JP2004169261A - Polymer alloy fiber - Google Patents

Polymer alloy fiber Download PDF

Info

Publication number
JP2004169261A
JP2004169261A JP2003368532A JP2003368532A JP2004169261A JP 2004169261 A JP2004169261 A JP 2004169261A JP 2003368532 A JP2003368532 A JP 2003368532A JP 2003368532 A JP2003368532 A JP 2003368532A JP 2004169261 A JP2004169261 A JP 2004169261A
Authority
JP
Japan
Prior art keywords
polymer
fiber
polymer alloy
island
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003368532A
Other languages
Japanese (ja)
Other versions
JP2004169261A5 (en
JP4100327B2 (en
Inventor
Takashi Ochi
隆志 越智
Akira Kidai
明 木代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003368532A priority Critical patent/JP4100327B2/en
Publication of JP2004169261A publication Critical patent/JP2004169261A/en
Publication of JP2004169261A5 publication Critical patent/JP2004169261A5/ja
Application granted granted Critical
Publication of JP4100327B2 publication Critical patent/JP4100327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer alloy fiber so structured that polymers of which the solubilities are different from each other are dispersed in an ultra-fine state, and therefore suitably used as a precursor for obtaining a nano-fiber in which fluctuation of fineness of single yarn is small so as to be widely applicable and developable, because of having no restriction on shapes of the fiber/fiber product and the polymer. <P>SOLUTION: This polymer alloy fiber comprises a sea-island structured fiber composed of at least two kinds of the organic polymers of which the solubilities are different from each other, wherein an island component comprises a slightly-soluble polymer, a sea component comprises an easily-soluble polymer, a number-average diameter of island domains is 1-150 nm, and 60% or more of the island domains have a diameter of 1-150 nm. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、単糸繊度ばらつきの小さなナノファイバーの前駆体として好適なポリマーアロイ繊維に関するものである。   The present invention relates to a polymer alloy fiber suitable as a precursor of a nanofiber having a small single-fiber fineness variation.

ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)に代表されるポリエステルやナイロン6(N6)やナイロン66(N66)に代表されるポリアミドといった重縮合系ポリマーは適度な力学特性と耐熱性を有するため、従来から衣料用途や産業資材用途の繊維に好適に用いられてきた。一方、ポリエチレン(PE)やポリプロピレン(PP)に代表される付加重合系ポリマーは適度な力学特性や耐薬品性、軽さを有するため、主として産業資材用途の繊維に好適に用いられてきた。   Polycondensation polymers such as polyesters represented by polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) and polyamides represented by nylon 6 (N6) and nylon 66 (N66) have appropriate mechanical properties and heat resistance. Conventionally, it has been suitably used for fibers for clothing and industrial materials. On the other hand, addition polymerization polymers typified by polyethylene (PE) and polypropylene (PP) have appropriate mechanical properties, chemical resistance, and lightness, and therefore have been suitably used mainly for fibers for industrial materials.

特にポリエステル繊維やポリアミド繊維は衣料用途に用いられてきたこともあり、ポリマー改質だけでなく、繊維の断面形状や極細糸による性能向上の検討も活発に行われてきた。このような検討の一つとして、海島複合紡糸を利用したポリエステルの超極細糸が生み出され、スエード調の人工皮革という大型新製品に結実していった。また、この超極細糸を一般衣料に適用し、通常の繊維では絶対に得られないピーチタッチの優れた風合いの衣料にも展開されている。さらに、衣料用途のみならず、ワイピングクロスといった生活資材や産業資材用途にも展開され、超極細繊維は現在の合成繊維の世界で確固たる地位を築いている。特に最近では、特開2001−1252号公報や特開2002−224945号公報に記載のようにコンピューターのハードディスク用の表面研磨布や、特開2002−102332号公報や特開2002−172163号公報に記載のように細胞吸着材のようなメディカル材料にまで応用が拡がっている。   In particular, polyester fibers and polyamide fibers have been used for apparel, and not only polymer modification, but also studies on fiber cross-sectional shape and performance improvement by ultrafine yarn have been actively conducted. One of these studies was the production of ultra-fine polyester yarn using sea-island composite spinning, which resulted in a large new product called suede-like artificial leather. In addition, this ultra-fine yarn is applied to general clothing, and is also being developed for clothing having an excellent peach touch texture that cannot be obtained by ordinary fibers. Furthermore, it has been developed not only for clothing but also for living and industrial materials such as wiping cloths, and ultra-fine fibers have established a solid position in the world of synthetic fibers today. Particularly recently, surface polishing cloths for hard disks of computers as described in JP-A-2001-1252 and JP-A-2002-224945, and JP-A-2002-102332 and JP-A-2002-172163 are disclosed. As described, the application has been extended to medical materials such as cell adsorbents.

このため、さらにレベルの高い人工皮革や高質感衣料を得るために、より細い繊維が望まれていた。また、IT産業の隆盛を支えるためハードディスクの大容量化が推進されているが、このためにはさらにハードディスクの記録密度を上げることが必須であり、そのためには、現在平均表面粗さが1nm以上であるハードディスク表面をさらに平滑化することが必要である(目標は平均表面粗さ0.5nm以下)。このため、ハードディスク表面を磨くための研磨布に用いる繊維をさらに極細化したナノファイバーが望まれていた。   For this reason, finer fibers have been desired in order to obtain higher-level artificial leather and high-quality clothing. In addition, to support the prosperity of the IT industry, increasing the capacity of hard disks is being promoted. For this purpose, it is essential to further increase the recording density of the hard disks, and for this purpose, the average surface roughness is currently 1 nm or more. It is necessary to further smooth the hard disk surface (the target is an average surface roughness of 0.5 nm or less). For this reason, nanofibers in which the fibers used for the polishing cloth for polishing the surface of the hard disk are further miniaturized have been desired.

しかしながら、現在の海島複合紡糸技術では単糸繊度は0.04dtex(直径2μm相当)が限界であり、ナノファイバーに対するニーズに充分応えられるレベルではなかった。また、ポリマーブレンド繊維により超極細糸を得る方法が、特開平3−113082号公報や特開平6−272114号公報に記載されているが、ここで得られる単糸繊度も最も細くとも0.001dtex(直径0.4μm相当)であり、やはりナノファイバーに対するニーズに充分応えられるレベルではなかった。しかも、ここで得られる超極細糸の単糸繊度はポリマーブレンド繊維中での島ポリマーの分散状態で決定されるが、該公報で用いられているポリマーブレンド系では島ポリマーの分散が不十分であるため、得られる超極細糸の単糸繊度ばらつきが大きいものであった。また、静止混練器を利用したポリマーブレンド繊維により超極細糸を得る方法(特許文献1)もあるが、該公報実施例2には、静止混練器の分割数から計算した理論単糸繊度は1×10-4dtex(直径100nm程度)とナノファイバーが得られることになるが、これから得られる超極細糸の単糸繊度を実測すると1×10-4dtex〜1×10-2dtex(直径1μm程度)となり、単糸直径が揃ったナノファイバーを得ることができなかったことが記載されている。これは、ポリマーブレンド繊維中で島ポリマーが合一し、島ポリマーをナノサイズで均一に分散できなかったためと考えられる。このように、これら従来技術で得られる超極細糸の単糸繊度ばらつきが大きいものであった。このため、製品の性能が太い単糸群で決定され、超極細糸のメリットが十分発揮されないばかりか、品質安定性等にも問題があった。さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが大きいことに起因し、砥粒を研磨布に均一坦持することができず、結果的にハードディスク表面の平滑性がかえって低下する問題もあった。 However, in the current sea-island composite spinning technology, the single-fiber fineness is limited to 0.04 dtex (equivalent to a diameter of 2 μm), which is not a level that can sufficiently meet the needs for nanofibers. Further, a method for obtaining an ultra-fine yarn from a polymer blend fiber is described in JP-A-3-1103082 and JP-A-6-272114, and the single yarn fineness obtained here is at most 0.001 dtex. (Equivalent to a diameter of 0.4 μm), which is still not a level that can sufficiently meet the needs for nanofibers. Moreover, the single-filament fineness of the ultrafine yarn obtained here is determined by the dispersion state of the island polymer in the polymer blend fiber, but the dispersion of the island polymer is insufficient in the polymer blend system used in the publication. For this reason, the resulting ultra-fine yarn had a large single yarn fineness variation. There is also a method of obtaining ultra-fine yarn from a polymer blend fiber using a static kneader (Patent Document 1). However, the publication Example 2 discloses that the theoretical single yarn fineness calculated from the number of divisions of the static kneader is 1 A nanofiber having a size of × 10 -4 dtex (about 100 nm in diameter) can be obtained. When the single fiber fineness of the ultrafine yarn obtained therefrom is actually measured, it is 1 × 10 -4 dtex to 1 × 10 -2 dtex (1 μm in diameter). ), And it was described that nanofibers having the same single yarn diameter could not be obtained. This is presumably because the island polymers were united in the polymer blend fiber, and the island polymers could not be uniformly dispersed in nano size. As described above, the ultrafine yarn obtained by these conventional techniques has a large single yarn fineness variation. For this reason, the performance of the product is determined by the thick single yarn group, and the merit of the ultra-fine yarn is not sufficiently exhibited, and there is also a problem in quality stability and the like. Furthermore, when used for the above-mentioned surface polishing cloth for hard disks, due to the large variation in fineness, the abrasive grains cannot be uniformly carried on the polishing cloth, and as a result, the smoothness of the hard disk surface is rather reduced. There was also a problem to do.

ところで、最近、ポリマーブレンド法によるカーボンナノチューブ(CNT)前駆体を得る方法として、焼成により炭素化するポリマー(フェノール樹脂等)をシェルとするコアシェル微粒子と熱分解により消失するマトリックスポリマーをドライブレンドしておき、それを極低速で溶融押し出しすることによってドライブレンドで得た微分散構造を保存したまま糸状とし、それを束ねて再度溶融押し出しすることで炭素化し得るポリマーがマトリックスポリマーに微分散したポリマーアロイ繊維状物の製造方法が開発されつつある(特許文献2)。しかし、該公報記載のポリマーの組み合わせでは焼成という操作が必須であるため、CNTしか得られず、いわゆる有機ポリマーからなるナノファイバーを得ることは不可能であった。また、該方法のポイントであるコアシェル粒子の調整は、コア粒子にスプレードライ法でシェルポリマーを吹き付けているが、これでは元々直径ばらつきのあるコア粒子を用いているためさらに粒子直径がばらつきが拡大され、結果的に得られるCNTの直径ばらつきも非常に大きいものであった(細い物もあるが太い物もある)。さらに、該公報には詳述されていないが、ポリエステルやポリアミド、ポリオレフィン等で工業的に採用されている通常の溶融紡糸を該方法に適用すると、濾過部などの溶融ポリマー流が攪乱される部分でコアシェル粒子同士が融着し、結果的に炭素化し得るポリマーの分散サイズは大きい物しか得られないのである。このため、ドライブレンドで得た分散状態をなるべく乱さないような工夫が必要であるが、現在の紡糸技術でこれを達成しようとすると、ポリエステルやポリアミド、ポリオレフィン等で工業的に採用されている通常の溶融紡糸は不可能であり、代わりにバレルからポリマーを直接に極低速で押し出す、いわゆる「ろうそく紡糸」と呼ばれる方法を用いなければならなかった。しかし、この紡糸方法は紡糸速度が極低速であること、また単位時間あたりの吐出量は押し出しピストンにかける圧力に依存するため、吐出量が不安定であるだけでなく冷却斑も発生しやすいため、結果的に得られるポリマーアロイ糸状物の糸長手方向の太細斑が過大になってしまう問題があった。これにより、得られるCNTの直径ばらつきがさらに拡大されてしまった。   By the way, recently, as a method of obtaining a carbon nanotube (CNT) precursor by a polymer blending method, core-shell fine particles having a shell made of a polymer (such as a phenol resin) which is carbonized by firing and a matrix polymer which disappears by thermal decomposition are dry-blended. A polymer alloy in which a polymer that can be carbonized by bundling and extruding again is melt-extruded at an extremely low speed to form a thread while preserving the finely dispersed structure obtained by dry blending. A method for producing a fibrous material is being developed (Patent Document 2). However, since the operation of baking is indispensable in the combination of the polymers described in the publication, only CNTs can be obtained, and it has been impossible to obtain nanofibers made of a so-called organic polymer. In addition, the core of the method is to adjust the core-shell particles by spraying the shell polymer onto the core particles by a spray-dry method. As a result, the diameter variation of the resulting CNTs was very large (some were thin but some were thick). Further, although not described in detail in the publication, when ordinary melt spinning industrially employed in polyesters, polyamides, polyolefins and the like is applied to the method, a portion where the molten polymer flow is disturbed, such as a filtration section, is used. As a result, the core-shell particles are fused together, and as a result, only a large dispersion size of the polymer that can be carbonized can be obtained. For this reason, it is necessary to devise as little as possible the state of dispersion obtained by dry blending.However, when trying to achieve this with the current spinning technology, polyester, polyamide, polyolefin, etc. Melt spinning was not possible and instead had to use a method called "candle spinning", in which the polymer was extruded directly from the barrel at very low speed. However, in this spinning method, since the spinning speed is extremely low, and the discharge amount per unit time depends on the pressure applied to the extrusion piston, not only the discharge amount is unstable, but also cooling spots easily occur. In addition, there is a problem that the resulting polymer alloy filamentous material has excessively large and thin spots in the yarn longitudinal direction. As a result, the variation in the diameter of the obtained CNTs was further enlarged.

一方、コアシェル粒子のサイズをなるべく均一化するために2段階ソープフリー重合により調製したポリメチルメタクリレート(PMMA)/ポリアクリロニトリル(PAN)コアシェル粒子(直径200〜600μm程度)懸濁液とPMMA粒子懸濁液とを混合した後、凍結乾燥することにより得たポリマーブレンド物を用いている例もある(非特許文献1)。しかし、これでも上記した溶融紡糸上の問題から糸長手方向に均一なポリマーアロイ繊維を得ることはできない。さらに、PMMAとPANでは溶解性にほとんど差が無いため、やはり焼成という操作が必須であり、いわゆる有機ポリマーからなるナノファイバーを得ることは不可能であった。また、ソープフリー重合はラジカル重合に限定されるため、ポリエステルやナイロンのような重縮合系ポリマーには適用不可能であった。   On the other hand, a suspension of polymethyl methacrylate (PMMA) / polyacrylonitrile (PAN) core-shell particles (about 200 to 600 μm in diameter) and a suspension of PMMA particles prepared by two-step soap-free polymerization to make the size of the core-shell particles as uniform as possible. There is also an example in which a polymer blend obtained by freeze-drying after mixing with a liquid is used (Non-Patent Document 1). However, even with this, it is not possible to obtain a uniform polymer alloy fiber in the yarn longitudinal direction due to the above-described problem in melt spinning. Furthermore, since there is almost no difference in solubility between PMMA and PAN, an operation of baking is also essential, and it has been impossible to obtain nanofibers made of so-called organic polymers. Further, since soap-free polymerization is limited to radical polymerization, it cannot be applied to polycondensation polymers such as polyester and nylon.

以上説明したように、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーが求められていたにもかかわらず、その前駆体となる溶解性の異なるポリマーからなる超微分散ポリマーアロイ繊維は得られていなかった。
USP4,686,074(19thカラム) 特開2002−173308号公報(1〜6ページ) 機能材料、vol.21、No.11、41−46(2001).
As described above, despite the need for nanofibers with a small single-fiber fineness variation that can be widely applied and developed without any restrictions on the fiber or fiber product shape or polymer, the solubility of the precursors is different. An ultrafine dispersed polymer alloy fiber composed of a polymer was not obtained.
USP 4,686,074 (19th column) JP-A-2002-173308 (pages 1 to 6) Functional materials, vol. 21, no. 11, 41-46 (2001).

本発明は、繊維・繊維製品形状やポリマーに制約が無く、広く応用展開可能な単糸繊度ばらつきの小さなナノファイバーを得るための前駆体として好適な、溶解性の異なるポリマーが超微分散したポリマーアロイ繊維を提供するものである。   The present invention is a polymer in which polymers having different solubilities are ultra-finely dispersed, which are suitable as precursors for obtaining nanofibers having a small variation in single-fiber fineness that can be widely applied and developed without restrictions on fiber / fiber product shapes and polymers. An alloy fiber is provided.

上記目的は、少なくとも2種の溶解性の異なる有機ポリマーからなる海島構造繊維であって、島成分が難溶解性ポリマー、海成分が易溶解ポリマーからなり、島ドメインの数平均直径が1〜150nmであり、島ドメインの60%以上が直径1〜150nmのサイズである、ポリマーアロイ繊維により達成される。   The above object is a sea-island structure fiber comprising at least two kinds of organic polymers having different solubility, wherein the island component is a poorly soluble polymer, the sea component is a readily soluble polymer, and the number average diameter of the island domain is 1 to 150 nm. And at least 60% of the island domains are of a size between 1 and 150 nm in diameter and are achieved with polymer alloy fibers.

本発明の単糸繊度ばらつきの小さなナノファイバー集合体により、これまでにない風合いの布帛や高性能研磨布を得ることができる。   By using the nanofiber aggregate having small single-fiber fineness variation of the present invention, a cloth and a high-performance polishing cloth having an unprecedented texture can be obtained.

本発明でいう有機ポリマーとはポリエステルやポリアミド、またポリオレフィンに代表される熱可塑性ポリマーやフェノール樹脂等のような熱硬化性ポリマー、DNAのような生体ポリマーのことを言うが、熱可塑性ポリマーが成形性の点から好ましい。中でもポリエステルやポリアミドに代表される重縮合系ポリマーは融点が高いものが多く、より好ましい。また、有機ポリマーには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良い。またポリマーの性質を損なわない範囲で他の成分が共重合されていても良い
本発明では、2種の溶解性の異なる有機ポリマーからなる海島構造繊維を形成することが重要であるが、ここで溶解性とは、ある溶剤に対する溶解性の違いのことを言い、溶剤とはアルカリ溶液や酸性溶液、また有機溶媒、さらには超臨界流体等のことを言うものである。
The organic polymer referred to in the present invention refers to thermoplastic polymers represented by polyesters, polyamides, and polyolefins, thermosetting polymers such as phenolic resins, and biopolymers such as DNA. It is preferable from the viewpoint of properties. Among them, polycondensation polymers typified by polyester and polyamide have many high melting points and are more preferable. Further, the organic polymer may contain additives such as particles, a flame retardant, and an antistatic agent. Further, other components may be copolymerized as long as the properties of the polymer are not impaired. In the present invention, it is important to form sea-island structural fibers composed of two kinds of organic polymers having different solubility. The solubility refers to a difference in solubility in a certain solvent, and the solvent refers to an alkaline solution, an acidic solution, an organic solvent, a supercritical fluid, or the like.

また、本発明では溶剤で海ポリマーを簡単に除去するために、海ポリマーとして易溶解性ポリマー、島ポリマーとして難溶解性ポリマーとすることが重要である。また、易溶解性ポリマーとしてアルカリ水溶液に対して易溶解であるものを選ぶと、溶解設備に防爆設備が不要であり、コスト、汎用性の点から好ましい。アルカリ易溶解ポリマーとしてはポリエステル、ポリカーボネート等が挙げられ、共重合PETが特に好ましい。さらに、易溶解性ポリマーとして熱水可溶性ポリマーを選ぶと、廃液処理の負荷も軽減され、より好ましい。熱水可溶性ポリマーとしては水溶性ポリアミド、ポリアルキレングリコール、ポリビニルアルコールやその誘導体、また5−ナトリウムスルホイソフタル酸高率共重合ポリエステル等が挙げられ、特にポリアルキレングリコールをエステル結合で鎖伸長して耐熱性を高めたポリマーや5−ナトリウムスルホイソフタル酸を10mol%以上共重合したPETが好ましい。   In the present invention, in order to easily remove the sea polymer with a solvent, it is important that the sea polymer is a readily soluble polymer and the island polymer is a poorly soluble polymer. In addition, when a polymer which is easily soluble in an aqueous alkali solution is selected as the easily soluble polymer, explosion-proof equipment is not required for the melting equipment, which is preferable in terms of cost and versatility. Examples of the alkali-soluble polymer include polyester and polycarbonate, and copolymerized PET is particularly preferred. Further, when a hot water-soluble polymer is selected as the easily soluble polymer, the load of waste liquid treatment is reduced, which is more preferable. Examples of the hot water-soluble polymer include water-soluble polyamides, polyalkylene glycols, polyvinyl alcohol and derivatives thereof, and 5-sodium sulfoisophthalic acid high-copolymerized polyesters. A polymer having enhanced properties or PET obtained by copolymerizing 10% by mole or more of 5-sodium sulfoisophthalic acid is preferable.

また、ポリマーアロイ繊維とした後の糸加工性、製編織、高次加工性を考慮すると、海ポリマーの融点は165℃以上であることが好ましい。なお、非晶性ポリマーのように融点が観測されないものについては、ガラス転移温度(Tg)、ビカット軟化温度、熱変形温度が165℃以上であることが好ましい。 Further, in consideration of the thread processability, knitting and weaving, and higher processability after forming the polymer alloy fiber, the melting point of the sea polymer is preferably 165 ° C or more. It is preferable that the glass transition temperature (T g ), the Vicat softening temperature, and the heat distortion temperature of an amorphous polymer whose melting point is not observed, such as an amorphous polymer, are 165 ° C. or higher.

また、島ポリマーの融点は165℃以上であるとナノファイバーとした際の耐熱性が良好であり好ましい。なお、非晶性ポリマーのように融点が観測されないものについては、ガラス転移温度(Tg)、ビカット軟化温度、熱変形温度が165℃以上であることが好ましい。 Further, it is preferable that the melting point of the island polymer is 165 ° C. or higher because the heat resistance of the nanofiber is good. It is preferable that the glass transition temperature (T g ), the Vicat softening temperature, and the heat distortion temperature of an amorphous polymer whose melting point is not observed, such as an amorphous polymer, are 165 ° C. or higher.

本発明では、単糸繊度ばらつきの小さなナノファイバーを得るために、ポリマーアロイ繊維中での島ドメインの数平均直径およびばらつきが重要である。これは、ポリマーアロイ繊維の横断面を透過型電子顕微鏡(TEM)で観察し、同一横断面内で無作為抽出した300個以上の島ドメイン直径を測定するが、これを少なくとも5カ所以上で行い、合計1500個以上の島ドメイン直径を測定することで求めることができる。そして、測定は糸長手方向に互いに10m以上離した位置で行うことが好ましい。   In the present invention, in order to obtain a nanofiber having a small single-fiber fineness variation, the number average diameter and the variation of the island domains in the polymer alloy fiber are important. This is done by observing the cross section of the polymer alloy fiber with a transmission electron microscope (TEM) and measuring the diameter of 300 or more island domains randomly extracted in the same cross section. , And a total of 1500 or more island domain diameters can be measured. The measurement is preferably performed at a position separated by 10 m or more from each other in the longitudinal direction of the yarn.

ここで、数平均直径は以下のようにして求める。すなわち、測定した島ドメイン直径の単純な平均値を求める。島ドメインの数平均直径は1〜150nmであることが重要である。これは、従来の海島複合紡糸による超極細糸に比べ単糸直径で1/100〜1/1000という細さであり、従来の超極細糸とは全く異なる質感を持った衣料用布帛や従来よりもはるかにハードディスクの平滑性を向上し得る研磨布を得ることができるのである。島ドメインの数平均直径は好ましくは1〜100nm、より好ましくは20〜80nmである。   Here, the number average diameter is determined as follows. That is, a simple average value of the measured island domain diameters is obtained. It is important that the island domain has a number average diameter of 1 to 150 nm. This is a fineness of 1/100 to 1/1000 in single yarn diameter compared to the conventional ultra-fine yarn by sea-island composite spinning. In addition, it is possible to obtain a polishing cloth that can significantly improve the smoothness of the hard disk. The number average diameter of the island domains is preferably 1 to 100 nm, more preferably 20 to 80 nm.

また、島ドメインの直径ばらつきは、以下のようにして評価する。すなわち、島ドメインの面積をSiとし、その総和を総面積(S1+S2+…+Sn)とする。また、同じ面積Sの頻度(個数)を数え、その面積と頻度の積を総面積で割ったものをその島ドメインの面積比率とする。例えば、直径60nmの島ドメインの個数が350個、総面積が3.64×106nm2の時の、これの面積比率は(3.14×30nm×30nm×350)/(3.64×106nm2)×100%=27.2%となる。これはポリマーアロイ繊維中の島成分全体に対する各サイズの島ドメインの体積分率に相当し、これが大きい島ドメイン成分が、ナノファイバーとした時に全体の性質に対する寄与が大きいことになる。本発明のポリマーアロイ繊維中の島ドメインは、面積比率の60%以上が直径で1〜150nmの範囲にあることが重要である。これは、ナノファイバーとした際にほとんどの単糸が直径150nm以下という従来にない細いナノファイバーとできることを意味するものである。これにより、ナノファイバーの機能を充分発揮することができ、また製品の品質安定性も良好とすることができ、さらに、前述のハードディスク用の表面研磨布に用いた場合、繊度ばらつきが小さいため、ナノファイバーでも砥粒を均一坦持することが可能となり、結果的にハードディスク表面の平滑性を飛躍的に向上することができるのである。好ましくは面積比率の60%以上が直径で1〜100nmの範囲である。また、直径1〜100nmの範囲の面積比率は好ましくは75%以上、より好ましくは90%、さらに好ましくは95%以上、最も好ましくは98%以上である。 The diameter variation of the island domain is evaluated as follows. That is, the area of the island domains as S i, to the total sum and the total area (S 1 + S 2 + ... + S n). The frequency (number) of the same area S is counted, and the product of the area and the frequency divided by the total area is defined as the area ratio of the island domain. For example, when the number of island domains having a diameter of 60 nm is 350 and the total area is 3.64 × 10 6 nm 2 , the area ratio thereof is (3.14 × 30 nm × 30 nm × 350) / (3.64 × 10 6 nm 2 ) × 100% = 27.2%. This corresponds to the volume fraction of the island domain of each size with respect to the entire island component in the polymer alloy fiber, and a large island domain component greatly contributes to the overall properties when the nanofiber is used. It is important that at least 60% of the area ratio of the island domains in the polymer alloy fiber of the present invention is in the range of 1 to 150 nm in diameter. This means that when a nanofiber is used, most of the single yarn can be formed into a nanofiber that has never been seen before and has a diameter of 150 nm or less. As a result, the function of the nanofiber can be sufficiently exhibited, and the quality stability of the product can be improved. Further, when used for the above-mentioned surface polishing cloth for a hard disk, variation in fineness is small. Even with nanofibers, the abrasive grains can be uniformly supported, and as a result, the smoothness of the hard disk surface can be dramatically improved. Preferably, 60% or more of the area ratio is in the range of 1 to 100 nm in diameter. The area ratio in the range of 1 to 100 nm in diameter is preferably 75% or more, more preferably 90%, further preferably 95% or more, and most preferably 98% or more.

また、島ドメインの面積比率が高い部分が、より島ドメインの直径が小さい成分に集中していることが好ましく、面積比率の60%以上が直径1〜80nmの範囲である。より好ましくは、面積比率の70%以上が直径1〜80nmの範囲である。   Further, it is preferable that a portion having a high area ratio of the island domain is concentrated on a component having a smaller diameter of the island domain, and 60% or more of the area ratio has a diameter of 1 to 80 nm. More preferably, 70% or more of the area ratio is in the range of 1 to 80 nm in diameter.

また、島ドメインの直径ばらつきのもう一つの指標が島ドメイン直径差が30nmの幅に入る島ドメインの面積比率であるが、これは、度数分布の半値幅、あるいは中心直径付近へのばらつきの集中度に対応するパラメータであり、この面積比率が高いほどばらつきが小さいことを意味している。本発明では、直径差が30nmの幅に入る島ドメインの面積比率が60%以上であることが好ましい。より好ましくは70%以上、さらに好ましくは75%以上である。   Another index of the variation in the diameter of the island domain is the area ratio of the island domain in which the difference in the diameter of the island domain falls within a width of 30 nm. This is based on the half width of the frequency distribution or the concentration of the variation near the center diameter. This is a parameter corresponding to the degree, and the higher the area ratio, the smaller the variation. In the present invention, it is preferable that the area ratio of the island domain whose diameter difference falls within the width of 30 nm is 60% or more. It is more preferably at least 70%, further preferably at least 75%.

以上のようにポリマーアロイ繊維横断面中での島ドメインのサイズおよびそのばらつきが重要であることを述べたが、ナノファイバー化した後の繊維製品の品質安定性の点から糸長手方向の太細斑も小さいことが好ましい。特に、ナノファイバーを研磨布に用いた際にはスクラッチ(被研磨物表面の傷)の大きさや数に大きく影響する。このため、本発明のポリマーアロイ繊維のウースター斑は15%以下とすることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。   As mentioned above, the size of island domains in the cross section of the polymer alloy fiber and its variation are important.However, from the viewpoint of the quality stability of the fiber product after being converted into nanofibers, the thickness in the yarn longitudinal direction is small. It is also preferable that the spots are small. In particular, when nanofibers are used for a polishing cloth, the size and number of scratches (scratches on the surface of the object to be polished) are greatly affected. For this reason, it is preferable that the Worcester spots of the polymer alloy fiber of the present invention be 15% or less, more preferably 5% or less, and still more preferably 3% or less.

