alloy until the die is discharged. In order to disperse, it can be seen that it is important to appropriately select the spinning conditions as in this embodiment.
[0061]
Then, the polymer alloy false twisted yarns in the false twist directions S and Z are aligned, knitted into a 20 G circular knitting, and treated with a 3 wt% sodium hydroxide aqueous solution (95 ° C., bath ratio 1:50) for 1 hour. By dissolving and removing 99% or more of the copolymerized PET from the polymer alloy false twisted yarn, a bulk height of 63 cm made of N6 nanoporous fiber is removed. 3 / G of textile product was obtained.
[0062]
The circular knitting made of this N6 nanoporous fiber was dyed and evaluated for color developability, but it was excellent in color developability and had no stain spots. Furthermore, when the moisture absorption rate (ΔMR) of this was measured, it showed an excellent moisture absorption of 5.6%, surpassing that of cotton.
[0063]
When this N6 nanoporous fiber was pulled out from the circular knitting and the side surface of the fiber was observed by SEM, the surface of the fiber was not rough and was a clean surface form at a magnification of about 2000 times. Moreover, when the fiber cross section of this N6 nanoporous fiber was observed by TEM (FIG. 3), the presence of pores having a diameter of about 20 to 30 nm was confirmed. The average value of the pores was 25 nm, and there were no large pores having a diameter of 50 nm or more. Further, as apparent from FIG. 3, this had independent holes. Furthermore, when the mechanical properties of the product were measured, the strength was 2.6 cN / dtex and the elongation was 30%, which showed sufficient mechanical properties as a fiber product. The physical properties of the N6 nanoporous fiber are shown in Table 2.
[0064]
Example 2
N6 and copolymerized PET blend ratio was 95 wt% / 5 wt%, and melt kneading was performed in the same manner as in Example 1. The discharge amount per single hole and the number of nozzle holes were changed, and melt spinning and drawing false twisting were performed in the same manner as in Example 1 to obtain a 90 dtex, 34 filament polymer alloy crimped yarn. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. The obtained highly oriented undrawn yarn was excellent in strength of 2.7 cN / dtex and U% of 0.8%. Further, there was no yarn breakage in the drawing false twisting process, and the workability was good. Furthermore, the CR value was not only high bulkiness of 45%, but also had no untwisted and excellent crimp quality. As a result of observing a fiber cross section of the obtained polymer alloy crimped yarn with TEM, a polymer alloy fiber having a sea-island structure, an average island diameter of 25 nm, and ultra-dispersed copolymerized PET was obtained. The area ratio of the island polymer with a diameter of 200 nm or more to the whole island component was 0.1% or less, and the area ratio with a diameter of 100 nm or more was 1% or less.
[0065]
This polymer alloy crimped yarn is subjected to a sweet twist of 300 T / m to produce a plain weave using warps and wefts, and 99% or more of copolymerized PET is removed by alkali treatment in the same manner as in Example 1, and N6 nanoporous A fabric made of fiber was obtained. The woven fabric made of this N6 nanoporous fiber was dyed and evaluated for color developability, but it was excellent in color developability and had no stain spots. As a result of extracting the N6 nanoporous fiber from this woven fabric and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of 20 nm or less, and there were no large pores with a diameter of 50 nm or more. . The N6 nanoporous fiber had excellent physical properties as shown in Table 2.
[0066]
Example 3
N6 and copolymerized PET blend ratio was 50% by weight / 50% by weight, and melt kneading was performed in the same manner as in Example 1. The discharge amount per single hole and the number of nozzle holes were changed, and melt spinning and drawing false twisting were performed in the same manner as in Example 1 to obtain a 150 dtex, 34 filament polymer alloy crimped yarn. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. The obtained highly oriented undrawn yarn was excellent at a strength of 2.5 cN / dtex and U% of 1.0%. Further, there was no yarn breakage in the drawing false twisting process, and the workability was good. Furthermore, there was no untwisting and excellent crimp quality. FIG. 5 shows the result of TEM observation of the fiber cross section of the obtained polymer alloy crimped yarn. Copolymerized PET has a large number of aggregated polymer particles in which islands having a diameter of 10 to 20 nm are connected in a bead shape. The area ratio of the island polymer with a diameter of 200 nm or more to the whole island component was 0.1% or less, and the area ratio with a diameter of 100 nm or more was 1% or less. The yarn physical properties were excellent as shown in Table 1.
[0067]
This polymer alloy crimped yarn is subjected to a sweet twist of 300 T / m to produce a plain weave using warps and wefts, and 99% or more of copolymerized PET is removed by alkali treatment in the same manner as in Example 1, and N6 nanoporous A fabric made of fiber was obtained. The woven fabric made of this N6 nanoporous fiber was dyed and evaluated for color developability, but it was excellent in color developability and had no stain spots. As a result of extracting the N6 nanoporous fiber from this woven fabric and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of 20 nm or less, and there were no large pores with a diameter of 50 nm or more. . The N6 nanoporous fiber had excellent physical properties as shown in Table 2.
[0068]
Example 4
The melt viscosity ratio of N6 and copolymerized PET is 0.9, and the amine end group amount of N6 is 6.5 × 10 -3 In the same manner as in Example 1, melt kneading, melt spinning, and stretching false twisting were performed at a molar equivalent / g. At this time, since the amount of amine end groups of N6 is large, the yarn breakage is twice as long as continuous spinning for 24 hours, but the spinnability is slightly deteriorated as compared with Example 1, but the high orientation obtained. The U% of the undrawn yarn was 2%, and the yarn unevenness was slightly increased. The strength of the highly oriented undrawn yarn was 2.5 cN / dtex. In addition, untwisting was somewhat unstable in the drawing false twisting process, and untwisting was somewhat observed compared to Example 1. The obtained polymer alloy crimped yarns do not contain coarse aggregated polymer particles, and the island polymer having a diameter of 200 nm or more has an area ratio of 0.1% or less with respect to the whole island component, and the island polymer having a diameter of 100 nm or more also has an area. The ratio was 1% or less, and the CR value was 32%. However, as compared with Example 1, the yarn unevenness at the time of spinning was slightly large, so that the U% was 2.2% and the yarn unevenness of the crimped yarn was also large.
[0069]
The polymer alloy crimped yarn was circularly knitted in the same manner as in Example 1, and 99% or more of the copolymerized PET was removed by alkali treatment to obtain a circular knitting composed of N6 nanoporous fibers. The circular knitting made of this N6 nanoporous fiber was dyed and evaluated for color developability. Although it was excellent in color developability, slightly stained spots were observed. The N6 nanoporous fiber had excellent physical properties as shown in Table 2.
[0070]
Example 5
The copolymerized PET is PET obtained by copolymerizing 12.5 mol% of 5-sodiumsulfoisophthalic acid and 26 mol% of isophthalic acid. The weight ratio of N6 and copolymerized PET is 50% by weight / 50% by weight, and the kneading temperature is 245 ° C. The temperature of the heater 13 in the false twisting process was set to 150 ° C., and melt kneading, melt spinning, and stretching false twisting were performed in the same manner as in Example 3. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. The obtained highly oriented undrawn yarn was excellent at a strength of 2.5 cN / dtex and U% of 1.0%. Moreover, the drawing false twist processability was also favorable and the crimped yarn excellent in the quality without untwisting was obtained. The fiber cross section of the obtained polymer alloy crimped yarn is shown in FIG. 6 by TEM, and the copolymerized PET exists as a layered island having a minor axis of 10 to 30 nm and a major axis of about 50 to 100 nm. The area ratio of the island polymer having a diameter of 200 nm or more to the whole island component without containing coarse aggregated polymer particles was 0.1% or less, and the area ratio of the diameter 100 nm or more was 1% or less. The yarn physical properties were excellent as shown in Table 1.
[0071]
After weaving this polymer alloy crimped yarn in the same manner as in Example 3, 99% or more of the copolymerized PET was removed by alkali treatment to obtain a woven fabric composed of N6 nanoporous fibers. The woven fabric made of this N6 nanoporous fiber was dyed and evaluated for color development. The color development was excellent. Moreover, as a result of extracting N6 nanoporous fiber from this woven fabric and observing the cross section of the fiber with TEM, the traces of the island polymer being removed are pores with a diameter of 20 nm or less, and there are no large pores with a diameter of 50 nm or more. there were. The N6 nanoporous fiber had excellent physical properties as shown in Table 2.
[0072]
Example 6
“Paogen PP-15” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., which is a hot water-soluble polymer of a polyalkylene oxide derivative instead of copolymerized PET (melting point 55 ° C., melt viscosity 10,000 poise, 280 ° C., 2432 sec. -1 The kneading temperature was 245 ° C., and the mixture was melt kneaded in the same manner as in Example 1. Then, the discharge amount per single hole and the number of nozzle holes were changed, the spinning speed was 4000 m / min, and melt spinning was performed in the same manner as in Example 1, 66 dtex, 68 filament, strength 2.7 cN / dtex, U% 1.2. % Polymer alloy fiber was obtained. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. This was subjected to stretch false twisting in the same manner as in Example 1 with a draw ratio of 1.2. However, since the melting point of the island polymer was 55 ° C., the untwisting in the false twisting process was somewhat unstable, and Compared to Example 1, the crimped yarn obtained also had some untwisting. The fiber cross section of the obtained polymer alloy crimped yarn was observed with a TEM. As a result, the area ratio of the island polymer having a diameter of 200 nm or more to the entire island component was 1.3% without including coarse aggregated polymer particles. The yarn physical properties were excellent as shown in Table 1.
[0073]
After circular knitting of this polymer alloy crimped yarn in the same manner as in Example 1, 99% or more of the hot water-soluble polymer was removed by treating with hot water at 100 ° C. for 2 hours to obtain a circular knitting composed of N6 nanoporous fibers. It was. In addition, the circular knitting made of this N6 nanoporous fiber was dyed and evaluated for color development. The color development was excellent.
[0074]
As a result of pulling out N6 nanoporous fiber from this circular knitting and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of about 30 nm, and there were no large pores with a diameter of 50 nm or more. It was.
[0075]
Example 7
In place of copolymerized PET, weight average molecular weight 120,000, melt viscosity 340 poise (240 ° C., 2432 sec. -1 ), And melted and kneaded in the same manner as in Example 1 using poly-L lactic acid having a melting point of 170 ° C. (optical purity of 99.5% or higher) and a kneading temperature of 220 ° C.
[0076]
The weight average molecular weight of polylactic acid was determined as follows. THF (tetrohydrofuran) was mixed with the chloroform solution of the sample as a measurement solution, and this was measured at 25 ° C. using Waters Gel Permeation Chromatography (GPC) Waters 2690, and the weight average molecular weight was calculated in terms of polystyrene. . Note that N6 used in Example 1 was 240 ° C. and 2432 sec. -1 The melt viscosity at 570 poise was 570 poise.
[0077]
Then, the discharge amount per single hole and the number of nozzle holes were changed, the spinning speed was 3500 m / min, melt spinning was performed in the same manner as in Example 1, 105 dtex, 36 filaments, strength 3.1 cN / dtex, elongation 107%, U% 1.2% polymer alloy fiber was obtained. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. This was subjected to stretch false twisting in the same manner as in Example 1 with a draw ratio of 1.4 times, and was 76 dtex, 36 filament, strength 4.0 cN / dtex, elongation 29%, U% 1.3%, CR35%. A false twisted yarn was obtained. At this time, considering the melting point of poly-L-lactic acid, the heater temperature was set to 160 ° C., so that a false twisted yarn excellent in quality with almost no untwisting was obtained, and the process passability in stretch false twisting was also good. there were. The fiber cross section of the obtained polymer alloy crimped yarn was observed with a TEM. As a result, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 0.1% or less and the diameter was 100 nm. The area ratio of the above islands was 1% or less. The yarn physical properties were excellent as shown in Table 1.
[0078]
This polymer alloy crimped yarn was circularly knitted in the same manner as in Example 1, and then subjected to alkali treatment to remove 99% or more of poly-L lactic acid, thereby obtaining a circular knitting composed of N6 nanoporous fibers. In addition, the circular knitting made of this N6 nanoporous fiber was dyed and evaluated for color development. The color development was excellent.
[0079]
As a result of pulling out N6 nanoporous fiber from this circular knitting and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of about 30 nm, and there were no large pores with a diameter of 50 nm or more. It was. Further, the strength of the obtained nanoporous fiber was higher than that of Example 1.
[0080]
Example 8
The N6 and copolymerized PET used in Example 1 were melted at 270 ° C. and 290 ° C. using the apparatus shown in FIG. 17, respectively, and then the stationary kneader 18 (“High Mixer” manufactured by Toray Engineering Co., Ltd.) installed in the spin pack 3. (10 stages) and divided into 1.04 million. And after filtering this with a metal nonwoven fabric filter with an absolute filtration diameter of 20 μm, spinning and drawing false twisting were carried out in the same manner as in Example 1 to obtain a polymer alloy crimped yarn. At this time, the yarn breakage was zero after spinning for 24 hours, and the obtained highly oriented undrawn yarn was excellent at a strength of 2.7 cN / dtex and U% of 0.8%. Moreover, the drawing false twist processability was also favorable and the crimped yarn excellent in the quality without untwisting was obtained.
[0081]
FIG. 7 shows the result of TEM observation of the fiber cross section of the obtained polymer alloy crimped yarn. N6 and copolymerized PET show a layered structure, the average thickness of the PET layer portion is 20 nm, and coarse aggregation The ratio of the area of the island polymer having a diameter of 200 nm or more and a portion having a layer thickness of 200 nm or more to the entire copolymerized PET, not including polymer particles, is 0.1% or less, and the area ratio of the portion having a diameter of 100 nm or more or a layer thickness of 100 nm or more % Or less. Further, when the area of the layered structure region was estimated, it was 98% with respect to the entire fiber cross section, and most of the fiber cross section formed the layered structure region. Moreover, when the longitudinal cross section of this polymer alloy fiber was observed by TEM, the layer became a streak shape (FIG. 9). The yarn physical properties were excellent as shown in Table 1.
[0082]
The polymer alloy crimped yarn was circularly knitted in the same manner as in Example 1, and 99% or more of the copolymerized PET was removed by alkali treatment to obtain a circular knitting composed of N6 nanoporous fibers. In addition, the circular knitting made of this N6 nanoporous fiber was dyed and evaluated for color development. The color development was excellent. The N6 nanoporous fiber had excellent physical properties as shown in Table 2.
[0083]
N6 nanoporous fiber was pulled out from this circular knitting, and the cross section of the fiber was observed with TEM. As a result, it was suggested that a fine grayscale pattern of about 10 to 20 nm was shown and there were many pores with a diameter of 20 nm or less. There were no large pores with a diameter of 50 nm or more.
[0084]
Example 9
N6 was set to N66, and melt spinning and stretching false twisting were performed in the same manner as in Example 8. At this time, the spinning temperature was 280 ° C., the heater temperature for drawing false twisting was 180 ° C., and the blend ratio of N66 / hot water soluble polymer was 80 wt% / 20 wt%. The spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. The obtained highly oriented undrawn yarn was excellent at a strength of 3.0 cN / dtex and a U% of 0.8%. Moreover, the drawing false twist processability was also favorable and the crimped yarn excellent in the quality without untwisting was obtained. The fiber cross section of the obtained polymer alloy crimped yarn was observed with a TEM. As a result, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 0.1% or less and the diameter was 100 nm. The above area ratio was also 1% or less. The yarn physical properties were excellent as shown in Table 1.
[0085]
This polymer alloy crimped yarn is subjected to a sweet twist of 300 T / m to produce a plain weave using warp and weft, and 99% or more of copolymerized PET is removed by alkali treatment in the same manner as in Example 4, and N6 nanoporous A fabric made of fiber was obtained. The woven fabric made of N66 nanoporous fibers was dyed and evaluated for color development. The color development was excellent. As a result of extracting N66 nanoporous fiber from this woven fabric and observing the cross section of the fiber with TEM, the trace of the island polymer missing was a pore with a diameter of 20 nm or less, and there were no large pores with a diameter of 50 nm or more. . N66 nanoporous fiber had excellent physical properties as shown in Table 2.
[0086]
Comparative Example 1
Copolymerized PET is PET in which 7 mol% of isophthalic acid and 4 mol% of bisphenol A ethylene oxide adduct are copolymerized. The weight ratio of N6 and copolymerized PET is 50 wt% / 50 wt%, the diameter of the nozzle hole is 0.7 mm, and spinning. Melt kneading and melt spinning were performed in the same manner as in Example 1 at a speed of 1000 m / min. Although not problematic, spinning was unstable as compared to Example 1, and there were two yarn breaks during 24 hours of continuous spinning. The undrawn yarn obtained here was drawn at a preheating temperature of 85 ° C., a heat treatment temperature of 130 ° C. and a draw ratio of 3 times to obtain a polymer alloy drawn yarn having a strength of 3.0 cN / dtex and U% of 2.3%. Using this, false twisting was performed with the rotor 15 as a spinner pin and a draw ratio of 1.01. However, untwisting was somewhat unstable, and untwisting was somewhat inferior in quality. The fiber cross section of the obtained polymer alloy crimped yarn is observed with a TEM. The result of observation is shown in FIG. 11. Although the coarse aggregated polymer particles were few, the average diameter of the islands was as large as 143 nm, and the diameter was 200 nm or more. The area ratio of the island polymer to the entire island component was 5%. The yarn physical properties are shown in Table 1.
[0087]
The polymer alloy crimped yarn was circularly knitted in the same manner as in Example 1, and 99% or more of the copolymerized PET was removed by alkali treatment to obtain a circular knitting composed of N6 nanoporous fibers. The color developability was evaluated, but the color developability was inferior to that of Example 1.
[0088]
The N6 nanoporous fiber was extracted from this circular knitting, and the result of observing the cross section of the fiber with TEM is shown in FIG. 12, but the traces of the island polymer missing (the metal dye aggregates and appears black) are crushed 10-30 nm in length The pores were about 100 nm, and large pores having a diameter of 50 to 100 nm were also found.
[0089]
Comparative Example 2
The kneading method was carried out in the same manner as in Example 1 using the apparatus shown in FIG. 15 as a simple chip blend instead of the twin-screw extrusion kneader. The discharge of the polymer during spinning was not stable, the spinnability was poor, yarn breakage occurred frequently during spinning, and the yarn could not be wound stably. However, a stretched false twisting process was performed in the same manner as in Example 1 by using a slightly obtained unstretched yarn at a heater temperature of 160 ° C., but not only frequent yarn breakage but also a lot of untwisted and inferior quality. Met. The CR value was as low as 15%. When the cross section of the obtained polymer alloy crimped yarn was observed with a TEM, the blend spot was large, coarse aggregated polymer particles were scattered, and the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 10%. there were. Using this, an N6 porous fiber was obtained in the same manner as in Example 1, but it had a lot of scattered light and was whitish and had poor color development.
[0090]
When this polymer alloy crimped yarn was circular knitted in the same manner as in Example 1 and 99% or more of the copolymerized PET was removed by alkali treatment, the bulk height of N6 nanoporous fiber was 18 cm. 3 / G of textile product was obtained.
[0091]
Comparative Example 3
After a simple chip blend of 50% by weight of N6 used in Example 2, 2.5% by mole of 5-sodium sulfoisophthalic acid and 3.5% by weight of bisphenol A ethylene oxide adduct, 50% by weight of polyethylene terephthalate. The melt was melted at 290 ° C., discharged from a round hole cap having a hole diameter of 0.6 mm, and melt spinning was performed at a spinning speed of 1200 m / min using the apparatus of FIG. However, the discharge of the polymer during spinning was not stable, the spinnability was poor, yarn breakage occurred frequently during spinning, and the yarn could not be wound stably. The slightly obtained undrawn yarn was drawn at a draw ratio of 2.7 times using a 120 ° C. heat plate. As a result, a polymer alloy fiber having 85 dtex and 24 filaments was obtained. Using this, false twisting was performed with the rotor 15 as a spinner pin and a draw ratio of 1.01. However, not only did yarn breakage occur frequently, but there were many untwisted yarns and poor quality. The CR value was as low as 16%. When the cross section of the obtained polymer alloy crimped yarn was observed with a TEM, the blend spot was large, coarse aggregated polymer particles were scattered, and the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 10%. there were. Using this, an N6 porous fiber was obtained in the same manner as in Comparative Example 2, but it was much whitish with a large amount of scattered light and was inferior in color developability.
[0092]
Comparative Example 4
70% by weight of N6 used in Example 2, 4.5% by mole of 5-sodium sulfoisophthalic acid having an intrinsic viscosity of 0.60, and 30% by weight of polyethylene terephthalate copolymerized with 8.5% by weight of polyethylene glycol having a molecular weight of 4000 Were simply blended into a chip, melted at 280 ° C., discharged from a round hole cap having a hole diameter of 0.6 mm, and melt spinning was performed at a spinning speed of 1000 m / min using the apparatus of FIG. However, the discharge of the polymer during spinning was not stable, the spinnability was poor, yarn breakage occurred frequently during spinning, and the yarn could not be wound stably. A slightly obtained undrawn yarn was drawn and heat-treated at a draw ratio of 3.35 times, a preheating temperature of 90 ° C., and a heat treatment temperature of 130 ° C. As a result, a polymer alloy fiber having 85 dtex and 24 filaments was obtained. Using this, false twisting was performed in the same manner as in Comparative Example 3, but not only was yarn breakage frequent, but there were many untwisted yarns and poor quality. The CR value was as low as 16%. When the cross section of the obtained polymer alloy crimped yarn was observed with a TEM, the blend spot was large, coarse aggregated polymer particles were scattered, and the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 8%. there were. Using this, an N6 porous fiber was obtained in the same manner as in Comparative Example 2, but it was much whitish with a large amount of scattered light and was inferior in color developability.
[0093]
Comparative Example 5
77% by weight of N6 used in Example 2, 20% by weight of homo-PET, and 3% by weight of block polyether polyamide (45% by weight of polyethylene glycol + 55% by weight of poly-ε-caprolactam) as a compatibilizer. The chips were simply blended and melt spinning was performed in the same manner as in Comparative Example 1 using the apparatus shown in FIG. However, the discharge of the polymer during spinning was not stable, the spinnability was poor, yarn breakage occurred frequently during spinning, and the yarn could not be wound stably. A slightly obtained undrawn yarn was drawn and heat-treated in the same manner as in Comparative Example 1. As a result, 77 dtex, 24 filament polymer alloy fiber was obtained. Using this, false twisting was performed in the same manner as in Comparative Example 3, but not only was yarn breakage frequent, but there were many untwisted yarns and poor quality. The CR value was as low as 15%. When the cross section of the obtained polymer alloy crimped yarn was observed with a TEM, the blend spots were large, coarse aggregated polymer particles were scattered, and the area ratio of the island polymer having a diameter of 200 nm or more to the entire island component was 14%. there were. Using this, an N6 porous fiber was obtained in the same manner as in Comparative Example 2, but it was much whitish with a large amount of scattered light and was inferior in color developability.
[0094]
Comparative Example 6
The melt spinning was performed in the same manner as in Comparative Example 3 with the N6 / copolymerized PET blend ratio being 25% by weight / 75% by weight. However, the discharge of the polymer during spinning was not stable, the spinnability was poor, yarn breakage occurred frequently during spinning, and the yarn could not be wound stably. The slightly obtained undrawn yarn was drawn at a draw ratio of 2.7 times using a 120 ° C. heat plate. As a result, a polymer alloy fiber having 85 dtex and 24 filaments was obtained. When the cross section of this was observed with TEM, unlike Comparative Example 3, the hardly alkaline soluble N6 formed an island and the easily alkaline soluble copolymerized PET formed the sea. Moreover, the blend spots were large, coarse aggregated polymer particles were scattered, and the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component was 10%.
[0095]
When this was subjected to alkali treatment in the same manner as in Example 1 to remove the sea-copolymerized PET, fibers in which N6 ultrafine fibers were firmly bonded were obtained. However, it was difficult to measure the strength of this fiber, and it was difficult to handle it as a practical fiber.
[0096]
Next, the polymer alloy fiber was treated with formic acid and the island N6 was dissolved and removed. At the same time, the copolymerized PET was significantly embrittled, and was easily broken and difficult to handle as a practical fiber. As described above, this polymer alloy fiber cannot substantially obtain a porous fiber, and cannot achieve the object of the present invention.
[0097]
Comparative Example 7
Using a 30 mφ biaxial extrusion kneader, copolymerized PET (ultraviscosity 0.60) and polyetherimide ("Ultem" -1000 manufactured by General Electric Co., Ltd.) obtained by copolymerizing 10 mol% of ethylene naphthalate with respect to the total acid component, It knead | mixed at 320 degreeC. At this time, kneading was performed with 70% by weight of copolymerized PET and 30% by weight of polyetherimide.
[0098]
The polymer alloy chip obtained here was sufficiently dried, and then melt-spun at a nozzle hole number of 6 holes, a single-hole discharge rate of 0.6 g / min, a spinning temperature of 315 ° C., and a spinning speed of 500 m / min. Since the spinning temperature was too high compared to the melting point of copolymerized PET, which is a sea polymer, spinning became unstable, and 10 yarn breaks and spinnability were poor after spinning for 12 hours. Although the undrawn yarn obtained slightly was used for drawing at a preheating roller temperature of 90 ° C., a hot plate temperature of 120 ° C., and a draw ratio of 3.0, yarn breakage occurred frequently. The strength of the drawn yarn obtained here was as low as 1.3 cN / dtex. This is probably because the kneading temperature and spinning temperature were too high for the copolymerized PET, which is a major component, to cause polymer degradation due to thermal decomposition. Also, the U% of this was extremely bad at 16%.
[0099]
Using this yarn, a false twisting process was performed in the same manner as in Comparative Example 3 at a heater temperature of 200 ° C., but the yarn breakage occurred frequently and the false twisting process was substantially impossible. Thus, a false twisted yarn could be obtained slightly by lowering the heater temperature to 120 ° C., but only a very low CR value of 8% was obtained.
[0100]
As described above, unless kneading and spinning conditions suitable for the polymer are set, a yarn having high strength and small yarn unevenness cannot be obtained, and crimping processing becomes impossible. As described above, fibers that can withstand practical use can be obtained only after the kneading and spinning conditions are optimized for each polymer.
[0101]
[Table 1]
Figure 2005023437
[0102]
[Table 2]
Figure 2005023437
[0103]
Example 10
Homo PET with a melting point of 255 ° C. (melt viscosity 1110 poise, 280 ° C., 2432 sec. -1 ) And 80% by weight of the hot water-soluble polymer used in Example 6, and melt kneading at 275 ° C. in the same manner as in Example 1 using a twin-screw extrusion kneader. When the melt temperature was 280 ° C. and the spinning temperature was 280 ° C., and the melt spinning was performed in the same manner as in Example 1 by changing the single-hole discharge amount and the number of nozzle holes, the spinnability was good and 24 hours. The yarn breakage during the continuous spinning was zero.
The obtained highly oriented undrawn yarn was excellent in strength of 2.7 cN / dtex and U% 1.0%. This was subjected to stretch false twisting at a heater 13 temperature of 180 ° C., 90 dtex, 36 fragment, CR value 30%, strength 3.3 cN / dtex, elongation 30%, U% 1.5%, heat shrinkage 7% The polymer alloy fiber was obtained. However, since the melting point of the island polymer is 55 ° C., the untwisting in the false twisting process is somewhat unstable, and the obtained crimped yarn is not a problem as compared with Example 1, but untwisted is scattered. It was to be done. As a result of observing the cross section of the fiber of the obtained polymer alloy crimped yarn with TEM, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component is 0.1% or less and the diameter is not included. The area ratio of 100 nm or more was also 1% or less (FIG. 13). The yarn properties were excellent as shown in Table 3.
[0104]
This polymer alloy crimped yarn was circularly knitted in the same manner as in Example 1 and then treated with hot water at 100 ° C. for 2 hours to remove 99% or more of the hot water-soluble polymer to obtain a circular knitting composed of PET nanoporous fibers. The circular knitting made of this PET nanoporous fiber was dyed and evaluated for color development, but it was excellent in color developability and had no staining spots.
[0105]
As a result of extracting the PET nanoporous fiber from this circular knitting and observing the cross section of the fiber with a TEM, the traces of the island polymer missing were pores having a diameter of about 20 nm, and there were no large pores having a diameter of 50 nm or more. (FIG. 14).
[0106]
Example 11
PET obtained by copolymerizing 8% by weight of PEG 1000 and 7% by mole of isophthalic acid (melting point: 235 ° C., melt viscosity: 1000 poise, 280 ° C., 2432 sec) -1 ) At 255 ° C. in the same manner as in Example 10. When melt spinning was performed in the same manner as in Example 10 with the temperature of the melting part 2 being 255 ° C. and the spinning temperature being 255 ° C., the spinnability was good and the yarn breakage during 24 hours of continuous spinning was zero. . The obtained highly oriented undrawn yarn was excellent in strength of 2.7 cN / dtex and U% 1.0%. This was subjected to stretch false twisting in the same manner as in Example 10 to obtain a polymer alloy crimped yarn having a CR value of 30%. However, since a low melting point polymer having a melting point of 55 ° C. was used as the island polymer, false twisting was performed. Sometimes it was somewhat untwisted. As a result of observing the cross section of the fiber of the obtained polymer alloy crimped yarn with TEM, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component is 0.1% or less and the diameter is not included. The area ratio of 100 nm or more was also 1% or less. The yarn physical properties were excellent as shown in Table 3.
[0107]
This polymer alloy fiber was circularly knitted in the same manner as in Example 10, and then treated with hot water at 100 ° C. for 2 hours to remove 99% or more of the hot water-soluble polymer to obtain a circular knitting composed of PET nanoporous fibers. The circular knitting made of this PET nanoporous fiber was dyed and evaluated for color development, but it was excellent in color developability and had no staining spots. Further, ΔMR = 2%, and PET showed excellent hygroscopicity.
[0108]
As a result of extracting the PET nanoporous fiber from this circular knitting and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of about 20 nm, and there were no large pores with a diameter of 50 nm or more. It was.
[0109]
Example 12
When the temperature of the heater 13 at the time of the stretching false twisting was set to 120 ° C. and the stretching false twisting was performed in the same manner as in Example 10, the untwisted twist became zero, but the CR value was slightly lowered to 25%. As a result of observing the cross section of the fiber of the obtained polymer alloy crimped yarn with TEM, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component is 0.1% or less and the diameter is not included. The area ratio of 100 nm or more was also 0.1% or less.
[0110]
This polymer alloy fiber was circularly knitted in the same manner as in Example 9, and then treated with hot water at 100 ° C. for 2 hours to remove 99% or more of the hot water-soluble polymer to obtain a circular knitting composed of PET nanoporous fibers. The circular knitting made of this PET nanoporous fiber was dyed and evaluated for color development, but it was excellent in color developability and had no staining spots. Further, ΔMR = 2%, and PET showed excellent hygroscopicity.
[0111]
As a result of extracting the PET nanoporous fiber from this circular knitting and observing the cross section of the fiber with TEM, the traces of the island polymer missing were pores with a diameter of about 20 nm, and there were no large pores with a diameter of 50 nm or more. It was.
[0112]
[Table 3]
Figure 2005023437
[0113]
Example 13
Using the polymer alloy crimped yarns produced in Examples 1 and 7 as sheath yarn, polyurethane fiber yarn “Lycra (registered trademark)” manufactured by Toray Industries, Inc. was covered. And after producing the knitted fabric for tights using this covering yarn, the alkali treatment was performed similarly to Example 1 and the knitted fabric for tights which consists of N6 nanoporous fiber was produced. The fabric weight of this tights knitted fabric is 100g / m 2 The weight ratios of N6 nanofibers and polyurethane fiber yarns were 95% and 5%, respectively. This was subjected to silicone treatment and distribution treatment. And this knitted fabric for tights was sewn, and tights were produced. When using the tights of Example 1, ΔMR is 5.6%, and when using those of Example 7, ΔMR is 5.1%, which is highly hygroscopic, and has a delicate touch and human skin. It showed such a moist and fresh texture and was very comfortable to wear.
[0114]
After wearing this tights for one day, it was washed at home, and further subjected to a wear cycle of 10 cycles. When using the one of Example 1, a slight whitening was observed at the toe portion. However, whitening was not observed when the sample of Example 7 was used. This is probably because the nanoporous fiber of Example 7 has higher strength.
[0115]
Example 14
The single-hole ejection amount and the number of holes were changed, and melt spinning was performed in the same manner as in Example 1 to obtain a 400 dtex, 96-filament N6 / copolymerized PET polymer alloy fiber. The strength of this polymer alloy fiber was 2.5 cN / dtex, the elongation was 100%, and U% was 1.2%. This was stretched false twisted in the same manner as in Example 1 to obtain a false twisted yarn of 333 dtex, 96 filaments. The obtained false twisted yarn had a strength of 3.0 cN / dtex and an elongation of 30%. As a result of observing the cross section of the fiber of the obtained polymer alloy crimped yarn with TEM, the area ratio of the island polymer having a diameter of 200 nm or more to the whole island component is 0.1% or less and the diameter is not included. The area ratio of 100 nm or more was also 1% or less. The average island diameter was 27 nm.
[0116]
The false twisted yarn was subjected to a sweet twist of 300 turns / m, and a 2/2 twill woven fabric was produced by using an S twist / Z twist double yarn for warp and weft. The twill fabric thus obtained was subjected to alkali treatment in the same manner as in Example 9, and the basis weight was 150 g / m made of N6 nanoporous fiber. 2 The curtain fabric was obtained.
[0117]
Moreover, the moisture absorption rate (ΔMR) of this was 5.5%, indicating a sufficient hygroscopicity. And when this fabric was used to produce a curtain and suspended between 6 tatami mats, it was possible to create a refreshing indoor environment and to suppress condensation. The curtain was put into a washing net with a household washing machine and washed and dehydrated, but it did not deform and showed good dimensional stability.
[0118]
【The invention's effect】
With the polymer alloy crimped yarn that does not contain coarse aggregated polymer particles of the present invention, it is possible to easily obtain a bulky fabric composed of nanoporous fibers with good color development and excellent adsorption characteristics.
[Brief description of the drawings]
1 is a TEM photograph showing a fiber cross section of a polymer alloy crimped yarn of Example 1. FIG.
2 is a TEM photograph showing a fiber longitudinal section of a polymer alloy crimped yarn of Example 1. FIG.
3 is a TEM photograph showing a fiber cross section of the nanoporous fiber of Example 1. FIG.
4 is a TEM photograph showing a cross section of the polymer alloy pellet of Example 1. FIG.
5 is a TEM photograph showing a fiber cross section of a polymer alloy crimped yarn of Example 3. FIG.
6 is a TEM photograph showing a fiber cross section of the polymer alloy crimped yarn of Example 5. FIG.
7 is a TEM photograph showing a fiber cross section of a polymer alloy crimped yarn of Example 8. FIG.
FIG. 8 is a TEM photograph showing a fiber cross section of a layered polymer alloy fiber.
9 is a TEM photograph showing a fiber longitudinal section of a polymer alloy crimped yarn of Example 8. FIG.
FIG. 10 is a TEM photograph showing a fiber cross section of a sea-sea structure.
11 is a TEM photograph showing a fiber cross section of a polymer alloy crimped yarn of Comparative Example 1. FIG.
12 is a TEM photograph showing a fiber cross section of a porous fiber of Comparative Example 1. FIG.
13 is a TEM photograph showing a fiber cross section of the polymer alloy crimped yarn of Example 10. FIG.
14 is a TEM photograph showing a fiber cross section of the nanoporous fiber of Example 10. FIG.
FIG. 15 shows a spinning device.
FIG. 16 is a view showing a false twisting device.
FIG. 17 shows a spinning device.
[Explanation of symbols]
1: Hopper
2: Melting part
3: Spin pack
4: Cap
5: Chimney
6: Yarn
7: Focused lubrication guide
8: First take-up roller
9: Second take-up roller
10: Winding yarn
11: Undrawn yarn
12: Feed roller
13: Heater
14: Cooling plate
15: Rotor
16: Delivery roller
17: False twisted yarn
18: Static kneader

Claims (6)

難溶解性ポリマーが海、易溶解性ポリマーが島の海島構造を形成し、島成分全体に占める直径200nm以上の島ポリマーの面積比が3%以下で、CR値が20%以上であるポリマーアロイ捲縮糸。A polymer alloy in which the hardly soluble polymer forms the sea-island structure of the sea and the easily soluble polymer has an island structure, and the area ratio of the island polymer having a diameter of 200 nm or more in the entire island component is 3% or less and the CR value is 20% or more Crimped yarn. 島の平均直径が1〜100nmである請求項1記載のポリマーアロイ捲縮糸。The polymer alloy crimped yarn according to claim 1, wherein the island has an average diameter of 1 to 100 nm. 溶解性の異なる2種以上のポリマーからなり、易溶解性ポリマー1層の平均厚みが0.1〜50nmであり、かつ層状構造領域を繊維横断面積あたり50%以上有し、CR値が20%以上であるポリマーアロイ捲縮糸。Consisting of two or more polymers having different solubility, the average thickness of one layer of the easily soluble polymer is 0.1 to 50 nm, the layered structure region is 50% or more per cross-fiber area, and the CR value is 20%. The polymer alloy crimped yarn as described above. 易溶解性ポリマーがアルカリ易溶解性ポリマーである請求項1〜3のうちいずれか1項記載のポリマーアロイ捲縮糸。The polymer alloy crimped yarn according to any one of claims 1 to 3, wherein the easily soluble polymer is an alkali easily soluble polymer. 請求項1〜4のうちのいずれか1項記載のポリマーアロイ捲縮糸を少なくとも一部に有する繊維製品。A fiber product having at least a part of the polymer alloy crimped yarn according to any one of claims 1 to 4. U%が0.1〜5%のポリマーアロイ原糸を仮撚り加工することを特徴とする請求項1記載のポリマーアロイ捲縮糸の製造方法。2. The method for producing a polymer alloy crimped yarn according to claim 1, wherein false twist processing is performed on a polymer alloy yarn having a U% of 0.1 to 5%.
JP2003186702A 2003-06-30 2003-06-30 Polymer alloy crimped yarn Expired - Fee Related JP4292893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186702A JP4292893B2 (en) 2003-06-30 2003-06-30 Polymer alloy crimped yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186702A JP4292893B2 (en) 2003-06-30 2003-06-30 Polymer alloy crimped yarn

Publications (2)

Publication Number Publication Date
JP2005023437A true JP2005023437A (en) 2005-01-27
JP4292893B2 JP4292893B2 (en) 2009-07-08

Family

ID=34185766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186702A Expired - Fee Related JP4292893B2 (en) 2003-06-30 2003-06-30 Polymer alloy crimped yarn

Country Status (1)

Country Link
JP (1) JP4292893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2008007908A (en) * 2006-06-30 2008-01-17 Toray Ind Inc Buckled crimped yarn and carpet
JP2008081911A (en) * 2006-08-29 2008-04-10 Toray Ind Inc Crimped yarn and method for producing the same, and carpet using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2008007908A (en) * 2006-06-30 2008-01-17 Toray Ind Inc Buckled crimped yarn and carpet
JP2008081911A (en) * 2006-08-29 2008-04-10 Toray Ind Inc Crimped yarn and method for producing the same, and carpet using the same

Also Published As

Publication number Publication date
JP4292893B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
KR101029515B1 (en) Porous fiber
JP2007262610A (en) Combined filament yarn
JP2004169261A (en) Polymer alloy fiber
JP4736494B2 (en) Blended yarn or blended yarn or knitted fabric containing polyphenylene sulfide nanofiber
JP5040270B2 (en) Composite processed yarn
JP4134829B2 (en) Nanofiber mixed yarn
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP2005133250A (en) Core-sheath conjugate fiber
JP4292893B2 (en) Polymer alloy crimped yarn
JP3770254B2 (en) Nanoporous fiber
JP4325616B2 (en) Nanoporous fiber
JP2004270110A (en) Polymer alloy fiber
JP4866103B2 (en) Composite fiber
JP4100180B2 (en) Polymer alloy fiber
JP2007119948A (en) Split type conjugate fiber
JP4270202B2 (en) Nanofiber assembly
JP2005015969A (en) Nano-porous fiber composite woven or knitted fabric
JP2005015705A (en) Pellet and its producing method
JP4269804B2 (en) Special fiber
JP4866109B2 (en) False twisted yarn
JP2019090135A (en) Nanovoid conjugate polyester fiber
JP2004270109A (en) Fibrous product using super porous synthetic fiber
JP4866110B2 (en) Blended yarn
JP2005015961A (en) Garment comprising nano-porous polyamide fiber
JP2005194661A (en) Polyester blended yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4292893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees