JP2005011769A - Ceramics heater made of aluminum nitride - Google Patents

Ceramics heater made of aluminum nitride Download PDF

Info

Publication number
JP2005011769A
JP2005011769A JP2003177160A JP2003177160A JP2005011769A JP 2005011769 A JP2005011769 A JP 2005011769A JP 2003177160 A JP2003177160 A JP 2003177160A JP 2003177160 A JP2003177160 A JP 2003177160A JP 2005011769 A JP2005011769 A JP 2005011769A
Authority
JP
Japan
Prior art keywords
heating element
heater
heating
aluminum nitride
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177160A
Other languages
Japanese (ja)
Inventor
Shigeko Muramatsu
滋子 村松
Shinichiro Aonuma
伸一朗 青沼
Koji Oishi
浩司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003177160A priority Critical patent/JP2005011769A/en
Publication of JP2005011769A publication Critical patent/JP2005011769A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a ceramics heater wherein heating stability and temperature uniformity of a plate-like heater is further improved by no leak current occurring among heating elements in heating the heater at a high temperature by coating with a skin film made of electric insulating material any one or both of a surface of a resistive heating element and a heating element embedded groove of the heater. <P>SOLUTION: A ceramics heater made of aluminum nitride 10 has a heater cover 13 made of aluminum nitride having a heating face, resistive heating elements 12 arranged in a groove disposed on a side opposite to the heating face of the heater cover13 or an aluminum nitride-made basic material of the heater 10, a basic material 11 integrally disposed on a side with the heating element 12 of the heater cover 13 is arranged thereon, and a power supplying terminal 14 of which the on end is connected to the heating element 12 and the other end is guided out on the side of the basic material 11. Any one or both of the surface of the heating element 12 and the inside of the groove are coated with the skin film made of electric insulating material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は窒化アルミニウムのセラミックスヒータに関する。特にヒータの加熱面温度の均一性をさらに向上した窒化アルミニウムのセラミックスヒータに関するものである。
【0002】
【従来の技術】
CVDやPVDの成膜工程ではウェーハを直接載置して加熱するのに、金属発熱体を内蔵した構造をもつセラミックスヒータが使用されている。このセラミックスヒータを用いた成膜工程においてはチャンバークリーニングがなされるが、そこで使用されるハロゲン系ガスは、目的とする処理物以外にセラミックスヒータそのものを同時に腐食させるものである。そのために、ヒータに使用されるセラミックスはハロゲンガスによる耐食性の高い窒化アルミニウムセラミックスが用いられている。また、セラミックスヒータはスループットを向上させるために、昇温時間を減少させて短時間で昇温を行なうことが求められ、この面からも耐熱衝撃性の高い窒化アルミニウムセラミックスが使用されている。
【0003】
セラミックスヒータの製造方法としては、ドクターブレードによりセラミックスのグリーンシートを成形してセラミックス基材とし、この上に発熱体回路を形成する。グリーンシート上に発熱体回路を形成する方法は導電性ペーストを用いたスクリーン印刷が一般的であるが、この他に配線形状に加工した金属プレートやメッシュを埋設するなどの方法もある。これに所定厚さのセラミックスのヒータカバーを一体に接合する。この接合体に発熱体の電源接続用端子をつけてこれを脱脂し、ホットプレスなどで所定の温度で焼結してセラミックスヒータとするものである。
【0004】
この外に、ヒータに埋設する発熱体はコイル状として、これをホットプレスによりセラミックスの焼成と同時にヒータの内部に埋め込むようにするものもある。具体的には、AlNの粉末を予め溝加工した金型で一軸プレス成形し、この成形体の溝にコイル状の発熱体を設置する。このコイル状の発熱体が設置された成形体の上に、所定の厚さで均一に窒化アルミニウムの成形体を形成して再度これを一軸プレスして成形しコイル状の発熱体を内在化させる。その後、ホットプレスによってAlN成形体を焼結してセラミックスヒータとするものである。
【0005】
最近、セラミックスヒータではヒータ温度の均一化のために配線パターンの微細化が図られ、またウェーハの大口径化による部材の大型化、成膜温度の高温化、プラズマの高密度化なども図られるようなっている。特に、成膜工程での温度は成膜種にもよって異なるが、低圧CVD(LPCVD)などではプロセス温度が最高で800℃前後にも達する。窒化アルミニウムセラミックスは、室温での体積抵抗率は1014Ωcmと電気絶縁体であるが、温度上昇とともにその電気抵抗が低下する。そのためヒータの高温加熱中に、AlN成形体の発熱体間でリーク電流が流れ、局部的に発熱して面内温度のばらつきが生じることがある。また、大きなリーク電流が流れた場合などは熱応力によって基材の破損が生ずるようなことも生じていた。
【0006】
この発明の先行技術としては、対向電極型のホットプレートの基材保持プレートについて、腐食性物質にさらされる表面部分に耐食性保護膜を設けたものが公知となっている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平06−061335号公報(請求項1)。
【0008】
【発明が解決しようとする課題】
しかしがら、先行文献1に示されている技術は、発熱体間でリーク電流が流れるのを防止するために発熱体に絶縁膜を形成するといったことは何も開示されていない。この発明は、セラミックスヒータの抵抗発熱体の表面又は発熱体埋設溝のいずれか一方又は双方を電気絶縁性物質の皮膜で被覆することによって、ヒータの高温加熱時に発熱体間でリーク電流が生じないようにして、面状ヒータの加熱安定性、温度均一性が一層向上したセラミックスヒータを得ようとするものである。
【0009】
【課題を解決するための手段】
この発明は、発熱面を有する窒化アルミニウムのヒータカバーと、このセラミックスカバーの発熱面と反対側もしくは窒化アルミニウムのヒータの基材上に設けた溝に配置された抵抗発熱体と、前記ヒータカバーの抵抗発熱体を配置した側に一体に設けられた前記基材と、前記抵抗発熱体に一端が接続し他端が前記基材側に導出された電力供給端子を有するセラミックスヒータであって、前記抵抗発熱体の表面と前記溝の内側のいずれか一方又は双方が電気絶縁性物質の皮膜で被覆されている窒化アルミニウムのセラミックスヒータ(請求項1)、前記絶縁性物質がAl,BeO,SiO,MgO,h−BN,ZrSiO,ZrO,Y,YAG,ムライト,フォルステライトの中のいずれか一種である請求項1に記載の窒化アルミニウムのセラミックスヒータ(請求項2)及び前記絶縁物質の皮膜の厚さが2000Å〜200μmである請求項1または2に記載の窒化アルミニウムのセラミックスヒータ(請求項3)である。即ち、この発明は、セラミックスヒータの高温加熱中に発熱体の間でリーク電流が流れセラミックス基材が局部的に発熱して面内温度のばらつきが生じるのを防止し、加熱安定性及び温度均一性の優れたセラミックスヒータを得ようとするものである。
【0010】
【発明の実施の形態】
図1はこの発明のAlNのセラミックヒータ10の断面図であるが、本発明で抵抗発熱体12に皮膜を被覆した点を除くと従来のセラミックヒータと同様である。図1で11は窒化アルミニウムの基材である。13はセラミックスヒータのカバーである。基材11には溝が設けられていてここに抵抗発熱体12が埋設して配置されている。ここに用いる抵抗発熱体12は、タングステン、モリブデン若しくは白金であるが、タングステンがAlNと熱膨張率が近く最も好ましい。この抵抗発熱体の形成は、金属線の曲げ加工や箔や板、メッシュを用いた場合はレーザ加工、エッチング加工、ワイヤ放電加工、パンチングなどがあるが、これらに特に限定されるものではない。
【0011】
この抵抗発熱体12は、その表面が電気絶縁性物質の皮膜で被覆されている。この電気絶縁性物質としては体積抵抗率が高く、発熱体の埋設における処理温度より融点の高い物質で、その処理温度で発熱体や基材であるAlNセラミックスと反応して低抵抗の材料に変化しないものであれば特に制限されるものではなく、Al,BeO,SiO,MgO,h−BN,ZrSiO,ZrO,Y,YAG,ムライト,フォルステライトなどが用いられるが、特に高温での安定性、電気絶縁性などの点からh−BNが好ましい。抵抗発熱体へ電気絶縁性物質をコーティングする方法は、Alのスパッタ、CVD、溶射、ゾルゲル法、スラリー塗布といった一般的なコーティング方法が用いられるが、スパッタがより高純度な絶縁性皮膜が形成されるので好ましい。絶縁皮膜の膜厚は1000Å〜500μmとする。皮膜の厚さが1000Å未満では発熱体の絶縁効果が得られない。皮膜の厚さが500μmを超えると皮膜の形成が困難である。また、たとえ被覆ができても発熱体埋設時のハンドリングの問題や、熱処理時の熱膨張差によって皮膜が発熱体から剥離するといった問題が発生する恐れがある。
【0012】
絶縁皮膜が被覆された発熱体は、通常の発熱体の埋設方法でセラミックス基材に埋設される。例えば、発熱体をセラミックス成形体の間に挟んで埋設してホットプレスする方法、セラミックス焼結体の基材に予め溝を加工してここに発熱体を埋設し、これに接合剤を塗布したもう一方の基材を重ねて接合熱処理して、発熱体を埋設したヒータを製造するなどがある。成形体を用いて焼成と発熱体の埋設を同時に行なう方法は焼成時の収縮で発熱体の被覆に欠陥が生じる可能性があるので、焼結体の溝に発熱体を埋設する方法を用いた方法がより好ましい。次に、セラミックスヒータの製造方法の一例について更に詳細に説明する。
【0013】
AlN粉末とAlNに対して1wt%のY粉末をメタノール中でボールミル混合し、所定の時間後にPVB(ポリビニルブチラール)を加えた後スプレードライヤで造粒する。得られた造粒粉を金型で成形した後、静水圧プレス(1.0ton/cm)を行なって成形体とする。この成形体から有機物を除去するために、600℃空気中で熱処理して脱脂体とする。これを窒素雰囲気で1850℃で熱処理して焼結体とする。このようにして得られた焼結体に発熱体埋設用の溝を加工する。基材となるものには端子挿入用の穴を設ける。さらに、基材とカバー側のどちらかの片面にAlNを主成分とする接合剤層をスクリーン印刷などで形成する。発熱体の厚さは例えば0.3mmとして、タングステン箔を薬液でのエッチングなどで配線形状に形成したものを使用する。発熱体は金属箔をパンチング加工、放電加工、パターン加工したものでもよい。発熱体の厚み、幅は必要な発熱量、総抵抗値などヒータの使用態様により決定し、一律に定めることはできない。この発熱体の表面には、例えばスパッタでh−BN膜を3000Å被覆したものを用いる。その他にはCVD、溶射、ゾルゲル法、スラリー塗布を用いる。
【0014】
ウェーハ載置側のヒータカバーと、電力供給端子を有する基材の間に発熱体を挟み込む。発熱体を挟み込んだセラミックス基材には、外部から電気が供給できるようにするために、基材に予め開けておいた穴からタングステン端子を挿入してその先端を発熱体に接触するようにセットする。なお、端子が接触する部分の発熱体は、端子との通電性を確保するために皮膜を形成しないようにしておく。接合層を形成した面を合せた状態としたものは、ホットプレス等で不活性雰囲気中、1650〜1800℃で、例えば0.1ton/cmの加圧で接合熱処理を行なう。ここでの温度が1600℃未満では接合層の緻密化が促進しない。また、1800℃を超えると窒化アルミニウムがホットプレスの圧力でクリープ変形量が大きくなり、得られたヒータが変形してしまい寸法精度に大きな影響が出てくる恐れがある。ホットプレス温度は1700〜1770℃が最も好ましい。その後、この接合品を加工して面状ヒータとする。これによって、抵抗発熱体の表面に電気絶縁物質の皮膜が形成されたセラミックスヒータを得ることができる。
【0015】
上記の事例では、発熱体の表面に皮膜を被覆したが、これに代えて発熱体はそのままとして或いは発熱体に被膜を被覆した上に、さらに発熱体の埋設溝に絶縁層を形成してヒータの高温加熱時に基材にリーク電流が生ずることを抑制するようにしてもよい。埋設溝に絶縁層を形成する方法は、埋設溝を直接酸化する方法の他、Alのスパッタ、CVD、溶射、スラリー塗布といった一般的なコーティング方法が採用できるが、直接酸化がより緻密な絶縁層が形成されるので特に好ましい。ここにおける絶縁膜の膜厚は1000Å〜500μmがよい。皮膜の厚さが1000Å未満では発熱体の絶縁効果が得られない。皮膜の厚さが500μmを超えると基材であるAlNとの熱膨張差により剥離やクラックが生じるため皮膜の形成が困難である。また、たとえ被覆ができても発熱体埋設時のハンドリングの問題や、熱処理時の熱膨張差によって皮膜が発熱体から剥離するといった問題が発生する恐れがある。従って、皮膜の厚さに関しての条件は発熱体の皮膜を形成する場合と実質的に同様である。
【0016】
発熱体の埋設溝に絶縁層を形成するには、基材に発熱体を設置する溝を設けた後、酸化雰囲気で1000℃で熱処理をして溝表面にAl酸化層を形成する。この場合の酸化温度は800〜1400℃とする。この温度が800℃未満では十分な酸化層が得られず、1400℃を超えると酸化速度が早く、酸化層の膜厚の制御ができず厚い酸化層が形成されてこれが溝から剥離するようなことが生ずる。熱処理時間は熱処理温度、酸化層の厚さなどに合せて適宜に決めればよい。
【0017】
【実施例】
(実施例1)
AlN粉末とAlNに対してY粉末1wt%をメタノール中でボールミル混合し、一定時間後のポリビニルブチラール(PVB)を加えこれをスプレードライヤで造粒した。得られた造粒粉を金型で成形して、これを静水圧プレス(1.0ton/cm)を行い成形体とした後、この成形体から有機物を除去するために600℃空気中で熱処理して脱脂体とした。この脱脂体を窒素雰囲気中1850℃で熱処理して焼結体とし、この焼結体を加工してφ230×5tに仕上げた。基材に発熱体を埋設して固定するために、電力供給端子が形成されるAlN基材にドリル加工をして溝を形成した。また、この基材には端子挿入用の穴を明けた。さらに、ウェーハ載置側の基材(ヒータカバー)にはAlNを主成分(AlN:Y=100:1)とした接合ペーストをスクリーン印刷で形成した。発熱体は厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。この発熱体の表面にBN膜をスパッタ法で厚さ3000Åの絶縁膜を形成した。基材に設けた溝を用いてウェーハ載置側基材と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0018】
(実施例2)
実施例1と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子が形成されるAlN基材にドリル加工をして発熱体を配置する溝を形成した。また、ウェーハ載置側の基材(ヒータカバー)には実施例1と同様のペーストをスクリーン印刷で形成した。発熱体も実施例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。
【0019】
この発熱体の表面に平均粒径が0.8μmのh−BN粉末をIPAに分散させたスラリーを噴霧して塗布し、表面に膜厚100μmの絶縁皮膜を形成した。基材に設けた溝を用いてウェーハ載置側基材と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0020】
(実施例3)
実施例1と同様にして、サイズφ230×5tのAlN焼結体を得た。発熱体も実施例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。この発熱体の表面に平均粒径が0.8μmのY粉末をIPAに分散させたスラリーを噴霧して塗布し、表面に膜厚100μmの絶縁皮膜を形成した。さらに、タングステン端子を予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0021】
(実施例4)
実施例1と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した後、これを酸化雰囲気中800℃で熱処理して溝表面にAl酸化層を厚さ2000Åで形成した。発熱体も実施例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子をセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0022】
(実施例5)
実施例4と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した後、これを酸化雰囲気中1100℃で熱処理して溝表面にAl酸化層を厚さ200μmで形成した。発熱体も実施例4と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子をセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0023】
(実施例6)
実施例4と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した後、その溝内表面にAlスパッタ膜を厚さ2000Åで形成した。発熱体も実施例4と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子をセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定した。
【0024】
(比較例1)
AlN粉末とAlNに対してY粉末1wt%をメタノール中でボールミル混合し、一定時間後のポリビニルブチラール(PVB)を加えこれをスプレードライヤで造粒した。得られた造粒粉を金型で成形して、これを静水圧プレス(1.0ton/cm)を行い成形体にした。この成形体から有機物を除去するために600℃空気中で熱処理して脱脂体とした。この脱脂体を窒素雰囲気中1850℃で熱処理して焼結体とした。その後、この焼結体を加工してφ230×5tに仕上げた。発熱体を固定するために、電力供給端子側のAlN基材にドリル加工をして溝を形成した。また、ウェーハ載置側の基材(ヒータカバー)にはAlNを主成分(AlN:Y=100:1)としたペーストをスクリーン印刷で形成した。発熱体は厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。この発熱体には表面に何らの被膜を被覆しないで使用した。上記の焼結体を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて850℃までの加熱試験を実施したが700℃を超えてから各部分で局所発熱を生じ790℃で破損した。750℃まで加熱した状態での外部から赤外線画像装置で面内温度分布を測定した結果は750℃Δ120℃であった。
【0025】
(比較例2)
比較例1と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した。また、ウェーハ載置側の基材(ヒータカバー)には比較例1と同様のペーストをスクリーン印刷で形成した。さらに、基材には端子を挿入するための穴を明けた。発熱体も実施例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。
【0026】
この発熱体の表面にBN膜をスパッタ法により500Åの絶縁膜を被覆した。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、750℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定したところ、面内温度分布は750℃に対してΔ110℃であった。700℃を超えてから各部分で局所発熱が生じ800℃でヒータが破損した。
【0027】
(比較例3)
比較例1と同様にして、サイズφ230×5tのAlN焼結体を得た。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した。また、基材には端子を挿入する穴を明けた。さらに、ウェーハ載置側の基材(ヒータカバー)には比較例1と同様のペーストをスクリーン印刷で形成した。発熱体も実施例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。この発熱体の表面に粒径0.8μmのh−BN粉末をIPAに分散させたスラリーを発熱体にスプレー噴霧して塗布し、膜厚800μmの絶縁膜を形成した。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、850℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定したところ、Δ120であった。720℃を超えてから各部分で局所発熱が生じていた。加熱後発熱体埋設部を切断し、断面を観察したところ発熱体よりBN被覆が剥離していた。
【0028】
(比較例4)
比較例1と同様にして、サイズφ230×5tのAlN焼結体を得た。さらに、基材には端子を挿入するための穴を明けた。電力供給端子側のAlN基材にドリル加工をして発熱体を配置する溝を形成した後、これを酸化雰囲気中700℃で熱処理をして溝の内表面にアルミニウムの酸化層を厚さ500Åで形成した。また、ウェーハ載置側の基材(ヒータカバー)には比較例1と同様のペーストをスクリーン印刷で形成した。発熱体は比較例1と同様に厚さ0.3mmのタングステン箔を薬液によりエッチングして得た。さらに、外部から電気を供給するためのタングステン端子を、予め焼結体に開けておいた穴からタングステン発熱体に接触するようにセットした。基材に設けた溝を用いてウェーハ載置側基材(ヒータカバー)と電力供給側基材の間に発熱体を挟むようにした。次いで基材の接合層を形成した面を合せた状態でホットプレスにより不活性雰囲気中、1750℃、0.1ton/cmの条件で接合熱処理した。この接合品を加工しφ220×7tのAlNの面状ヒータを得た。真空チャンバーの中でこのヒータを用いて加熱試験を実施し、750℃まで加熱した状態で外部から赤外線画像装置で面内温度分布を測定したところΔ110℃であった。700℃を超えてから各部分で局所発熱が生じており800℃ヒータが破損した。
【0029】
(比較例5)
基材に形成した溝の内表面にアルミニウムの酸化層を厚さ500Åで形成した。
【0030】
基材に発熱体を配置する溝を形成した後、これを酸化雰囲気中1500℃で熱処理をして溝の内表面にアルミニウムの酸化層を厚さ900μmで形成した以外は比較例5と同様にしてAlNの面状ヒータを得た。このヒータを比較例5と同様にして加熱試験を実施した。その結果、850℃まで加熱した状態で外部から赤外線熱画像装置で面内温度分布を測定したところΔ120℃であった。720℃を超えてから各部分で局所発熱が生じているのが認められた。加熱後発熱体埋設部を切断して観察したところ発熱体埋設部溝から酸化層が剥離していた。
【0031】
以上の結果を纏めると次の通りである。
【0032】
【表1】

Figure 2005011769
【0033】
表1から明らかなように、実施例のヒータはいずれも高温でも局所発熱がなく安定しているが、比較例のものはそれ以下の温度でも局所発熱が生じたり或いは破損して高温での使用に適していないことが明らかである。
【0034】
【発明の効果】
この発明によれば、発熱体から基材にリーク電流が流れてセラミックスヒータに局部発熱が生ずることを抑制して一層の均一加熱ができるようになった。その結果、ウェーハに形成する膜質に所望のものが得られるとともに、膜質も均一なものが得られるようになって歩留まりの向上が期待できるようになったものである。さらに、均一加熱が可能となったところから、高温加熱をしても局部加熱が避けられるのでこれまで以上に高温での操業が可能で、また熱衝撃による破損もなく寿命の長いヒータとすることができる。
【図面の簡単な説明】
【図1】この発明の一実施例になるセラミックスヒータの側断面図を示す説明図。
【符号の説明】10……セラミックスヒータ、11…基材、12…抵抗発熱体、13…ヒータカバー、14…端子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride ceramic heater. In particular, the present invention relates to an aluminum nitride ceramic heater that further improves the uniformity of the heating surface temperature of the heater.
[0002]
[Prior art]
In a CVD or PVD film forming process, a ceramic heater having a structure with a built-in metal heating element is used to directly place and heat a wafer. In the film forming process using this ceramic heater, chamber cleaning is performed, and the halogen-based gas used therein simultaneously corrodes the ceramic heater itself in addition to the target processing object. Therefore, the ceramic used for the heater is an aluminum nitride ceramic with high corrosion resistance by halogen gas. Further, in order to improve the throughput, the ceramic heater is required to increase the temperature in a short time by reducing the temperature increase time. From this aspect, aluminum nitride ceramics having high thermal shock resistance are used.
[0003]
As a method for manufacturing a ceramic heater, a ceramic green sheet is formed by a doctor blade to form a ceramic substrate, and a heating element circuit is formed thereon. A method of forming a heating element circuit on a green sheet is generally screen printing using a conductive paste, but there is also a method of embedding a metal plate or mesh processed into a wiring shape. A ceramic heater cover having a predetermined thickness is integrally joined thereto. A power source connection terminal of a heating element is attached to this joined body, and this is degreased and sintered at a predetermined temperature by a hot press or the like to obtain a ceramic heater.
[0004]
In addition, there is a heating element embedded in the heater in the form of a coil, which is embedded in the heater simultaneously with the firing of the ceramic by hot pressing. Specifically, AlN powder is uniaxially press-molded with a die that has been grooved in advance, and a coil-shaped heating element is placed in the groove of the molded body. An aluminum nitride molded body is uniformly formed with a predetermined thickness on the molded body on which the coil-shaped heating element is installed, and this is uniaxially pressed again to form the coil-shaped heating element. . Thereafter, the AlN compact is sintered by hot pressing to form a ceramic heater.
[0005]
In recent years, ceramic heaters have been miniaturized in order to make the heater temperature uniform. In addition, the size of the member can be increased by increasing the diameter of the wafer, the temperature of the film can be increased, and the density of the plasma can be increased. It is like that. In particular, although the temperature in the film forming process varies depending on the film forming type, the process temperature reaches a maximum of around 800 ° C. in low pressure CVD (LPCVD) or the like. Aluminum nitride ceramics have a volume resistivity of 10 at room temperature. 14 Although it is Ωcm and an electrical insulator, its electrical resistance decreases as the temperature rises. For this reason, during heating of the heater at a high temperature, a leakage current flows between the heating elements of the AlN molded body, and heat is generated locally, resulting in variations in in-plane temperature. In addition, when a large leak current flows, the base material may be damaged by thermal stress.
[0006]
As a prior art of the present invention, a substrate holding plate of a counter electrode type hot plate is known in which a corrosion-resistant protective film is provided on a surface portion exposed to a corrosive substance (for example, see Patent Document 1). .)
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-061335 (Claim 1).
[0008]
[Problems to be solved by the invention]
However, the technique disclosed in the prior art document 1 does not disclose that an insulating film is formed on the heating element in order to prevent leakage current from flowing between the heating elements. In this invention, either one or both of the surface of the resistance heating element of the ceramic heater or the groove embedded in the heating element is covered with a film of an electrically insulating material, so that no leakage current is generated between the heating elements during high-temperature heating of the heater. Thus, a ceramic heater in which the heating stability and temperature uniformity of the planar heater are further improved is obtained.
[0009]
[Means for Solving the Problems]
The present invention includes an aluminum nitride heater cover having a heat generating surface, a resistance heating element disposed in a groove provided on the opposite side of the heat generating surface of the ceramic cover or on the aluminum nitride heater base, and the heater cover. A ceramic heater having the base material integrally provided on the side where the resistance heating element is disposed, and a power supply terminal having one end connected to the resistance heating element and the other end led to the base material side, An aluminum nitride ceramic heater in which one or both of the surface of the resistance heating element and the inside of the groove are covered with a film of an electrically insulating material (Claim 1), and the insulating material is Al 2 O 3 , BeO, SiO 2 , MgO, h-BN, ZrSiO 4 , ZrO 2 , Y 2 O 3 2. The aluminum nitride ceramic heater according to claim 1, wherein the thickness of the insulating material film is 2000 μm to 200 μm. 1 or 2, YAG, mullite, or forsterite. 2. An aluminum nitride ceramic heater according to claim 2 (claim 3). That is, the present invention prevents a leakage current from flowing between the heating elements during high-temperature heating of the ceramic heater and locally generating heat in the ceramic base material, thereby preventing variations in the in-plane temperature. It is intended to obtain a ceramic heater having excellent properties.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of an AlN ceramic heater 10 according to the present invention, which is the same as that of a conventional ceramic heater except that the resistance heating element 12 is coated with a film in the present invention. In FIG. 1, reference numeral 11 denotes an aluminum nitride base material. Reference numeral 13 denotes a ceramic heater cover. A groove is provided in the base material 11, and a resistance heating element 12 is buried and disposed therein. The resistance heating element 12 used here is tungsten, molybdenum, or platinum. Tungsten is most preferable because it has a thermal expansion coefficient close to that of AlN. The formation of the resistance heating element includes, but is not particularly limited to, laser processing, etching processing, wire electric discharge processing, punching, and the like when a metal wire is bent or a foil, plate, or mesh is used.
[0011]
The surface of the resistance heating element 12 is covered with a film of an electrically insulating material. This electrically insulating material has a high volume resistivity and a melting point higher than the processing temperature at which the heating element is embedded, and at that processing temperature, it reacts with the heating element and the AlN ceramics that are the base material to change to a low resistance material. It is not particularly limited as long as it does not, Al 2 O 3 , BeO, SiO 2 , MgO, h-BN, ZrSiO 4 , ZrO 2 , Y 2 O 3 , YAG, mullite, forsterite, and the like are used, and h-BN is particularly preferable from the viewpoints of stability at high temperatures and electrical insulation. The method of coating the resistance heating element with an electrically insulating material is Al 2 O 3 Although general coating methods such as sputtering, CVD, thermal spraying, sol-gel method, and slurry application are used, sputtering is preferable because an insulating film with higher purity is formed. The film thickness of the insulating film is 1000 to 500 μm. If the thickness of the film is less than 1000 mm, the insulating effect of the heating element cannot be obtained. When the thickness of the film exceeds 500 μm, it is difficult to form the film. Moreover, even if the coating can be performed, there may be a problem in handling when the heating element is embedded and a problem that the film is peeled off from the heating element due to a difference in thermal expansion during the heat treatment.
[0012]
The heating element coated with the insulating film is embedded in the ceramic substrate by a normal heating element embedding method. For example, a method in which a heating element is embedded between ceramic molded bodies and hot-pressed, a groove is previously formed in a ceramic sintered body base material, a heating element is embedded therein, and a bonding agent is applied thereto. For example, a heater with a heating element embedded therein may be manufactured by stacking the other base material and performing a heat treatment for bonding. Since the method of simultaneously firing and heating element embedding using a molded body may cause defects in the coating of the heating element due to shrinkage during firing, a method of embedding the heating element in the groove of the sintered body was used. The method is more preferred. Next, an example of a method for manufacturing a ceramic heater will be described in more detail.
[0013]
1 wt% Y with respect to AlN powder and AlN 2 O 3 The powder is ball-milled in methanol, and after a predetermined time, PVB (polyvinyl butyral) is added and granulated with a spray dryer. After the obtained granulated powder is molded with a mold, an isostatic press (1.0 ton / cm 2 ) To obtain a molded body. In order to remove organic substances from the molded body, heat treatment is performed in air at 600 ° C. to obtain a degreased body. This is heat-treated at 1850 ° C. in a nitrogen atmosphere to obtain a sintered body. A groove for embedding a heating element is processed in the sintered body thus obtained. A hole for inserting a terminal is provided in the base material. Further, a bonding agent layer containing AlN as a main component is formed on one side of either the base material or the cover side by screen printing or the like. The thickness of the heating element is, for example, 0.3 mm, and a tungsten foil formed into a wiring shape by etching with a chemical solution is used. The heating element may be a metal foil punched, electrodischarged, or patterned. The thickness and width of the heating element are determined by the usage of the heater, such as the required amount of heat generation and the total resistance, and cannot be determined uniformly. For example, the surface of the heating element is coated with 3000 mm of h-BN film by sputtering. In addition, CVD, thermal spraying, sol-gel method, and slurry coating are used.
[0014]
A heating element is sandwiched between a heater cover on the wafer mounting side and a base material having a power supply terminal. In order to allow electricity to be supplied from the outside to the ceramic base material sandwiching the heating element, a tungsten terminal is inserted through a hole previously made in the base material, and the tip is set to contact the heating element. To do. In addition, it is made for the heat generating body of the part which a terminal contacts not to form a film | membrane in order to ensure the electroconductivity with a terminal. What combined the surface in which the bonding layer was formed is a 1650-1800 degreeC in inert atmosphere with a hot press etc., for example, 0.1 ton / cm 2 Bonding heat treatment is performed under the above pressure. If the temperature here is less than 1600 ° C., densification of the bonding layer is not promoted. On the other hand, when the temperature exceeds 1800 ° C., the amount of creep deformation of aluminum nitride is increased by the pressure of hot pressing, and the obtained heater may be deformed, which may greatly affect the dimensional accuracy. The hot press temperature is most preferably 1700-1770 ° C. Thereafter, the joined product is processed into a planar heater. Thus, a ceramic heater in which a film of an electrically insulating material is formed on the surface of the resistance heating element can be obtained.
[0015]
In the above case, the surface of the heating element is coated with a film. Instead, the heating element is left as it is, or the heating element is coated with a film, and an insulating layer is further formed in the embedded groove of the heating element. You may make it suppress that a leak current arises in a base material at the time of high temperature heating. The method of forming the insulating layer in the buried groove is not only the method of directly oxidizing the buried groove, but also Al. 2 O 3 Although general coating methods such as sputtering, CVD, thermal spraying, and slurry coating can be employed, direct oxidation is particularly preferable because a denser insulating layer is formed. The thickness of the insulating film here is preferably 1000 to 500 μm. If the thickness of the film is less than 1000 mm, the insulating effect of the heating element cannot be obtained. If the thickness of the film exceeds 500 μm, peeling or cracking occurs due to the difference in thermal expansion from AlN as the base material, making it difficult to form the film. Moreover, even if the coating can be performed, there may be a problem in handling when the heating element is embedded and a problem that the film is peeled off from the heating element due to a difference in thermal expansion during the heat treatment. Accordingly, the conditions relating to the thickness of the film are substantially the same as those for forming the film of the heating element.
[0016]
In order to form the insulating layer in the buried groove of the heating element, a groove for installing the heating element is provided on the base material, and then heat treatment is performed at 1000 ° C. in an oxidizing atmosphere to form an Al oxide layer on the groove surface. In this case, the oxidation temperature is set to 800 to 1400 ° C. If this temperature is less than 800 ° C., a sufficient oxide layer cannot be obtained, and if it exceeds 1400 ° C., the oxidation rate is fast, the thickness of the oxide layer cannot be controlled, and a thick oxide layer is formed and peels from the groove. Happen. The heat treatment time may be appropriately determined according to the heat treatment temperature, the thickness of the oxide layer, and the like.
[0017]
【Example】
(Example 1)
Y for AlN powder and AlN 2 O 3 1 wt% of the powder was ball milled in methanol, polyvinyl butyral (PVB) after a certain period of time was added, and this was granulated with a spray dryer. The obtained granulated powder was molded with a mold, and this was hydrostatically pressed (1.0 ton / cm). 2 ) To obtain a molded body, and in order to remove organic substances from the molded body, heat treatment was performed in air at 600 ° C. to obtain a degreased body. This degreased body was heat-treated at 1850 ° C. in a nitrogen atmosphere to obtain a sintered body, and this sintered body was processed and finished to φ230 × 5 t. In order to embed and fix the heating element in the base material, a groove was formed by drilling the AlN base material on which the power supply terminal was formed. In addition, a hole for inserting a terminal was made in this base material. Further, the substrate (heater cover) on the wafer mounting side is mainly composed of AlN (AlN: Y 2 O 3 = 100: 1) was formed by screen printing. The heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. An insulating film having a thickness of 3000 mm was formed on the surface of the heating element by sputtering a BN film. A heating element was sandwiched between the wafer mounting side base material and the power supply side base material using a groove provided in the base material. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. Next, in a state where the surfaces on which the bonding layers of the base material are formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0018]
(Example 2)
In the same manner as in Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. The AlN base material on which the power supply terminal is formed was drilled to form a groove for arranging the heating element. Further, the same paste as in Example 1 was formed on the substrate (heater cover) on the wafer mounting side by screen printing. Similarly to Example 1, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution.
[0019]
A slurry obtained by dispersing h-BN powder having an average particle diameter of 0.8 μm in IPA was sprayed on the surface of the heating element, and an insulating film having a thickness of 100 μm was formed on the surface. A heating element was sandwiched between the wafer mounting side base material and the power supply side base material using a groove provided in the base material. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. Next, in a state where the surfaces on which the bonding layers of the base material are formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0020]
Example 3
In the same manner as in Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. Similarly to Example 1, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. Y having an average particle size of 0.8 μm is formed on the surface of the heating element. 2 O 3 A slurry in which the powder was dispersed in IPA was sprayed and applied to form an insulating film having a thickness of 100 μm on the surface. Furthermore, the tungsten terminal was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Next, in a state where the surfaces on which the bonding layers of the base material are formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0021]
(Example 4)
In the same manner as in Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. After a groove was formed by drilling the AlN substrate on the power supply terminal side to place the heating element, this was heat-treated at 800 ° C. in an oxidizing atmosphere to form an Al oxide layer with a thickness of 2000 mm on the groove surface. Similarly to Example 1, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Furthermore, a tungsten terminal for supplying electricity from the outside was set. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0022]
(Example 5)
In the same manner as in Example 4, an AlN sintered body having a size of φ230 × 5t was obtained. After a groove was formed in the AlN substrate on the power supply terminal side by drilling to form a heating element, this was heat-treated at 1100 ° C. in an oxidizing atmosphere to form an Al oxide layer with a thickness of 200 μm on the groove surface. Similarly to Example 4, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. A heating element was sandwiched between the wafer placement side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Furthermore, a tungsten terminal for supplying electricity from the outside was set. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0023]
(Example 6)
In the same manner as in Example 4, an AlN sintered body having a size of φ230 × 5t was obtained. After drilling the AlN substrate on the power supply terminal side to form a groove for placing the heating element, Al is formed on the inner surface of the groove. 2 O 3 A sputtered film was formed with a thickness of 2000 mm. Similarly to Example 4, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Furthermore, a tungsten terminal for supplying electricity from the outside was set. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured from the outside with an infrared imaging device in a state heated to 850 ° C.
[0024]
(Comparative Example 1)
Y for AlN powder and AlN 2 O 3 1 wt% of the powder was ball milled in methanol, polyvinyl butyral (PVB) after a certain period of time was added, and this was granulated with a spray dryer. The obtained granulated powder was molded with a mold, and this was hydrostatically pressed (1.0 ton / cm). 2 ) To obtain a molded body. In order to remove organic substances from this molded body, heat treatment was performed in air at 600 ° C. to obtain a degreased body. This degreased body was heat-treated at 1850 ° C. in a nitrogen atmosphere to obtain a sintered body. Then, this sintered body was processed to finish φ230 × 5t. In order to fix the heating element, a groove was formed by drilling the AlN substrate on the power supply terminal side. Also, the substrate (heater cover) on the wafer mounting side is mainly composed of AlN (AlN: Y 2 O 3 = 100: 1) was formed by screen printing. The heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. The heating element was used without any coating on the surface. A heating element was sandwiched between the wafer mounting side base material (heater cover) and the power supply side base material using the sintered body. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test up to 850 ° C. was carried out using this heater in a vacuum chamber. However, after exceeding 700 ° C., local heat generation occurred in each part, and breakage occurred at 790 ° C. The result of measuring the in-plane temperature distribution with an infrared imaging device from the outside in the state heated to 750 ° C. was 750 ° C. Δ120 ° C.
[0025]
(Comparative Example 2)
In the same manner as in Comparative Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. The AlN substrate on the power supply terminal side was drilled to form a groove for arranging the heating element. Further, the same paste as in Comparative Example 1 was formed on the substrate (heater cover) on the wafer placement side by screen printing. Furthermore, a hole for inserting a terminal was made in the base material. Similarly to Example 1, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution.
[0026]
The surface of the heating element was coated with a 500 nm insulating film by sputtering with a BN film. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was conducted using this heater in a vacuum chamber, and when the in-plane temperature distribution was measured with an infrared imaging device from the outside in a state heated to 750 ° C., the in-plane temperature distribution was Δ110 ° C. with respect to 750 ° C. Met. After exceeding 700 ° C., local heat generation occurred in each part, and the heater was damaged at 800 ° C.
[0027]
(Comparative Example 3)
In the same manner as in Comparative Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. The AlN substrate on the power supply terminal side was drilled to form a groove for arranging the heating element. In addition, a hole for inserting a terminal was made in the base material. Further, the same paste as in Comparative Example 1 was formed on the substrate (heater cover) on the wafer placement side by screen printing. Similarly to Example 1, the heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution. On the surface of the heating element, slurry in which h-BN powder having a particle size of 0.8 μm was dispersed in IPA was sprayed and applied to the heating element to form an insulating film having a thickness of 800 μm. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured with an infrared imaging device from the outside in a state heated to 850 ° C., and was found to be Δ120. Local heat generation occurred in each part after exceeding 720 ° C. After heating, the heating element embedded portion was cut and the cross section was observed. As a result, the BN coating was peeled off from the heating element.
[0028]
(Comparative Example 4)
In the same manner as in Comparative Example 1, an AlN sintered body having a size of φ230 × 5 t was obtained. Furthermore, a hole for inserting a terminal was made in the base material. After drilling the AlN substrate on the power supply terminal side to form a groove in which the heating element is arranged, this is heat-treated at 700 ° C. in an oxidizing atmosphere to form an aluminum oxide layer with a thickness of 500 mm on the inner surface of the groove. Formed with. Further, the same paste as in Comparative Example 1 was formed on the substrate (heater cover) on the wafer mounting side by screen printing. The heating element was obtained by etching a 0.3 mm thick tungsten foil with a chemical solution as in Comparative Example 1. Furthermore, a tungsten terminal for supplying electricity from the outside was set so as to come into contact with the tungsten heating element through a hole previously formed in the sintered body. A heating element was sandwiched between the wafer mounting side substrate (heater cover) and the power supply side substrate using a groove provided in the substrate. Next, in a state where the surfaces of the base material on which the bonding layer is formed are combined, the hot press is performed in an inert atmosphere at 1750 ° C., 0.1 ton / cm. 2 Bonding heat treatment was performed under the following conditions. The joined product was processed to obtain a planar heater of AlN of φ220 × 7t. A heating test was carried out using this heater in a vacuum chamber, and the in-plane temperature distribution was measured with an infrared imaging device from the outside in a state heated to 750 ° C., and was found to be Δ110 ° C. After exceeding 700 ° C., local heat generation occurred in each part, and the 800 ° C. heater was damaged.
[0029]
(Comparative Example 5)
An aluminum oxide layer having a thickness of 500 mm was formed on the inner surface of the groove formed in the substrate.
[0030]
After forming a groove for disposing the heating element on the substrate, this was heat-treated at 1500 ° C. in an oxidizing atmosphere to form an aluminum oxide layer with a thickness of 900 μm on the inner surface of the groove. Thus, an AlN planar heater was obtained. A heating test was conducted on this heater in the same manner as in Comparative Example 5. As a result, when the in-plane temperature distribution was measured with an infrared thermal imager from the outside while being heated to 850 ° C., it was Δ120 ° C. It was recognized that local heat generation occurred in each part after exceeding 720 ° C. When the heating element embedded portion was cut and observed after heating, the oxide layer was peeled from the heating element embedded portion groove.
[0031]
The above results are summarized as follows.
[0032]
[Table 1]
Figure 2005011769
[0033]
As is clear from Table 1, all of the heaters of the examples are stable without local heat generation even at high temperatures, but those of the comparative example are used at high temperatures due to local heat generation or damage even at lower temperatures. It is clear that this is not suitable.
[0034]
【The invention's effect】
According to this invention, a leak current flows from the heating element to the base material and local heat generation is prevented from occurring in the ceramic heater, thereby enabling more uniform heating. As a result, the desired film quality to be formed on the wafer can be obtained, and a uniform film quality can be obtained, so that an improvement in yield can be expected. Furthermore, since uniform heating is possible, local heating can be avoided even with high-temperature heating, so it is possible to operate at higher temperatures than before, and a heater with a long life without damage due to thermal shock. Can do.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a side sectional view of a ceramic heater according to one embodiment of the present invention.
DESCRIPTION OF SYMBOLS 10 ... Ceramic heater, 11 ... Base material, 12 ... Resistance heating element, 13 ... Heater cover, 14 ... Terminal.

Claims (3)

発熱面を有する窒化アルミニウムのヒータカバーと、このセラミックスカバーの発熱面と反対側もしくは窒化アルミニウムのヒータの基材上に設けた溝に配置された抵抗発熱体と、前記ヒータカバーの抵抗発熱体を配置した側に一体に設けられた前記基材と、前記抵抗発熱体に一端が接続し他端が前記基材側に導出された電力供給端子を有するセラミックスヒータであって、前記抵抗発熱体の表面と前記溝の内側のいずれか一方又は双方が電気絶縁性物質の皮膜で被覆されている窒化アルミニウムのセラミックスヒータ。An aluminum nitride heater cover having a heating surface, a resistance heating element disposed in a groove provided on the opposite side of the heating surface of the ceramics cover or on the aluminum nitride heater substrate, and the resistance heating element of the heater cover A ceramic heater having the base material integrally provided on the arranged side, and a power supply terminal having one end connected to the resistance heating element and the other end led to the base material side, An aluminum nitride ceramic heater in which one or both of the surface and the inside of the groove are coated with a film of an electrically insulating material. 前記絶縁性物質がAl,BeO,SiO,MgO,h−BN,ZrSiO,ZrO,Y,YAG,ムライト,フォルステライトの中のいずれか一種である請求項1に記載の窒化アルミニウムのセラミックスヒータ。The insulating material is Al 2 O 3, BeO, SiO 2, MgO, h-BN, ZrSiO 4, ZrO 2, Y 2 O 3, YAG, mullite, to claim 1 which is any one of: forsterite The ceramic nitride aluminum heater as described. 前記絶縁物質の皮膜の厚さが2000Å〜200μmである請求項1または2に記載の窒化アルミニウムのセラミックスヒータ。3. The aluminum nitride ceramic heater according to claim 1, wherein a thickness of the insulating material film is 2000 to 200 μm.
JP2003177160A 2003-06-20 2003-06-20 Ceramics heater made of aluminum nitride Pending JP2005011769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177160A JP2005011769A (en) 2003-06-20 2003-06-20 Ceramics heater made of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177160A JP2005011769A (en) 2003-06-20 2003-06-20 Ceramics heater made of aluminum nitride

Publications (1)

Publication Number Publication Date
JP2005011769A true JP2005011769A (en) 2005-01-13

Family

ID=34099826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177160A Pending JP2005011769A (en) 2003-06-20 2003-06-20 Ceramics heater made of aluminum nitride

Country Status (1)

Country Link
JP (1) JP2005011769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906346B1 (en) 2005-08-17 2009-07-06 주식회사 코미코 Method of manufacturing ceramic body and ceramic body manufactured using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906346B1 (en) 2005-08-17 2009-07-06 주식회사 코미코 Method of manufacturing ceramic body and ceramic body manufactured using the same

Similar Documents

Publication Publication Date Title
US7071551B2 (en) Device used to produce or examine semiconductors
US6891263B2 (en) Ceramic substrate for a semiconductor production/inspection device
KR100438881B1 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
KR101099891B1 (en) Body having a junction and method of manufacturing the same
TWI413438B (en) Supporting unit for semiconductor manufacturing device and semiconductor manufacturing device with supporting unit installed
KR20210116638A (en) Tobacco heating assembly and electric heating smoking device
JP2002057207A (en) Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
US20040206747A1 (en) Ceramic heater for semiconductor manufacturing/inspecting apparatus
JP2004296254A (en) Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2010232532A (en) Wafer retainer for improving method of connecting high-frequency electrode, and semiconductor production device on which the same is mounted
WO2001006559A1 (en) Wafer prober
JP4686996B2 (en) Heating device
TW541638B (en) Heater member for mounting heating object and substrate processing apparatus using the same
JP4596883B2 (en) Annular heater
JP2007251124A (en) Electrostatic chuck
JP2005011769A (en) Ceramics heater made of aluminum nitride
JP3568194B2 (en) Ceramic heater for semiconductor heat treatment
JP2005032842A (en) Electrode structure and ceramic joint
JP3805318B2 (en) Wafer heating device
JP2001237301A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP4199604B2 (en) Aluminum nitride ceramic heater
JP2005267931A (en) Heater unit
JP2001338862A (en) Wafer heating apparatus
JP2005191581A (en) Wafer holder for semiconductor-manufacturing apparatus, its manufacturing method, and semiconductor-manufacturing apparatus