また、本発明のポリマーアロイ繊維は強度が1cN/dtex以上、伸度が25%以上であると、撚糸、製編織等の工程での毛羽の発生や糸切れ等のトラブルが少なく好ましい。強度はより好ましくは2.5cN/dtex以上、さらに好ましくは3cN/dtex以上である。また、沸騰水収縮率は25%以下であると、海ポリマーの溶出処理の際の布帛の寸法変化が小さく好ましい。沸騰水収縮率はより好ましくは15%以下である。   When the polymer alloy fiber of the present invention has a strength of 1 cN / dtex or more and an elongation of 25% or more, it is preferable because there are few problems such as generation of fluff and yarn breakage in the process of twisting, knitting and weaving. The strength is more preferably at least 2.5 cN / dtex, even more preferably at least 3 cN / dtex. Further, when the boiling water shrinkage is 25% or less, the dimensional change of the fabric during the dissolution treatment of the sea polymer is preferably small. The boiling water shrinkage is more preferably 15% or less.

また、本発明のポリマーアロイ繊維はポリマーアロイとその他のポリマーからなる複合糸としても良い。例えば、ナノファイバー前駆体となるポリマーアロイを芯部に配し、その他のポリマーを鞘部に配した芯鞘複合糸とした後、ポリマーアロイの海成分を溶出すると、中空糸の中空部にナノファイバーがカプセル化された特殊繊維を得ることができる。また、これの芯鞘を逆転すると、通常の繊維の周りにナノファイバーが配置された混繊糸を容易に得ることができる。また、ナノファイバー前駆体となるポリマーアロイを海成分にその他のポリマーを島成分とした海島複合糸とすると、ナノファイバーとマイクロファイバーの混繊糸を容易に得ることができる。このようにナノファイバーとマイクロファイバーまたは通常の繊維との混繊糸を容易に得ることができる。これによりナノファイバー化した際の繊維構造体としての形態安定性を著しく向上することができるのである。また、ナノファイバーに用いるポリマーとそれ以外のポリマーの帯電性が著しく異なれば、繊維表面電位の差に起因する静電反発によってナノファイバーの分散性を向上させることも可能である。特に、ナノファイバーを繊維構造体表面に多く配置し、通常の繊維を内部に多く配置することで形態安定性向上を狙う場合には、ポリマーアロイが芯成分となる芯鞘複合繊維とすることが好ましい。ポリマーアロイ成分の複合比は複合繊維全体に対し20〜90重量%とすることが好ましい。複合比は、より好ましくは55〜90重量%である。   Further, the polymer alloy fiber of the present invention may be a composite yarn comprising a polymer alloy and another polymer. For example, after forming a core-sheath composite yarn in which a polymer alloy serving as a nanofiber precursor is disposed in the core and another polymer is disposed in the sheath, the sea component of the polymer alloy is eluted, and the nanofiber is formed in the hollow portion of the hollow fiber. Special fibers in which the fibers are encapsulated can be obtained. When the core-sheath is reversed, it is possible to easily obtain a mixed fiber in which nanofibers are arranged around ordinary fibers. In addition, when the polymer alloy serving as the nanofiber precursor is a sea-island composite yarn having the sea component as the sea component and the other polymer as the island component, a mixed fiber of nanofiber and microfiber can be easily obtained. Thus, a mixed fiber of nanofibers and microfibers or ordinary fibers can be easily obtained. As a result, the morphological stability of the fiber structure when converted into nanofibers can be significantly improved. Further, if the chargeability of the polymer used for the nanofiber is significantly different from that of the other polymer, it is possible to improve the dispersibility of the nanofiber by electrostatic repulsion caused by a difference in fiber surface potential. In particular, in the case where a large amount of nanofibers are arranged on the surface of the fibrous structure and a large amount of ordinary fibers are arranged inside to improve morphological stability, a core-sheath composite fiber in which the polymer alloy is a core component may be used. preferable. The composite ratio of the polymer alloy component is preferably 20 to 90% by weight based on the entire composite fiber. The composite ratio is more preferably 55 to 90% by weight.

本発明のポリマーアロイ繊維は捲縮加工によりバルクアップが可能である。仮撚り加工糸であれば、捲縮性の指標であるCrimp Rigidity値(CR値)が20%以上であることが好ましい。また、機械捲縮糸やエアジェット加工糸等では捲縮の指標である捲縮数は5個/25mm以上であることが好ましい。さらに、サイドバイサイドあるいは偏心芯鞘複合糸とすることにより捲縮を付与することも可能である。このときは、捲縮数は10個/25mm以上であることが好ましい。CR値は一般に捲縮方法、捲縮装置、ツイスター回転数、ヒーター温度等の仮撚り加工条件により調整可能である。CR値を20%以上とするには、ヒーター温度を(ポリマーの融点−70)℃以上とすることにより達成できる。さらにCR値を向上させるためには、ヒーター温度の高温化が効果的である。   The polymer alloy fiber of the present invention can be bulk-up by crimping. In the case of a false twisted yarn, a Crimp Rigidity value (CR value), which is an index of crimpability, is preferably 20% or more. In the case of a mechanically crimped yarn or an air jet processed yarn, the number of crimps, which is an index of crimping, is preferably 5/25 mm or more. Furthermore, it is also possible to impart crimp by using a side-by-side or eccentric core-sheath composite yarn. At this time, the number of crimps is preferably 10 pieces / 25 mm or more. In general, the CR value can be adjusted by crimping method, crimping device, twister rotation speed, false twist processing conditions such as heater temperature and the like. A CR value of 20% or more can be achieved by setting the heater temperature to (melting point of polymer−70) ° C. or more. In order to further improve the CR value, it is effective to increase the heater temperature.

また、機械捲縮糸やエアジェット加工糸等で捲縮数を5個/25mm以上とするのは、捲縮付与装置の選定やフィード率等の条件を適宜に変更することにより、達成できる。   Further, the number of crimps of 5/25 mm or more can be achieved by mechanically crimped yarns, air-jet processed yarns, or the like by appropriately selecting conditions such as selection of a crimping device and a feed rate.

サイドバイサイドあるいは偏心芯鞘複合糸の場合には、貼り合わせるポリマーの溶融粘度差は2倍以上、あるいは単独で紡糸した際の熱収縮率差を5%以上とすることなどにより、捲縮数10個/25mm以上を達成可能である。なお、CR値は以下のように測定される。   In the case of a side-by-side or eccentric core-sheath composite yarn, the number of crimps is 10 by making the difference in melt viscosity of the polymer to be bonded more than 2 times or the difference in heat shrinkage when spinning alone 5% or more. / 25 mm or more can be achieved. The CR value is measured as follows.

仮撚加工糸をかせ取りし、実質的に荷重フリーの状態で沸騰水中15分間処理し、24時間風乾した。このサンプルに0.088cN/dtex(0.1gf/d)相当の荷重をかけ水中に浸漬し、2分後のかせ長L0”を測定した。次に、水中で0.088cN/dtex相当の荷重を除き0.0018cN/dtex(2mgf/d)相当の微荷重に交換し、2分後のかせ長L1”を測定した。そして下式によりCR値を計算する。   The false twisted yarn was removed, treated for 15 minutes in boiling water in a substantially load-free state, and air-dried for 24 hours. The sample was immersed in water under a load equivalent to 0.088 cN / dtex (0.1 gf / d), and the skein length L0 ″ was measured after 2 minutes. Next, a load equivalent to 0.088 cN / dtex in water was measured. Was replaced with a slight load equivalent to 0.0018 cN / dtex (2 mgf / d), and the skein length L1 ″ after 2 minutes was measured. Then, the CR value is calculated by the following equation.

CR(%)=[(L0”−L1”)/L0”]×100(%)
また捲縮数は以下のように測定される。
CR (%) = [(L0 ″ −L1 ″) / L0 ″] × 100 (%)
The number of crimps is measured as follows.

繊維サンプル50mmをサンプリングし、これの捲縮の山の数を数え、25mmあたりの山数を求めて、該値に1/2を掛けたものを捲縮数とする。   A fibrous sample of 50 mm is sampled, the number of crimped ridges is counted, the number of ridges per 25 mm is obtained, and the value multiplied by。 is defined as the number of crimps.

なお、本発明のポリマーアロイ繊維は、ナノファイバー前駆体としてだけでなく、性質の異なるポリマーがナノサイズで均一に分散されているためポリマーアロイ繊維としても有用である。例えばPLAにナイロンやポリエステルがナノサイズで均一に分散させると、PLAの欠点である耐熱性不良を改善することができる。また、ナイロンにポリエステルをナノサイズで均一に分散させるとナイロンの欠点である吸水時の寸法安定性不良を改善することができる。さらにポリスチレン(以下、PSと略記)にナイロンやポリエステルをナノサイズで均一に分散させると、PSの欠点である脆さを改善することができる。PPにナイロンやポリエステルをナノサイズで均一に分散させると、PPの欠点である染色性を改善することができる。   The polymer alloy fiber of the present invention is useful not only as a nanofiber precursor, but also as a polymer alloy fiber because polymers having different properties are uniformly dispersed in nanometer size. For example, when nylon or polyester is uniformly dispersed in PLA in nano size, poor heat resistance, which is a drawback of PLA, can be improved. Further, when polyester is uniformly dispersed in nylon at a nano size, poor dimensional stability at the time of water absorption, which is a drawback of nylon, can be improved. Further, when nylon or polyester is uniformly dispersed in nano-size in polystyrene (hereinafter abbreviated as PS), the brittleness which is a drawback of PS can be improved. When nylon or polyester is uniformly dispersed in nano-size in PP, the dyeing property, which is a drawback of PP, can be improved.

本発明のポリマーアロイ繊維は他の繊維と混用することも可能であり、混繊、混綿、混紡、交編、交織、積層、接着などをすることができる。これによりナノファイバー化した際の繊維構造体としての形態安定性を著しく向上することができるのである。   The polymer alloy fiber of the present invention can be mixed with other fibers, and can be mixed, mixed, mixed, mixed, knitted, mixed, laminated, bonded, and the like. As a result, the morphological stability of the fiber structure when converted into nanofibers can be significantly improved.

本発明のポリマーアロイ繊維やこれを少なくとも一部に有する繊維製品、またそれらの機能加工品は、糸、綿(わた)、パッケージ、織物、編物、フェルト、不織布、熱成形体、人工皮革などの中間製品とすることができる。また、繊維構造体の表面にナノファイバーを多く配置し、通常の繊維を内部に多く配置することで形態安定性向上を狙う場合には、複合仮撚りやエア混繊し、本発明のポリマーアロイ繊維を鞘糸として加工糸の外側に配置したり、他の糸と交織、交編する際、サテンやツイルまたスムースやダンボールニット等の裏表のある布帛形態とすることが好ましい。また、フェルトや不織布の場合には他の基材に積層あるいは接着してあることが好ましい。   The polymer alloy fiber of the present invention, a fiber product having at least a part thereof, and a functionally processed product thereof include yarn, cotton (cotton), package, woven fabric, knitted fabric, felt, nonwoven fabric, thermoformed product, artificial leather and the like. It can be an intermediate product. In addition, when many nanofibers are arranged on the surface of the fiber structure and ordinary fibers are arranged inside to improve the morphological stability, complex false twisting or air blending is performed, and the polymer alloy of the present invention is used. When arranging the fiber as a sheath yarn outside the processed yarn, or cross-weaving or knitting with another yarn, it is preferable to use a fabric form with a front and back surface such as satin, twill, smooth, and cardboard knit. In the case of felt or non-woven fabric, it is preferable that the felt or non-woven fabric is laminated or adhered to another substrate.

さらに、ポリマーアロイ繊維としてあるいはナノファイバー化して、衣料(シャツやブルゾン、パンツ、コート等)、衣料資材、インテリア製品(カーテン、カーペット、マット、壁紙、家具など)、車輌内装製品(マット、カーシート、天井材など)、生活資材(ワイピングクロス、化粧用品、健康用品、玩具など)などの生活用途や、環境・産業資材用途(建材、研磨布、フィルター、有害物質除去製品など)やIT部品用途(センサー部品、電池部品、ロボット部品など)や、メディカル用途(血液フィルター、体外循環カラム、スキャフォールド(scaffold)、絆創膏(wound dressing)、人工血管、薬剤徐放体など)に好適に用いることができる。   Furthermore, as polymer alloy fibers or converted into nanofibers, clothing (shirts, blousons, pants, coats, etc.), clothing materials, interior products (curtains, carpets, mats, wallpapers, furniture, etc.), vehicle interior products (mats, car seats, etc.) , Ceiling materials, etc.), living materials (wiping cloths, cosmetics, health products, toys, etc.), environmental and industrial materials (building materials, polishing cloths, filters, products removing harmful substances, etc.) and IT components (Sensor parts, battery parts, robot parts, etc.) and medical applications (blood filters, extracorporeal circulation columns, scaffolds, wound dressing, artificial blood vessels, drug sustained release bodies, etc.) it can.

本発明のポリマーアロイ繊維の製造方法は特に限定されるものではないが、例えば以下のような方法を採用することができる。   The method for producing the polymer alloy fiber of the present invention is not particularly limited. For example, the following method can be employed.

すなわち、2種類以上の溶剤に対する溶解性の異なるポリマーをアロイ化したポリマーアロイ溶融体となし、これを紡糸した後、冷却固化して繊維化する。そして必要に応じて延伸・熱処理を施しポリマーアロイ繊維を得る。島ドメインの分散状態は直接ナノファイバー直径に影響するため、アロイ化するポリマーの混練が非常に重要であり、本発明では押出混練機や静止混練器等によって高混練することが好ましい。なお、単純なチップブレンド(特開平6−272114号公報など)では混練が不足するため、本発明のように数十nmサイズで島を分散させることは困難である。   That is, a polymer alloy melt obtained by alloying polymers having different solubility in two or more kinds of solvents is formed, and after spinning, it is cooled and solidified to form fibers. Then, drawing and heat treatment are performed as necessary to obtain a polymer alloy fiber. Since the dispersion state of the island domains directly affects the nanofiber diameter, kneading of the polymer to be alloyed is very important. In the present invention, high kneading is preferably performed by an extrusion kneader or a static kneader. In addition, since kneading is insufficient in a simple chip blend (for example, JP-A-6-272114), it is difficult to disperse islands with a size of several tens nm as in the present invention.

具体的に混練を行う際の目安としては、組み合わせるポリマーにもよるが、押出混練機を用いる場合は、2軸押出混練機を用いることが好ましく、静止混練器を用いる場合は、その分割数は100万以上とすることが好ましい。   As a guide for concrete kneading, although it depends on the polymer to be combined, when using an extrusion kneader, it is preferable to use a twin-screw extruder, and when using a stationary kneader, the number of divisions is It is preferable to be 1,000,000 or more.

また、ブレンド斑や経時的なブレンド比率の変動を避けるため、それぞれのポリマーを独立に計量し、独立にポリマーを混練装置に供給することが好ましい。このとき、ポリマーはペレットとして別々に供給しても良く、あるいは、溶融状態で別々に供給しても良い。また、2種以上のポリマーを押出混練機の根本に供給しても良いし、あるいは、一成分を押出混練機の途中から供給するサイドフィードとしても良い。   In addition, in order to avoid blend unevenness and fluctuations in the blend ratio over time, it is preferable to measure each polymer independently and supply the polymer to the kneading device independently. At this time, the polymer may be separately supplied as pellets, or may be separately supplied in a molten state. Further, two or more kinds of polymers may be supplied to the root of the extrusion kneader, or a side feed may be used in which one component is supplied from the middle of the extrusion kneader.

混練装置として二軸押出混練機を使用する場合には、高度の混練とポリマー滞留時間の抑制を両立させることが好ましい。スクリューは、送り部と混練部から構成されているが、混練部長さをスクリュー有効長さの20%以上とすることで高混練とすることができ好ましい。また、混練部長さがスクリュー有効長さの40%以下とすることで、過度の剪断応力を避け、しかも滞留時間を短くすることができ、ポリマーの熱劣化やポリアミド成分等のゲル化を抑制することができる。また、混練部はなるべく二軸押出機の吐出側に位置させることで、混練後の滞留時間を短くし、島ポリマーの再凝集を抑制することができる。加えて、混練を強化する場合は、押出混練機中でポリマーを逆方向に送るバックフロー機能のあるスクリューを設けることもできる。   When a twin-screw extrusion kneader is used as the kneading device, it is preferable to achieve both high kneading and suppression of the polymer residence time. The screw is composed of a feeding section and a kneading section, but it is preferable to set the length of the kneading section to 20% or more of the effective length of the screw so that high kneading can be achieved. Further, by setting the kneading portion length to 40% or less of the effective screw length, excessive shear stress can be avoided and the residence time can be shortened, thereby suppressing thermal degradation of the polymer and gelation of polyamide components and the like. be able to. In addition, by positioning the kneading section as far as possible on the discharge side of the twin-screw extruder, the residence time after kneading can be shortened, and reaggregation of the island polymer can be suppressed. In addition, when the kneading is strengthened, a screw having a backflow function for feeding the polymer in the reverse direction in the extrusion kneader can be provided.

さらに、ベント式として混練時の分解ガスを吸引したり、ポリマー中の水分を減じることによってポリマーの加水分解を抑制し、ポリアミド中のアミン末端基やポリエステル中のカルボン酸末端基量も抑制することができる。   Furthermore, as a venting method, the decomposition gas during kneading is sucked, the hydrolysis of the polymer is suppressed by reducing the water content in the polymer, and the amount of amine terminal groups in polyamide and the amount of carboxylic acid terminal groups in polyester are also suppressed. Can be.

また、ポリマーアロイペレットの着色の指標であるb*値を10以下とすることで繊維化した際の色調を整えることができ、好ましい。なお、易溶解性分として好適な熱水可溶性ポリマーはその分子構造から一般に耐熱性が悪く着色しやすいが、上記のような滞留時間を短くする操作により、着色を抑制することが可能となるのである。 Further, by setting the b * value, which is an index of coloring of the polymer alloy pellets, to 10 or less, the color tone at the time of forming a fiber can be adjusted, which is preferable. In addition, a hot water-soluble polymer suitable as an easily soluble component generally has poor heat resistance due to its molecular structure and tends to be colored, but the operation for shortening the residence time as described above makes it possible to suppress coloring. is there.

また、島ポリマーを数十nmサイズで超微分散させるには、ポリマーの組み合わせも重要である。   Further, in order to ultra-disperse the island polymer with a size of several tens of nm, the combination of the polymers is also important.

島ドメイン(ナノファイバー断面)を円形に近づけるためには、島ポリマーと海ポリマーは非相溶であることが好ましい。しかしながら、単なる非相溶ポリマーの組み合わせでは島ポリマーが充分に超微分散化し難い。このため、組み合わせるポリマーの相溶性を最適化することが好ましいが、このための指標の一つが溶解度パラメータ(SP値)である。SP値とは(蒸発エネルギー/モル容積)1/2で定義される物質の凝集力を反映するパラメータであり、SP値が近い物同士では相溶性が良いポリマーアロイが得られる可能性がある。SP値は種々のポリマーで知られているが、例えば「プラスチック・データブック」旭化成アミダス株式会社/プラスチック編集部共編、189ページ等に記載されている。2つのポリマーのSP値の差が1〜9(MJ/m31/2であると、非相溶化による島ドメインの円形化と超微分散化が両立させやすく好ましい。例えばN6とPETはSP値の差が6(MJ/m31/2程度であり好ましい例であるが、N6とPEはSP値の差が11(MJ/m31/2程度であり好ましくない例として挙げられる。 In order to make the island domain (cross section of the nanofiber) close to a circle, the island polymer and the sea polymer are preferably incompatible. However, it is difficult for the island polymer to be sufficiently ultrafinely dispersed by a simple combination of incompatible polymers. For this reason, it is preferable to optimize the compatibility of the polymers to be combined, and one of the indicators for this is the solubility parameter (SP value). The SP value is a parameter reflecting the cohesive force of a substance defined by (evaporation energy / molar volume) 1/2 , and a polymer alloy having good compatibility may be obtained between substances having similar SP values. The SP value is known for various polymers, and is described in, for example, "Plastic Data Book", Asahi Kasei Amidas Co., Ltd./Plastic Editor, pp. 189. When the difference between the SP values of the two polymers is 1 to 9 (MJ / m 3 ) 1/2, it is preferable because both the circularization of the island domain due to the incompatibility and the ultrafine dispersion are compatible. For example, N6 and PET have a SP value difference of about 6 (MJ / m 3 ) 1/2, which is a preferable example, whereas N6 and PE have a SP value difference of about 11 (MJ / m 3 ) 1/2 . It is mentioned as an unfavorable example.

また、ポリマー同士の融点差が20℃以下であると、特に押出混練機を用いた混練の際、押出混練機中での融解状況に差を生じにくいため高効率混練しやすく、好ましい。また、熱分解や熱劣化し易いポリマーを1成分に用いる際は、混練や紡糸温度を低く抑える必要があるが、これにも有利となるのである。ここで、非晶性ポリマーなど融点が観測されない場合には、ガラス転移温度(Tg)あるいはビカット軟化温度あるいは熱変形温度でこれに代える。 When the melting point difference between the polymers is not more than 20 ° C., particularly when kneading using an extrusion kneader, it is difficult to cause a difference in the melting state in the extrusion kneader, so that high-efficiency kneading is easy, which is preferable. In addition, when a polymer that is easily decomposed or thermally degraded is used as one component, it is necessary to keep the kneading and spinning temperatures low, which is also advantageous. Here, when the melting point is not observed such as in an amorphous polymer, the temperature is replaced by the glass transition temperature (T g ), the Vicat softening temperature, or the heat deformation temperature.

さらに、溶融粘度も重要であり、島を形成するポリマーの方を低く設定すると剪断力による島ポリマーの変形が起こりやすいため、島ポリマーの微分散化が進みやすくナノファイバー化の観点からは好ましい。ただし、島ポリマーを過度に低粘度にすると海化しやすくなり、繊維全体に対するブレンド比を高くできないため、島ポリマー粘度は海ポリマー粘度の1/10以上とすることが好ましい。また、海ポリマーの溶融粘度は紡糸性に大きな影響を与える場合があり、海ポリマーとして100Pa・s以下の低粘度ポリマーを用いると島ポリマーを分散させ易く好ましい。また、これにより紡糸性を著しく向上できるのである。この時、溶融粘度は紡糸の際の口金面温度で剪断速度1216sec-1での値である。 Further, the melt viscosity is also important. If the polymer forming the island is set to a lower value, the island polymer is likely to be deformed due to shearing force. However, if the viscosity of the island polymer is excessively low, the island polymer is apt to be seamed and the blend ratio with respect to the whole fiber cannot be increased. In addition, the melt viscosity of the sea polymer may have a large effect on spinnability, and it is preferable to use a low-viscosity polymer of 100 Pa · s or less as the sea polymer because the island polymer can be easily dispersed. In addition, the spinnability can be significantly improved. At this time, the melt viscosity is a value at a die surface temperature during spinning at a shear rate of 1216 sec -1 .

ポリマーアロイ中では、島ポリマーと海ポリマーが非相溶であるため、島ポリマー同士は凝集した方が熱力学的に安定である。しかし、島ポリマーを無理に超微分散化するために、このポリマーアロイでは通常の分散径の大きいポリマーブレンドに比べ、非常に不安定なポリマー界面が多くなっている。このため、このポリマーアロイを単純に紡糸すると、不安定なポリマー界面が多いため、口金からポリマーを吐出した直後に大きくポリマー流が膨らむ「バラス現象」が発生したり、ポリマーアロイ表面の不安定化による曳糸性不良が発生し、糸の太細斑が過大となるばかりか、紡糸そのものが不能となる場合がある(超微分散ポリマーアロイの負の効果)。このような問題を回避するため、口金から吐出する際の、口金孔壁とポリマーとの間の剪断応力を低くすることが好ましい。ここで、口金孔壁とポリマーとの間の剪断応力はハーゲンポワズユの式(剪断応力(dyne/cm2)=R×P/2L)から計算する。ここでR:口金吐出孔の半径(cm)、P:口金吐出孔での圧力損失(dyne/cm2)、L:口金吐出孔長(cm)である。またP=(8LηQ/πR4)であり、η:ポリマー粘度(poise)、Q:吐出量(cm3/sec)、π:円周率である。また、CGS単位系の1dyne/cm2はSI単位系では0.1Paとなる。 In the polymer alloy, since the island polymer and the sea polymer are incompatible, the aggregation of the island polymers is more thermodynamically stable. However, in order to forcibly ultrafinely disperse the island polymer, this polymer alloy has much more unstable polymer interfaces than a normal polymer blend having a large dispersion diameter. Therefore, if this polymer alloy is simply spun, there are many unstable polymer interfaces, so that a "ballistic phenomenon" occurs in which the polymer flow expands immediately after the polymer is discharged from the die, or the surface of the polymer alloy becomes unstable. In some cases, poor spinnability is caused by this, and not only the thick and thin spots of the yarn become excessive, but also the spinning itself becomes impossible (negative effect of the ultrafine dispersion polymer alloy). In order to avoid such a problem, it is preferable to reduce the shear stress between the die hole wall and the polymer when discharging from the die. Here, the shear stress between the die hole wall and the polymer is calculated from Hagen-Poiseu's equation (shear stress (dyne / cm 2 ) = R × P / 2L). Here, R: radius of the base discharge hole (cm), P: pressure loss at the base discharge hole (dyne / cm 2 ), and L: base discharge hole length (cm). P = (8LηQ / πR 4 ), η: polymer viscosity (poise), Q: discharge rate (cm 3 / sec), π: pi. Further, 1 dyne / cm 2 in the CGS unit system is 0.1 Pa in the SI unit system.

通常のポリエステルの単成分における溶融紡糸では口金孔壁とポリマーとの間の剪断応力は1MPa以上で計量性と曳糸性を確保できる。しかし、本発明のポリマーアロイは、通常のポリエステルと異なり、口金孔壁とポリマーとの間の剪断応力が大きいと、ポリマーアロイの粘弾性バランスが崩れ易いため、通常のポリエステル溶融紡糸の場合よりも剪断応力を低くする必要がある。剪断応力を0.2MPa以下にすると、口金孔壁側の流れと口金吐出孔中心部のポリマー流速が均一化し、剪断歪みが少なくなることによってバラス現象が緩和され、良好な曳糸性が得られることから好ましい。一般に剪断応力をより小さくするには、口金吐出孔径を大きく、口金吐出孔長を短くすることであるが、過度にこれを行うと口金吐出孔でのポリマーの計量性が低下し、孔間での繊度斑や発生する傾向になることから、口金吐出孔より上部に口金吐出孔より孔径を小さくしたポリマー計量部を設けた口金を用いることが好ましい。剪断応力は0.01MPa以上にすると、ポリマーアロイ繊維を安定に溶融紡糸でき、糸の太細斑の指標であるウースター斑(U%)を15%以下とできることから好ましい。   In the melt spinning of a single polyester component, the shearing stress between the die hole wall and the polymer is 1 MPa or more, so that the metering and spinnability can be secured. However, the polymer alloy of the present invention, unlike ordinary polyester, has a large shear stress between the die hole wall and the polymer, and the viscoelastic balance of the polymer alloy is likely to be lost. It is necessary to reduce the shear stress. When the shear stress is 0.2 MPa or less, the flow on the die hole wall side and the polymer flow velocity in the center of the die discharge hole become uniform, and the shear distortion is reduced, thereby reducing the ballistic phenomenon and obtaining good spinnability. This is preferred. Generally, in order to reduce the shear stress, it is necessary to increase the diameter of the discharge hole of the die and shorten the length of the discharge hole of the die. It is preferable to use a die provided with a polymer measuring portion having a smaller hole diameter than the die discharge hole above the die discharge hole, since the fineness unevenness and the tendency to occur may be caused. When the shear stress is 0.01 MPa or more, it is preferable because the polymer alloy fiber can be stably melt-spun and the Worcester spot (U%), which is an index of the thick and thin spot of the thread, can be 15% or less.

また、溶融紡糸での曳糸性や紡糸安定性を十分確保する観点から、口金面温度は海ポリマーの融点から25℃以上とすることが好ましい。   In addition, from the viewpoint of ensuring sufficient spinnability and spinning stability in melt spinning, the die surface temperature is preferably 25 ° C. or higher from the melting point of the sea polymer.

上記したように、本発明で用いる超微分散化したポリマーアロイを紡糸する際は、紡糸口金設計が重要であるが、糸の冷却条件も重要である。上記したようにポリマーアロイは非常に不安定な溶融流体であるため、口金から吐出した後に速やかに冷却固化させることが好ましい。このため、口金から冷却開始までの距離は1〜15cmとすることが好ましい。ここで、冷却開始とは糸の積極的な冷却が開始される位置のことを意味するが、実際の溶融紡糸装置ではチムニー上端部でこれに代える。   As described above, when spinning the ultrafinely dispersed polymer alloy used in the present invention, the spinneret design is important, but the cooling conditions of the yarn are also important. As described above, since the polymer alloy is a very unstable molten fluid, it is preferable that the polymer alloy be cooled and solidified immediately after being discharged from the die. For this reason, the distance from the die to the start of cooling is preferably 1 to 15 cm. Here, the start of cooling means a position at which active cooling of the yarn is started, but in an actual melt spinning apparatus, this is replaced by the upper end of the chimney.

紡糸速度は特に限定されないが、紡糸過程でのドラフトを高くする観点から高速紡糸ほど好ましい。紡糸ドラフトとしては100以上とすることが、ポリマーアロイ繊維中の島ドメイン直径を小さくする観点から好ましい。   The spinning speed is not particularly limited, but high-speed spinning is more preferable from the viewpoint of increasing the draft in the spinning process. The spinning draft is preferably set to 100 or more from the viewpoint of reducing the island domain diameter in the polymer alloy fiber.

また、紡糸されたポリマーアロイ繊維には延伸・熱処理を施すことが好ましいが、延伸の際の予熱温度は島ポリマーのガラス転移温度(Tg)以上の温度することで、糸斑を小さくすることができ、好ましい。また、本発明のポリマーアロイ繊維には捲縮加工、混繊、実撚り等自由に糸加工を施すことができる。 The spun polymer alloy fiber is preferably subjected to drawing and heat treatment. However, the preheating temperature during drawing may be higher than the glass transition temperature (T g ) of the island polymer to reduce yarn spots. Yes, it is. Further, the polymer alloy fiber of the present invention can be freely subjected to yarn processing such as crimping, blending, and real twisting.

本製造方法は、以上のようなポリマーの組み合わせ、紡糸・延伸条件の最適化を行うことで、島ポリマーが数十nmに超微分散化し、しかも糸長手方向にも糸斑の小さなポリマーアロイ繊維を得ることを可能にするものである。   In this production method, by combining the above-described polymers and optimizing the spinning and drawing conditions, the island polymer is ultra-finely dispersed to several tens of nanometers, and a polymer alloy fiber having small yarn spots in the yarn longitudinal direction is obtained. Is what makes it possible to get

以上のようにして得られる本発明のポリマーアロイ繊維はナノファイバーの前駆体として好適である。例えば、これを用いて織物や編物あるいは不織布、綿等の繊維製品に加工した後、溶剤で海ポリマーを除去することでナノファイバーからなる繊維製品を容易に得ることができる。その際、溶剤としては水溶液系のものを用いることが、防爆装置不要によるコストダウンや設備汎用性、また環境負荷を低減する観点から好ましい。具体的にはアルカリ水溶液や熱水を用いることが好ましい。このため、易溶解ポリマーとしては、ポリエステルやポリカーボネート(PC)等のアルカリ加水分解されるポリマーや熱水可溶性ポリアミドやポリアルキレングリコールやポリビニルアルコールおよびそれらの誘導体等の熱水可溶性ポリマーが好ましい。   The polymer alloy fiber of the present invention obtained as described above is suitable as a nanofiber precursor. For example, a fiber product made of nanofibers can be easily obtained by processing a textile product such as a woven fabric, a knitted fabric, a non-woven fabric, or cotton using this and then removing the sea polymer with a solvent. In this case, it is preferable to use an aqueous solvent as the solvent from the viewpoint of cost reduction due to no explosion-proof device, versatility of equipment, and reduction of environmental load. Specifically, it is preferable to use an alkaline aqueous solution or hot water. For this reason, the easily soluble polymer is preferably an alkali-hydrolyzed polymer such as polyester or polycarbonate (PC), or a hot-water-soluble polymer such as hot-water-soluble polyamide, polyalkylene glycol, polyvinyl alcohol, and derivatives thereof.

上記製造方法により得られたナノファイバーは繊維長が数十μmから場合によってはcmオーダー以上であり、しかもそれぞれのナノファイバーがところどころ接着したり絡み合い、横断面あたり数千本〜数十万本といった無数のナノファイバーが自己凝集して1本の糸を形成した紡績糸形状のナノファイバー集合体となるのである。   The nanofibers obtained by the above manufacturing method have a fiber length from several tens of μm to a cm order or more in some cases, and furthermore, each nanofiber is partially adhered or entangled, and several thousand to several hundred thousand per cross section An infinite number of nanofibers self-aggregate to form a spun yarn-shaped nanofiber aggregate in which one yarn is formed.

また、上記製造方法において、特に口金直上に静止混練器を位置させた場合にはナノファイバーが理論上無限に伸びた長繊維形状のナノファイバー集合体が得られる場合もある。   In addition, in the above-described production method, in particular, when a static kneader is positioned immediately above the mouthpiece, a nanofiber aggregate having a long fiber shape in which the nanofibers extend theoretically infinitely may be obtained.

また、上記製造方法で得られるナノファイバー集合体は紡績糸形状あるいは長繊維形状とできるが、これらは、ナノファイバー同士が1次元で配向した集合体が有限の長さで連続している、すなわち1次元に配向したナノファイバー集合体とできる。   In addition, the nanofiber aggregate obtained by the above manufacturing method can be in a spun yarn shape or a long fiber shape. In these, an aggregate in which nanofibers are one-dimensionally oriented is continuous with a finite length, that is, It can be a one-dimensionally oriented nanofiber aggregate.

また、このナノファイバー集合体は単糸直径が従来の超極細糸の1/10〜1/100以下であるため、比表面積が飛躍的にに大きくなるという特徴がある。このため、通常の超極細糸程度では見られなかったナノファイバー特有の性質を示す。   Further, since the nanofiber aggregate has a single yarn diameter of 1/10 to 1/100 or less of the conventional ultrafine yarn, the specific surface area is dramatically increased. For this reason, it shows properties unique to nanofibers, which were not found in ordinary ultrafine yarns.

例えば、吸着特性の大幅な向上が挙げられる。実際に、水蒸気の吸着、すなわち吸湿性能を本発明により得られるポリアミドナノファイバー集合体と通常のポリアミド超極細糸で比較してみると、通常のポリアミド超極細糸では吸湿率が2%程度なのに比べ本発明により得られるポリアミドナノファイバー集合体では吸湿率が6%に達する場合もあった。吸湿性能は衣料用途では快適性の点から非常に重要な特性である。もちろん、水蒸気以外にも塩素やトリハロメタン、環境ホルモン、重金属化合物のような有害物質の吸着特性にも優れている。さらに、芳香物質や有用物質の叙法性にも優れている。   For example, a significant improvement in adsorption characteristics can be mentioned. In fact, when comparing the adsorption of water vapor, that is, the moisture absorption performance of the polyamide nanofiber aggregate obtained by the present invention with the ordinary polyamide ultra-fine yarn, the moisture absorption rate of the ordinary polyamide ultra-fine yarn is about 2%. In the polyamide nanofiber aggregate obtained according to the present invention, the moisture absorption rate sometimes reached 6%. Moisture absorption performance is a very important property from the viewpoint of comfort in clothing applications. Of course, in addition to water vapor, it is also excellent in the adsorption characteristics of harmful substances such as chlorine, trihalomethane, environmental hormones and heavy metal compounds. Furthermore, it is excellent in the formalism of aromatic substances and useful substances.

さらに、本発明により得られるナノファイバー集合体では、ナノファイバー同士に多数の数nm〜数百nm程度の隙間が生まれるため、超多孔性材料のような特異的な性質を示す場合もある。   Furthermore, in the nanofiber aggregate obtained according to the present invention, a large number of gaps of several nm to several hundred nm are generated between the nanofibers, so that the nanofiber aggregate may exhibit a specific property like a superporous material.

例えば、本発明により得られるナノファイバー集合体では、含水性、保水性が高くなるのみならず、以下のような特異な性質を示す場合がある。すなわち、通常のポリアミド超極細糸では吸水による糸長手方向の膨潤率が3%程度なのに比べ本発明により得られるポリアミドナノファイバー集合体では膨潤率が7%に達する場合もある。しかもこの吸水膨潤は乾燥すると元の長さに戻るため、可逆的な寸法変化である。この可逆的な吸水/乾燥による糸長手方向の膨潤は布帛のソイルリリース性の観点からは重要な特性であり、5%以上であることが好ましい。ここで、ソイルリリース性とは、洗濯によって汚れが落ちやすい性質のことを言う。これは上述したように、吸水することによりナノファイバー集合体が糸長手方向に吸水膨潤し織物や編物中の繊維間空隙(織目、編目)を拡げるため、繊維間に付着した汚れが容易に除去できるためである。   For example, the nanofiber aggregate obtained according to the present invention may exhibit not only high water content and high water retention but also the following unique properties. That is, the swelling rate of the polyamide nanofiber aggregate obtained by the present invention may reach 7% in some cases, while the swelling rate in the yarn longitudinal direction due to water absorption is about 3% in ordinary polyamide ultrafine yarn. Moreover, since the water absorption swelling returns to its original length when dried, it is a reversible dimensional change. This swelling in the yarn longitudinal direction due to reversible water absorption / drying is an important characteristic from the viewpoint of the soil release property of the fabric, and is preferably 5% or more. Here, the soil release property means a property that dirt is easily removed by washing. This is because, as described above, the nanofiber aggregate absorbs and swells in the longitudinal direction of the yarn by absorbing water, thereby expanding the inter-fiber voids (texture, stitch) in the woven or knitted fabric. This is because it can be removed.

このように、本発明のポリマーアロイ繊維から得られるナノファイバー集合体は優れた吸着・吸収特性を示すため、様々な機能分性薬剤を坦持することができる。ここで言う機能性薬剤とは、繊維の機能を向上し得る物質のことを言い、例えば吸湿剤、保湿剤、難燃剤、撥水剤、保冷剤、保温剤もしくは平滑剤なども対象として用いることができる。あるいは、その性状も、微粒子状のものだけに限られず、ポリフェノールやアミノ酸、タンパク質、カプサイシン、ビタミン類等の健康・美容促進のための薬剤や、水虫等の皮膚疾患の薬剤なども対象として用いることができる。さらには、消毒剤、抗炎症剤、鎮痛剤等の医薬品なども用いることができる。あるいは、さらにポリアミンや光触媒ナノ粒子というような有害物質の吸着・分解するための薬剤を用いることもできるものである。   As described above, the nanofiber aggregate obtained from the polymer alloy fiber of the present invention exhibits excellent adsorption / absorption characteristics, and thus can carry various functionally separated drugs. The functional agent as used herein refers to a substance that can improve the function of the fiber. Can be. Alternatively, its properties are not limited to those in the form of fine particles, and it can be used for drugs for promoting health and beauty such as polyphenols, amino acids, proteins, capsaicin, and vitamins, and drugs for skin diseases such as athlete's foot. Can be. Further, pharmaceuticals such as disinfectants, anti-inflammatory agents, and analgesics can be used. Alternatively, an agent for adsorbing and decomposing harmful substances such as polyamines and photocatalytic nanoparticles can be used.

さらに機能性薬剤の担持方法にも特に制限はなく、浴中処理やコーティング等により後加工でナノファイバーに担持させても良いし、ナノファイバーの前駆体であるポリマーアロイ繊維に含有させておいても良い。また、機能性薬剤はそのものを直接ナノファイバー集合体に担持させても良いし、機能性薬剤の前駆体物質をナノファイバーに担持させた後、その前駆体物質を所望の機能性薬剤に変換することもできる。後者の方法のより具体的な例としては、ナノファイバー集合体に有機モノマーを含浸させ、その後それを重合する方法や、易溶解性物質を浴中処理によりナノファイバー集合体に含浸させた後、酸化還元反応や配位子置換、カウンターイオン交換反応などにより難溶解性にする方法などがある。また、紡糸過程で機能性薬剤の前駆体を担持させる場合には、紡糸過程では耐熱性の高い分子構造にしておき、後加工により機能性が発現する分子構造に戻すという方法も採用可能である。   Furthermore, there is no particular limitation on the method of supporting the functional agent, and the functional agent may be supported on the nanofiber by post-processing such as treatment in a bath or coating, or may be contained in a polymer alloy fiber that is a precursor of the nanofiber. Is also good. In addition, the functional drug may be directly supported on the nanofiber aggregate, or after the precursor substance of the functional drug is supported on the nanofiber, the precursor substance is converted into a desired functional drug. You can also. As a more specific example of the latter method, a nanofiber aggregate is impregnated with an organic monomer, and then a method of polymerizing it, or after impregnating the nanofiber aggregate with a readily soluble substance in a bath, There is a method of making it hardly soluble by an oxidation-reduction reaction, ligand substitution, counter ion exchange reaction, or the like. In addition, when a precursor of a functional drug is supported in the spinning process, a method of preparing a molecular structure having high heat resistance in the spinning process and returning to a molecular structure in which functionality is exhibited by post-processing can be adopted. .

また、上記ナノファイバー集合体は様々な機能性分子を取り込むだけでなく、徐放性にも優れている。このため、機能性分子や薬の優れた徐放性基材としたり、ドラッグデリバリーシステム等にも応用可能であることを意味しているのである。   Further, the nanofiber aggregate not only incorporates various functional molecules but also has excellent sustained release properties. This means that it can be used as an excellent sustained-release substrate for functional molecules and drugs, and can be applied to drug delivery systems and the like.

なお、本発明により得られるナノファイバー集合体を衣料用途に用いると、絹のようなきしみ感やレーヨンのようなドライ感のある優れた風合いの繊維製品を得ることができる。さらに、バフィング等により、ナノファイバー集合体からナノファイバーを開繊させることにより、従来では考えられなかった超ピーチ感や人肌のようなしっとりとしたタッチの優れた風合いの繊維製品を得ることもできる。さらに、水等の液体を吸収することで特異な粘着性を示す場合もある。   In addition, when the nanofiber aggregate obtained by the present invention is used for clothing, a fiber product having an excellent texture with a squeaky feeling like silk or a dry feeling like rayon can be obtained. In addition, by opening the nanofibers from the nanofiber aggregate by buffing, etc., it is possible to obtain fiber products with a superb peach feeling and an excellent texture with a moist touch like human skin, which was not previously thought possible. it can. Furthermore, there is a case where a specific tackiness is exhibited by absorbing a liquid such as water.

本発明により得られるナノファイバー集合体の強度は1cN/dtex以上であれば繊維製品の力学物性を向上できるため好ましい。ナノファイバー集合体の強度は、より好ましくは2cN/dtex以上である。   The strength of the nanofiber aggregate obtained by the present invention is preferably 1 cN / dtex or more, because the mechanical properties of the fiber product can be improved. The strength of the nanofiber aggregate is more preferably 2 cN / dtex or more.

本発明により得られるナノファイバー集合体は、従来とは異なり、長繊維、短繊維、不織布、熱成形体等様々な繊維製品形態を採ることができる。本発明により得られるナノファイバー集合体やナノファイバーを少なくとも一部に有する繊維製品、またそれらの機能加工品は、糸、綿(わた)、パッケージ、織物、編物、フェルト、不織布、熱成形体、人工皮革などの中間製品とすることができる。また衣料(シャツやブルゾン、パンツ、コート等)、衣料資材、インテリア製品(カーテン、カーペット、マット、壁紙、家具など)、車輌内装製品(マット、カーシート、天井材など)、生活資材(ワイピングクロス、化粧用品、健康用品、玩具など)などの生活用途や、環境・産業資材用途(建材、研磨布、フィルター、有害物質除去製品など)やIT部品用途(センサー部品、電池部品、ロボット部品など)や、メディカル用途(血液フィルター、体外循環カラム、スキャフォールド(scaffold)、絆創膏(wound dressingなど)、人工血管、薬剤徐放体など)に好適である。   The nanofiber aggregate obtained by the present invention can take various fiber product forms, such as long fibers, short fibers, nonwoven fabrics, and thermoformed bodies, unlike the conventional one. The nanofiber aggregate and the fiber product having at least a part of the nanofiber obtained by the present invention, and their functionally processed products include yarn, cotton (cotton), package, woven fabric, knitted fabric, felt, nonwoven fabric, thermoformed product, It can be an intermediate product such as artificial leather. Also, clothing (shirts, blousons, pants, coats, etc.), clothing materials, interior products (curtains, carpets, mats, wallpapers, furniture, etc.), vehicle interior products (mats, car seats, ceiling materials, etc.), living materials (wiping cloths) , Cosmetics, health supplies, toys, etc.), environmental and industrial materials (building materials, polishing cloths, filters, products removing harmful substances, etc.) and IT parts (sensor parts, battery parts, robot parts, etc.) Also, it is suitable for medical applications (blood filters, extracorporeal circulation columns, scaffolds, bandages (such as wound dressing), artificial blood vessels, sustained-release drugs, etc.).

以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, the following method was used for the measuring method in an Example.

A.ポリマーの溶融粘度
東洋精機キャピログラフ1Bによりポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
A. Melt viscosity of polymer The melt viscosity of the polymer was measured by Toyo Seiki Capillograph 1B. In addition, the storage time of the polymer from the sample introduction to the measurement start was 10 minutes.

B.融点
Perkin Elmaer DSC−7を用いて2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。この時の昇温速度は16℃/分、サンプル量は10mgとした。
B. Melting point The peak top temperature at which the polymer melted at 2nd run using Perkin Elmaer DSC-7 was defined as the melting point of the polymer. At this time, the heating rate was 16 ° C./min, and the sample amount was 10 mg.

C.口金吐出孔での剪断応力
口金孔壁とポリマーとの間の剪断応力はハーゲンポワズユの式(剪断応力(dyne/cm2)=R×P/2L)から計算する。ここでR:口金吐出孔の半径(cm)、P:口金吐出孔での圧力損失(dyne/cm2)、L:口金吐出孔長(cm)である。またP=(8LηQ/πR4)であり、η:ポリマー粘度(poise)、Q:吐出量(cm3/sec)、π:円周率である。ここで、ポリマー粘度は口金吐出孔の温度、剪断速度での値を用いる。
C. Shear stress at the die outlet hole The shear stress between the die hole wall and the polymer is calculated from Hagen-Poiseu's equation (shear stress (dyne / cm 2 ) = R × P / 2L). Here, R: radius of the base discharge hole (cm), P: pressure loss at the base discharge hole (dyne / cm 2 ), and L: base discharge hole length (cm). P = (8LηQ / πR 4 ), η: polymer viscosity (poise), Q: discharge rate (cm 3 / sec), π: pi. Here, as the polymer viscosity, values at the temperature of the mouthpiece discharge hole and the shear rate are used.

D.ポリマーアロイ繊維のウースター斑(U%)
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
D. Worcester spots of polymer alloy fiber (U%)
The measurement was performed in a normal mode at a yarn feeding speed of 200 m / min using USTER TESTER 4 manufactured by Zellbeger Worcester Co., Ltd.

E.TEMによる繊維横断面観察
繊維の横断面方向に超薄切片を切り出し、透過型電子顕微鏡(TEM)で繊維横断面を観察した。また、必要に応じて金属染色を施した。
E. FIG. Observation of cross section of fiber by TEM An ultrathin section was cut out in the cross section direction of the fiber, and the cross section of the fiber was observed with a transmission electron microscope (TEM). In addition, metal staining was performed as necessary.

TEM装置 : 日立社製H−7100FA型
F.島ドメインの数平均直径
島ドメインの数平均直径は以下のようにして求める。すなわち、TEMによる繊維横断面写真を画像処理ソフト(WINROOF)を用いて島ドメインの円換算による直径を求め、それの単純な平均値を求めた。この時、平均に用いる島ドメイン数は同一横断面内で無作為抽出した300以上の島ドメインを測定したが、これを5カ所で行い、合計1500個以上の島ドメイン直径を用いて計算した。
TEM equipment: H-7100FA type manufactured by Hitachi, Ltd. Number average diameter of island domain The number average diameter of the island domain is obtained as follows. That is, the diameter of the island cross-section of the fiber cross-sectional photograph by the TEM was calculated using image processing software (WINROOF), and the simple average value was calculated. At this time, the number of island domains used for averaging was obtained by measuring 300 or more island domains randomly extracted in the same cross section, and was calculated at five locations, and calculated using a total of 1500 or more island domain diameters.

G.島ドメインの直径ばらつき
島ドメインの直径ばらつきは、以下のようにして評価する。すなわち、上記数平均直径を求める際に使用したデータを用い、島ドメインそれぞれの横断面面積をSiとしその総和を総面積(S1+S2+…+Sn)とする。また、同じ直径(面積)を持つ島ドメインの頻度(個数)を数え、その積を総繊度で割ったものをその島ドメインの面積比率とする。
G. FIG. Diameter variation of island domain Diameter variation of island domain is evaluated as follows. That is, using the data used in obtaining the number average diameter, the cross-sectional area of each island domain is defined as Si , and the sum thereof is defined as a total area (S 1 + S 2 +... + S n ). Further, the frequency (number) of island domains having the same diameter (area) is counted, and the product obtained by dividing the product by the total fineness is defined as the area ratio of the island domain.

H.島ドメインの直径ばらつき幅
島ドメインの直径ばらつき幅は以下のようにして評価する。すなわち、島ドメインの数平均直径の中心値付近あるいは面積比率が高い部分で島ドメイン直径差が30nmの幅に入る島ドメインの面積比率で評価する。これも上記数平均直径を求める際に使用したデータを用いた。実施例表2、5、8、11に記載の直径範囲は島ドメイン直径差30nmの範囲を示し、例えば55〜84nmとは55nm以上84nm以下の島ドメイン直径差30nmの範囲を示している。また、面積比率はこの直径範囲の島ドメインの面積比率を示している。
H. Diameter variation width of island domain The diameter variation width of the island domain is evaluated as follows. That is, the evaluation is made based on the area ratio of the island domains near the center value of the number average diameter of the island domains or in a portion where the area ratio is high, where the island domain diameter difference falls within a width of 30 nm. The data used for obtaining the number average diameter was also used for this. The diameter ranges described in Examples Tables 2, 5, 8, and 11 indicate the range of the island domain diameter difference of 30 nm. For example, 55 to 84 nm indicates the range of the island domain diameter difference of 55 nm to 84 nm of 30 nm. The area ratio indicates the area ratio of the island domains in this diameter range.

I.SEM観察
繊維に白金−パラジウム合金を蒸着し、走査型電子顕微鏡で繊維側面を観察した。
I. SEM observation A platinum-palladium alloy was vapor-deposited on the fiber, and the fiber side surface was observed with a scanning electron microscope.

SEM装置 : 日立社製S−4000型
J.力学特性
ポリマーアロイ繊維では100m、ナノファイバー集合体では10mの重量をn=5回測定し、これの平均値からナノファイバー集合体の繊度(dtex)を求めた。そして、室温(25℃)で、初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
SEM device: Hitachi S-4000 type Mechanical Properties A weight of 100 m for the polymer alloy fiber and 10 m for the nanofiber aggregate were measured n = 5 times, and the fineness (dtex) of the nanofiber aggregate was determined from the average value. Then, at room temperature (25 ° C.), the initial sample length was set to 200 mm and the tensile speed was set to 200 mm / min, and the load-elongation curve was determined under the conditions specified in JIS L1013. Next, the load value at break was divided by the initial fineness, which was taken as the strength, and the elongation at break was divided by the initial sample length, and the elongation curve was determined as the elongation.

K.吸湿性(ΔMR)
サンプルを秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算を行う。
K. Hygroscopicity (ΔMR)
A sample is weighed in a weighing bottle in an amount of about 1 to 2 g, kept at 110 ° C. for 2 hours, dried and weighed (W0). Then, the target substance is kept at 20 ° C. and a relative humidity of 65% for 24 hours and then weighed. (W65). Then, it is kept at 30 ° C. and a relative humidity of 90% for 24 hours, and then its weight is measured (W90). Then, calculation is performed according to the following equation.

MR65=[(W65−W0)/W0]×100% ・・・・・ (1)
MR90=[(W90−W0)/W0]×100% ・・・・・ (2)
ΔMR=MR90−MR65 ・・・・・・・・・・・・ (3)
L.可逆的水膨潤性および糸長手方向の膨潤率
繊維を60℃で4時間乾燥した後、原長(L0)を測定する。そしてこの繊維を25℃の水に10分間浸漬した後、水から取り出し素早く処理後長(L1)を測定する。さらにこの繊維を60℃で4時間乾燥後、乾燥後長(L2)を測定する。そして、乾燥/水浸漬の3回繰り返し、3回目の糸長手方向の膨潤率が1回目の糸長手方向の膨潤率に対して50%以上であれば可逆的水膨潤性を有しているとした。糸長手方向の膨潤率は以下のようにして計算した。なお、繊維の長さは、繊維の2カ所に色つきの糸を結びその間の距離を測定した。この距離は約100mmとなるようにした。
MR65 = [(W65−W0) / W0] × 100% (1)
MR90 = [(W90−W0) / W0] × 100% (2)
ΔMR = MR90-MR65 (3)
L. Reversible water swellability and swelling ratio in the yarn longitudinal direction After drying the fiber at 60 ° C. for 4 hours, the original length (L0) is measured. Then, the fiber is immersed in water at 25 ° C. for 10 minutes, taken out of the water, and quickly measured for the length after treatment (L1). Further, after drying the fiber at 60 ° C. for 4 hours, the length (L2) after drying is measured. Then, drying / water immersion is repeated three times, and if the swelling ratio in the third yarn longitudinal direction is 50% or more of the swelling ratio in the first yarn longitudinal direction, the material has reversible water swellability. did. The swelling ratio in the longitudinal direction of the yarn was calculated as follows. The length of the fiber was measured by connecting a colored yarn to two places of the fiber and measuring the distance between them. This distance was set to be about 100 mm.

糸長手方向の膨潤率(%)=((L1−L0)/L0)×100(%)
M.ポリマーの色調(b*値)
MINOLTA SPECTROPHOTOMETER CM-3700dでb*を測定した。このとき、光源としてはD65(色温度6504K)を用い、10°視野で測定を行った。
Swelling ratio (%) in the yarn longitudinal direction = ((L1−L0) / L0) × 100 (%)
M. Color tone of polymer (b * value)
B * was measured with MINOLTA SPECTROPHOTOMETER CM-3700d. At this time, D 65 (color temperature 6504K) was used as a light source, and the measurement was performed in a 10 ° visual field.

N.沸騰水収縮率
サンプルを周長1mの検尺機により10回巻きのカセとする。そして、総繊度の1/10の荷重をカセに吊した状態で原長(L0’)を測定する。その後、カセは荷重フリーの状態にして、98℃の沸騰水バスで15分間の処理を行い、カセを風乾させた後、原長と同様に総繊度の1/10の荷重下で処理後の長さ(L1’)を測定する。そして、以下の式にしたがい計算を行う。
N. Boiling water shrinkage ratio A sample is turned into a 10-turn scab with a measuring machine having a circumference of 1 m. Then, the original length (L0 ') is measured in a state where a load of 1/10 of the total fineness is hung on the scab. After that, the moss was put in a load-free state, treated in a boiling water bath at 98 ° C for 15 minutes, air-dried, and then treated under a load of 1/10 of the total fineness in the same manner as the original length. Measure the length (L1 ′). Then, calculation is performed according to the following equation.

沸騰水収縮率(%)=((L0’−L1’)/L0’)×100(%)
O.140℃乾熱収縮率
サンプルに10cm幅でマーキングを行い、荷重フリーの状態で140℃のオーブンで、15分間処理後に、マーキング間の長さ(L2’)を測定する。そして、以下の式にしたがい計算を行う。
Boiling water shrinkage (%) = ((L0′−L1 ′) / L0 ′) × 100 (%)
O. 140 ° C. Dry Heat Shrinkage Rate A sample is marked with a 10 cm width, and after treatment in a 140 ° C. oven for 15 minutes in a load-free state, the length (L2 ′) between the markings is measured. Then, calculation is performed according to the following equation.

140℃乾熱収縮率(%)=((L0’−L2’)/L0’)×100(%)
実施例1
溶融粘度53Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のアミン末端を酢酸で封鎖しアミン末端基量を5.0×10−5mol当量/gとしたN6(20重量%)と溶融粘度310Pa・s(262℃、剪断速度121.6sec−1)、融点225℃のイソフタル酸を8mol%、ビスフェノールAを4mol%共重合した融点225℃の共重合PET(80重量%)を2軸押し出し混練機で260℃で混練してb*値=4のポリマーアロイチップを得た。なお、この共重合PETの262℃、1216sec−1での溶融粘度は180Pa・sであった。このときの混練条件は以下のとおりであった。
140 ° C. dry heat shrinkage (%) = ((L0′−L2 ′) / L0 ′) × 100 (%)
Example 1
N6 (20 wt.%) Having a melt viscosity of 53 Pa · s (262 ° C, shear rate of 121.6 sec-1) and an amine terminal having a melting point of 220 ° C was blocked with acetic acid to make the amine terminal group amount 5.0 × 10 −5 mol equivalent / g. %), A melt viscosity of 310 Pa · s (262 ° C., a shear rate of 121.6 sec-1), a copolymer of PET having a melting point of 225 ° C. (80% by weight) obtained by copolymerizing 8 mol% of isophthalic acid having a melting point of 225 ° C. and 4 mol% of bisphenol A. ) Was kneaded at 260 ° C. with a twin-screw extruder to obtain a polymer alloy chip having a b * value of 4. In addition, the melt viscosity of this copolymerized PET at 262 ° C. and 1216 sec-1 was 180 Pa · s. The kneading conditions at this time were as follows.

スクリュー型式 同方向完全噛合型 2条ネジ
スクリュー 直径37mm、有効長さ1670mm、L/D=45.1
混練部長さはスクリュー有効長さの28%
混練部はスクリュー有効長さの1/3より吐出側に位置させた。
Screw type Same direction perfect meshing type 2 thread screw Screw diameter 37mm, effective length 1670mm, L / D = 45.1
Kneading part length is 28% of screw effective length
The kneading section was positioned on the discharge side from 1/3 of the effective screw length.

途中3個所のバックフロー部有り
ポリマー供給 N6と共重合PETを別々に計量し、別々に混練機に供給した。
There are three backflow sections on the way. Polymer supply N6 and copolymerized PET were separately measured and separately supplied to a kneader.

温度 260℃
ベント 2個所
次に、このポリマーアロイチップを図12に示す紡糸機を用いて紡糸し、ポリマーアロイ繊維を得た。ポリマーアロイチップをホッパー1から、275℃の溶融部2で溶融し、紡糸温度280℃の紡糸パック4を含むスピンブロック3に導いた。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度262℃とした口金5から溶融紡糸した。この時、口金5としては図13に示すように吐出孔上部に直径0.3mmの計量部12を備えた、吐出孔径14が0.7mm、吐出孔長13が1.75mmのものを用いた。そして、この時の単孔あたりの吐出量は1.0g/分とした。この時の口金孔壁とポリマーの間の剪断応力は0.058MPa(ポリマーアロイの粘度は140Pa・s、262℃、剪断速度416sec−1)と充分低いものであった。さらに、口金下面から冷却開始点(チムニー6の上端部)までの距離は9cmであった。吐出された糸条7は20℃の冷却風で1mにわたって冷却固化され、口金5から1.8m下方に設置した給油ガイド8で給油された後、非加熱の第1引き取りローラー9および第2引き取りローラー10を介して900m/分で巻き取り速度で巻き取られ、6kg巻きの未延伸糸パッケージ11を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れは0回であった。そして、ポリマーアロイ繊維の未延伸糸を、図14に示す延伸装置によって、延伸熱処理した。未延伸糸15を、フィードローラー16によって供給し、第1ホットローラー17、第2ホットローラー18、第3ローラー19によって延伸熱処理し、延伸糸20を得た。この時、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とした。第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.2倍とした。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度4.0cN/dtex、伸度35%、U%=1.7%、沸騰水収縮率11%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEMで観察したところ、共重合PET(薄い部分)が海、N6(濃い部分)が島の海島構造を示し(図1)、N6島ドメインの数平均による直径は53nmであり、N6がナノサイズで均一に分散化したポリマーアロイ繊維が得られた。TEM写真から解析した島ドメインの数平均直径のヒストグラムを図2(直径vs個数)、図3(直径vs面積比率)に示すが、この時、直径で10nm刻みで個数(頻度)および面積比率を数えた。直径で10nm刻みとは、例えば直径45〜54nmのものは直径50nm、また島ドメイン直径65〜74nmのものは直径70nmとして数えたことを意味している。なお、ポリマーアロイ繊維の物性は表2に示した。
Temperature 260 ° C
Two vents Next, this polymer alloy chip was spun using a spinning machine shown in FIG. 12 to obtain a polymer alloy fiber. The polymer alloy chip was melted from the hopper 1 in the melting section 2 at 275 ° C., and was guided to a spin block 3 including a spinning pack 4 at a spinning temperature of 280 ° C. Then, the polymer alloy melt was filtered with a metal nonwoven fabric having a critical filtration diameter of 15 μm, and then melt-spun from a die 5 having a die surface temperature of 262 ° C. At this time, as shown in FIG. 13, the base 5 was provided with a measuring section 12 having a diameter of 0.3 mm at the upper part of the discharge hole. . The discharge rate per single hole at this time was 1.0 g / min. At this time, the shear stress between the die wall and the polymer was 0.058 MPa (the viscosity of the polymer alloy was 140 Pa · s, 262 ° C., and the shear rate was 416 sec-1), which was sufficiently low. Further, the distance from the lower surface of the base to the cooling start point (upper end of the chimney 6) was 9 cm. The discharged yarn 7 is cooled and solidified for 1 m by cooling air at 20 ° C., and after being refueled by a refueling guide 8 installed 1.8 m below the base 5, the unheated first take-up roller 9 and second take-up The film was wound at a winding speed of 900 m / min through a roller 10 to obtain a 6 kg-wound undrawn yarn package 11. The spinnability at this time was good, and the number of yarn breaks during continuous spinning for 24 hours was 0. Then, the undrawn yarn of the polymer alloy fiber was subjected to a drawing heat treatment by a drawing device shown in FIG. The undrawn yarn 15 was supplied by a feed roller 16 and subjected to a drawing heat treatment by a first hot roller 17, a second hot roller 18, and a third roller 19 to obtain a drawn yarn 20. At this time, the temperature of the first hot roller 17 was 90 ° C., and the temperature of the second hot roller 18 was 130 ° C. The stretching ratio between the first hot roller 17 and the second hot roller 18 was 3.2 times. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength of 4.0 cN / dtex, elongation of 35%, U% = 1.7%, and boiling water shrinkage of 11%. When the cross section of the obtained polymer alloy fiber was observed by TEM, the copolymerized PET (thin portion) showed the sea and N6 (dark portion) showed the island-in-sea structure (FIG. 1). The average diameter was 53 nm, and a polymer alloy fiber in which N6 was nano-sized and uniformly dispersed was obtained. The histogram of the number average diameter of the island domain analyzed from the TEM photograph is shown in FIG. 2 (diameter vs. number) and FIG. 3 (diameter vs. area ratio). I counted. The step of 10 nm in diameter means that, for example, a diameter of 45 to 54 nm is counted as 50 nm, and an island domain of 65 to 74 nm is counted as 70 nm. Table 2 shows the physical properties of the polymer alloy fibers.

ここで得られたポリマーアロイ繊維を用いて丸編みを作製し、これを3%の水酸化ナトリウム水溶液(90℃、浴比1:100)で2時間浸漬することでポリマーアロイ繊維中の共重合PETの99%以上を加水分解除去した。この結果得られた、N6単独糸からなる丸編みは、海成分である共重合PETが除去されたにもかかわらず、マクロに見るとあたかも長繊維のように連続しており、丸編み形状を保っていた。そして、この丸編みは通常のN6繊維からなる丸編みとは全く異なり、ナイロン特有の「ヌメリ感」が無く、逆に絹のような「きしみ感」やレーヨンのような「ドライ感」を有する物であった。   A circular knit is prepared using the polymer alloy fiber obtained here, and the circular knit is immersed in a 3% aqueous sodium hydroxide solution (90 ° C., bath ratio 1: 100) for 2 hours to copolymerize the polymer alloy fiber. More than 99% of PET was hydrolyzed and removed. The resulting circular knitted yarn composed of N6 single yarn is macroscopically continuous as if it were a long fiber, despite the removal of the copolymerized PET as a sea component. I was keeping it. And, this circular knitting is completely different from the circular knitting made of ordinary N6 fiber, and has no "slimy feeling" peculiar to nylon, but has a "squeaky feeling" like silk and a "dry feeling" like rayon. It was a thing.

このN6単独糸からなる丸編みから糸を引きだし、まず光学顕微鏡で繊維側面観察を行ったところ、アルカリ処理前の繊維に比べ繊維径が約2/3程度になっており、海ポリマーを除去することによって繊維半径方向に収縮が起こっていることが分かった(図4)。次に、これの繊維側面をSEMにより観察したところ、この糸は1本の糸ではなく無数のナノファイバーが凝集しながら繋がった紡績糸形状のナノファイバー集合体であることが分かった(図5)。また、このN6ナノファイバー集合体のナノファイバー同士の間隔は数nm〜数100nm程度であり、ナノファイバー間に極めて微小な空隙が存在していた。さらにこれの繊維横断面をTEMによって観察した結果を図6に示すが、このN6ナノファイバーは単繊維直径が数十nm程度であることがわかった。そして、ナノファイバーの数平均による単繊維直径は56nm(3×10−5dtex)と従来にない細さであった。また、単繊維繊度が1×10−7〜1×10−4dtexの単繊維の繊度比率は99%であった。特に単繊維直径で55〜84nmの間に入る単繊維の繊度比率は71%であり、単繊維繊度ばらつきはごく小さいものであった。なお、繊度比率はナノファイバー直径から算出され、ポリマーアロイ繊維での面積比率に相当するものである。なお、ナノファイバーの直径は表3示した。   The yarn was pulled out from the circular knit consisting of the N6 single yarn, and the side of the fiber was first observed with an optical microscope. As a result, the fiber diameter was about 2/3 that of the fiber before the alkali treatment, and the sea polymer was removed. This proved that shrinkage occurred in the fiber radial direction (FIG. 4). Next, when the fiber side surface was observed by SEM, it was found that the yarn was not a single yarn but a spun yarn-shaped nanofiber aggregate in which countless nanofibers were connected while being aggregated (FIG. 5). ). Further, the interval between the nanofibers of the N6 nanofiber aggregate was about several nm to several hundred nm, and extremely minute voids existed between the nanofibers. FIG. 6 shows the result of TEM observation of the cross section of the fiber. It was found that the N6 nanofiber had a single fiber diameter of about several tens nm. The single fiber diameter based on the number average of the nanofibers was 56 nm (3 × 10 −5 dtex), which was an unprecedented fineness. The fineness ratio of a single fiber having a single fiber fineness of 1 × 10 −7 to 1 × 10 −4 dtex was 99%. In particular, the fineness ratio of a single fiber having a single fiber diameter of 55 to 84 nm was 71%, and the single fiber fineness variation was extremely small. Note that the fineness ratio is calculated from the nanofiber diameter and corresponds to the area ratio in the polymer alloy fiber. Table 3 shows the diameter of the nanofiber.

また、このN6単独からなる丸編みの吸湿率(ΔMR)を測定したところ、6%と綿を凌駕する優れた吸湿性を示した。さらに、このN6ナノファイバー集合体からなる糸を丸編みから抜き出し、種々の物性を測定した。これの水に対する糸長手方向の膨潤性を調べたところ、可逆的に吸水膨潤/乾燥収縮を繰り返した(図7)。糸長手方向の吸水膨潤率は7%と、通常のN6繊維の3%に比べはるかに高い値であった。また、このN6ナノファイバー集合体からなる糸の力学特性を測定したところ、強度2.0cN/dtex、伸度50%であった。   Further, when the moisture absorption (ΔMR) of the circular knitting made of N6 alone was measured, it was 6%, showing excellent moisture absorption superior to cotton. Further, a yarn composed of the N6 nanofiber aggregate was extracted from the circular knitting, and various physical properties were measured. When the swelling property in the longitudinal direction of the yarn with respect to water was examined, water absorption swelling / drying shrinkage was reversibly repeated (FIG. 7). The water absorption swelling ratio in the yarn longitudinal direction was 7%, which was a much higher value than 3% of ordinary N6 fiber. When the mechanical properties of the yarns comprising the N6 nanofiber aggregate were measured, the strength was 2.0 cN / dtex and the elongation was 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例2
N6を溶融粘度212Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のアミン末端を酢酸で封鎖しアミン末端基量を5.0×10−5mol当量/gとしたN6(20重量%)とした以外は、実施例1と同様にして2軸押出混練機を用いb*値=4のポリマーアロイチップを得た。そして、単孔あたりの吐出量は1.0g/分、口金孔壁とポリマーの間の剪断応力は0.071MPa(ポリマーアロイの粘度は170Pa・s、262℃、剪断速度416sec−1)とした以外は実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これを延伸倍率を3.0倍として、やはり実施例1と同様に延伸し、128dtex、36フィラメント、強度4.1cN/dtex、伸度37%、U%=1.2%、沸騰水収縮率11%のの優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は55nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。なお、ポリマーアロイ繊維の物性は表2に示した。
Example 2
N6 was melted at a viscosity of 212 Pa · s (262 ° C., shear rate 121.6 sec-1), and the amine terminal having a melting point of 220 ° C. was blocked with acetic acid to make the amine terminal group amount 5.0 × 10 −5 mol equivalent / g. 20 wt%), and a polymer alloy chip having a b * value of 4 was obtained using a twin-screw extruder in the same manner as in Example 1. The discharge rate per hole was 1.0 g / min, and the shear stress between the die hole wall and the polymer was 0.071 MPa (the viscosity of the polymer alloy was 170 Pa · s, 262 ° C., and the shear rate was 416 sec-1). Except for the above, melt spinning was carried out in the same manner as in Example 1 to obtain a polymer alloy undrawn yarn. The spinnability at this time was good, and the breakage during continuous spinning for 24 hours was zero. Then, the film was stretched in the same manner as in Example 1 at a stretch ratio of 3.0 times, and 128 dtex, 36 filaments, strength 4.1 cN / dtex, elongation 37%, U% = 1.2%, boiling water A polymer alloy fiber having excellent properties with a shrinkage of 11% was obtained. When the cross section of the obtained polymer alloy fiber was observed with a TEM, as in Example 1, the copolymerized PET showed the sea, N6 showed the island-in-sea structure, the number-average diameter of the island N6 was 55 nm, and N6 was the number-average diameter. An ultrafinely dispersed polymer alloy fiber was obtained. Table 2 shows the physical properties of the polymer alloy fibers.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は60nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。なお、ナノファイバーの直径は表3に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Furthermore, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 60 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. Table 3 shows the diameters of the nanofibers.

このN6ナノファイバー集合体からなる糸は、強度2.2cN/dtex、伸度50%であった。   The yarn composed of the N6 nanofiber aggregate had a strength of 2.2 cN / dtex and an elongation of 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例3
N6を溶融粘度500Pa・s(262℃、剪断速度121.6sec-1)、融点220℃のN6(20重量%)として実施例2と同様に溶融紡糸を行った。この時の口金孔壁とポリマーの間の剪断応力は0.083MPa(ポリマーアロイの粘度は200Pa・s、262℃、416sec-1)として実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これをやはり実施例2と同様に延伸・熱処理して128dtex、36フィラメント、強度4.5cN/dtex、伸度37%の、U%=1.9%、沸騰水収縮率12%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は60nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表2に示した。
Example 3
Melt spinning was performed in the same manner as in Example 2 except that N6 was NPa (20% by weight) having a melt viscosity of 500 Pa · s (262 ° C., a shear rate of 121.6 sec −1 ) and a melting point of 220 ° C. At this time, melt spinning was performed in the same manner as in Example 1 except that the shear stress between the die hole wall and the polymer was 0.083 MPa (viscosity of the polymer alloy was 200 Pa · s, 262 ° C., 416 sec −1 ), and the polymer alloy was not drawn. Yarn was obtained. The spinnability at this time was good, and the breakage during continuous spinning for 24 hours was zero. This was stretched and heat-treated in the same manner as in Example 2 to obtain 128 dtex, 36 filaments, strength 4.5 cN / dtex, elongation 37%, U% = 1.9%, and boiling water shrinkage 12%. A polymer alloy fiber having the above characteristics was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, as in Example 1, the copolymerized PET showed the sea, N6 showed the islands-in-the-sea structure, the number-average diameter of the islands N6 was 60 nm, and N6 was the number-average diameter. An ultrafinely dispersed polymer alloy fiber was obtained. Table 2 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は65nm(4×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。なお、ナノファイバーの直径は表3に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Further, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 65 nm (4 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. Table 3 shows the diameters of the nanofibers.

このN6ナノファイバー集合体からなる糸は、強度2.4cN/dtex、伸度50%であった。   The yarn composed of the N6 nanofiber aggregate had a strength of 2.4 cN / dtex and an elongation of 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例4
N6をブレンド比をポリマーアロイ全体に対し50重量%として、実施例3と同様に溶融紡糸を行った。この時の口金孔壁とポリマーの間の剪断応力は0.042MPaとして実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れはゼロであった。そして、これをやはり実施例2と同様に延伸・熱処理して128dtex、36フィラメント、強度4.3cN/dtex、伸度37%、U%=2.5%、沸騰水収縮率13%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は80nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。
Example 4
Melt spinning was carried out in the same manner as in Example 3, except that the blending ratio of N6 was 50% by weight based on the whole polymer alloy. Melt spinning was performed in the same manner as in Example 1 except that the shear stress between the die hole wall and the polymer was 0.042 MPa, and a polymer alloy undrawn yarn was obtained. The spinnability at this time was good, and the breakage during continuous spinning for 24 hours was zero. This was stretched and heat-treated in the same manner as in Example 2 to obtain an excellent 128 dtex, 36 filaments, strength 4.3 cN / dtex, elongation 37%, U% = 2.5%, and boiling water shrinkage 13%. A polymer alloy fiber having properties was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, as in Example 1, the copolymerized PET was sea, N6 was a sea-island structure of islands, the number-average diameter of the island N6 was 80 nm, and N6 was An ultrafinely dispersed polymer alloy fiber was obtained.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。ただし、この時は140℃、張力下で乾燥を行った。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は84nm(6×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. However, at this time, drying was performed at 140 ° C. under tension. Further, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter by the number average of the nanofibers was 84 nm (6 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small.

また、このN6ナノファイバー集合体からなる糸は、強度2.6cN/dtex、伸度50%であった。   The yarn made of the N6 nanofiber aggregate had a strength of 2.6 cN / dtex and an elongation of 50%.

比較例1
溶融粘度180Pa・s(290℃、剪断速度121.6sec-1)、融点255℃のPETを島成分に、溶融粘度100Pa・s(290℃、剪断速度121.6sec-1)、ビカット軟化温度107℃のポリスチレン(PS)を海成分に用いて、特開昭53−106872号公報の実施例1記載のように海島複合糸を得た。島ドメインの数平均直径は2.0μmと大きいものであった。そして、これをやはり特開昭53−106872号公報の実施例記載のようにトリクロロエチレン処理によりPSを99%以上除去して超極細糸を得た。これの繊維横断面をTEM観察したところ、超極細糸の単糸直径は2.0μm(0.04dtex)と大きいものであった。
Comparative Example 1
Melt viscosity: 180 Pa · s (290 ° C., shear rate: 121.6 sec −1 ), PET having a melting point of 255 ° C. as an island component, melt viscosity: 100 Pa · s (290 ° C., shear rate: 121.6 sec −1 ), Vicat softening temperature: 107 A sea-island composite yarn was obtained as described in Example 1 of JP-A-53-106872 using polystyrene (PS) at a temperature of 0 ° C. as a sea component. The number average diameter of the island domains was as large as 2.0 μm. Then, as described in Examples of JP-A-53-106872, PS was removed by 99% or more by trichlorethylene treatment to obtain an ultrafine thread. When the cross section of the fiber was observed with a TEM, the single yarn diameter of the ultrafine yarn was as large as 2.0 μm (0.04 dtex).

比較例2
溶融粘度50Pa・s(280℃、121.6sec-1)、融点220℃のN6と溶融粘度210Pa・s(280℃、121.6sec-1)、融点255℃のPETをN6ブレンド比を20重量%となるようにチップブレンドした後、290℃で溶融し、紡糸温度を296℃、口金面温度280℃、口金孔数36、吐出孔径0.30mm、吐出孔長.50mmのずん胴口金として実施例1と同様に溶融紡糸を行い、紡糸速度1000m/分で未延伸糸を巻き取った。ただし、単純なチップブレンドであり、ポリマー同士の融点差も大きいためN6とPETのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、第1ホットローラー17の温度を85℃、延伸倍率3倍として実施例1と同様に延伸を行い、100dtex、36フィラメントの延伸糸を得た。これの島ドメインの数平均直径は1.0μmと大きいものであった。
Comparative Example 2
N6 having a melt viscosity of 50 Pa · s (280 ° C., 121.6 sec −1 ) and a melting point of 220 ° C. and a PET having a melt viscosity of 210 Pa · s (280 ° C., 121.6 sec −1 ) and a melting point of 255 ° C., and a N6 blend ratio of 20 wt. %, And then melted at 290 ° C., the spinning temperature is 296 ° C., the die surface temperature is 280 ° C., the number of die holes is 36, the discharge hole diameter is 0.30 mm, and the discharge hole length is. Melt spinning was performed in the same manner as in Example 1 as a 50 mm bobbin die, and an undrawn yarn was wound up at a spinning speed of 1000 m / min. However, since it is a simple chip blend and the melting point difference between the polymers is large, the blend unevenness of N6 and PET is large, and not only a large bals is generated under the mouthpiece, but also the spinnability is poor and the yarn is stably formed. Although it could not be wound up, a small amount of undrawn yarn was obtained, and the drawing was performed in the same manner as in Example 1 except that the temperature of the first hot roller 17 was set at 85 ° C. and the drawing ratio was 3 times, and 100 dtex and 36 filaments were drawn. Yarn was obtained. The number average diameter of the island domains was as large as 1.0 μm.

この糸を用いて実施例1と同様に丸編みとなし、やはりアルカリ処理によりPET成分を99%以上除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が400nm〜4μm(単糸繊度1×10-3〜1×10-1dtex)の超極細糸が生成していることを確認した。しかし、これの数平均による単糸繊度は9×10-3dtex(単糸直径1.0μm)と大きいものであった。さらにN6超極細糸の単糸繊度ばらつきも大きいものであった。 Using this yarn, circular knitting was performed in the same manner as in Example 1, and 99% or more of the PET component was also removed by alkali treatment. When the N6 single yarn was pulled out from the obtained circular knitting and the fiber cross-section was observed by TEM, the single yarn diameter was 400 nm to 4 μm (single yarn fineness: 1 × 10 −3 to 1 × 10 −1 dtex). It was confirmed that a yarn was formed. However, the single-fiber fineness by number average was as large as 9 × 10 −3 dtex (single-fiber diameter 1.0 μm). Furthermore, the variation in single-fiber fineness of the N6 ultra-fine yarn was large.

比較例3
溶融粘度395Pa・s(262℃、121.6sec-1)、融点220℃のN6と溶融粘度56Pa・s(262℃、121.6sec-1)、融点105℃のPEとをN6ブレンド比を65重量%となるようにチップブレンドした後、図15の装置を用い、1軸押出混練機21の温度を260℃として溶融した後、口金孔数12、吐出孔径0.30mm、吐出孔長.50mmのずん胴口金として実施例1と同様に溶融紡糸を行った。ただし、N6とPEのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、実施例1と同様に延伸・熱処理を行い、82dtex、12フィラメントの延伸糸を得た。この時の延伸倍率は2.0倍とした。これの島ドメインの数平均直径は1.0μmと大きいものであった。
Comparative Example 3
N6 having a melt viscosity of 395 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 220 ° C. and PE having a melt viscosity of 56 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 105 ° C. are mixed at an N6 blend ratio of 65. After the tip blending was performed so as to give a weight%, the temperature of the single-screw extruder 21 was melted at 260 ° C. using the apparatus shown in FIG. Melt spinning was carried out in the same manner as in Example 1 as a 50 mm tin cap. However, the blend unevenness of N6 and PE was large, and not only a large ball was generated under the mouthpiece, but also the spinnability was poor and the yarn could not be wound up stably. Then, drawing and heat treatment were performed in the same manner as in Example 1 to obtain a drawn yarn of 82 dtex and 12 filaments. The stretching ratio at this time was 2.0 times. The number average diameter of the island domains was as large as 1.0 μm.

この糸を用いて実施例1と同様に丸編みとなし、85℃のトルエンにより1時間以上PEを溶出処理しPEの99%以上を除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が500nm〜3μm(単糸繊度2×10-3〜8×10-2dtex)の超極細糸が生成していることを確認した。これの数平均による単糸繊度は9×10-3dtex(単糸直径1.0μm)と大きいものであった。さらにN6超極細糸の単糸繊度ばらつきも大きいものであった。 Using this yarn, circular knitting was performed in the same manner as in Example 1, and PE was eluted with toluene at 85 ° C. for 1 hour or more to remove 99% or more of the PE. When the N6 single yarn was pulled out from the obtained circular knitting and the fiber cross section was observed by TEM, the single yarn diameter was 500 nm to 3 μm (single yarn fineness: 2 × 10 −3 to 8 × 10 −2 dtex). It was confirmed that a yarn was formed. The single yarn fineness by number average was as large as 9 × 10 −3 dtex (single yarn diameter 1.0 μm). Furthermore, the variation in single-fiber fineness of the N6 ultra-fine yarn was large.

比較例4
溶融粘度150Pa・s(262℃、121.6sec-1)、融点220℃のN6と溶融粘度145Pa・s(262℃、121.6sec-1)、融点105℃のPEとをN6ブレンド比を20重量%となるようそれぞれのポリマーを計量しながら2軸押出混練機に導く図17の装置を用い、比較例3と同様に溶融紡糸を行った。ただし、N6とPEのブレンド斑が大きく、口金下で大きなバラスが発生しただけでなく、曳糸性にも乏しく、
安定して糸を巻き取ることはできなかったが、少量の未延伸糸を得て、実施例1と同様に延伸・熱処理を行い、82dtex、12フィラメントの延伸糸を得た。この時の延伸倍率は2.0倍とした。これの島ドメインの数平均直径は374nmと大きいものであった。さらに、島ドメイン直径のばらつきを図8、図9に示すが大きいものであった。
Comparative Example 4
A melt viscosity of 150 Pa · s (262 ° C., 121.6 sec −1 ), N6 having a melting point of 220 ° C. and a PE having a melt viscosity of 145 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 105 ° C. having an N6 blend ratio of 20 Melt spinning was performed in the same manner as in Comparative Example 3 using the apparatus shown in FIG. However, the blend spots of N6 and PE are large, and not only large bals occur under the mouthpiece, but also poor spinnability,
Although the yarn could not be wound up stably, a small amount of undrawn yarn was obtained and subjected to drawing and heat treatment in the same manner as in Example 1 to obtain a drawn yarn of 82 dtex and 12 filaments. The stretching ratio at this time was 2.0 times. The number average diameter of the island domains was as large as 374 nm. 8 and 9 show large variations in the island domain diameter.

この糸を用いて実施例1と同様に丸編みとなし、85℃のトルエンにより1時間以上PEを溶出処理しPEの99%以上を除去した。得られた丸編みからN6単独糸を引き出し、TEMにより繊維横断面観察を行ったところ、単糸直径が100nm〜1μm(単糸繊度9×10-5〜9×10-3dtex)の超極細糸が生成していることを確認した。しかし、これの数平均による単糸繊度は1×10-3dtex(単糸直径384nm)と大きいものであった。 Using this yarn, circular knitting was performed in the same manner as in Example 1, and PE was eluted with toluene at 85 ° C. for 1 hour or more to remove 99% or more of the PE. The N6 single yarn was pulled out from the obtained circular knitting, and the fiber cross section was observed by TEM. The ultrafine yarn having a single yarn diameter of 100 nm to 1 μm (single yarn fineness of 9 × 10 −5 to 9 × 10 −3 dtex) was obtained. It was confirmed that a yarn was formed. However, the single yarn fineness by number average was as large as 1 × 10 −3 dtex (single yarn diameter 384 nm).

比較例5
特公昭60−28922号公報第11図記載の紡糸パックおよび口金を用いて、比較例1記載のPSおよびPETを用い、比較例1と同様に海島複合糸を得た。この時、海島複合糸の島成分はPSとPETの2:1(重量比)のブレンドポリマー、海成分としてPSを用いた(海島複合比は重量比で1:1)。具体的には該公報第11図においてA成分をPET、BおよびC成分をPSとした。これの繊維横断面を観察したところ、最小で直径100nm程度の島ドメインもごく微量存在したが、PS中へのPETの分散が悪いため、数平均直径は316nmと大きいものであった。さらに、島ドメイン直径のばらつきを図10、図11に示すが大きいものであった。そして、これをやはり比較例1と同様にトリクロロエチレン処理してPSを99%以上除去して超極細糸を得た。これの繊維横断面を観察したところ、最小で単糸直径100nm程度の単糸もごく微量存在したが、これの数平均による単糸繊度は9×10-4dtex(単糸直径326nm)と大きいものであった。
Comparative Example 5
A sea-island composite yarn was obtained in the same manner as in Comparative Example 1 using PS and PET described in Comparative Example 1 by using the spin pack and spinneret described in FIG. 11 of JP-B-60-28922. At this time, the island component of the sea-island composite yarn was a blend polymer of 2: 1 (weight ratio) of PS and PET, and PS was used as the sea component (the sea-island composite ratio was 1: 1 by weight ratio). Specifically, in FIG. 11 of the publication, the A component was PET, and the B and C components were PS. Observation of the cross section of the fiber revealed that a very small amount of an island domain having a diameter of at least about 100 nm was present, but the number average diameter was as large as 316 nm due to poor dispersion of PET in PS. Further, the variation of the island domain diameter is shown in FIGS. 10 and 11, but was large. This was again treated with trichloroethylene in the same manner as in Comparative Example 1 to remove 99% or more of PS to obtain a superfine thread. Was observed this fiber cross section, the minimum in the present single yarn also very small amount of approximately single yarn diameter 100 nm, is as large as 9 × 10 -4 dtex (single fiber diameter 326 nm) single yarn fineness number average of this Was something.

実施例5
実施例1で用いたN6と共重合PETを図16の装置を用いて別々に270℃で溶融した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、紡糸パック4内に装着した静止混練器22(東レエンジニアリング社製“ハイミキサー”)を用いて2種のポリマーを104万分割して充分混合した後、実施例1同様に溶融紡糸を行った。この時のポリマーのブレンド比はN6が20重量%、共重合PETが80重量%であった。この未延伸糸にやはり実施例1と同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度3.9cN/dtex、伸度38%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は52nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表5に示した。
Example 5
After the N6 and copolymerized PET used in Example 1 were separately melted at 270 ° C. using the apparatus shown in FIG. 16, the polymer melt was guided to a spin block 3 having a spinning temperature of 280 ° C. Then, using a stationary kneader 22 (“High Mixer” manufactured by Toray Engineering Co., Ltd.) mounted in the spinning pack 4, the two types of polymers were divided into 1,040,000 portions and sufficiently mixed, and then melt-spinning was performed in the same manner as in Example 1. Was. At this time, the blend ratio of the polymer was 20% by weight of N6 and 80% by weight of the copolymerized PET. This undrawn yarn was subjected to drawing and heat treatment in the same manner as in Example 1. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength of 3.9 cN / dtex, elongation of 38%, and U% = 1.7%. When the cross section of this polymer alloy fiber was observed by TEM, as in Example 1, the copolymerized PET showed the sea, N6 showed the islands-in-the-sea structure, the number-average diameter of the island N6 was 52 nm, and N6 was the ultrafine. A dispersed polymer alloy fiber was obtained. Table 5 shows the physical properties of the polymer alloy fibers.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は54nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。なお、ナノファイバーの直径は表6に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Further, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers is 54 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. Table 6 shows the diameters of the nanofibers.

また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は5%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度50%であった。   The moisture absorption (ΔMR) of the circular knit made of the nanofiber aggregate was 5%. The yarn made of the N6 nanofiber aggregate had a strength of 2.0 cN / dtex and an elongation of 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例6
実施例1で用いたN6と共重合PETを図17の装置を用いて270℃の2軸押出混練機で溶融混練した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例1同様に溶融紡糸を行った。この時のポリマーのブレンド比はN6が20重量%、共重合PETが80重量%であった。この未延伸糸にやはり実施例1同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度3.9cN/dtex、伸度38%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は54nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表5に示した。
Example 6
The N6 and the copolymerized PET used in Example 1 were melt-kneaded with a twin-screw extruder at 270 ° C. using the apparatus shown in FIG. 17, and the polymer melt was guided to a spin block 3 having a spinning temperature of 280 ° C. Then, melt spinning was performed in the same manner as in Example 1. At this time, the blend ratio of the polymer was 20% by weight of N6 and 80% by weight of the copolymerized PET. This undrawn yarn was subjected to drawing and heat treatment in the same manner as in Example 1. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength of 3.9 cN / dtex, elongation of 38%, and U% = 1.7%. When the cross section of this polymer alloy fiber was observed by TEM, as in Example 1, the copolymerized PET showed the sea, N6 showed the sea-island structure of the island, the diameter by number average of the island N6 was 54 nm, and N6 was the ultrafine. A dispersed polymer alloy fiber was obtained. Table 5 shows the physical properties of the polymer alloy fibers.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は56nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。なお、ナノファイバーの直径は表6に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Furthermore, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 56 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. Table 6 shows the diameters of the nanofibers.

また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は5%であった。また、このN6ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度50%であった。   The moisture absorption (ΔMR) of the circular knit made of the nanofiber aggregate was 5%. The yarn made of the N6 nanofiber aggregate had a strength of 2.0 cN / dtex and an elongation of 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例7
共重合PETを熱水可溶性ポリマーである第一工業製薬株式会社製“パオゲンPP−15”(溶融粘度350Pa・s、262℃、121.6sec-1、融点60℃)、紡糸速度を5000m/分として実施例6と同様に混練、溶融紡糸を行った。なお、この“パオゲンPP−15”の262℃、1216sec−1での溶融粘度は180Pa・sであった。得られたポリマーアロイ繊維は70dtex、36フィラメント、強度3.8cN/dtex、伸度50%、U%=1.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は53nmであり、N6が超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 7
The copolymerized PET is a hot water soluble polymer "PAOGEN PP-15" manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (melt viscosity: 350 Pa · s, 262 ° C., 121.6 sec −1 , melting point: 60 ° C.), and the spinning speed is 5000 m / min. Kneading and melt spinning were performed in the same manner as in Example 6. The melt viscosity of this “Paogen PP-15” at 262 ° C. and 1216 sec-1 was 180 Pa · s. The obtained polymer alloy fibers exhibited excellent properties of 70 dtex, 36 filaments, strength of 3.8 cN / dtex, elongation of 50%, and U% = 1.7%. When the cross section of this polymer alloy fiber was observed by TEM, the copolymerized PET showed sea, N6 showed a sea-island structure of islands, and the number average diameter of island N6 was 53 nm. Fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は56nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Furthermore, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 56 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. The diameter of the nanofiber is shown in Table 9.

また、このN6ナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度60%であった。   The yarn made of the N6 nanofiber aggregate had a strength of 2.0 cN / dtex and an elongation of 60%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例8
N6の代わりに溶融粘度100Pa・s(280℃、121.6sec-1)、融点250℃のN66を用い、図16の装置を用いてN66を270℃、実施例7で用いた熱水可溶性ポリマーを80℃で溶融した後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例5同様に溶融紡糸を行った。この時のポリマーのブレンド比はN66が20重量%、熱水可溶性ポリマーが80重量%、単孔あたりの吐出量は1.0g/分とし、紡糸速度は5000m/分とした。そして、70dtex、36フィラメント、強度4.5cN/dtex、伸度45%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、N66が島の海島構造を示し、島N66の数平均による直径は58nmであり、N66が超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 8
Using N66 having a melt viscosity of 100 Pa · s (280 ° C., 121.6 sec −1 ) and a melting point of 250 ° C. instead of N6, using the apparatus shown in FIG. Was melted at 80 ° C., and the polymer melt was guided to a spin block 3 having a spinning temperature of 280 ° C. Then, melt spinning was performed in the same manner as in Example 5. At this time, the blend ratio of the polymer was 20% by weight for N66, 80% by weight for the hot water-soluble polymer, the discharge amount per single hole was 1.0 g / min, and the spinning speed was 5000 m / min. Then, a polymer alloy fiber having 70 dtex, 36 filaments, strength of 4.5 cN / dtex and elongation of 45% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot-water-soluble polymer was sea, and N66 was a sea-island structure of an island. The number average diameter of the island N66 was 58 nm, and N66 was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は62nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 Using the polymer alloy fiber obtained here, a spun yarn-shaped nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 1. Furthermore, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 62 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The fineness variation was also very small. The diameter of the nanofiber is shown in Table 9.

また、このN66ナノファイバー集合体からなる糸は、強度2.5cN/dtex、伸度60%であった。   Further, the yarn made of the N66 nanofiber aggregate had a strength of 2.5 cN / dtex and an elongation of 60%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Further, when the circular knitting was subjected to buffing, it exhibited a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved by the conventional ultrafine fibers.

実施例9
溶融粘度300Pa・s(262℃、121.6sec-1)、融点235℃の共重合PET(PEG1000を8重量%、イソフタル酸を7mol%共重合)と実施例7で用いた熱水可溶性ポリマーを実施例6同様に混練、溶融紡糸した。この時のポリマーのブレンド比は共重合PETが20重量%、熱水可溶性ポリマーが80重量%、単孔あたりの吐出量は1.0g/分、紡糸速度は6000m/分とした。この時の口金孔壁とポリマーの間の剪断応力は0.11MPa(ポリマーアロイの粘度は240Pa・s、262℃、剪断速度475sec-1)と充分低いものであった。そして、60dtex、36フィラメント、強度3.0cN/dtex、伸度55%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、共重合PETが島の海島構造を示し、島共重合PETの数平均による直径は52nmであり、共重合PETが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 9
The copolymerized PET having a melt viscosity of 300 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 235 ° C. (8 wt% of PEG 1000, 7 mol% of isophthalic acid) and the hot water-soluble polymer used in Example 7 were used. Kneading and melt spinning were performed in the same manner as in Example 6. At this time, the blend ratio of the polymer was 20% by weight of the copolymerized PET, 80% by weight of the hot water-soluble polymer, the discharge amount per single hole was 1.0 g / min, and the spinning speed was 6000 m / min. At this time, the shear stress between the die wall and the polymer was 0.11 MPa (the viscosity of the polymer alloy was 240 Pa · s, 262 ° C., shear rate 475 sec −1 ), which was sufficiently low. Then, a polymer alloy fiber having 60 dtex, 36 filaments, strength of 3.0 cN / dtex and elongation of 55% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot-water-soluble polymer showed the sea, the copolymerized PET showed the island-island structure, and the number-average diameter of the island-copolymerized PET was 52 nm. A polymer alloy fiber in which PET was ultrafinely dispersed was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に丸編み作製後、100℃の熱水で熱水可溶性ポリマーを溶出することにより、絹のような「きしみ感」やレーヨンのような「ドライ感」を有するナノファイバー集合体からなる丸編みを得た。そして、ナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は54nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 Using the polymer alloy fiber obtained here, circular knitting was made in the same manner as in Example 1, and the hot water-soluble polymer was eluted with hot water at 100 ° C. to give a silky “feel” and rayon. A circular knit consisting of a nanofiber aggregate having a "dry feeling" was obtained. Then, as a result of analyzing the single fiber fineness variation of the nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 54 nm (3 × 10 −5 dtex), which is an unprecedented fineness. The variation was also very small. The diameter of the nanofiber is shown in Table 9.

また、このナノファーバー集合体からなる丸編みの吸湿率(ΔMR)は2%であった。また、この共重合PETナノファイバー集合体からなる糸は、強度2.0cN/dtex、伸度70%であった。   Further, the moisture absorption (ΔMR) of the circular knitting made of the nanofabric aggregate was 2%. Further, the yarn composed of the copolymerized PET nanofiber aggregate had a strength of 2.0 cN / dtex and an elongation of 70%.

実施例10
溶融粘度190Pa・s(280℃、121.6sec-1)、融点255℃のPETと実施例7で用いた熱水可溶性ポリマーを実施例5同様に混練、溶融紡糸した。この時のポリマーのブレンド比はPETが20重量%、熱水可溶性ポリマーが80重量%、PETの溶融温度は285℃、熱水可溶性ポリマーの溶融温度は80℃、紡糸温度295℃、単孔あたりの吐出量は1.0g/分とした。この時の口金孔壁とポリマーの間の剪断応力は0.12MPa(ポリマーアロイの粘度は245Pa・s、262℃、剪断速度475sec-1)と充分低いものであった。そして、60dtex、36フィラメント、強度3.0cN/dtex、伸度45%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PETが島の海島構造を示し、島PETの数平均による直径は62nmであり、PETが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 10
PET having a melt viscosity of 190 Pa · s (280 ° C., 121.6 sec −1 ) and a melting point of 255 ° C. and the hot water-soluble polymer used in Example 7 were kneaded and melt-spun as in Example 5. At this time, the blend ratio of the polymer was 20% by weight of PET, 80% by weight of the hot water soluble polymer, the melting temperature of PET was 285 ° C, the melting temperature of the hot water soluble polymer was 80 ° C, the spinning temperature was 295 ° C, and Was 1.0 g / min. At this time, the shear stress between the die wall and the polymer was 0.12 MPa (the viscosity of the polymer alloy was 245 Pa · s, 262 ° C., and the shear rate was 475 sec −1 ), which was sufficiently low. Then, a polymer alloy fiber having 60 dtex, 36 filaments, strength of 3.0 cN / dtex and elongation of 45% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot water-soluble polymer showed the sea, PET showed the island-in-the-sea structure, the number average diameter of the island PET was 62 nm, and the PET was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例9と同様の操作により、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は65nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 A nanofiber aggregate was obtained by the same operation as in Example 9 using the polymer alloy fiber obtained here. The single fiber diameter of the nanofibers by number average was 65 nm (3 × 10 −5 dtex), which was an unprecedented fineness, and the single fiber fineness variation was very small. The diameter of the nanofiber is shown in Table 9.

実施例11
溶融粘度120Pa・s(262℃、121.6sec-1)、融点225℃のPBTと実施例7で用いた熱水可溶性ポリマーを実施例5同様に混練、溶融紡糸した。この時のポリマーのブレンド比はPBTが20重量%、熱水可溶性ポリマーが80重量%、PBTの溶融温度は255℃、熱水可溶性ポリマーの溶融温度は80℃、紡糸温度は265℃、単孔あたりの吐出量は1.0g/分とした。この時の口金孔壁とポリマーの間の剪断応力は0.12MPaと充分低いものであった。そして、60dtex、36フィラメント、強度3.0cN/dtex、伸度45%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PBTが島の海島構造を示し、島PBTの数平均による直径は62nmであり、PBTが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 11
PBT having a melt viscosity of 120 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 225 ° C. and the hot water-soluble polymer used in Example 7 were kneaded and melt-spun as in Example 5. At this time, the blend ratio of the polymer was 20% by weight of PBT, 80% by weight of the hot water-soluble polymer, the melting temperature of the PBT was 255 ° C, the melting temperature of the hot water-soluble polymer was 80 ° C, the spinning temperature was 265 ° C, and the single hole. The discharge rate per unit was 1.0 g / min. At this time, the shear stress between the die hole wall and the polymer was sufficiently low at 0.12 MPa. Then, a polymer alloy fiber having 60 dtex, 36 filaments, strength of 3.0 cN / dtex and elongation of 45% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot water-soluble polymer showed the sea, the PBT showed the islands-in-the-sea structure, the number-average diameter of the islands PBT was 62 nm, and the PBT was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例9と同様の操作により、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は65nm(4×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 A nanofiber aggregate was obtained by the same operation as in Example 9 using the polymer alloy fiber obtained here. The single fiber diameter of the nanofibers by number average was 65 nm (4 × 10 −5 dtex), which was an unprecedented fineness, and the single fiber fineness variation was very small. The diameter of the nanofiber is shown in Table 9.

実施例12
溶融粘度220Pa・s(262℃、121.6sec-1)、融点225℃のポリトリメチレンテレフタレート(PTT)と実施例7で用いた熱水可溶性ポリマーを実施例11同様に混練、溶融紡糸した。この時の口金孔壁とポリマーの間の剪断応力は0.13MPaと充分低いものであった。そして、60dtex、36フィラメント、強度3.0cN/dtex、伸度45%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PTTが島の海島構造を示し、島PTTの数平均による直径は62nmであり、PTTが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 12
Polytrimethylene terephthalate (PTT) having a melt viscosity of 220 Pa · s (262 ° C., 121.6 sec −1 ) and a melting point of 225 ° C. and the hot water-soluble polymer used in Example 7 were kneaded and melt-spun as in Example 11. At this time, the shear stress between the die hole wall and the polymer was sufficiently low at 0.13 MPa. Then, a polymer alloy fiber having 60 dtex, 36 filaments, strength of 3.0 cN / dtex and elongation of 45% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot water-soluble polymer showed the sea, the PTT showed the sea-island structure of the island, the number average diameter of the island PTT was 62 nm, and the PTT was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例9と同様の操作により、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は65nm(4×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 A nanofiber aggregate was obtained by the same operation as in Example 9 using the polymer alloy fiber obtained here. The single fiber diameter of the nanofibers by number average was 65 nm (4 × 10 −5 dtex), which was an unprecedented fineness, and the single fiber fineness variation was very small. The diameter of the nanofiber is shown in Table 9.

実施例13
溶融粘度350Pa・s(220℃、121.6sec-1)、融点170℃、光学純度99.5%以上、重量平均分子量16万のポリL乳酸(PLA)と実施例7で用いた熱水可溶性ポリマーを実施例11同様に混練、溶融紡糸した。なお、ポリ乳酸の重量平均分子量は以下のようにして求めた。試料のクロロホルム溶液にTHF(テトロヒドロフラン)を混合し測定溶液とした。これをWaters社製ゲルパーミテーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。この時のポリマーのブレンド比はPLAが20重量%、熱水可溶性ポリマーが80重量%、紡糸温度235℃、口金面温度220℃、単孔あたりの吐出量は1.0g/分とした。そして、60dtex、36フィラメント、強度2.5cN/dtex、伸度35%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PLAが島の海島構造を示し、島PLAの数平均による直径は48nmであり、PLAが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表8に示した。
Example 13
Poly-L-lactic acid (PLA) having a melt viscosity of 350 Pa · s (220 ° C., 121.6 sec −1 ), a melting point of 170 ° C., an optical purity of 99.5% or more, and a weight average molecular weight of 160,000 and the hot water solubility used in Example 7 The polymer was kneaded and melt-spun as in Example 11. The weight average molecular weight of polylactic acid was determined as follows. THF (tetrohydrofuran) was mixed with a chloroform solution of the sample to prepare a measurement solution. This was measured at 25 ° C. using Gel Permeation Chromatography (GPC) Waters 2690 manufactured by Waters, and the weight average molecular weight was calculated in terms of polystyrene. At this time, the blend ratio of the polymer was 20% by weight of PLA, 80% by weight of the hot water-soluble polymer, the spinning temperature was 235 ° C., the die surface temperature was 220 ° C., and the discharge rate per single hole was 1.0 g / min. Then, a polymer alloy fiber having 60 dtex, 36 filaments, strength of 2.5 cN / dtex and elongation of 35% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot water-soluble polymer showed the sea, PLA showed the island-island structure of the island, the number average diameter of the island PLA was 48 nm, and the PLA was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 8 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例9と同様の操作により、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は50nm(2×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表9に示した。 A nanofiber aggregate was obtained by the same operation as in Example 9 using the polymer alloy fiber obtained here. The single fiber diameter of this nanofiber by number average was 50 nm (2 × 10 −5 dtex), which is an unprecedented fineness, and the variation in single fiber fineness was very small. The diameter of the nanofiber is shown in Table 9.

実施例14
溶融粘度300Pa・s(262℃、121.6sec-1)、熱変形温度140℃のポリカーボネート(PC)と実施例7で用いた熱水可溶性ポリマーとを実施例8同様に混練、溶融紡糸した。この時のポリマーのブレンド比はPCが20重量%、熱水可溶性ポリマーが80重量%、単孔あたりの吐出量は1.0g/分とした。そして、70dtex、36フィラメント、強度2.2cN/dtex、伸度35%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PCが島の海島構造を示し、島PCの数平均による直径は85nmであり、PCが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表11に示した。
Example 14
Polycarbonate (PC) having a melt viscosity of 300 Pa · s (262 ° C., 121.6 sec −1 ) and a heat distortion temperature of 140 ° C. and the hot water-soluble polymer used in Example 7 were kneaded and melt-spun as in Example 8. At this time, the blend ratio of the polymer was 20% by weight of PC, 80% by weight of the hot water-soluble polymer, and the discharge rate per single hole was 1.0 g / min. Then, a polymer alloy fiber having 70 dtex, 36 filaments, a strength of 2.2 cN / dtex and an elongation of 35% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot-water-soluble polymer showed the sea and PC showed the island-island structure. The number-average diameter of the island PC was 85 nm. The obtained polymer alloy fiber was obtained. Table 11 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1と同様丸編みを作製後、これを40℃の温水で10時間処理し、熱水可溶性ポリマーを99%以上溶出することにより、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は88nm(8×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表12に示した。 Using the polymer alloy fiber obtained here, a circular knit was prepared in the same manner as in Example 1, and this was treated with warm water at 40 ° C. for 10 hours to elute 99% or more of the hot water-soluble polymer. I got a body. The single fiber diameter of the nanofibers by number average was 88 nm (8 × 10 −5 dtex), which was an unprecedented fineness, and the dispersion of single fiber fineness was very small. The diameter of the nanofiber is shown in Table 12.

実施例15
溶融粘度300Pa・s(262℃、121.6sec-1)、融点220℃ポリメチルペンテン(PMP)と溶融粘度300Pa・s(262℃、121.6sec-1)、ビカット軟化温度105℃のPSを紡糸速度1500m/分で実施例8同様に混練、溶融紡糸し、延伸倍率を1.5倍として実施例1と同様に延伸、熱処理した。この時のポリマーのブレンド比はPMPが20重量%、PSが80重量%、単孔あたりの吐出量は1.0g/分とした。そして、77dtex、36フィラメント、強度3.0cN/dtex、伸度40%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PSが海、PMPが島の海島構造を示し、島PMPの数平均による直径は70nmであり、PMPが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表11に示した。
Example 15
PS having a melt viscosity of 300 Pa · s (262 ° C., 121.6 sec −1 ), a melting point of 220 ° C. polymethylpentene (PMP), a melt viscosity of 300 Pa · s (262 ° C., 121.6 sec −1 ), and a Vicat softening temperature of 105 ° C. Kneading and melt-spinning were performed at a spinning speed of 1500 m / min in the same manner as in Example 8, and stretching and heat treatment were performed in the same manner as in Example 1 except that the stretching ratio was 1.5. At this time, the blend ratio of the polymer was 20% by weight for PMP, 80% by weight for PS, and the discharge amount per single hole was 1.0 g / min. Then, a polymer alloy fiber having 77 dtex, 36 filaments, strength of 3.0 cN / dtex and elongation of 40% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, PS showed the sea and PMP showed the sea-island structure of the island. The diameter of the island PMP by number average was 70 nm. Fiber was obtained. Table 11 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に丸編み作製後、40℃の濃塩酸でPSを脆化させた後、メチルエチルケトンでPSを除去し、PMPナノファイバー集合体からなる丸編みを得た。このナノファイバーの数平均による単糸直径は73nm(5×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表12に示した。 Using the polymer alloy fiber obtained here, circular knitting was made in the same manner as in Example 1, and then PS was embrittled with concentrated hydrochloric acid at 40 ° C., and then PS was removed with methyl ethyl ketone, and a round consisting of a PMP nanofiber aggregate was obtained. Got knitting. The single fiber diameter of this nanofiber by number average was 73 nm (5 × 10 −5 dtex), an unprecedented fineness, and the single fiber fineness variation was very small. The diameter of the nanofiber is shown in Table 12.

実施例16
溶融粘度300Pa・s(220℃、121.6sec-1)、融点162℃のPPと実施例7で用いた熱水可溶性ポリマーを実施例15同様に混練、溶融紡糸、延伸・熱処理した。この時のポリマーのブレンド比はPPが20重量%、熱水可溶性ポリマーが80重量%、紡糸温度235℃、口金面温度220℃、単孔あたりの吐出量は1.0g/分とした。そして、77dtex、36フィラメント、強度2.5cN/dtex、伸度50%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、熱水可溶性ポリマーが海、PPが島の海島構造を示し、島PPの数平均による直径は48nmであり、PPが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表11に示した。
Example 16
PP having a melt viscosity of 300 Pa · s (220 ° C., 121.6 sec −1 ) and a melting point of 162 ° C. and the hot water-soluble polymer used in Example 7 were kneaded, melt-spun, stretched and heat-treated in the same manner as in Example 15. At this time, the blend ratio of the polymer was 20% by weight of PP, 80% by weight of the hot water-soluble polymer, the spinning temperature was 235 ° C., the die surface temperature was 220 ° C., and the discharge rate per single hole was 1.0 g / min. Then, a polymer alloy fiber having 77 dtex, 36 filaments, strength of 2.5 cN / dtex and elongation of 50% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, the hot water-soluble polymer showed sea and PP showed the island-in-the-sea structure. The number average diameter of the island PP was 48 nm, and the PP was ultrafinely dispersed. The obtained polymer alloy fiber was obtained. Table 11 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例9と同様の操作により、ナノファイバー集合体を得た。このナノファイバーの数平均による単糸直径は50nm(2×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。ナノファイバーの直径は表12に示した。 A nanofiber aggregate was obtained by the same operation as in Example 9 using the polymer alloy fiber obtained here. The single fiber diameter of this nanofiber by number average was 50 nm (2 × 10 −5 dtex), which is an unprecedented fineness, and the variation in single fiber fineness was very small. The diameter of the nanofiber is shown in Table 12.

実施例17
溶融粘度200Pa・s(300℃、121.6sec-1)、融点280℃のPPSと溶融粘度200Pa・s(300℃、121.6sec-1)のPETを実施例15同様に混練、溶融紡糸、延伸・熱処理した。この時のポリマーのブレンド比はPPSが20重量%、PETが80重量%、PPSの溶融温度は320℃、PETの溶融温度は290℃、紡糸温度320℃、口金面温度300℃、単孔あたりの吐出量は1.0g/分とした。そして、77dtex、36フィラメント、強度5.2cN/dtex、伸度50%のポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PETが海、PPSが島の海島構造を示し、島PPSの数平均による直径は120nmであり、PPSが超微分散化したポリマーアロイ繊維が得られた。ポリマーアロイ繊維の物性は表11に示した。
Example 17
PPS having a melt viscosity of 200 Pa · s (300 ° C., 121.6 sec −1 ) and a melting point of 280 ° C. and PET having a melt viscosity of 200 Pa · s (300 ° C., 121.6 sec −1 ) were kneaded and melt-spun in the same manner as in Example 15. Stretched and heat-treated. At this time, the blend ratio of the polymer was 20% by weight of PPS, 80% by weight of PET, the melting temperature of PPS was 320 ° C., the melting temperature of PET was 290 ° C., the spinning temperature was 320 ° C., the die surface temperature was 300 ° C. Was 1.0 g / min. Then, a polymer alloy fiber having 77 dtex, 36 filaments, strength of 5.2 cN / dtex and elongation of 50% was obtained. When the cross section of the obtained polymer alloy fiber was observed by TEM, PET showed a sea, PPS showed a sea-island structure of islands, and the number average diameter of the island PPS was 120 nm. Fiber was obtained. Table 11 shows the physical properties of the polymer alloy fiber.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に丸編み作製後、アルカリ処理によりPETを溶出することにより、PPSナノファイバー集合体からなる丸編みを得た。このナノファイバーの数平均による単糸直径は130nm(1.5×10-4dtex)であった。ナノファイバーの直径は表12に示した。 Using the polymer alloy fiber obtained here, circular knitting was performed in the same manner as in Example 1, and PET was eluted by alkali treatment to obtain a circular knit consisting of an aggregate of PPS nanofibers. The single fiber diameter of the nanofiber was 130 nm (1.5 × 10 −4 dtex) by number average. The diameter of the nanofiber is shown in Table 12.

実施例18
実施例1〜6で作製したポリマーアロイ繊維を用いて平織りを製織した。そして、界面活性剤(三洋化成“グランアップ”)および炭酸ナトリウムをそれぞれ濃度2g/リットルとした100℃の熱水中(浴比は1:100)で精練を施した。精練時間は40分とした。この時、熱水可溶性ポリマーは99%以上溶解除去された。そして、140℃で中間セットを施した。その後、10%の水酸化ナトリウム水溶液(90℃、浴比1:100)でアルカリ処理を2時間施し、海成分である共重合PETの99%以上を除去した。さらに、これに140℃で最終セットを施した。得られた布帛に常法により染色を施したが、染色斑の無い美しい物であった。ここで得られたナノファイバー集合体からなる織物は、レーヨンのような「ドライ感」を有する風合いに優れた物であった。また、ΔMR=6%と吸湿性にも優れるため快適衣料に好適なものであった。さらに、この織物をバフィング処理を施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。
Example 18
Plain weave was woven using the polymer alloy fibers produced in Examples 1 to 6. Then, scouring was carried out in hot water at 100 ° C. (bath ratio 1: 100) containing a surfactant (Sanyo Kasei “Grand Up”) and sodium carbonate at a concentration of 2 g / liter, respectively. The scouring time was 40 minutes. At this time, 99% or more of the hot water-soluble polymer was dissolved and removed. Then, an intermediate set was applied at 140 ° C. Thereafter, alkali treatment was performed for 2 hours with a 10% aqueous sodium hydroxide solution (90 ° C., bath ratio 1: 100) to remove 99% or more of the copolymerized PET as a sea component. This was further subjected to a final set at 140 ° C. The obtained fabric was dyed by a conventional method, and it was a beautiful product without spots. The woven fabric made of the nanofiber aggregate obtained here was a material having a “dry feeling” such as rayon and excellent in texture. In addition, ΔMR = 6%, which is excellent in hygroscopicity, was suitable for comfortable clothing. Further, when the woven fabric was subjected to a buffing treatment, the woven fabric exhibited a super peach feeling and a moist and fresh excellent texture such as human skin, which could not be achieved with conventional ultra-fine fibers.

比較例6
比較例2〜4で作製したN6ブレンド繊維を用いて実施例18と同様に平織りを作製したが、紡糸が不安定であったため糸の長手方向の太細斑や毛羽が多いことに起因し、毛羽の多い表面品位の悪い織物しかできなかった。これらに精練を施し、続いて中間セットを施した。そして、比較例2の糸を用いたものは実施例18と同様にアルカリ処理を施した後、最終セットを施し、やはり常法に従い染色を施した。一方、比較例3および4の糸を用いたものには、85℃のトルエンに60分間浸漬し、PEを99%以上溶解除去した。その後、これらに最終セットを施し、やはり常法に従い染色を施した。これらの布帛は、染色斑や毛羽の多い品位の悪い物であった。また、風合いとしては従来の極細糸の範疇でありきしみ感やドライ感はなく、吸湿性も通常N6繊維並(ΔMR=2%)であった。
Comparative Example 6
A plain weave was produced in the same manner as in Example 18 using the N6 blend fibers produced in Comparative Examples 2 to 4, but due to the fact that the spinning was unstable, there were many thick spots and fluff in the longitudinal direction of the yarn, Only a fluffy, poor-quality fabric was produced. These were scoured, followed by an intermediate set. Then, the yarn using the yarn of Comparative Example 2 was subjected to an alkali treatment in the same manner as in Example 18, and then subjected to a final set and dyed according to a conventional method. On the other hand, those using the yarns of Comparative Examples 3 and 4 were immersed in toluene at 85 ° C. for 60 minutes to dissolve and remove 99% or more of PE. Thereafter, these were subjected to a final set, and were also dyed according to a conventional method. These fabrics were of poor quality with many spots and fluff. Further, the texture was in the category of the conventional ultrafine yarn, and there was no squeaky feeling or dry feeling, and the hygroscopicity was usually equal to that of N6 fiber (ΔMR = 2%).

実施例19
実施例4で作製したポリマーアロイ繊維を用いて高密度平織りを製織した。そして、実施例18に準じナノファイバー集合体からなる平織りを得た。さらにこれのナノファイバーの単繊維繊度ばらつきを解析した結果、ナノファイバーの数平均による単繊維直径は86nm(6×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は78%であり、特に単繊維直径で75〜104nmの間に入る単繊維繊度比率は64%であり、単繊維繊度ばらつきはごく小さいものであった。そして、これにウオーターパンチ処理を施した。これは、従来の極細糸を用いたワイピングクロスよりも拭き取り性が良く、ワイピングクロスとして好適なものであった。
Example 19
A high-density plain weave was woven using the polymer alloy fiber produced in Example 4. Then, a plain weave consisting of a nanofiber aggregate was obtained according to Example 18. Furthermore, as a result of analyzing the single fiber fineness variation of the nanofibers, the single fiber diameter based on the number average of the nanofibers was 86 nm (6 × 10 −5 dtex), an unprecedented fineness, and the single fiber fineness was 1 ×. The fineness ratio of 10 < -7 > to 1 * 10 < -4 > dtex is 78%, especially the single fiber fineness ratio within the range of 75 to 104 nm in single fiber diameter is 64%, and the single fiber fineness variation is extremely small. there were. Then, this was subjected to a water punch treatment. This has a better wiping property than a conventional wiping cloth using a fine thread, and is suitable as a wiping cloth.

実施例20
実施例1で作製したポリマーアロイ繊維を合糸し4万dtexのトウとした後、機械捲縮を施し捲縮数8個/25mmの捲縮糸とした。これを繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを3000本/cm2施し、750g/m2の繊維絡合不織布とした。この不織布にポリビニルアルコールを付与した後、3%の水酸化ナトリウム水溶液(60℃、浴比1:100)でアルカリ処理を2時間施し、共重合PETの99%以上を除去した。なお、このナノファイバー構造体からナノファイバー集合体を抜き取り解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は99%であり、特に単繊維直径で55〜84nmの間に単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。さらに、ポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗し、N6ナノファイバー集合体とPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。得られた製品は外観が極めて良好で染色斑もなく、力学特性にも問題はなかった。また、従来の超極細糸を用いた人工皮革に比べ、さらに柔らかできめの細かいタッチであった。また、吸湿性にも優れるため、従来の人工皮革では持ち得なかった人肌のようなみずみずしさも併せ持つ優れた風合いであった。
Example 20
The polymer alloy fiber produced in Example 1 was ligated to form a tow of 40,000 dtex, and then mechanically crimped to obtain a crimped yarn of 8 crimps / 25 mm. This was cut into a fiber length of 51 mm, defibrated with a card, and then made into a web with a cross wrap weber. Next, needle punching was performed at 3000 needles / cm 2 to obtain a 750 g / m 2 fiber-entangled nonwoven fabric. After polyvinyl alcohol was applied to the nonwoven fabric, an alkali treatment was performed for 2 hours with a 3% aqueous sodium hydroxide solution (60 ° C., bath ratio 1: 100) to remove 99% or more of the copolymerized PET. As a result of extracting and analyzing the nanofiber aggregate from this nanofiber structure, the single fiber diameter based on the number average of the nanofibers was 60 nm (3 × 10 −5 dtex), which is an unprecedented fineness. Is 1 × 10 −7 to 1 × 10 −4 dtex, the fineness ratio is 99%, especially the single fiber fineness ratio is 70% between 55 and 84 nm in single fiber diameter, and the single fiber fineness variation is extremely small. Was something. Further, a liquid comprising 13% by weight of a polyurethane composition (PU) mainly composed of a polyether-based polyurethane and 87% by weight of N, N'-dimethylformamide (DMF) is impregnated with PU in an aqueous solution of 40% by weight of DMF. After coagulation, the solid was washed with water to obtain a nanofiber structure having a thickness of about 1 mm and comprising an N6 nanofiber aggregate and PU. This one surface is buffed with sandpaper to a thickness of 0.8 mm, and the other surface is processed with an emery buffing machine to form a nap surface of the nanofiber aggregate, and after dyeing, finishing and sueding. An artificial leather was obtained. The resulting product had an extremely good appearance, no staining spots, and no problem in mechanical properties. In addition, the touch was softer and finer than that of the artificial leather using conventional ultra-fine yarn. In addition, because of its excellent hygroscopicity, it had an excellent texture with a freshness like human skin, which could not be possessed by conventional artificial leather.

比較例7
比較例3で作製したN6/PEブレンド繊維に機械捲縮を施した後、繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、500g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にパークレン処理を行い、N6超極細糸とPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。これの風合いは、単なるスエードの模造品であり従来の超極細繊維を用いた人工皮革を超えるものではなかった。
Comparative Example 7
The N6 / PE blend fiber produced in Comparative Example 3 was mechanically crimped, cut into a fiber length of 51 mm, defibrated with a card, and then made into a web with a cross wrap weber. Next, a fiber entangled nonwoven fabric of 500 g / m 2 was obtained by using a needle punch. Further, a liquid comprising 13% by weight of a polyurethane composition (PU) mainly composed of a polyether polyurethane and 87% by weight of N, N'-dimethylformamide (DMF) is impregnated, and the PU is coagulated in an aqueous solution of 40% by weight of DMF. After that, it was washed with water. Further, this non-woven fabric was subjected to a perclene treatment to obtain a nanofiber structure having a thickness of about 1 mm made of N6 ultrafine yarn and PU. This one surface is buffed with sandpaper to a thickness of 0.8 mm, and the other surface is processed with an emery buffing machine to form a nap surface of the nanofiber aggregate, and after dyeing, finishing and sueding. An artificial leather was obtained. The texture of this is a mere imitation of suede, which is not more than the conventional artificial leather using ultra-fine fibers.

実施例21
実施例1で作製したポリマアロイ繊維を用いて実施例20と同様の操作により、PU含有率が40重量%のN6ナノファイバー集合体とPUからなるナノファイバー構造体からなる研磨布基材を得た。なお、このナノファイバー構造体からナノファイバー集合体を抜き取り解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は99%であり、特に単繊維直径で55〜84nmの間に単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。これを2分割するように切断した後、表面をJIS#240、#350、#500番のサンドペーパーでバフイングした。さらに、これを隙間が1.0mmの表面温度150℃の上下2本のフッ素加工した加熱ローラーでニップし、0.7kg/cm2の圧力でプレスした後、表面温度15℃の冷却ローラーで急冷し表面を平滑化した研磨布を得た。そして、この研磨布を以下の方法で評価した結果を表9に示すが、従来超極細糸を用いたものに比べ被研磨物の平滑性が高くまた欠点であるスクラッチ数も少なく、優れた研磨特性を示した。
Example 21
By using the polymer alloy fiber produced in Example 1 and performing the same operation as in Example 20, a polishing cloth substrate comprising a N6 nanofiber aggregate having a PU content of 40% by weight and a nanofiber structure composed of PU was obtained. . As a result of extracting and analyzing the nanofiber aggregate from this nanofiber structure, the single fiber diameter based on the number average of the nanofibers was 60 nm (3 × 10 −5 dtex), which is an unprecedented fineness. Is 1 × 10 −7 to 1 × 10 −4 dtex, the fineness ratio is 99%, especially the single fiber fineness ratio is 70% between 55 and 84 nm in single fiber diameter, and the single fiber fineness variation is extremely small. Was something. After cutting this into two parts, the surface was buffed with sandpaper of JIS # 240, # 350 and # 500. Further, this is nipped with two upper and lower fluorinated heating rollers having a gap of 1.0 mm and a surface temperature of 150 ° C. and pressed at a pressure of 0.7 kg / cm 2 , and then quenched with a cooling roller having a surface temperature of 15 ° C. Then, a polishing cloth having a smooth surface was obtained. The results of evaluation of this polishing cloth by the following method are shown in Table 9. The polishing object has higher smoothness and a smaller number of scratches, which is a defect, as compared with the conventional one using ultra-fine yarn. The characteristics were shown.

<研磨評価:ハードディスクのテキスチャリング>
被研磨物:市販アルミニウム板にNi−Pメッキ後ポリッシュ加工した基板
(平均表面粗さ=0.28nm)
研磨条件:以下の条件で、該基板をテキスチャー装置に取り付け、研磨を行った。
<Polishing evaluation: Texturing of hard disk>
Object to be polished: Substrate which is polished after Ni-P plating on a commercial aluminum plate
(Average surface roughness = 0.28 nm)
Polishing conditions: The substrate was mounted on a texture device under the following conditions, and polished.

砥粒 :平均粒径0.1μmダイヤモンドの遊離砥粒スラリー
滴下速度 :4.5ml/分
回転数 :1000rpm
テープ速度:6cm/分
研磨条件 :振幅1mm−横方向振動300回/分
評価枚数 :該基板30枚/水準
<被研磨物の平均表面粗さRa>
温度20℃、相対湿度50%のクリーン室に設置された防音装置付きのVeeco社製原糸間力顕微鏡(AFM)を用いて基板30枚/水準の表面粗さを測定し、その平均表面粗さRaを求める。測定範囲は各基板のディスク中心を基準とし半径の中央点2カ所を対称に選定し、各点5μm×5μmの広さで測定を行う。
Abrasive grains: free abrasive slurry of diamond with an average grain size of 0.1 μm
Dropping rate: 4.5 ml / min
Rotation speed: 1000 rpm
Tape speed: 6cm / min
Polishing condition: amplitude 1 mm-lateral vibration 300 times / min
Evaluation number: 30 substrates / level <Average surface roughness Ra of the object to be polished>
The surface roughness of 30 substrates / level was measured using a Veeco Atomic Force Microscope (AFM) with a soundproof device installed in a clean room at a temperature of 20 ° C. and a relative humidity of 50%, and the average surface roughness was measured. Find Ra. The measurement range is symmetrically selected at two center points of the radius with respect to the center of the disk of each substrate, and the measurement is performed with a width of 5 μm × 5 μm at each point.

<スクラッチ数>
ZYGO社製干渉型顕微鏡で表面観察し、各サンプルの表面スクラッチ数(X)を測定する。スクラッチは0.1μm×100μm以上の大きさのものをカウントする。これを基板30枚/水準測定し、傷の数による点数yからスクラッチ数βを定義する。
<Number of scratches>
The surface is observed with an interference type microscope manufactured by ZYGO, and the number of surface scratches (X) of each sample is measured. Scratches having a size of 0.1 μm × 100 μm or more are counted. This is measured for 30 substrates / level, and the scratch number β is defined from the score y based on the number of scratches.

X≦4の時 y=X
X≧5の時 y=5
β=Σyi (i=1〜30)
ここでΣyiはサンプル30枚分のスクラッチ総数である。
When X ≦ 4 y = X
When X ≧ 5 y = 5
β = Σy i (i = 1-30)
Here, Δy i is the total number of scratches for 30 samples.

比較例8
比較例3で作製したN6/PEブレンド繊維に機械捲縮を施した後、繊維長51mmにカットし、カードで開繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、500g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にパークレン処理を行い、N6超極細糸とPUからなるナノファイバー構造体からなる研磨基材を得た。これを用い、実施例22と同様の操作により研磨布を得た。そして、この研磨布の評価を行ったが、Ra=1.6nm、β=32とナノファイバー集合体を用いたものに比べ被研磨物の平滑性が低くまた欠点であるスクラッチ数も多くなり、劣った研磨特性を示した。
Comparative Example 8
The N6 / PE blend fiber produced in Comparative Example 3 was mechanically crimped, cut into a fiber length of 51 mm, opened with a card, and then made into a web with a cross wrap weber. Next, a fiber entangled nonwoven fabric of 500 g / m 2 was obtained by using a needle punch. Further, a liquid comprising 13% by weight of a polyurethane composition (PU) mainly composed of a polyether polyurethane and 87% by weight of N, N'-dimethylformamide (DMF) is impregnated, and the PU is coagulated in an aqueous solution of 40% by weight of DMF. After that, it was washed with water. Further, this non-woven fabric was subjected to a perch-lens treatment to obtain a polishing substrate comprising a nanofiber structure comprising N6 ultrafine yarn and PU. Using this, a polishing cloth was obtained in the same manner as in Example 22. Then, this polishing cloth was evaluated. As compared with those using a nanofiber aggregate with Ra = 1.6 nm and β = 32, the smoothness of the object to be polished was low, and the number of scratches as defects was increased. It showed poor polishing properties.

実施例22
実施例1で作製したポリマーアロイ繊維を用い実施例20と同様に、350g/m2の繊維絡合不織布とした後、10%の水酸化ナトリウム水溶液(90℃、浴比1:100)でアルカリ処理を2時間施し、共重合PETの99%以上を除去し、N6ナノファイバー不織布を得た。なお、この不織布からナノファイバー集合体を抜き取りさらにこれのナノファイバーの単繊維繊度ばらつきを解析した結果、ナノファイバーの数平均による単繊維直径は60nm(3×10-5dtex)と従来にない細さであり、また単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は99%であり、特に単繊維直径で55〜84nmの間に入る単繊維繊度比率は70%であり、単繊維繊度ばらつきはごく小さいものであった。これを直径4.7cmの円形に切断したもの5枚を重ねて円形のフィルターカラムに白血球(5700個/μリットル)を含む牛血を2mリットル/分の流速で通液したところ、圧力損失が100mmHgに達するまでの時間は100分間であり、その時の顆粒球除去率は99%以上、リンパ球除去率は60%と炎症性の白血球である顆粒球を選択できるものであった。これは、ナノファイバー同士の隙間による効果であると考えられる。
Example 22
A 350 g / m 2 fiber entangled non-woven fabric was prepared in the same manner as in Example 20 using the polymer alloy fiber prepared in Example 1, and then alkali-treated with a 10% aqueous sodium hydroxide solution (90 ° C., bath ratio 1: 100). The treatment was performed for 2 hours to remove 99% or more of the copolymerized PET to obtain an N6 nanofiber nonwoven fabric. As a result of extracting the nanofiber aggregate from this nonwoven fabric and analyzing the variation of the single fiber fineness of the nanofiber, the single fiber diameter based on the number average of the nanofiber was 60 nm (3 × 10 −5 dtex), which was an unprecedented fineness. In addition, the fineness ratio of the single fiber fineness of 1 × 10 −7 to 1 × 10 −4 dtex is 99%, and particularly the single fiber fineness ratio of 55 to 84 nm in the single fiber diameter is 70%. The single fiber fineness variation was very small. This was cut into a circular shape of 4.7 cm in diameter, and five of them were stacked. Bovine blood containing white blood cells (5700 cells / μl) was passed through the circular filter column at a flow rate of 2 ml / min. The time required to reach 100 mmHg was 100 minutes. At that time, the granulocyte removal rate was 99% or more, and the lymphocyte removal rate was 60%, so that granulocytes, which are inflammatory leukocytes, could be selected. This is considered to be an effect due to the gap between the nanofibers.

実施例23
実施例22で作製したナノファイバー不織布0.5gをオートクレーブで減菌し、15mリットルのエンドトキシンを含む牛血清で吸着能力の評価(37℃、2時間)をしたところエンドトキシン濃度LPSが10.0ng/mリットルから1.5ng/mリットルまで減少しており、優れた吸着能力を示した。これはナイロンナノファイバーは活性表面が通常のナイロン繊維に比べはるかに多いため、アミノ末端が通常よりもはるかに多く存在しているためと考えられる。
Example 23
0.5 g of the nanofiber nonwoven fabric prepared in Example 22 was sterilized by an autoclave, and the adsorbing ability was evaluated using bovine serum containing 15 ml of endotoxin (37 ° C., 2 hours). As a result, the endotoxin concentration LPS was 10.0 ng / L. It decreased from ml to 1.5 ng / ml, showing excellent adsorption capacity. This is presumably because nylon nanofibers have much more active surfaces than ordinary nylon fibers, and thus have much more amino terminals than usual.

実施例24
実施例13と同様のポリマーの組み合わせで、図18の装置を用いてスパンボンド不織布を得た。この時、2軸押し出し機23での溶融温度は225℃、紡糸温度は230℃、口金面温度は217℃とした。また、口金は実施例1で用いたものと同スペック、単孔吐出量は0.8g/分、口金下面から冷却開始までの距離は12cmとした。得られた不織布から繊維を引き出し、実施例1と同様に解析した結果、ポリマーアロイ繊維中の島ドメインの数平均直径は48nm、直径1〜80nmの範囲の面積比率は80%、直径45〜74nmの範囲の面積比率は75%であった。
Example 24
A spunbonded nonwoven fabric was obtained using the same combination of polymers as in Example 13 using the apparatus shown in FIG. At this time, the melting temperature in the twin screw extruder 23 was 225 ° C, the spinning temperature was 230 ° C, and the die surface temperature was 217 ° C. The die was the same as that used in Example 1, the single hole discharge amount was 0.8 g / min, and the distance from the lower surface of the die to the start of cooling was 12 cm. The fibers were pulled out from the obtained nonwoven fabric and analyzed in the same manner as in Example 1. As a result, the number average diameter of the island domains in the polymer alloy fiber was 48 nm, the area ratio in the range of 1 to 80 nm was 80%, and the range of 45 to 74 nm in diameter. Was 75%.

得られたポリマーアロイ不織布を60℃の温水で2時間処理することにより、熱水可溶性ポリマーを99%以上溶解除去し、PLAナノファイバーからなる不織布を得た。これのナノファイバー単糸直径の数平均は50nm(2×10-5dtex)、繊度比率の98%以上が単糸繊度1×10-7〜1×10-4dtexの範囲に在り、ナノファイバーの単糸直径が45〜74nmの範囲にあるもののの繊度比率が70%であった。 The resulting polymer alloy nonwoven fabric was treated with hot water at 60 ° C. for 2 hours to dissolve and remove 99% or more of the hot water-soluble polymer to obtain a nonwoven fabric made of PLA nanofibers. The number average of the diameter of the nanofiber single yarn is 50 nm (2 × 10 −5 dtex), and 98% or more of the fineness ratio is in the range of single yarn fineness of 1 × 10 −7 to 1 × 10 −4 dtex. Had a single yarn diameter in the range of 45 to 74 nm, but had a fineness ratio of 70%.

実施例25
実施例1〜6で作製したナノファイバー集合体からなる丸編みを、ヘキサメチレンジイソシアネートと分子量1000のヘキサメチレンポリカーボネートからなるポリウレタンプレポリマー(分子量3000〜4000)の15重量%水溶液に30分間浸漬した。その後、丸編みを引き上げ120℃、20分間ポリウレタンプレポリマーを架橋させた。この操作により、ナノファイバー同士の空隙に侵入したポリウレタンプレポリマーが架橋反応により不溶化し、架橋ポリウレタンとN6ナノファイバーからなる複合体が生成した。得られた丸編み形状の複合体は大きなストレッチ性を有すると共に粘着質の得意な表面タッチを有するものであった。
Example 25
The circular knitting made of the nanofiber aggregates prepared in Examples 1 to 6 was immersed in a 15% by weight aqueous solution of a polyurethane prepolymer (molecular weight 3000 to 4000) composed of hexamethylene diisocyanate and hexamethylene polycarbonate having a molecular weight of 1000 for 30 minutes. Thereafter, the circular knit was pulled up, and the polyurethane prepolymer was crosslinked at 120 ° C. for 20 minutes. By this operation, the polyurethane prepolymer that entered the voids between the nanofibers was insolubilized by a cross-linking reaction, and a composite consisting of cross-linked polyurethane and N6 nanofibers was formed. The obtained circular knitted composite had a large stretch property and a sticky surface touch.

実施例26
実施例1〜6で作製したナノファイバー集合体からなる丸編みをイオン交換水に浸漬し、その後1,2−ビス(トリメトキシシリル)エタンを加え、3時間攪拌した。室温で14時間静置後、さらに13時間攪拌し、さらに室温で14時間静置後、さらに7時間攪拌し、シリカを重合した。その後、丸編みをイオン交換水で洗浄後、風乾した。この操作により、N6ナノファイバーを鋳型とした、布帛形状のN6/シリカ複合体が得られた。これは、充分な剛性としなやかさを併せ持つ優れた材料であった。また、優れた難燃性を持つハイブリッド材料でもあった。
Example 26
Circular knitting made of the nanofiber aggregate prepared in Examples 1 to 6 was immersed in ion-exchanged water, and then 1,2-bis (trimethoxysilyl) ethane was added and stirred for 3 hours. After standing at room temperature for 14 hours, the mixture was further stirred for 13 hours. After standing at room temperature for 14 hours, the mixture was further stirred for 7 hours to polymerize silica. Thereafter, the circular knit was washed with ion-exchanged water and air-dried. By this operation, a fabric-shaped N6 / silica composite using the N6 nanofiber as a template was obtained. This was an excellent material having both sufficient rigidity and flexibility. It was also a hybrid material with excellent flame retardancy.

実施例27
実施例26で得られたN6/シリカ複合体を600℃で焼成することにより、鋳型に用いたN6を除去し、直径数十nmの微細孔を多数有するシリカシートを得た。これは、優れた吸着、消臭性能を示した。
Example 27
The N6 / silica composite obtained in Example 26 was calcined at 600 ° C. to remove N6 used in the mold, thereby obtaining a silica sheet having a large number of micropores having a diameter of several tens of nm. This showed excellent adsorption and deodorizing performance.

実施例28
実施例9〜12で作製したポリエステルナノファイバー集合体からなる編地に吸湿剤である高松油脂(株)製“SR1000”(10%水分散品)を吸尽させた。この時の、加工条件は吸湿剤は固形分として20%owf、浴比1:20、処理温度130℃、処理時間1時間とした。この吸湿剤の通常のポリエステル繊維への吸尽率はほぼ0%であるが、このポリエステルナノファイバー集合体への吸尽率は10%以上であり、ΔMR=4%以上と綿同等以上の優れた吸湿性を有するポリエステル編地を得ることができた。
Example 28
The “SR1000” (10% aqueous dispersion) manufactured by Takamatsu Yushi Co., Ltd., which was a moisture absorbent, was exhausted to the knitted fabric composed of the polyester nanofiber aggregates produced in Examples 9 to 12. At this time, the processing conditions were as follows: 20% owf of the moisture absorbent as a solid content, a bath ratio of 1:20, a processing temperature of 130 ° C., and a processing time of 1 hour. The rate of exhaustion of this moisture absorbent into ordinary polyester fibers is almost 0%, but the rate of exhaustion into this polyester nanofiber aggregate is 10% or more, and ΔMR = 4% or more, which is as excellent as cotton. Thus, a polyester knitted fabric having hygroscopicity was obtained.

実施例29
メチルトリメトキシシランオリゴマー(n=3〜4)をイソプロピルアルコール/エチレングリコール=1/1混合溶液に溶解し、シロキサン結合を有するシリコーンポリマーの重合触媒としてジブチルスズジアセテートをシランオリゴマーに対して4重量%加え、シリコーンポリマーのコート液を調整した。このコート液に実施例19で作製したN6ナノファイバー集合体からなる織物を30℃で20分間で浸漬し、充分コート液を含浸させた。そして、この織物をコート液から引き上げ、60℃で2分間、80℃で2分間、100℃で2分間乾燥させるとともに、シリコーンの重合を進め、N6ナノファイバーがシリコーンポリマーでコーティングされた織物を得た。これは優れた撥水性と難燃性を示す物であった。
Example 29
A methyltrimethoxysilane oligomer (n = 3-4) is dissolved in a mixed solution of isopropyl alcohol / ethylene glycol = 1/1, and dibutyltin diacetate is used as a polymerization catalyst for a silicone polymer having a siloxane bond in an amount of 4% by weight based on the silane oligomer. In addition, a silicone polymer coating solution was prepared. The woven fabric made of the N6 nanofiber aggregate prepared in Example 19 was immersed in this coating solution at 30 ° C. for 20 minutes to sufficiently impregnate the coating solution. Then, the fabric is pulled up from the coating solution and dried at 60 ° C. for 2 minutes, at 80 ° C. for 2 minutes, and at 100 ° C. for 2 minutes, while proceeding with the polymerization of silicone to obtain a fabric coated with N6 nanofibers by a silicone polymer. Was. It exhibited excellent water repellency and flame retardancy.

実施例30
実施例1〜4で作製したN6ナノファイバー集合体からなる編物は、自重160%以上の含水率、また自重の80%以上の保水率を示し、吸水、保水性に優れたものであった。ここで、含水率、保水率はサンプルを60分間水槽に充分浸漬した後、これを引き上げ表面付着水を除去した物の重量(Ag)を測定し、その後これを遠心脱水機(3000rpmで7分間)で脱水した物の重量(Bg)を測定し、さらにこれを105℃で2時間乾燥させた物の重量(Cg)を測定し、以下の式で計算した。
Example 30
The knitted fabric composed of the N6 nanofiber aggregate prepared in Examples 1 to 4 exhibited a water content of at least 160% of its own weight and a water retention of at least 80% of its own weight, and was excellent in water absorption and water retention. Here, the water content and the water retention were determined by immersing the sample in a water tank for 60 minutes, pulling it up, measuring the weight (Ag) of the material from which water adhering to the surface was removed, and then centrifuging the sample at 3000 rpm for 7 minutes. )), The weight (Bg) of the dehydrated product was measured, and the product was further dried at 105 ° C. for 2 hours, and the weight (Cg) of the product was measured.

含水率(%)=(A−C)/C×100(%)
保水率(%)=(B−C)/C×100(%)
さらに、このN6ナノファイバー集合体からなる不織布は、特に水を15%以上含んだ状態では特異的な粘着性が発現した。
Water content (%) = (AC) / C × 100 (%)
Water retention rate (%) = (B−C) / C × 100 (%)
Furthermore, the nonwoven fabric composed of the N6 nanofiber aggregate exhibited specific tackiness particularly in a state containing 15% or more of water.

実施例31
実施例22で作製したN6ナノファイバー集合体からなる不織布を用いて貼布材基布を作製した。これに薬剤を塗布したところ、薬剤の吸尽性は良好であり、しかも優れた粘着性を示し、優れた貼布材とすることができた。
Example 31
A patch base fabric was produced using the nonwoven fabric comprising the N6 nanofiber aggregate produced in Example 22. When the drug was applied thereto, the exhaustion of the drug was good, and the drug exhibited excellent adhesiveness, and could be used as an excellent adhesive material.

実施例32
実施例1で作製したN6ナノファイバー集合体からなる編物で袋を作製し、これに中袋で包んだ保冷剤を入れた。この熱冷まし用具は袋に用いた編物に結露した水が吸収され、優れた粘着性を示すため、熱冷まし用具が患部からずれにくく、取り扱い性に優れる物であった。
Example 32
A bag was made of a knitted fabric made of the N6 nanofiber aggregate prepared in Example 1, and a cooling agent wrapped in a middle bag was put in the bag. This heat-cooling tool absorbed water condensed on the knitted fabric used for the bag and exhibited excellent tackiness, so that the heat-cooling tool was less likely to be displaced from the affected part and was excellent in handleability.

実施例33
実施例1で作製したN6ナノファイバー集合体からなる編物のケミカル汚染物質の除去能力を以下のようにして評価した。0.005m3 (5リットル)のテドラーバッグに、サンプル片1gを入れ、これに所望の濃度となるようにケミカル汚染物質を含有する空気を導入した。この汚染空気を経時的にサンプリングし、ガステック社製ガス検知管あるいはガスクロマトグラフィーにてテドラーバッグ中のケミカル汚染物質濃度をモニタリングした。
Example 33
The ability of the knitted fabric composed of the N6 nanofiber aggregate prepared in Example 1 to remove chemical contaminants was evaluated as follows. 1 g of a sample piece was placed in a 0.005 m 3 (5 liter) Tedlar bag, and air containing a chemical contaminant was introduced into this into a desired concentration. The contaminated air was sampled with time, and the concentration of the chemical contaminants in the Tedlar bag was monitored using a gas detector tube or gas chromatography manufactured by Gastech.

ケミカル汚染物質としてホルムアルデヒド、トリメチルアミン、イソ吉草酸、フタル酸ジオクチルの除去を評価したところ、優れた除去能力を示した(図19〜22)。   Evaluation of the removal of formaldehyde, trimethylamine, isovaleric acid, and dioctyl phthalate as chemical contaminants showed excellent removal ability (FIGS. 19 to 22).

比較例9
市販のPET不織布を用いて実施例33と同様にケミカル汚染物質の除去能力を評価したが、ほとんど除去能力は無かった(図19〜22)。
Comparative Example 9
The removal ability of the chemical contaminants was evaluated using a commercially available PET nonwoven fabric in the same manner as in Example 33, but there was almost no removal ability (FIGS. 19 to 22).

実施例34
実施例1で用いたN6と重量平均分子量12万、溶融粘度30Pa・s(240℃、2432sec-1)、融点170℃のポリL乳酸(光学純度99.5%以上)を用い、N6の含有率を20重量%とし、混練温度を220℃として実施例1と同様に溶融混練し、b*値=3のポリマーアロイチップを得た。なお、ポリ乳酸の重量平均分子量は以下のようにして求めた。試料のクロロホルム溶液にTHF(テトロヒドロフラン)を混合し測定溶液とした。これをWaters社製ゲルパーミテーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。なお、実施例1で用いたN6の240℃、2432sec-1)での溶融粘度は57Pa・sであった。また、このポリL乳酸の215℃、1216sec-1での溶融粘度は86Pa・sであった。
Example 34
Using N6 used in Example 1 and poly-L-lactic acid (optical purity 99.5% or more) having a weight average molecular weight of 120,000, a melt viscosity of 30 Pa · s (240 ° C., 2432 sec −1 ), and a melting point of 170 ° C., containing N6 The melt kneading was performed in the same manner as in Example 1 except that the mixing ratio was set to 20% by weight and the kneading temperature was set to 220 ° C. to obtain a polymer alloy chip having a b * value of 3. The weight average molecular weight of polylactic acid was determined as follows. THF (tetrohydrofuran) was mixed with a chloroform solution of the sample to prepare a measurement solution. This was measured at 25 ° C. using Gel Permeation Chromatography (GPC) Waters 2690 manufactured by Waters, and the weight average molecular weight was calculated in terms of polystyrene. The melt viscosity of N6 used in Example 1 at 240 ° C. and 2432 sec −1 ) was 57 Pa · s. The melt viscosity of this poly-L-lactic acid at 215 ° C. and 1216 sec −1 was 86 Pa · s.

これを溶融温度230℃、紡糸温度230℃(口金面温度215℃)、紡糸速度3500m/分で実施例1と同様に溶融紡糸を行った。この時、口金として口金孔径0.3mm、孔長0.55mmの通常の紡糸口金を使用したが、バラス現象はほとんど観察されず、実施例1に比べても大幅に紡糸性が向上し、120時間の連続紡糸で糸切れは0回であった。この時の単孔吐出量は0.94g/分とした。これにより、92dtex、36フィラメントの高配向未延伸糸を得たが、これの強度は2.4cN/dtex、伸度90%、沸騰水収縮率43%、U%=0.7%と高配向未延伸糸として極めて優れたものであった。特に、バラスが大幅に減少したのに伴い、糸斑が大幅に改善された。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 230 ° C., a spinning temperature of 230 ° C. (a die surface temperature of 215 ° C.) and a spinning speed of 3500 m / min. At this time, a normal spinneret having a die hole diameter of 0.3 mm and a hole length of 0.55 mm was used as a die. However, almost no ballistic phenomenon was observed, and the spinnability was greatly improved as compared with Example 1. In continuous spinning for a long time, the number of thread breaks was 0. At this time, the single hole discharge rate was 0.94 g / min. As a result, a highly oriented undrawn yarn of 92 dtex and 36 filaments was obtained, which had a strength of 2.4 cN / dtex, an elongation of 90%, a boiling water shrinkage of 43%, and a high orientation of U% = 0.7%. It was extremely excellent as an undrawn yarn. In particular, the plaque was greatly reduced as the ballas were greatly reduced.

この高配向未延伸糸を延伸温度90℃、延伸倍率1.39倍、熱セット温度130℃として実施例1と同様に延伸熱処理した。得られた延伸糸は67dtex、36フィラメントであり、強度3.6cN/dtex、伸度40%、沸騰水収縮率9%、U%=0.7%の優れた特性を示した。   This highly oriented undrawn yarn was subjected to a drawing heat treatment in the same manner as in Example 1 except that the drawing temperature was 90 ° C., the drawing ratio was 1.39 times, and the heat setting temperature was 130 ° C. The obtained drawn yarn was 67 dtex, 36 filaments, and exhibited excellent properties of strength of 3.6 cN / dtex, elongation of 40%, boiling water shrinkage of 9%, and U% = 0.7%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PLAが海(薄い部分)、N6が島(濃い部分)の海島構造を示し、島N6の数平均による直径は55nmであり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。   When the cross section of the obtained polymer alloy fiber was observed by TEM, PLA showed a sea-island structure of sea (thin portion) and N6 showed a sea-island structure of island (dark portion). The number average diameter of island N6 was 55 nm. Was obtained, and a polymer alloy fiber having nano-size and uniform dispersion was obtained.

ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後アルカリ処理することで、ポリマーアロイ繊維中のPLAの99%以上を加水分解除去した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は60nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 The obtained polymer alloy fiber was subjected to alkali treatment after circular knitting as in Example 1, whereby 99% or more of PLA in the polymer alloy fiber was hydrolyzed and removed. As a result, a nanofiber aggregate was obtained, and as a result of analyzing the single-fiber fineness variation of the nanofiber in the same manner as in Example 1, the single-fiber diameter based on the number average of the nanofiber was 60 nm (3 × 10 −5 dtex). The single yarn fineness variation was very small.

また、このナノファイバー集合体からなる丸編みの吸湿率(ΔMR)は6%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度2cN/dtex、伸度45%であった。さらに140℃乾熱収縮率は3%であった。さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい風合いを示した。   The circular knit formed of the nanofiber aggregate had a moisture absorption (ΔMR) of 6% and a water absorption swelling ratio in the yarn longitudinal direction of 7%. The yarn made of the N6 nanofiber aggregate had a strength of 2 cN / dtex and an elongation of 45%. Further, the dry heat shrinkage at 140 ° C. was 3%. Further, when the circular knitting was subjected to buffing, it showed a super peach feeling and a moist and fresh texture such as human skin, which could not be achieved with the conventional ultrafine fibers.

実施例35
実施例9で用いた共重合PETと2−エチルヘキシルアクリレートを22%共重合したポリスチレン(co−PS)を、共重合PETの含有率を20重量%とし、混練温度を235℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。この時、co−PSの262℃、121.6sec-1での溶融粘度は140Pa・s、245℃、1216sec-1での溶融粘度は60Pa・sであった。
Example 35
The polystyrene (co-PS) obtained by copolymerizing 22% of the copolymerized PET and 2-ethylhexyl acrylate used in Example 9 was mixed with Example 1 by setting the content of the copolymerized PET to 20% by weight and the kneading temperature to 235 ° C. Similarly, the mixture was melt-kneaded to obtain a polymer alloy chip having a b * value of 2. At this time, the melt viscosity of co-PS at 262 ° C. and 121.6 sec −1 was 140 Pa · s, and the melt viscosity at 245 ° C. and 1216 sec −1 was 60 Pa · s.

これを溶融温度260℃、紡糸温度260℃(口金面温度245℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例1で用いたものと同様の紡糸口金を使用した。紡糸性は良好であり、1tの紡糸で糸切れは1回であった。この時の単孔吐出量は1.15g/分とした。得られた未延伸糸を延伸温度100℃、延伸倍率2.49倍とし、熱セット装置としてホットローラーの代わりに実効長15cmの熱板を用い、熱セット温度115℃として実施例1と同様に延伸熱処理した。得られた延伸糸は166dtex、36フィラメントであり、強度1.2cN/dtex、伸度27%、U%=2.0%であった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C. (die surface temperature of 245 ° C.) and a spinning speed of 1200 m / min. At this time, the same spinneret as that used in Example 1 was used. The spinnability was good, and the thread breakage was one in 1 t of spinning. The single hole discharge amount at this time was 1.15 g / min. The obtained undrawn yarn was drawn at a temperature of 100 ° C. and a draw ratio of 2.49 times, and a hot plate having an effective length of 15 cm was used as a heat setting device instead of a hot roller. Stretching heat treatment was performed. The obtained drawn yarn was 166 dtex, 36 filaments, strength 1.2 cN / dtex, elongation 27%, U% = 2.0%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、co−PSが海(薄い部分)、共重合PETが島(濃い部分)の海島構造を示し、共重合PETの数平均による直径は50nmであり、共重合PETがナノサイズで均一分散化したポリマーアロイ繊維が得られた。   When the cross section of the obtained polymer alloy fiber was observed by TEM, co-PS showed a sea-island structure (thin portion) and copolymerized PET showed a sea-island structure with islands (dark portion). A polymer alloy fiber having a diameter of 50 nm and having the copolymerized PET uniformly dispersed in nano-size was obtained.

ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後、テトラヒドロフラン(THF)に浸漬する事により、海成分であるco−PSの99%以上を溶出した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は55nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 The obtained polymer alloy fiber was circularly knitted in the same manner as in Example 1, and then immersed in tetrahydrofuran (THF) to elute 99% or more of the sea component co-PS. As a result, a nanofiber aggregate was obtained, and as a result of analyzing the single-fiber fineness variation of the nanofiber in the same manner as in Example 1, the single-fiber diameter based on the number average of the nanofiber was 55 nm (3 × 10 −5 dtex). The single yarn fineness variation was very small.

さらに、このポリマーアロイ繊維を合糸して10万dtexのトウとした後、繊維長2mmに細かくカットした。そしてこれをTHF処理し、co−PSを溶出することによりナノファイバー化した。このナノファイバー分散THF液をアルコール、続いて水に溶媒置換した後、叩解、抄紙を行い、不織布を得た。ここで得られた不織布はナノファイバーが単繊維レベルまで分散した物であった。これは血液フィルターなどのメディカル製品に最適な物であった。   Further, the polymer alloy fiber was plied into a tow of 100,000 dtex, and then finely cut into a fiber length of 2 mm. This was treated with THF to elute co-PS to form a nanofiber. This nanofiber-dispersed THF solution was solvent-substituted with alcohol and then with water, followed by beating and papermaking to obtain a nonwoven fabric. The nonwoven fabric obtained here was a product in which nanofibers were dispersed to the level of a single fiber. This was ideal for medical products such as blood filters.

実施例36
実施例11で用いたPBTと実施例35で用いたco−PSを、PBTの含有率を20重量%とし、混練温度を240℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。
Example 36
The PBT used in Example 11 and the co-PS used in Example 35 were melt-kneaded in the same manner as in Example 1 except that the content of PBT was 20% by weight and the kneading temperature was 240 ° C., and the b * value was 2 Was obtained.

これを溶融温度260℃、紡糸温度260℃(口金面温度245℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例1で用いたものと同様の紡糸口金を使用した。紡糸性は良好であり、1tの紡糸で糸切れは1回であった。この時の単孔吐出量は1.0g/分とした。得られた未延伸糸を実施例35と同様に延伸熱処理した。得られた延伸糸は161dtex、36フィラメントであり、強度1.4cN/dtex、伸度33%、U%=2.0%であった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C. (die surface temperature of 245 ° C.) and a spinning speed of 1200 m / min. At this time, the same spinneret as that used in Example 1 was used. The spinnability was good, and the thread breakage was one in 1 t of spinning. The single hole discharge amount at this time was 1.0 g / min. The obtained undrawn yarn was subjected to a drawing heat treatment in the same manner as in Example 35. The obtained drawn yarn had 161 dtex and 36 filaments, a strength of 1.4 cN / dtex, an elongation of 33%, and U% = 2.0%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、co−PSが海(薄い部分)、共重合PETが島(濃い部分)の海島構造を示し、共重合PETの数平均による直径は45nmであり、共重合PETがナノサイズで均一分散化したポリマーアロイ繊維が得られた。   When the cross section of the obtained polymer alloy fiber was observed by TEM, co-PS showed a sea-island structure (thin portion) and copolymerized PET showed a sea-island structure with islands (dark portion). A polymer alloy fiber having a size of 45 nm and having a uniform dispersion of nano-sized copolymerized PET was obtained.

ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後、トリクレンに浸漬する事により、海成分であるco−PSの99%以上を溶出した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は50nm(2×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 The obtained polymer alloy fiber was circularly knitted in the same manner as in Example 1 and then dipped in trichlorene to elute 99% or more of the sea component co-PS. As a result, a nanofiber aggregate was obtained, and as a result of analyzing the single-fiber fineness variation of the nanofiber in the same manner as in Example 1, the single-fiber diameter based on the number average of the nanofiber was 50 nm (2 × 10 −5 dtex), which was the conventional value. The single yarn fineness variation was very small.

実施例37
実施例12で用いたPTTと新日鐵化学社製共重合PS(“エスチレン”KS−18、メチルメタクリレート共重合、溶融粘度110Pa・s、262℃、121.6sec-1)を、PTTの含有率を20重量%とし、混練温度を240℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。また、この共重合PSの245℃、1216sec-1での溶融粘度は76Pa・sであった。
Example 37
The PTT used in Example 12 and Nippon Steel Chemical Co. PS (“Estyrene” KS-18, methyl methacrylate copolymer, melt viscosity 110 Pa · s, 262 ° C., 121.6 sec −1 ) containing PTT The melt kneading was performed in the same manner as in Example 1 except that the kneading temperature was 240 ° C. and the kneading temperature was 20% by weight to obtain a polymer alloy chip having a b * value of 2. The melt viscosity of this copolymerized PS at 245 ° C. and 1216 sec −1 was 76 Pa · s.

これを溶融温度260℃、紡糸温度260℃(口金面温度245℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例1で用いたものと同様に図13に示すように吐出孔上部に直径0.23mmの計量部12を備えた、吐出孔径14が2mm、吐出孔長13が3mmの紡糸口金を使用した。紡糸性は良好であり、1tの紡糸で糸切れは1回であった。この時の単孔吐出量は1.0g/分とした。得られた未延伸糸を合糸してトウと成し、これを90℃の温水バス中で2.6倍延伸を行い機械捲縮を付与した後、繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、300g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にトリクレン処理を行い、共重合PSを溶出することでPTTナノファイバーとPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。この人工皮革は、従来の人工皮革に比べ柔らかできめ細かいだけでなく弾力性にも富む優れた風合いの物であった。 This was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C. (die surface temperature of 245 ° C.) and a spinning speed of 1200 m / min. At this time, as shown in FIG. 13, a metering section 12 having a diameter of 0.23 mm was provided on the upper part of the discharge hole as in the case of the first embodiment, and the discharge hole diameter 14 was 2 mm and the discharge hole length 13 was 3 mm. A spinneret was used. The spinnability was good, and the thread breakage was one in 1 t of spinning. The single hole discharge amount at this time was 1.0 g / min. The obtained undrawn yarn is combined to form a tow, which is drawn 2.6 times in a warm water bath at 90 ° C. to give a mechanical crimp, cut to a fiber length of 51 mm, and unwound with a card. After being woven, it was webbed with cross wrap weber. Next, a fiber entangled nonwoven fabric of 300 g / m 2 was obtained by using a needle punch. Further, a liquid comprising 13% by weight of a polyurethane composition (PU) mainly composed of a polyether polyurethane and 87% by weight of N, N'-dimethylformamide (DMF) is impregnated, and the PU is coagulated in an aqueous solution of 40% by weight of DMF. After that, it was washed with water. Further, this nonwoven fabric was subjected to trichlene treatment, and a copolymerized PS was eluted to obtain a nanofiber structure having a thickness of about 1 mm composed of PTT nanofibers and PU. This one surface is buffed with sandpaper to a thickness of 0.8 mm, and the other surface is processed with an emery buffing machine to form a nap surface of the nanofiber aggregate, and after dyeing, finishing and sueding. An artificial leather was obtained. This artificial leather had an excellent texture, which was not only soft and fine but also rich in elasticity as compared with conventional artificial leather.

なお、カットファイバーの横断面をTEMで観察したところ、共重合PSが海(薄い部分)、共重合PETが島(濃い部分)の海島構造を示し、共重合PETの数平均による直径は50nmであり、共重合PETがナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、これは単糸繊度3.9dtex、強度1.3cN/dtex、伸度25%であった。   In addition, when the cross section of the cut fiber was observed with a TEM, the copolymer PS showed a sea-island structure in which the sea (thin portion) and the copolymer PET had an island (dark portion), and the number average diameter of the copolymer PET was 50 nm. There was obtained a polymer alloy fiber in which the copolymerized PET was nano-sized and uniformly dispersed. This had a single yarn fineness of 3.9 dtex, a strength of 1.3 cN / dtex and an elongation of 25%.

また、カットファイバーとする前の糸をサンプリングし、このポリマーアロイ繊維を実施例1と同様に丸編み後、トリクレンに浸漬する事により、海成分である共重合PSの99%以上を溶出した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は55nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 Further, a yarn before cutting into a cut fiber was sampled, and this polymer alloy fiber was circularly knitted in the same manner as in Example 1 and then immersed in trichlene to elute 99% or more of the copolymer PS as a sea component. As a result, a nanofiber aggregate was obtained, and as a result of analyzing the single-fiber fineness variation of the nanofiber in the same manner as in Example 1, the single-fiber diameter based on the number average of the nanofiber was 55 nm (3 × 10 −5 dtex). The single yarn fineness variation was very small.

実施例38
実施例34で用いたPLAと実施例35で用いたco−PSを、PLAの含有率を20重量%とし、混練温度を215℃として実施例35と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。
Example 38
The co-PS used in PLA as in Example 35 used in Example 34, the content of PLA and 20 wt%, similarly melt-kneaded as in Example 35 the kneading temperature as 215 ° C., b * value = 2 Was obtained.

これを溶融温度230℃、紡糸温度230℃(口金面温度215℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として吐出孔径が2mmで吐出孔上部に直径0.23mmの計量部を有する紡糸口金を使用した。紡糸性は良好であり、1tの紡糸で糸切れは1回であった。この時の単孔吐出量は0.7g/分とした。得られた未延伸糸を実施例35と同様に延伸熱処理した。得られた延伸糸は111dtex、36フィラメントであり、強度1.3cN/dtex、伸度35%、U%=2.0%であった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 230 ° C., a spinning temperature of 230 ° C. (a die surface temperature of 215 ° C.) and a spinning speed of 1200 m / min. At this time, a spinneret having a discharge hole diameter of 2 mm and a measuring portion having a diameter of 0.23 mm above the discharge hole was used as a die. The spinnability was good, and the thread breakage was one in 1 t of spinning. The single hole discharge amount at this time was 0.7 g / min. The obtained undrawn yarn was subjected to a drawing heat treatment in the same manner as in Example 35. The obtained drawn yarn had 111 dtex and 36 filaments, a strength of 1.3 cN / dtex, an elongation of 35%, and U% = 2.0%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、co−PSが海(薄い部分)、PLAが島(濃い部分)の海島構造を示し、PLAの数平均による直径は40nmであり、PLAがナノサイズで均一分散化したポリマーアロイ繊維が得られた。   When the cross section of the obtained polymer alloy fiber was observed by TEM, co-PS showed a sea-island structure (thin portion), PLA showed a sea-island structure of islands (dark portion), and the PLA had a number average diameter of 40 nm. A polymer alloy fiber in which PLA was nano-sized and uniformly dispersed was obtained.

実施例39
実施例34で作製したナノファイバー集合体からなる丸編み5gを110℃で1時間乾燥させ、下記組成の処理液に2時間浸漬し、ジフェニルジメトキシシランをナノファイバー集合体に十分含浸させた。処理布帛を純水で十分洗浄後、140℃で3分間キュアすることにより、ナノファイバー集合体の内部でジフェニルジメトキシシランを重合させた。これに家庭洗濯を10回を施し、110℃で1時間乾燥させ重量を測定したところ、未処理に比べ38%の重量増加であった。このように、ナノファイバー集合体にジフェニルシリコーンを坦持させハイブリッド材料を得ることができ、ジフェニルシリコーンの洗濯耐久性も良好であった。
Example 39
5 g of the circular knitting made of the nanofiber assembly prepared in Example 34 was dried at 110 ° C. for 1 hour, immersed in a treatment solution having the following composition for 2 hours, and the nanofiber assembly was sufficiently impregnated with diphenyldimethoxysilane. After sufficiently treating the treated fabric with pure water, it was cured at 140 ° C. for 3 minutes to polymerize diphenyldimethoxysilane inside the nanofiber aggregate. This was washed 10 times with home washing, dried at 110 ° C. for 1 hour, and weighed. As a result, the weight was increased by 38% as compared with the untreated one. Thus, a hybrid material was obtained by carrying diphenyl silicone on the nanofiber aggregate, and the washing durability of diphenyl silicone was also good.

<処理液の組成>
ジフェニルジメトキシシラン 100ml
純水 100ml
エタノール 300ml
10%塩酸 50滴
実施例40
実施例36で作製したPBTナノファイバー集合体からなる編地に鮫の肝臓から抽出した天然油成分であり、保湿によるスキンケア効果のあるスクワランを吸尽させた。このときの処理条件は、スクワラン60%と乳化分散剤40%を混合した物を水に濃度7.5g/リットルで分散させ、浴比1:40、温度130℃、処理時間60分間である。処理後80℃で2時間洗浄を行い、このときのスクワランの付着量は布帛に対して21重量%であった。その後、家庭洗濯を20回施した後のスクワランの付着量は、布帛に対して12重量%であり、充分な洗濯耐久性を示した。
<Composition of treatment liquid>
Diphenyldimethoxysilane 100ml
100 ml of pure water
300 ml of ethanol
50 drops of 10% hydrochloric acid Example 40
A squalane, which is a natural oil component extracted from shark liver and has a skin care effect by moisturizing, was exhausted on a knitted fabric comprising a PBT nanofiber aggregate prepared in Example 36. The processing conditions at this time are a mixture of 60% squalane and 40% emulsifying dispersant dispersed in water at a concentration of 7.5 g / liter, a bath ratio of 1:40, a temperature of 130 ° C., and a processing time of 60 minutes. After the treatment, washing was performed at 80 ° C. for 2 hours. At this time, the attached amount of squalane was 21% by weight based on the fabric. Thereafter, the amount of squalane adhered after home washing 20 times was 12% by weight with respect to the fabric, indicating sufficient washing durability.

このスクワラン加工されたPBTナノファイバー集合体からなる丸編みを用いて靴下を作製し、かかとの乾燥がひどい被験者10人に1週間の着用試験を行ったところ、乾燥肌が緩和された者が8人いた。これは、ナノファイバー集合体にトラップされたスクワランが被験者の汗により徐々に抽出され、肌と接触したためと考えられる。   A sock was prepared using a circular knit made of the squalane-processed PBT nanofiber aggregate, and a one-week wearing test was performed on 10 subjects with severely dried heels. There were people. This is probably because the squalane trapped in the nanofiber aggregate was gradually extracted by the sweat of the subject and came into contact with the skin.

実施例41
N6の含有率を35%として実施例34と同様に溶融紡糸を行い、400dtex、144フィラメントのN6/PLAポリマーアロイ高配向未延伸糸を得た。この高配向未延伸糸を実施例34と同様に延伸熱処理した。得られた延伸糸は288dtex、96フィラメントであり、強度3.6cN/dtex、伸度40%、沸騰水収縮率9%、U%=0.7%の優れた特性を示した。
Example 41
Melt spinning was performed in the same manner as in Example 34 except that the N6 content was 35%, to obtain a 400 dtex, 144 filament N6 / PLA polymer alloy highly oriented undrawn yarn. This highly oriented undrawn yarn was subjected to a drawing heat treatment in the same manner as in Example 34. The obtained drawn yarn had 288 dtex and 96 filaments, and exhibited excellent properties of a strength of 3.6 cN / dtex, an elongation of 40%, a boiling water shrinkage of 9%, and U% = 0.7%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PLAが海(薄い部分)、N6が島(濃い部分)の海島構造を示し、島N6の数平均による直径は62nmであり、直径1〜100nmでの面積比率は98%、直径55〜84nmの範囲での面積比率は70%と、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。これを15%のオーバーフィードをかけながら別途用意した165dtex、96フィラメントのN6仮撚り加工糸とエア混繊した。そしてこの混繊糸に300ターン/mの甘撚りを施し、S撚り/Z撚り双糸で経糸および緯糸に用いて、2/2のツイル織物を作製した。得られたツイル織物に実施例34と同様にアルカリ処理を施し、N6ナノファイバーからなる目付150g/m2のカーテン用生地を得た。このカーテン生地中でN6ナノファイバーは通常N6仮撚り加工糸を覆うように位置しており、ナノファイバーが主として織物表面に露出していた。さらに、このナノファイバーの単繊維繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は67nm(4×10-5dtex)と従来にない細さであり、また、単繊維繊度が1×10-7〜1×10-4dtexの繊度比率は98%であり、特に単繊維直径で55〜84nmの間に入る単繊維繊度比率は68%であり、単繊維繊度ばらつきはごく小さいものであった。また、このN6ナノファイバーは、強度2.0cN/dtex、伸度40%であった。 When the cross section of the obtained polymer alloy fiber was observed by TEM, PLA showed a sea-island structure of the sea (thin portion) and N6 showed a sea-island structure of an island (dark portion). The number average diameter of the island N6 was 62 nm. The area ratio in the range of 1 to 100 nm was 98%, and the area ratio in the range of 55 to 84 nm in diameter was 70%. Thus, polymer alloy fibers in which N6 was nano-sized and uniformly dispersed were obtained. This was air-mixed with a separately prepared 165 dtex, 96 filament N6 false twisted yarn while applying 15% overfeed. Then, the mixed fiber was subjected to a sweet twist of 300 turns / m, and an S-twisted / Z-twisted twin yarn was used as a warp and a weft to produce a 2/2 twill fabric. The obtained twill fabric was subjected to an alkali treatment in the same manner as in Example 34 to obtain a fabric for curtain made of N6 nanofibers having a basis weight of 150 g / m 2 . In this curtain fabric, the N6 nanofibers were usually located so as to cover the N6 false twisted yarn, and the nanofibers were mainly exposed on the fabric surface. Furthermore, as a result of analyzing the single fiber fineness variation of the nanofibers in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers is 67 nm (4 × 10 −5 dtex), which is an unprecedented fineness. The fineness ratio of the single fiber fineness of 1 × 10 −7 to 1 × 10 −4 dtex is 98%, particularly the single fiber fineness ratio of 55 to 84 nm in the single fiber diameter is 68%. The variation was very small. The N6 nanofiber had a strength of 2.0 cN / dtex and an elongation of 40%.

また、このカーテン生地をシルコートPP(特殊変性シリコーン/松本油脂(株)製商品名)の10wt%水溶液に浸漬し、水溶液のピックアップ率が150%となるよう処理液をカーテン生地に付与した。処理液を付与後、110℃で3分間、リラックス状態でオーブン中で乾燥した。乾燥後、揉布処理を行った。得られたカーテン生地は、繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示した。さらに接触冷感もあるものであった。また、これの吸湿率(ΔMR)は4%と十分な吸湿性を示し、酢酸の消臭試験を行ったところ10分間で濃度が100ppmから1ppmまで低下し、優れた消臭性を示した。そして、この生地を用いてカーテンを作製し6畳間に吊したところ、爽やかな室内環境とすることができ、さらに結露も抑制できるものであった。このカーテンを家庭用洗濯機で洗濯ネットに入れて洗濯・脱水したが形くずれは発生せず、良好な寸法安定性を示した。   Further, this curtain fabric was immersed in a 10 wt% aqueous solution of Sylcoat PP (special modified silicone / trade name of Matsumoto Yushi Co., Ltd.), and a treatment liquid was applied to the curtain fabric so that the aqueous solution pickup rate became 150%. After applying the treatment liquid, it was dried in an oven at 110 ° C. for 3 minutes in a relaxed state. After drying, a rubbing treatment was performed. The obtained curtain fabric showed a delicate touch and a moist and fresh texture like human skin. In addition, there was a feeling of cold contact. Further, its moisture absorption rate (ΔMR) was 4%, indicating a sufficient hygroscopicity. When a test for deodorizing acetic acid was performed, the concentration was reduced from 100 ppm to 1 ppm in 10 minutes, showing excellent deodorizing properties. Then, when a curtain was produced using this cloth and hung between six tatami mats, a refreshing indoor environment could be obtained and dew condensation could be suppressed. The curtain was put into a washing net with a home washing machine and washed and dehydrated. However, no deformation occurred, and good dimensional stability was exhibited.

実施例42
実施例3で用いたN6と共重合PETをN6と共重合PETのブレンド比を80重量%/20重量%として、実施例1と同様に溶融混練を行いマスターペレットを作製した。このマスターペレットと溶融混練に用いたN6バージンペレットを独立のホッパー1に仕込み、計量部24で独立に計量してブレンド槽29(容量7kg)に供給した(図23)。このとき、マスターペレットとN6バージンペレットのブレンド比は重量で1:1とし、ブレンド槽壁面へのペレット付着を防止するため静電防止剤(三洋化成工業(株)社製 エマルミン40)を20ppmを含有させた。そして、このブレンド槽でペレット同士が攪拌された後、二軸押出混練機23に供給され、溶融混練されN6の含有率が40重量%のポリマーアロイとされた。このとき、混練部長さをスクリュー有効長さの33%、混練温度は270℃とした。その後、ポリマー融液を紡糸温度を280℃のスピンブロック3に導いた。そして、実施例3同様に溶融紡糸を行った。この未延伸糸にやはり実施例3同様に延伸・熱処理を施した。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度3.0cN/dtex、伸度30%、U%=3.7%の優れた特性を示した。このポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、共重合PETが海、N6が島の海島構造を示し、島N6の数平均による直径は110nmとやや島N6の直径が大きく、島ドメイン直径が1〜150nmの範囲の面積比率は70%、島ドメイン直径が95〜124nmの範囲の面積比率は50%とばらつきも大きいものであった。
Example 42
Melt kneading was carried out in the same manner as in Example 1 except that the blend ratio of N6 and copolymerized PET used in Example 3 was set to 80% by weight / 20% by weight of N6 and copolymerized PET, thereby producing master pellets. The master pellets and the N6 virgin pellets used for melt-kneading were charged into an independent hopper 1 and independently weighed by a measuring section 24 and supplied to a blending tank 29 (7 kg capacity) (FIG. 23). At this time, the blend ratio of the master pellet and the N6 virgin pellet was 1: 1 by weight, and 20 ppm of an antistatic agent (Emarmin 40 manufactured by Sanyo Chemical Industry Co., Ltd.) was used to prevent the pellet from adhering to the wall surface of the blending tank. Contained. After the pellets were agitated in the blending tank, the pellets were supplied to a twin-screw extruder 23 and melted and kneaded to obtain a polymer alloy having a N6 content of 40% by weight. At this time, the kneading part length was 33% of the effective screw length, and the kneading temperature was 270 ° C. Thereafter, the polymer melt was led to a spin block 3 having a spinning temperature of 280 ° C. Then, melt spinning was performed in the same manner as in Example 3. This undrawn yarn was subjected to drawing and heat treatment in the same manner as in Example 3. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength of 3.0 cN / dtex, elongation of 30%, and U% = 3.7%. When the cross section of this polymer alloy fiber was observed with a TEM, as in Example 1, the copolymerized PET showed a sea, and N6 showed a sea-island structure of islands. The number-average diameter of the island N6 was 110 nm, and the diameter of the island N6 was slightly smaller. The area ratio when the island domain diameter was in the range of 1 to 150 nm was 70%, and the area ratio when the island domain diameter was in the range of 95 to 124 nm was 50%.

ここで得られたポリマーアロイ繊維を用いて実施例3同様に、アルカリ処理によりナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は120nm(1.3×10-4dtex)と実施例3に比べると単糸繊度が太く、単糸繊度ばらつきも大きく、1×10-7dtex〜1×10-4dtexの範囲の単糸繊度比率は60%未満、1×10-7dtex〜2×10-4dtexの範囲の単糸繊度比率は95%であった。また単繊維直径が105〜134nmの範囲の繊度比率は51%であった。 Using the polymer alloy fiber obtained here, a nanofiber aggregate was obtained by alkali treatment in the same manner as in Example 3. Further, as a result of analyzing the single fiber fineness variation of these nanofibers in the same manner as in Example 1, the single fiber diameter by number average of the nanofibers was 120 nm (1.3 × 10 −4 dtex), which was smaller than that of Example 3. fineness thick, single yarn fineness variation is large, 1 × 10 -7 dtex~1 × 10 -4 dtex fineness ratio less than 60% of the range of the 1 × 10 -7 dtex~2 × 10 -4 dtex The single yarn fineness ratio in the range was 95%. The fineness ratio in the range of a single fiber diameter of 105 to 134 nm was 51%.

また、このナノファーバー集合体からなる丸編みの吸湿率(ΔMR)は5%、糸長手方向の吸水膨潤率は7%であった。また、このN6ナノファイバー集合体からなる糸は、強度1.2cN/dtex、伸度50%であった。さらに140℃乾熱での収縮率は3%であった。   The circular knitting made of this nanofabric aggregate had a moisture absorption rate (ΔMR) of 5% and a water absorption swelling rate in the yarn longitudinal direction of 7%. The yarn made of the N6 nanofiber aggregate had a strength of 1.2 cN / dtex and an elongation of 50%. Further, the shrinkage at 140 ° C. dry heat was 3%.

実施例43
実施例4で用いたN6/共重合PETポリマーアロイと、実施例4で用いた溶融粘度500Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のN6を別々に溶融し、丸孔口金を用いて芯鞘複合紡糸を実施例4と同様に行った。このとき、鞘成分をN6/共重合PETポリマーアロイ、芯成分をN6とし、ポリマーアロイ成分複合比を50重量%とした。これを1600m/分で引き取り一旦巻き取った後、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃、延伸倍率を2.7倍として延伸した。得られたポリマーアロイ繊維は220dtex、144フィラメント、強度=4.8cN/dtex、伸度=35%、U%=1.9%、沸騰水収縮率12%であった。これの鞘部のポリマアロイ部の島ドメインを解析した結果、島ドメインの数平均直径は82nm、直径1〜100nmの範囲の面積比率は85%、直径65〜94nmの範囲の面積比率は66%であった。そして、これに300ターン/mの甘撚りを施し、経緯使いで平織物を作製した。そして、実施例4と同様にアルカリ処理を施し、N6ナノファイバーによりN6が覆われた繊維から成る目付220g/m2の織物を得た。また、得られたN6ナノファイバーの数平均による単繊維直径は86nm(6×10−4dtex)であった。また、単繊維繊度が1×10−7〜1×10−4dtexの間に入る単繊維の繊度比率は78%であり、特に単繊維直径で75〜104nmの間に入る単繊維の繊度比率は64%であり、単繊維繊度ばらつきはごく小さいものであった。さらに、これに実施例41と同様にシリコーン処理を施したところ繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示した。そして、これを用いて布団カバーとシーツを作製したが、優れた風合いと吸湿性のため非常に快適なものであった。さらに、優れた消臭性のため失禁等があっても臭いを抑えることができた。また、これらの寝装具を家庭用洗濯機で洗濯ネットに入れて洗濯および脱水したが形くずれは発生せず、良好な寸法安定性を示した。
Example 43
The N6 / copolymerized PET polymer alloy used in Example 4 and the N6 having a melt viscosity of 500 Pa · s (262 ° C, a shear rate of 121.6 sec-1) and a melting point of 220 ° C used in Example 4 were separately melted. Core / sheath composite spinning was performed in the same manner as in Example 4 using a round hole die. At this time, the sheath component was N6 / copolymerized PET polymer alloy, the core component was N6, and the composite ratio of the polymer alloy component was 50% by weight. This was taken up at 1600 m / min and once wound up, then stretched with the temperature of the first hot roller 17 at 90 ° C., the temperature of the second hot roller 18 at 130 ° C., and a stretching ratio of 2.7 times. The obtained polymer alloy fiber had 220 dtex, 144 filaments, strength = 4.8 cN / dtex, elongation = 35%, U% = 1.9%, and boiling water shrinkage 12%. As a result of analyzing the island domain of the polymer alloy portion of the sheath portion, the number average diameter of the island domain was 82 nm, the area ratio in the range of 1 to 100 nm was 85%, and the area ratio in the range of 65 to 94 nm was 66%. there were. Then, this was subjected to a sweet twist of 300 turns / m, and a plain woven fabric was produced using the process. Then, an alkali treatment was performed in the same manner as in Example 4 to obtain a woven fabric having a basis weight of 220 g / m2 composed of fibers covered with N6 by N6 nanofibers. The number average single fiber diameter of the obtained N6 nanofibers was 86 nm (6 × 10 −4 dtex). The fineness ratio of a single fiber whose single fiber fineness is between 1 × 10 −7 and 1 × 10 −4 dtex is 78%, and the fineness ratio of a single fiber whose single fiber diameter is between 75 and 104 nm is particularly high. It was 64%, and the single fiber fineness variation was very small. Further, when silicone treatment was applied to this in the same manner as in Example 41, a delicate touch and a moist and fresh texture like human skin were shown. Then, a futon cover and a sheet were produced using this material, but it was very comfortable because of its excellent texture and hygroscopicity. Furthermore, due to its excellent deodorizing properties, the odor could be suppressed even if there was incontinence. In addition, these beddings were put into a washing net in a home washing machine and washed and dehydrated, but no deformation occurred and good dimensional stability was exhibited.

実施例44
実施例43と同様に芯鞘複合紡糸を行い、158dtex、36フィラメント、強度4.8cN/dtex、伸度35%、U%=2.0%、沸騰水収縮率12%の芯鞘複合糸を得た。この時、ポリマーアロイ成分複合比を65重量%とした。これにさらにヒーター温度165℃でスピンドル仮撚りを施し、CR値が25%、沸騰水収縮率が14%の仮撚り加工糸を得た。これの鞘部のポリマアロイ部の島ドメインを解析した結果、島ドメインの数平均直径は82nm、直径1〜100nmの範囲の面積比率は85%、直径65〜94nmの範囲の面積比率は66%であった。これを3本引き揃え緯糸とし、経糸に78dtex、36フィラメントの通常PBT繊維を用いて5枚サテンを製織した。
Example 44
A core-sheath composite spinning was performed in the same manner as in Example 43, and a core-sheath composite yarn having 158 dtex, 36 filaments, a strength of 4.8 cN / dtex, an elongation of 35%, U% = 2.0%, and a boiling water shrinkage of 12% was obtained. Obtained. At this time, the composite ratio of the polymer alloy component was 65% by weight. This was further subjected to spindle false twisting at a heater temperature of 165 ° C. to obtain a false twisted yarn having a CR value of 25% and a boiling water shrinkage of 14%. As a result of analyzing the island domain of the polymer alloy portion of the sheath portion, the number average diameter of the island domain was 82 nm, the area ratio in the range of 1 to 100 nm was 85%, and the area ratio in the range of 65 to 94 nm was 66%. there were. This was used as three aligned wefts, and five satins were woven using normal PBT fibers of 78 dtex and 36 filaments as the warp.

さらに、水酸化ナトリウム濃度を3重量%、処理時間を40分として実施例4と同様にアルカリ処理を行い、N6ナノファイバーによりN6が覆われた繊維とPBT繊維から成る目付220g/m2の織物を得た。また、得られたN6ナノファイバーの数平均による単繊維直径は86nm(6×10−4dtex)であった。また、単繊維繊度が1×10−7〜1×10−4dtexの間に入る単繊維の繊度比率は78%であり、特に単繊維直径で75〜104nmの間に入る単繊維の繊度比率は64%であり、単繊維繊度ばらつきはごく小さいものであった。   Furthermore, alkali treatment was performed in the same manner as in Example 4 except that the concentration of sodium hydroxide was 3% by weight and the treatment time was 40 minutes, and a woven fabric having a basis weight of 220 g / m2 composed of fibers covered with N6 by N6 nanofibers and PBT fibers was obtained. Obtained. The diameter of a single fiber of the obtained N6 nanofiber was 86 nm (6 × 10 −4 dtex) by number average. The fineness ratio of a single fiber whose single fiber fineness is between 1 × 10 −7 and 1 × 10 −4 dtex is 78%, and particularly the fineness ratio of a single fiber whose fineness is between 75 and 104 nm in single fiber diameter is It was 64%, and the single fiber fineness variation was extremely small.

このサテン織物は表面にナノファイバーが浮きだしたが、裏面は通常PBTであり、表面が親水性、裏面が疎水性という相反する性質を有する高機能布帛であった。また、緯糸がN6ナノファイバー単独の場合とは異なり、トータル減量率が小さいため経糸と緯糸の隙間も小さくなったため、布帛の形態安定性が大幅に向上した。   Although the nanofibers emerged on the surface of the satin fabric, the back surface was usually PBT, and was a high-functional fabric having contradictory properties of hydrophilic surface and hydrophobic surface. Also, unlike the case where the weft is N6 nanofiber alone, the clearance between the warp and the weft is reduced due to the small weight loss rate, and the morphological stability of the fabric is greatly improved.

実施例45
実施例4で用いたN6/共重合PETポリマーアロイと、実施例4で用いた溶融粘度500Pa・s(262℃、剪断速度121.6sec−1)、融点220℃のN6を別々に溶融し、丸孔口金を用いて芯鞘複合紡糸を実施例4と同様に行った。このとき、芯成分をN6/共重合PETポリマーアロイ、鞘成分をN6とし、ポリマーアロイ成分複合比を50重量%とした。これを1600m/分で引き取り一旦巻き取った後、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃、延伸倍率を2.7倍として延伸した。得られたポリマーアロイ繊維は220dtex、144フィラメント、強度=4.8cN/dtex、伸度=35%、U%=1.9%、沸騰水収縮率12%であった。これの芯部のポリマアロイ部の島ドメインを解析した結果、島ドメインの数平均直径は82nm、直径1〜100nmの範囲の面積比率は85%、直径65〜94nmの範囲の面積比率は66%であった。であった。そして、これに300ターン/mの甘撚りを施し、経緯使いで平織物を作製した。そして、実施例4と同様にアルカリ処理を施し、N6ナノファイバーが鞘成分N6で覆われた繊維から成る目付220g/m2の織物を得た。また、得られたN6ナノファイバーの数平均による単繊維直径は86nm(6×10−4dtex)であった。また、単繊維繊度が1×10−7〜1×10−4dtexの間に入る単繊維の繊度比率は78%であり、特に単繊維直径で75〜104nmの間に入る単繊維の繊度比率は64%であり、単繊維繊度ばらつきはごく小さいものであった。さらに、これに実施例41と同様にシリコーン処理を施したところ繊細なタッチと人肌のようなしっとりとしたみずみずしい風合いを示した。そして、これを用いて布団カバーとシーツを作製したが、優れた風合いと吸湿性のため非常に快適なものであった。さらに、優れた消臭性のため失禁等があっても臭いを抑えることができた。また、これらの寝装具を家庭用洗濯機で洗濯ネットに入れて洗濯および脱水したが形くずれは発生せず、良好な寸法安定性を示した。
Example 45
The N6 / copolymerized PET polymer alloy used in Example 4 and the N6 having a melt viscosity of 500 Pa · s (262 ° C, a shear rate of 121.6 sec-1) and a melting point of 220 ° C used in Example 4 were separately melted. Core / sheath composite spinning was performed in the same manner as in Example 4 using a round hole die. At this time, the core component was N6 / copolymerized PET polymer alloy, the sheath component was N6, and the composite ratio of the polymer alloy component was 50% by weight. This was taken up at 1600 m / min and once wound up, then stretched with the temperature of the first hot roller 17 at 90 ° C., the temperature of the second hot roller 18 at 130 ° C., and a stretching ratio of 2.7 times. The obtained polymer alloy fiber had 220 dtex, 144 filaments, strength = 4.8 cN / dtex, elongation = 35%, U% = 1.9%, and boiling water shrinkage 12%. As a result of analyzing the island domain of the polymer alloy part of the core, the number average diameter of the island domain was 82 nm, the area ratio in the range of 1 to 100 nm was 85%, and the area ratio in the range of 65 to 94 nm was 66%. there were. Met. Then, this was subjected to a sweet twist of 300 turns / m, and a plain woven fabric was produced using the process. Then, an alkali treatment was performed in the same manner as in Example 4 to obtain a woven fabric having a basis weight of 220 g / m2 composed of fibers in which N6 nanofibers were covered with the sheath component N6. The number average single fiber diameter of the obtained N6 nanofibers was 86 nm (6 × 10 −4 dtex). The fineness ratio of a single fiber whose single fiber fineness is between 1 × 10 −7 and 1 × 10 −4 dtex is 78%, and the fineness ratio of a single fiber whose single fiber diameter is between 75 and 104 nm is particularly high. It was 64%, and the single fiber fineness variation was very small. Further, when silicone treatment was applied to this in the same manner as in Example 41, a delicate touch and a moist and fresh texture like human skin were shown. Then, a futon cover and a sheet were produced using this material, but it was very comfortable because of its excellent texture and hygroscopicity. Furthermore, due to its excellent deodorizing properties, the odor could be suppressed even if there was incontinence. In addition, these beddings were put into a washing net in a home washing machine and washed and dehydrated, but no deformation occurred and good dimensional stability was exhibited.

実施例1のポリマーアロイ繊維の横断面を示すTEM写真である。3 is a TEM photograph showing a cross section of the polymer alloy fiber of Example 1. 実施例1のナノファイバーの単糸繊度ばらつきをあらわす図である。FIG. 3 is a diagram showing a variation in single-fiber fineness of the nanofiber of Example 1. 実施例1のナノファイバーの単糸繊度ばらつきをあらわす図である。FIG. 3 is a diagram showing a variation in single-fiber fineness of the nanofiber of Example 1. 実施例1のナノファイバー集合体の繊維側面の状態を示す光学顕微鏡写真である。4 is an optical microscope photograph showing a state of a fiber side surface of the nanofiber aggregate of Example 1. 実施例1のナノファイバー集合体の繊維側面の状態を示すSEM写真である。4 is an SEM photograph showing a state of a fiber side surface of the nanofiber aggregate of Example 1. 実施例1のナイロンナノファイバーの集合体繊維横断面を示すTEM写真である。3 is a TEM photograph showing a cross section of an aggregate fiber of the nylon nanofibers of Example 1. 実施例1の可逆的水膨潤性を示す図である。FIG. 2 is a view showing the reversible water swellability of Example 1. 比較例4の超極細糸の単糸繊度ばらつきをあらわす図である。FIG. 10 is a diagram showing a variation in single-fiber fineness of the ultrafine yarn of Comparative Example 4. 比較例4の超極細糸の単糸繊度ばらつきをあらわす図である。FIG. 10 is a diagram showing a variation in single-fiber fineness of the ultrafine yarn of Comparative Example 4. 比較例5の超極細糸の単糸繊度ばらつきをあらわす図である。FIG. 14 is a diagram showing a variation in single-fiber fineness of the ultrafine yarn of Comparative Example 5. 比較例5の超極細糸の単糸繊度ばらつきをあらわす図である。FIG. 14 is a diagram showing a variation in single-fiber fineness of the ultrafine yarn of Comparative Example 5. 紡糸機を示す図である。It is a figure showing a spinning machine. 口金を示す図である。It is a figure which shows a base. 延伸機を示す図である。It is a figure which shows a stretching machine. 紡糸機を示す図である。It is a figure showing a spinning machine. 紡糸機を示す図である。It is a figure showing a spinning machine. 紡糸機を示す図である。It is a figure showing a spinning machine. スパンボンド紡糸装置を示す図である。It is a figure showing a spun bond spinning device. 実施例32のホルムアルデヒドの除去能力を示す図である。FIG. 21 is a view showing the formaldehyde removal ability of Example 32. 実施例32のトリメチルアミンの除去能力を示す図である。FIG. 13 is a view showing the ability of Example 32 to remove trimethylamine. 実施例32のイソ吉草酸の除去能力を示す図である。FIG. 11 is a view showing the ability to remove isovaleric acid of Example 32. 実施例32のフタル酸ジオクチルの除去能力を示す図である。FIG. 14 is a view showing the dioctyl phthalate removal ability of Example 32. 紡糸機を示す図である。It is a figure showing a spinning machine.

符号の説明Explanation of reference numerals

1:ホッパー
2:溶融部
3:スピンブロック
4:紡糸パック
5:口金
6:チムニー
7:糸条
8:集束給油ガイド
9:第1引き取りローラー
10:第2引き取りローラー
11:巻き取り糸
12:計量部
13:吐出孔長
14:吐出孔径
15:未延伸糸
16:フィードローラー
17:第1ホットローラー
18:第2ホットローラー
19:第3ローラー(室温)
20:延伸糸
21:1軸押出混練機
22:静止混練器
23:2軸押出混練機
24:チップ計量装置
25:イジェクター
26:開繊板
27:開繊糸条
28:捕集装置
29:ブレンド槽
1: hopper 2: melting part 3: spin block 4: spin pack 5: spinneret 6: chimney 7: yarn 8: focusing oil supply guide 9: first take-up roller 10: second take-up roller 11: take-up yarn 12: weighing Part 13: discharge hole length 14: discharge hole diameter 15: undrawn yarn 16: feed roller 17: first hot roller 18: second hot roller 19: third roller (room temperature)
Reference Signs List 20: drawn yarn 21: single-screw extruder 22: stationary kneader 23: twin-screw extruder 24: tip measuring device 25: ejector 26: spread plate 27: spread yarn 28: collection device 29: blending device Tank

Claims (13)

少なくとも2種の溶解性の異なる有機ポリマーからなる海島構造繊維であって、島成分が難溶解性ポリマー、海成分が易溶解ポリマーからなり、島ドメインの数平均直径が1〜150nmであり、島ドメインの60%以上が直径1〜150nmのサイズである、ポリマーアロイ繊維。   An islands-in-the-sea structure fiber comprising at least two kinds of organic polymers having different solubilities, wherein the island component is a poorly soluble polymer, the sea component is a readily soluble polymer, and the number average diameter of the island domain is 1 to 150 nm. A polymer alloy fiber in which 60% or more of the domains have a size of 1 to 150 nm in diameter. 島ドメインの60%以上が直径差で30nmの範囲ある請求項1記載のポリマーアロイ繊維。   The polymer alloy fiber according to claim 1, wherein 60% or more of the island domains have a diameter difference of 30 nm. 海ポリマーの融点が島ポリマーの融点の−20〜+20℃である請求項1または2記載のポリマーアロイ繊維。   3. The polymer alloy fiber according to claim 1, wherein the melting point of the sea polymer is -20 to +20 [deg.] C. of the melting point of the island polymer. 海ポリマーの溶融粘度が100Pa・s以下である請求項1〜3のうちいずれか1項記載のポリマーアロイ繊維。   The polymer alloy fiber according to any one of claims 1 to 3, wherein the melt viscosity of the sea polymer is 100 Pa · s or less. 海ポリマーがアルカリ水溶液および/または熱水可溶性ポリマーである請求項1〜4のうちいずれか1項記載のポリマーアロイ繊維。   The polymer alloy fiber according to any one of claims 1 to 4, wherein the sea polymer is an alkaline aqueous solution and / or a hot water soluble polymer. 島ポリマーおよび/または海ポリマーの融点が165℃以上である請求項1〜5のうちいずれか1項記載のポリマーアロイ繊維。   The polymer alloy fiber according to any one of claims 1 to 5, wherein a melting point of the island polymer and / or the sea polymer is 165 ° C or more. ウースター斑が15%以下である請求項1〜6のうちいずれか1項記載のポリマーアロイ繊維。   The polymer alloy fiber according to any one of claims 1 to 6, wherein the Worster spot is 15% or less. 強度が1cN/dtex以上である請求項1〜7のうちいずれか1項記載のポリマーアロイ繊維。   The polymer alloy fiber according to any one of claims 1 to 7, having a strength of 1 cN / dtex or more. ポリマーアロイとその他のポリマーからなる複合繊維であって、ポリマーアロイが少なくとも2種の溶解性の異なる有機ポリマーからなる海島構造であって、島成分が難溶解性ポリマー、海成分が易溶解ポリマーからなり、島ドメインの数平均直径が1〜150nmであり、島ドメインの60%以上が直径1〜150nmのサイズである、ポリマーアロイ繊維   A composite fiber comprising a polymer alloy and another polymer, wherein the polymer alloy has a sea-island structure comprising at least two kinds of organic polymers having different solubility, wherein the island component is composed of a poorly soluble polymer and the sea component is composed of a readily soluble polymer. Wherein the number average diameter of the island domains is 1 to 150 nm and 60% or more of the island domains have a size of 1 to 150 nm in diameter. 芯成分がポリマーアロイから構成される芯鞘複合繊維である請求項9記載のポリマーアロイ繊維。   The polymer alloy fiber according to claim 9, wherein the core component is a core-sheath conjugate fiber composed of a polymer alloy. 請求項1〜10記載のポリマーアロイ繊維を少なくとも一部に有する繊維製品。   A fiber product having at least a part of the polymer alloy fiber according to claim 1. 繊維製品が織編物あるいはフェルトあるいは不織布である請求項11記載の繊維製品。   The textile product according to claim 11, wherein the textile product is a woven or knitted fabric, a felt, or a nonwoven fabric. 請求項1〜10記載のポリマーアロイ繊維または請求項11または12記載の繊維製品から海ポリマーを溶出する、数平均直径が1〜150nmのナノファイバーを含む繊維製品の製造方法。   A method for producing a fiber product comprising nanofibers having a number average diameter of 1 to 150 nm, wherein a sea polymer is eluted from the polymer alloy fiber according to claim 1 or the fiber product according to claim 11 or 12.
JP2003368532A 2002-10-30 2003-10-29 Composite fiber Expired - Fee Related JP4100327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368532A JP4100327B2 (en) 2002-10-30 2003-10-29 Composite fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002315726 2002-10-30
JP2003368532A JP4100327B2 (en) 2002-10-30 2003-10-29 Composite fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007263586A Division JP4238929B2 (en) 2002-10-30 2007-10-09 Polymer alloy fiber, method for producing the same, and fiber product using the same

Publications (3)

Publication Number Publication Date
JP2004169261A true JP2004169261A (en) 2004-06-17
JP2004169261A5 JP2004169261A5 (en) 2006-01-19
JP4100327B2 JP4100327B2 (en) 2008-06-11

Family

ID=32715800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368532A Expired - Fee Related JP4100327B2 (en) 2002-10-30 2003-10-29 Composite fiber

Country Status (1)

Country Link
JP (1) JP4100327B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270965A (en) * 2004-02-27 2005-10-06 Toray Ind Inc Filter and filter element
JP2006257619A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Dry nonwoven fabric composed of polyphenylene sulfide nano-fiber
JP2006274504A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Combined filament yarn, blended yarn or woven or knitted fabric including polymer alloy fiber
JP2006274503A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Dry-laid nonwoven fabric comprising polymer alloy fiber
JP2007092205A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polymer alloy fiber, method for producing the same and method for producing nanofiber
JP2007191851A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Polymer alloy fiber
JP2008002037A (en) * 2006-06-26 2008-01-10 Kuraray Co Ltd Fibrous structure containing ethylene-vinyl alcohol-based copolymer nano-fiber
JP2008075228A (en) * 2006-09-25 2008-04-03 Teijin Fibers Ltd False-twist textured yarn and method for producing the same
JP2008184712A (en) * 2007-01-30 2008-08-14 Toray Ind Inc Sheetlike material and method for producing the same
JP2008248445A (en) * 2007-03-30 2008-10-16 Teijin Fibers Ltd Polyester knitted fabric and method for producing the same and fiber product
WO2009044766A1 (en) * 2007-10-02 2009-04-09 Toyo Boseki Kabushiki Kaisha Extrafine fiber, ion-conductive composite polymeric membrane, and process for producing the ion-conductive composite polymeric membrane
JP2009150005A (en) * 2007-12-19 2009-07-09 Kuraray Co Ltd Fibrous structure, its use, and production method
US7622188B2 (en) 2004-03-30 2009-11-24 Teijin Fibers Limited Islands-in-sea type composite fiber and process for producing the same
JP2011140727A (en) * 2010-01-07 2011-07-21 Teijin Fibers Ltd Leather-like sheet and clothes
JP2013079486A (en) * 2005-02-16 2013-05-02 Toray Ind Inc Method of manufacturing dry nonwoven fabric composed of polyphenylene sulfide nanofiber
JP2014047441A (en) * 2012-08-31 2014-03-17 Toray Ind Inc Conjugated fiber and substrate for artificial leather using the same
JP2015067919A (en) * 2013-09-30 2015-04-13 Dic株式会社 Polyarylene sulfide fiber and method for producing the same
JPWO2013099618A1 (en) * 2011-12-27 2015-04-30 東レ株式会社 Composite fiber, artificial leather substrate and artificial leather
JP2015140504A (en) * 2014-01-30 2015-08-03 ユニチカ株式会社 Heat adhesive continuous glass fiber
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US11090407B2 (en) 2017-03-09 2021-08-17 The Procter & Gamble Company Thermoplastic polymeric materials with heat activatable compositions
US11110013B2 (en) 2014-09-10 2021-09-07 The Procter & Gamble Company Nonwoven webs with hydrophobic and hydrophilic layers
US11129919B2 (en) 2016-03-09 2021-09-28 The Procter & Gamble Company Absorbent article with activatable material

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270965A (en) * 2004-02-27 2005-10-06 Toray Ind Inc Filter and filter element
JP4706275B2 (en) * 2004-02-27 2011-06-22 東レ株式会社 Filters and filter elements
US7622188B2 (en) 2004-03-30 2009-11-24 Teijin Fibers Limited Islands-in-sea type composite fiber and process for producing the same
US7910207B2 (en) 2004-03-30 2011-03-22 Teijin Fibers Limited Islands-in-sea type composite fiber and process for producing same
JP2006257619A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Dry nonwoven fabric composed of polyphenylene sulfide nano-fiber
JP2013079486A (en) * 2005-02-16 2013-05-02 Toray Ind Inc Method of manufacturing dry nonwoven fabric composed of polyphenylene sulfide nanofiber
JP2006274504A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Combined filament yarn, blended yarn or woven or knitted fabric including polymer alloy fiber
JP2006274503A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Dry-laid nonwoven fabric comprising polymer alloy fiber
JP2007092205A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polymer alloy fiber, method for producing the same and method for producing nanofiber
JP4730039B2 (en) * 2005-09-28 2011-07-20 東レ株式会社 Polymer alloy fiber and method for producing the same
JP2007191851A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Polymer alloy fiber
JP2008002037A (en) * 2006-06-26 2008-01-10 Kuraray Co Ltd Fibrous structure containing ethylene-vinyl alcohol-based copolymer nano-fiber
JP2008075228A (en) * 2006-09-25 2008-04-03 Teijin Fibers Ltd False-twist textured yarn and method for producing the same
JP2008184712A (en) * 2007-01-30 2008-08-14 Toray Ind Inc Sheetlike material and method for producing the same
JP2008248445A (en) * 2007-03-30 2008-10-16 Teijin Fibers Ltd Polyester knitted fabric and method for producing the same and fiber product
WO2009044766A1 (en) * 2007-10-02 2009-04-09 Toyo Boseki Kabushiki Kaisha Extrafine fiber, ion-conductive composite polymeric membrane, and process for producing the ion-conductive composite polymeric membrane
JP5434079B2 (en) * 2007-10-02 2014-03-05 東洋紡株式会社 Ultrafine fiber, ion conductive composite polymer membrane, and method for producing the same
JP2009150005A (en) * 2007-12-19 2009-07-09 Kuraray Co Ltd Fibrous structure, its use, and production method
JP2011140727A (en) * 2010-01-07 2011-07-21 Teijin Fibers Ltd Leather-like sheet and clothes
JPWO2013099618A1 (en) * 2011-12-27 2015-04-30 東レ株式会社 Composite fiber, artificial leather substrate and artificial leather
JP2014047441A (en) * 2012-08-31 2014-03-17 Toray Ind Inc Conjugated fiber and substrate for artificial leather using the same
US10993855B2 (en) 2013-03-15 2021-05-04 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US9974700B2 (en) 2013-03-15 2018-05-22 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US10016319B2 (en) 2013-03-15 2018-07-10 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
JP2015067919A (en) * 2013-09-30 2015-04-13 Dic株式会社 Polyarylene sulfide fiber and method for producing the same
JP2015140504A (en) * 2014-01-30 2015-08-03 ユニチカ株式会社 Heat adhesive continuous glass fiber
US11110013B2 (en) 2014-09-10 2021-09-07 The Procter & Gamble Company Nonwoven webs with hydrophobic and hydrophilic layers
US11839531B2 (en) 2014-09-10 2023-12-12 The Procter And Gamble Company Nonwoven webs with hydrophobic and hydrophilic layers
US11129919B2 (en) 2016-03-09 2021-09-28 The Procter & Gamble Company Absorbent article with activatable material
US11090407B2 (en) 2017-03-09 2021-08-17 The Procter & Gamble Company Thermoplastic polymeric materials with heat activatable compositions

Also Published As

Publication number Publication date
JP4100327B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4100327B2 (en) Composite fiber
JP2004162244A (en) Nano-fiber
KR101119051B1 (en) Nanofiber aggregate, hybrid fiber, fibrous structures, and processes for production of them
KR101029515B1 (en) Porous fiber
JP4229115B2 (en) Nanofiber assembly
CN100363541C (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP4134829B2 (en) Nanofiber mixed yarn
JP4698930B2 (en) Fiber structures containing nanofibers
JP4238929B2 (en) Polymer alloy fiber, method for producing the same, and fiber product using the same
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP4581467B2 (en) Nanofiber functional processed products
JP2005133250A (en) Core-sheath conjugate fiber
JP4270202B2 (en) Nanofiber assembly
JP3770254B2 (en) Nanoporous fiber
JP4325616B2 (en) Nanoporous fiber
JP4315150B2 (en) Nanofiber
JP2004270110A (en) Polymer alloy fiber
JP4710227B2 (en) pellet
JP4269804B2 (en) Special fiber
JP2004270109A (en) Fibrous product using super porous synthetic fiber
JP2005015969A (en) Nano-porous fiber composite woven or knitted fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees