JP2005018991A - Cold electron emission element and its manufacturing method - Google Patents

Cold electron emission element and its manufacturing method Download PDF

Info

Publication number
JP2005018991A
JP2005018991A JP2003177724A JP2003177724A JP2005018991A JP 2005018991 A JP2005018991 A JP 2005018991A JP 2003177724 A JP2003177724 A JP 2003177724A JP 2003177724 A JP2003177724 A JP 2003177724A JP 2005018991 A JP2005018991 A JP 2005018991A
Authority
JP
Japan
Prior art keywords
electron emission
emitter
transition metal
metal carbide
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177724A
Other languages
Japanese (ja)
Inventor
Masayoshi Nagao
昌善 長尾
Masatake Kanamaru
正剛 金丸
Takashi Matsukawa
貴 松川
Takanobu Sato
貴伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003177724A priority Critical patent/JP2005018991A/en
Publication of JP2005018991A publication Critical patent/JP2005018991A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold electron emission element with a long life and a stable operation expected. <P>SOLUTION: A surface part including at least an electron emission end 12 of a cold electron emission element emitter 11 is coated with a transition metal carbide 15 priority oriented to a (100) field. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特にフラットパネルディスプレイ(FPD)型の画像表示装置や光プリンタ、電子顕微鏡、電子ビーム露光装置等々、種々の電子ビーム利用装置の電子源ないし電子銃として、あるいはまた簡単な場合、単なる照明ランプ等の超小型照明源としても用い得る冷電子放出素子の改良に関する。
【0002】
【従来の技術】
現在なお、唯一汎用されている真空管と言っても良い陰極線管(カソードレイチューブ:CRT)に認められるように、カソードに大きな熱エネルギを与えて熱電子放出を起こすのではなく、一般には点状突起形状等、鋭利な形状をした電子放出端を有するエミッタに対し強電界を印加することで当該電子放出端から冷電子の放出を起こさせるタイプの電界放出型電子放出素子、すなわち冷電子放出素子の研究も盛んに行われている。冷電子は電界放出電子とか強電界放出電子とも呼ばれ、エミッタはまた冷陰極等とも呼ばれるが、こうしたタイプの素子が各所で実用化されれば、CRT等におけるように極めて大きな電力消費を伴う熱エネルギが不要となり、素子自体も極めて小型になり得るので、応用デバイスの消費電力も大いに低減し、筺体も飛躍的に小型化(薄型化)、軽量化する。
【0003】
このための研究の一環として、シリコンエミッタを用いた場合に同じシリコン系であるが故に集積、一体化し易いMOSFETを用い、これをエミッタに供給する電流の制御素子として用いる技術が例えば下記特許文献1にて開示されており、これによると非常に安定な電子放出が得られ、また低電圧で電子電流を制御できる等、種々の利点が得られる。しかし、シリコンそのものは非常に活性な材料のため、長時間動作させていると真空中の残留酸素等と反応してエミッタ表面に酸化物を形成し、表面の仕事関数が上昇して電子放出しにくくなり、結局、素子として短命に終わる。そこで、これを改善するために、下記特許文献2に認められるように、エミッタ表面に化学的に安定な抵抗材料を被覆する技術も提案され、当該技術によると、低電圧化が可能であると同時に表面の酸化を防ぐことができるとされた。
【0004】
【特許文献1】
特許第3170585号公報
【特許文献2】
特許第2718144号公報
【0005】
【発明が解決しようとする課題】
ところが、我々が化学的に安定な材料の一つとして遷移金属炭化物の一種であるHfC(炭化ハフニウム)を選び、これをエミッタ表面に数nm程度、被覆した所、10−7 Pa程度の超高真空中では非常に長寿命で安定な電子放出特性を示したが、真空度が比較的悪くなり10−5 Pa程度になると急激に電流が減少する傾向を示した。特に、残留ガスとして酸素が多い場合に短時間での減少傾向が顕著であった。
【0006】
しかるに、酸素ガスに対する影響が少ない冷電子放出素子を提供するために、本出願人は既に下記特許文献3にて、エミッタ材料に酸化物を選ぶことを提案している。この方法では、そもそもエミッタが酸化物であるので、酸素に対する影響は抑えることができる。が、上に挙げたHfC(融点3800℃)等に認められる程に融点が高い酸化物材料は見つかっておらず、エミッタから大電流を放出するような場合はジュール熱によってエミッタ先端が高温になり、先端が溶けてしまう不具合が認められた。
【0007】
【特許文献3】
特願2002−88259
【0008】
本発明は上述のような問題点に鑑みてなされたもので、比較的高いガス圧力下であっても大電流動作が可能であって、しかも、長寿命で安定な動作を見込める冷電子放出素子及びその作製方法の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明では上記目的を達成するため、基板上に構築され、電子放出端を有するエミッタと,このエミッタに電界を印加し、当該電子放出端から電子を引き出すためのゲートとを有する冷電子放出素子であって、エミッタの少なくとも上記電子放出端を含む表面部分が (100)面に優先配向している遷移金属炭化物により被覆されている冷電子放出素子を提案する。ここで、用いる遷移金属炭化物としては、HfC,TiC,TaC,NbC等を望ましくは挙げることができる。
【0010】
本発明はそうした冷電子放出素子の作製方法としても定義でき、主電極に印加した高周波電力によって発生したプラズマを制御する誘導コイルを持つマグネトロンスパッタリング装置を用い、ターゲート材料に遷移金属炭化物を選んでその遷移金属炭化物をスパッタし、エミッタの少なくとも電子放出端を含む表面部分上にこの遷移金属炭化物の薄膜を被覆させる工程において、当該主電極に印可する高周波電力を調整することにより遷移金属炭化物の配向制御を行うことで、上記の遷移金属炭化物の薄膜の面方位が (100)面に優先配向するように図る冷電子放出素子の作製方法も提案する。
【0011】
【発明の実施の形態】
図1(A) には、本発明に従って作製された冷電子放出素子の望ましい実施形態における概略構成図が示されている。図示の場合、冷電子放出素子としては比較的基本的な構造を持つもので、適当なる基板10の上に形成されたエミッタ11は円錐形をなし、通常、コーン型エミッタと称される形状をなしており、当該円錐形の鋭い先端部分が電子放出端12となっている。電界放出のための引き出し電位を印加すべき導電材料製のゲート14は絶縁層12を介して基板10上に設けられ、コーン型エミッタ11を取り囲む開口(一般に上から見てエミッタ中心と同心状の円形開口)を有している。換言すれば、この開口にてエミッタ11の電子放出端12が空間に露呈されている。なお、高さ方向の相対位置関係としては、最近ではゲート14の主面(表面)の方がコーン型エミッタ11の先端である電子放出端12より少し低い位置にあるか、略々同じ高さとなるよう、作製される。
【0012】
基板10は例えばシリコンであって、エミッタ11も同じ出発基板から加工したシリコンエミッタとすることができる。本発明はこうした基本構造自体に限定を施すものではないので、任意の形状、構造であって良い。絶縁層13は、例えば基板10にシリコンを選ぶのならばシリコン酸化膜として形成でき、ゲート14も本来、任意の導電材料であって良いが、例えばNb製とすることができる。
【0013】
本発明で特徴的な構成は、エミッタ11の表面、特に少なくとも電子放出端12を含む表面部分に (100)面に優先配向している遷移金属炭化物による被覆15を設ける点である。これにより、冷電子放出素子としての特性は大幅に向上する。
【0014】
遷移金属炭化物としてHfCを用いた場合の実験例を挙げると、図1(B) に示すように、被覆15を施すにしても、その形成時に結晶面の配向制御しなかったものの場合には、同図に破線の特性曲線で示す通り、酸素ガスの影響で時間の経過と共に急激に電流が減少した。対して、本発明に従い、(100)配向制御した被覆15を施した素子の場合には、実線の特性曲線で示すように、電流の経時減少が明らかに少ない結果となった。なお、この実験では、両素子を真空容器に配置した後に10−7Paまで、真空排気し、その後、酸素ガスを導入して10−5Paの圧力に設定して電子放出させた。
【0015】
こうした結果の得られた理由は厳密には未だ明らかではないが、配向制御していない被覆15を持つ素子の電流対電圧特性を詳細に解析した結果、仕事関数の増大が観測された。酸素の吸着により表面が酸化され、仕事関数が増大したものと考えられる。さらに、配向制御していない薄膜は、X線回折実験により、非晶質もしくは(111)面方位に優先配向した多結晶の薄膜となっていることが分った。
【0016】
従って、こうした知見からすると、用いているHfCのように、NaCl型結晶構造の(100)面配向した遷移金属炭化物の最表面は、図1(C) の左図に示す通り、HfとCがほぼ50%ずつ配置されているので、安定な結合状態になり、反応が起きにくいと考えられる。対して、配向制御せずに(111)面となっている被覆の最表面は、図1(C) の右図に示すように、全てHfであるか、全てCであるかのいずれかの表面状態になる。HfとCの電気陰性度の違いを考慮すると、Cで終端された面となってしまうと、仕事関数が高く電子放出しにくい。Hfの電気陰性度は2.5、Cのそれは1.4である。一方、Hfで終端された表面は仕事関数は下がるけれども、金属原子が表面に出て来るので酸化され易い。実際のエミッタ表面では、全ての表面がHf、もしくはCのみであることは考えられないが、Cで終端されたところは仕事関数が高いので電子放出面にはなり得ず、Hfで終端された面から電子放出していることになるものの、その場合には電子放出部位は酸化され易く、酸素の影響を受け易いということになって、結局、実験結果の指し示すように、本発明により配向制御した場合に比し、著しく不満足な結果しか得られなかったものと思量される。
【0017】
次に、本発明により配向制御された被覆15を持つ冷電子放出素子の具体的な一作製例につき、図2に即して述べておく。まず、同図(A) に示すように、ここではn型のSi基板とした基板10上に熱酸化炉を用いて酸化膜21を形成する。次いで公知既存の手法で良いフォトリソグラフィにより当該酸化膜21上にドット形状のパタンを形成し、エッチングにより酸化膜21に同じ形状を転写し、同図(B) に示すように、エッチング用マスク22を形成する。
【0018】
このドット形状のエッチング用マスク22をマスクとして基板10を横方向にも抉られるエッチングをし、同図(C) に示すように、エミッタの原型となる円錐状の形状11を形成する。この構造体を熱酸化して熱酸化膜23を形成し、同図(D) に示すように、当該熱酸化膜23の下にエミッタ11の基体を形成する。この工程によることで、非常に先鋭な電子放出端をその先端に持つエミッタ11が形成できる。その後、同図(E) に示すように、熱酸化膜23を例えば沸酸などで除去する。
【0019】
次に、完成したエミッタ11の基体に、実質的に電子放出面となる、仕事関数が低く化学的に安定な遷移金属炭化物材料を、その面方位が (100)となるように制御しながら堆積させ、同図(F) に示すように、少なくともエミッタ11の電子放出端を覆う被覆15を形成する。
【0020】
この際の、配向制御しながらの被覆堆積には、いわゆる誘導コイル付マグネトロンスパッタリング装置を用いることができる。この装置自体は公知であるが、主電極に印加した高周波電力によって発生したプラズマを制御する誘導コイルを持ち、当該プラズマによってターゲート材料をスパッタするものである。本発明者は、堆積時に主電極に印加する高周波電力を調整することで、堆積すべき遷移金属炭化物薄膜の配向制御が可能であるとの知見を得た。
【0021】
具体例を挙げると、装置としてはULVAC製ヘリコンスパッタガン(ターゲットサイズ2インチ)を用いた。純度98%以上のHfCターゲットを用い、アルゴンガス雰囲気でプラズマを立ててスパッタリングした。スパッタリング室である真空チェンバ内に導入するArガスの圧力は0.1Paに留めた。プラズマを生成するためには主電極に高周波電力を印加し、生成させたプラズマを支援するためには誘導コイルに高周波電力を入力するが、当該誘導コイルへの入力電力は50Wで固定として、主電極(ターゲット)に入力する電力を100W, 50W, 20Wと変化させて見た所、図1(D) に示すような結果が得られた。本図はHfC(111)面と(200)面からの強度の比を表すもので(周知のように、(200)面からの強度を見ることで、実質的に(100)面配向の程度を知ることができる)、成膜されたHfC薄膜の面方位はX線回折で調べたが、100Wで成膜した被覆15では(111)面に対する(200)面の強度比が0.03程度に留まっていたものが、印加電力を落とすに連れて徐々にその比率が上がっていき、20Wで成膜したものではその比は4.5程度になって、ほぼ完全な(100)面配向となっていることが確認できた。
【0022】
つまり、被覆15の成膜時の主電極への高周波印可電力を調整することで、被覆として用いる遷移金属炭化物に所望する(100)面配向が得られるのである。これは、用いるスパッタリング装置が異なっても言えることで、最適な印可電力値ないしは最大印可電力値が見込まれる。従来は成膜速度にのみ気を取られ、殆どの場合、供給可能な最大電力での動作とさせていたことに鑑みると、本発明者によるこの知見は大きいものがある。
【0023】
このようにして、配向制御された被覆15を堆積させたならば、図2(G) に示すように、絶縁層となるシリコン酸化膜13と、ゲート電極となる導電膜14を堆積する。その後、フォトレジストを回転塗布することで、突起部分が薄く、平坦な部分は厚くなるようなフォトレジストを塗布し、例えばRIE(リアクティブ・イオン・エッチング)等でエッチングすることで、同図(H) に示すように、エミッタ上部に位置する部分のみの導電膜をエッチングすることができ、開口のあるゲート電極14が形成できる。このように、フォトレジストを用いてゲート開口を行う方法は、例えば下記非特許文献1に開示されている。
【0024】
【非特許文献1】
G. Hashiguchi, H. Mimura, and H. Fujita, ”FABRICATION AND EMISSION CHARACTERISTICS OF POLYCRYSTALLINE SILICON FIELD EMITTERS”, Japanese Journal of Applied Physics, PART 2 LETTERS, 34, No.7B, L883−L885 (1995)
【0025】
最後に、図2(H) では残っている残存フォトレジスト24と、エミッタ上部のシリコン酸化膜13を例えば沸酸等でエッチングすると、図2(I) に示すように、本発明に従って作製された冷電子放出素子が完成する。
【0026】
なお、上述の作製例のように、沸酸を用いる場合には、エミッタ表面に施した被覆15は沸酸にて溶解しないことが必要である。この点でも、被覆15として遷移金属炭化物、例えばHfCを選べば、不純物としてこれに混入する酸素が十分少ない限り、沸酸には溶けない。逆に不純物に酸素が10at.%程度混入していると容易に溶解してしまうことも分っているので、その意味からはやはり、既述した誘導コイル付マグネトロンスパッタリング装置を用いることが望ましい。通常の真空蒸着やマグネトロンスパッタリング装置では、酸素が混入してしまうからである。誘導コイル付マグネトロンスパッタリング装置を用い、既述のように成膜時のガス圧力を0.1 Pa以下に抑えれば、酸素混入の少ない良好な被覆15が形成できることが、成膜した被覆15のラザフォードバックスキャッタリング法により分析で確認できた。
【0027】
なお、既述した本実施の形態では、遷移金属炭化物として特にHfCを用いる場合について説明したが、HfCと同様にNaCl型の結晶構造を持つ遷移金属炭化物材料を用いても、図1(C) に即して説明したことからして、同様の効果が得られることは明らかであり、同種の望ましい材料として、これらにのみ限定されるものではないが、TiC,TaC,NbCを挙げることができる。
【0028】
また、本発明が達成された結果からして見ると、エミッタ11の材料もシリコンであることには限定されない。被覆15として遷移金属炭化物を用いても、例えば物理的な剥がれを生むとか、種々他の要因の問題を生じない限り、任意の材料を適用可能である。
【0029】
さらに、エミッタ形状も、図示実施形態では一般的なコーン型のそれを示したが、他の形状の電子放出端ないしは点状と言うより縁状の電子放出端を有するものや、いわゆるマルチエミッタと呼ばれるように、エミッタ構築基板上に接合している根元部分は共通の胴部であって、その胴部に互いに独立した複数の電子放出端が設けられているような場合でも、本発明はもちろん、それらの電子放出端を被覆するのに良く適用できる。
【0030】
【発明の効果】
以上、本発明を望ましい実施形態に即して説明したが、本発明によると、従来提供されていた冷電子放出素子に比し、より長寿命で安定な冷電子放出素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の適用された冷電子放出素子の概略構成、被覆した遷移金属炭化物の表面の結晶配向、及び作製時における誘導コイル付マグネトロンスパッタリング装置に印加する主電力の値の影響に関する説明図である。
【図2】本発明により冷電子放出素子を作製する際の工程例の説明図である。
【符号の説明】
11 基板
12 電子放出端
13 絶縁層
14 ゲート
15 遷移金属炭化物による被覆
[0001]
BACKGROUND OF THE INVENTION
The present invention is particularly useful as an electron source or electron gun for various electron beam utilizing devices such as flat panel display (FPD) type image display devices, optical printers, electron microscopes, electron beam exposure devices, and the like. The present invention relates to an improvement of a cold electron emission element that can be used as an ultra-compact illumination source such as an illumination lamp.
[0002]
[Prior art]
As it is recognized in the cathode ray tube (cathode ray tube: CRT) which can be said to be the only general-purpose vacuum tube at present, it does not give a large thermal energy to the cathode to cause thermionic emission, but is generally dotted. A field emission type electron-emitting device that causes cold electrons to be emitted from the electron-emitting end by applying a strong electric field to an emitter having an electron-emitting end having a sharp shape such as a protrusion, that is, a cold electron-emitting device There is also a lot of research on this. Cold electrons are also called field emission electrons or strong field emission electrons, and emitters are also called cold cathodes. However, if these types of devices are put to practical use in various places, heat with a very large power consumption as in CRTs and the like will occur. Since energy is not required and the element itself can be extremely small, the power consumption of the applied device is greatly reduced, and the housing is dramatically reduced in size (thinned) and reduced in weight.
[0003]
As a part of research for this purpose, a technique using a MOSFET that is easily integrated and integrated because it is the same silicon system when a silicon emitter is used, and using this as a control element for a current supplied to the emitter is disclosed in, for example, Patent Document 1 below. According to this, a very stable electron emission can be obtained, and various advantages can be obtained such that the electron current can be controlled at a low voltage. However, since silicon itself is a very active material, if it is operated for a long time, it reacts with residual oxygen in vacuum and forms oxide on the emitter surface, increasing the work function of the surface and emitting electrons. After all, it becomes short-lived as an element. Therefore, in order to improve this, as recognized in Patent Document 2 below, a technique for covering the emitter surface with a chemically stable resistance material has also been proposed, and according to the technique, it is possible to reduce the voltage. At the same time, it was said that it was possible to prevent surface oxidation.
[0004]
[Patent Document 1]
Japanese Patent No. 3170585 [Patent Document 2]
Japanese Patent No. 2718144 [0005]
[Problems to be solved by the invention]
However, when we select HfC (hafnium carbide), which is a kind of transition metal carbide, as one of the chemically stable materials and coat it on the emitter surface with a few nanometers, it is extremely high at about 10 −7 Pa. Although the electron emission characteristic was very long and stable in vacuum, the degree of vacuum was relatively poor, and when the pressure reached about 10 −5 Pa, the current decreased rapidly. In particular, when oxygen is abundant as a residual gas, the tendency to decrease in a short time was remarkable.
[0006]
However, in order to provide a cold electron-emitting device having little influence on oxygen gas, the present applicant has already proposed, in the following Patent Document 3, that an oxide is selected as an emitter material. In this method, since the emitter is an oxide in the first place, the influence on oxygen can be suppressed. However, no oxide material with a melting point as high as that found in the above-mentioned HfC (melting point 3800 ° C.) has been found, and when emitting a large current from the emitter, the tip of the emitter becomes hot due to Joule heat. A defect that the tip melts was observed.
[0007]
[Patent Document 3]
Japanese Patent Application No. 2002-88259
[0008]
The present invention has been made in view of the above-described problems, and is capable of operating at a large current even under a relatively high gas pressure, and is capable of expecting a long-life and stable operation. And it aims at provision of the preparation method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a cold electron emission device having an emitter constructed on a substrate and having an electron emission end, and a gate for applying an electric field to the emitter and extracting electrons from the electron emission end. A cold electron-emitting device is proposed in which at least a surface portion of the emitter including the electron emission edge is covered with a transition metal carbide preferentially oriented in the (100) plane. Here, as a transition metal carbide to be used, HfC, TiC, TaC, NbC, etc. can be mentioned desirably.
[0010]
The present invention can also be defined as a method for manufacturing such a cold electron-emitting device, using a magnetron sputtering apparatus having an induction coil for controlling plasma generated by high-frequency power applied to a main electrode, and selecting a transition metal carbide as a targate material. In the process of sputtering the transition metal carbide and coating the transition metal carbide thin film on the surface portion including at least the electron emission edge of the emitter, the orientation control of the transition metal carbide is adjusted by adjusting the high frequency power applied to the main electrode. A method of manufacturing a cold electron-emitting device is also proposed in which the plane orientation of the transition metal carbide thin film is preferentially oriented to the (100) plane by performing the above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1A shows a schematic configuration diagram of a preferred embodiment of a cold electron-emitting device manufactured according to the present invention. In the case shown in the drawing, the cold electron-emitting device has a relatively basic structure, and the emitter 11 formed on a suitable substrate 10 has a conical shape, and usually has a shape called a cone-type emitter. In addition, the sharp tip portion of the cone is the electron emission end 12. A gate 14 made of a conductive material to which an extraction potential for field emission is to be applied is provided on the substrate 10 via an insulating layer 12, and an opening surrounding the cone-type emitter 11 (generally concentric with the emitter center as viewed from above). Circular opening). In other words, the electron emission end 12 of the emitter 11 is exposed to the space through this opening. As the relative positional relationship in the height direction, recently, the main surface (front surface) of the gate 14 is slightly lower than the electron emission end 12 that is the tip of the cone-type emitter 11, or is substantially the same height. It is produced so that it may become.
[0012]
The substrate 10 is, for example, silicon, and the emitter 11 can also be a silicon emitter processed from the same starting substrate. The present invention does not limit the basic structure itself, and may have any shape and structure. For example, if silicon is selected for the substrate 10, the insulating layer 13 can be formed as a silicon oxide film, and the gate 14 may be originally made of any conductive material, but may be made of Nb, for example.
[0013]
A characteristic feature of the present invention is that a coating 15 of transition metal carbide preferentially oriented in the (100) plane is provided on the surface of the emitter 11, particularly the surface portion including at least the electron emission end 12. Thereby, the characteristics as a cold electron-emitting device are greatly improved.
[0014]
When an experimental example using HfC as a transition metal carbide is given, as shown in FIG. 1B, even when the coating 15 is applied, the orientation of the crystal plane was not controlled at the time of formation. As indicated by the dashed characteristic curve in the figure, the current rapidly decreased with the passage of time due to the influence of oxygen gas. On the other hand, according to the present invention, in the case of the element having the (100) orientation-controlled coating 15, the decrease in current with time was clearly small as shown by the solid characteristic curve. In this experiment, both elements were placed in a vacuum vessel and then evacuated to 10 −7 Pa. After that, oxygen gas was introduced and the pressure was set to 10 −5 Pa to emit electrons.
[0015]
Although the reason why such a result is obtained is not yet clarified yet, an increase in work function was observed as a result of detailed analysis of the current-voltage characteristics of the element having the coating 15 whose orientation was not controlled. It is thought that the surface was oxidized by the adsorption of oxygen and the work function increased. Furthermore, it was found by X-ray diffraction experiments that the thin film whose orientation was not controlled was an amorphous or polycrystalline thin film preferentially oriented in the (111) plane orientation.
[0016]
Therefore, based on these findings, like the HfC used, the outermost surface of the (100) -oriented transition metal carbide of the NaCl-type crystal structure is composed of Hf and C as shown in the left figure of FIG. Since it is arranged approximately 50% each, it is considered that a stable binding state is obtained and the reaction does not easily occur. On the other hand, the outermost surface of the coating which is the (111) surface without orientation control is either all Hf or all C as shown in the right figure of FIG. It becomes a surface state. Considering the difference in electronegativity between Hf and C, if the surface is terminated with C, the work function is high and it is difficult to emit electrons. The electronegativity of Hf is 2.5, and that of C is 1.4. On the other hand, the surface terminated with Hf has a lower work function, but is easily oxidized because metal atoms come out on the surface. In the actual emitter surface, it is unlikely that all the surfaces are Hf or C only, but when terminated with C, the work function is high so that it cannot be an electron emission surface and is terminated with Hf. Although electrons are emitted from the surface, in that case, the electron emission site is easily oxidized and easily affected by oxygen, and as a result, as shown in the experimental results, the orientation control is performed according to the present invention. Compared to the case, it seems that only a very unsatisfactory result was obtained.
[0017]
Next, a specific example of manufacturing a cold electron emission device having the coating 15 whose orientation is controlled according to the present invention will be described with reference to FIG. First, as shown in FIG. 2A, an oxide film 21 is formed on a substrate 10 which is an n-type Si substrate by using a thermal oxidation furnace. Next, a dot-shaped pattern is formed on the oxide film 21 by photolithography which may be performed by a well-known existing method, and the same shape is transferred to the oxide film 21 by etching. As shown in FIG. Form.
[0018]
Using the dot-shaped etching mask 22 as a mask, the substrate 10 is etched so as to be laterally formed, thereby forming a conical shape 11 as an emitter prototype as shown in FIG. This structure is thermally oxidized to form a thermal oxide film 23, and a base body of the emitter 11 is formed under the thermal oxide film 23 as shown in FIG. By this step, the emitter 11 having a very sharp electron emission end at its tip can be formed. Thereafter, as shown in FIG. 5E, the thermal oxide film 23 is removed with, for example, hydrofluoric acid.
[0019]
Next, a transition metal carbide material having a low work function and being chemically stable, which is substantially an electron emission surface, is deposited on the substrate of the completed emitter 11 while controlling the plane orientation to be (100). Then, as shown in FIG. 5F, a coating 15 covering at least the electron emission end of the emitter 11 is formed.
[0020]
In this case, a so-called magnetron sputtering apparatus with an induction coil can be used for coating deposition while controlling the orientation. Although this apparatus is known per se, it has an induction coil for controlling plasma generated by high-frequency power applied to the main electrode, and sputtering is performed on the targate material. The present inventor has obtained the knowledge that the orientation of the transition metal carbide thin film to be deposited can be controlled by adjusting the high-frequency power applied to the main electrode during deposition.
[0021]
As a specific example, a ULVAC helicon sputter gun (target size: 2 inches) was used as the apparatus. Using a HfC target with a purity of 98% or more, plasma was sputtered in an argon gas atmosphere. The pressure of Ar gas introduced into the vacuum chamber which is a sputtering chamber was kept at 0.1 Pa. In order to generate plasma, high-frequency power is applied to the main electrode, and to support the generated plasma, high-frequency power is input to the induction coil. The input power to the induction coil is fixed at 50 W, When the electric power input to the electrode (target) was changed to 100 W, 50 W, and 20 W, a result as shown in FIG. 1D was obtained. This figure shows the ratio of the strength from the HfC (111) plane and the (200) plane (as is well known, the degree of orientation of the (100) plane is substantially determined by looking at the strength from the (200) plane. The surface orientation of the deposited HfC thin film was examined by X-ray diffraction, but in the coating 15 formed at 100 W, the intensity ratio of the (200) plane to the (111) plane was about 0.03. However, the ratio gradually increased as the applied power was reduced, and in the case where the film was formed at 20 W, the ratio was about 4.5, indicating that the (100) plane orientation was almost perfect. It was confirmed that
[0022]
That is, by adjusting the high-frequency applied power to the main electrode when the coating 15 is formed, the desired (100) plane orientation can be obtained for the transition metal carbide used as the coating. This can be said even if the sputtering apparatus to be used is different, and an optimum applied power value or a maximum applied power value is expected. In the past, in view of the fact that only the deposition rate has been focused on, and in most cases, the operation was performed at the maximum power that can be supplied, this knowledge by the present inventor is significant.
[0023]
When the orientation controlled coating 15 is deposited in this way, as shown in FIG. 2G, a silicon oxide film 13 serving as an insulating layer and a conductive film 14 serving as a gate electrode are deposited. Thereafter, a photoresist is applied by spin coating so that the protrusions are thin and the flat portions are thick, and etching is performed by, for example, RIE (reactive ion etching). As shown in (H), only the conductive film located above the emitter can be etched, and the gate electrode 14 with an opening can be formed. Thus, the method of performing gate opening using a photoresist is disclosed by the following nonpatent literature 1, for example.
[0024]
[Non-Patent Document 1]
G. Hashiguchi, H .; Mimura, and H.M. Fujita, “FABRICATION AND EMISION CHARACTISTISTS OF POLYCRYSTALLINE SILICON FIELD EMITTERS”, Japan Journal of Applied Physics, PART 234 ET. 7B, L883-L885 (1995)
[0025]
Finally, when the remaining photoresist 24 remaining in FIG. 2H and the silicon oxide film 13 above the emitter are etched with, for example, hydrofluoric acid or the like, as shown in FIG. A cold electron emission device is completed.
[0026]
In the case of using boiling acid as in the above-described production example, it is necessary that the coating 15 applied to the emitter surface does not dissolve with boiling acid. Also in this respect, if a transition metal carbide such as HfC is selected as the coating 15, it will not dissolve in boiling acid as long as oxygen mixed in as an impurity is sufficiently small. Conversely, oxygen is 10 at. It is also known that if it is mixed in about%, it will be easily dissolved. From this point of view, it is desirable to use the above-described magnetron sputtering apparatus with an induction coil. This is because oxygen is mixed in a normal vacuum deposition or magnetron sputtering apparatus. By using a magnetron sputtering apparatus with an induction coil and suppressing the gas pressure during film formation to 0.1 Pa or less as described above, it is possible to form a good coating 15 with less oxygen contamination. It was confirmed by analysis by Rutherford backscattering method.
[0027]
In the above-described embodiment, the case where HfC is particularly used as the transition metal carbide has been described. However, even if a transition metal carbide material having a NaCl-type crystal structure is used as in the case of HfC, FIG. From the above description, it is clear that the same effect can be obtained, and preferable materials of the same kind are not limited to these, but TiC, TaC, and NbC can be mentioned. .
[0028]
Further, from the viewpoint of the result of achieving the present invention, the material of the emitter 11 is not limited to silicon. Even if a transition metal carbide is used as the coating 15, any material can be applied as long as it does not cause physical peeling or cause various other factors.
[0029]
Furthermore, the emitter shape is also shown as a general cone type in the illustrated embodiment, but other shapes of the electron emission end or the one having an edge-like electron emission end rather than a dot shape, a so-called multi-emitter As described above, even if the base part bonded on the emitter construction substrate is a common body part and a plurality of electron emission ends independent from each other are provided on the body part, the present invention is of course It can be well applied to coat these electron emission ends.
[0030]
【The invention's effect】
As described above, the present invention has been described with reference to the preferred embodiments. However, according to the present invention, it is possible to provide a cold electron-emitting device that has a longer life and is stable compared to conventionally provided cold electron-emitting devices. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram of a cold electron-emitting device to which the present invention is applied, the crystal orientation of the surface of a coated transition metal carbide, and the influence of the value of main power applied to a magnetron sputtering apparatus with an induction coil during fabrication. FIG.
FIG. 2 is an explanatory diagram of a process example when manufacturing a cold electron-emitting device according to the present invention.
[Explanation of symbols]
11 Substrate 12 Electron emission end 13 Insulating layer 14 Gate 15 Covering with transition metal carbide

Claims (4)

基板上に構築され、電子放出端を有するエミッタと,該エミッタに電界を印加し、該電子放出端から電子を引き出すためのゲートとを有する冷電子放出素子であって;
上記エミッタの少なくとも上記電子放出端を含む表面部分が (100)面に優先配向している遷移金属炭化物により被覆されていること;
を特徴とする冷電子放出素子。
A cold electron emission device constructed on a substrate and having an emitter having an electron emission edge, and a gate for applying an electric field to the emitter and extracting electrons from the electron emission edge;
A surface portion including at least the electron emission edge of the emitter is covered with a transition metal carbide preferentially oriented in a (100) plane;
A cold electron emission device characterized by the above.
請求項1記載の冷電子放出素子であって;
上記遷移金属炭化物はHfC,TiC,TaC,NbCの中から選ばれたどれか一つであること;
を特徴とする冷電子放出素子。
The cold electron-emitting device according to claim 1, wherein
The transition metal carbide is any one selected from HfC, TiC, TaC, and NbC;
A cold electron emission device characterized by the above.
基板上に構築され、電子放出端を有するエミッタと,該エミッタに電界を印加し、該電子放出端から電子を引き出すためのゲートとを有する冷電子放出素子の作製方法であって;
主電極に印加した高周波電力によって発生したプラズマを制御する誘導コイルを持つマグネトロンスパッタリング装置を用い、ターゲート材料に遷移金属炭化物を選んで該遷移金属炭化物をスパッタし、上記エミッタの少なくとも上記電子放出端を含む表面部分上に該遷移金属炭化物の薄膜を被覆させる工程を含み;
該工程において、上記主電極に印可する高周波電力を調整することにより該遷移金属炭化物の配向制御を行い、上記エミッタの少なくとも上記電子放出端を含む表面部分上に堆積される上記遷移金属炭化物の薄膜の面方位が (100)面に優先配向するように図ること;
を特徴とする冷電子放出素子の作製方法。
A method for producing a cold electron emission device, which is constructed on a substrate and has an emitter having an electron emission end, and a gate for applying an electric field to the emitter and extracting electrons from the electron emission end;
Using a magnetron sputtering apparatus having an induction coil for controlling plasma generated by high-frequency power applied to the main electrode, a transition metal carbide is selected as a gate material, and the transition metal carbide is sputtered, and at least the electron emission end of the emitter is formed. Coating the transition metal carbide thin film on the surface portion including;
In the step, the transition metal carbide thin film deposited on the surface portion including at least the electron emission end of the emitter is controlled by adjusting the high frequency power applied to the main electrode. The orientation of the plane should be preferentially oriented in the (100) plane;
A manufacturing method of a cold electron emission device characterized by the above.
請求項2記載の冷電子放出素子の作製方法であって;
上記遷移金属炭化物はHfC,TiC,TaC,NbCの中から選ばれたどれか一つであること;
を特徴とする冷電子放出素子の作製方法。
A method for manufacturing a cold electron-emitting device according to claim 2;
The transition metal carbide is any one selected from HfC, TiC, TaC, and NbC;
A manufacturing method of a cold electron emission device characterized by the above.
JP2003177724A 2003-06-23 2003-06-23 Cold electron emission element and its manufacturing method Pending JP2005018991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177724A JP2005018991A (en) 2003-06-23 2003-06-23 Cold electron emission element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177724A JP2005018991A (en) 2003-06-23 2003-06-23 Cold electron emission element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005018991A true JP2005018991A (en) 2005-01-20

Family

ID=34179562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177724A Pending JP2005018991A (en) 2003-06-23 2003-06-23 Cold electron emission element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005018991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838069B1 (en) 2006-09-11 2008-06-16 삼성에스디아이 주식회사 Electron emission device, electron emission type backlight unit, and method of fabricating electron emission device
US7785762B2 (en) 2005-12-15 2010-08-31 Ricoh Company, Ltd. Image forming apparatus and image forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785762B2 (en) 2005-12-15 2010-08-31 Ricoh Company, Ltd. Image forming apparatus and image forming method
KR100838069B1 (en) 2006-09-11 2008-06-16 삼성에스디아이 주식회사 Electron emission device, electron emission type backlight unit, and method of fabricating electron emission device

Similar Documents

Publication Publication Date Title
US5969473A (en) Two-part field emission structure
JP3250719B2 (en) Cathode for vacuum tube and field emission display
JP2002025426A (en) Filed emission display element and its manufacturing method
US6685523B2 (en) Method of fabricating capillary discharge plasma display panel using lift-off process
JP2005018991A (en) Cold electron emission element and its manufacturing method
JP2001143608A (en) Method of forming carbon thin film, method of fabricating cold cathode field emission element, and method of manufacturing image display using it
JPH0689651A (en) Fine vacuum device and manufacture thereof
JP3012517B2 (en) Electron emitting device and method of manufacturing the same
JP2004288547A (en) Field emission type electron source, its manufacturing method, and image display device
JP3622406B2 (en) Cold electron-emitting device and manufacturing method thereof
US6648710B2 (en) Method for low-temperature sharpening of silicon-based field emitter tips
JP3502883B2 (en) Cold electron-emitting device and method of manufacturing the same
JP3452222B2 (en) Cold cathode electron source device and method of manufacturing the same
KR100290141B1 (en) Field emitter and its manufacturing method
KR100701750B1 (en) Field Emission Array and method for fabricating same
KR100323979B1 (en) Field Emission Devices and Fabrication Methods thereof
KR100290136B1 (en) Method for fabricating field emission display device
JP4679713B2 (en) Manufacturing method of field emission electron source
Lee et al. Fabrication of volcano-type TiN field emitter arrays
KR100546581B1 (en) Fabrication Method of Field Emission Device
JP2000323013A (en) Cold cathode field electron emission element and its manufacture as well as cold cathode field electron emission type display device
JP2000195412A (en) Cold cathode field electron emission device and its manufacture, and cold cathode field electron emission display apparatus
JP3160547B2 (en) Method of manufacturing field emission electron source
KR100278502B1 (en) Manufacturing method of volcanic metal FEA with double gate
JP3826539B2 (en) Method for manufacturing cold electron-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627