JP2005008972A - Surface roughening method and surface roughening device for copper foil - Google Patents

Surface roughening method and surface roughening device for copper foil Download PDF

Info

Publication number
JP2005008972A
JP2005008972A JP2003176924A JP2003176924A JP2005008972A JP 2005008972 A JP2005008972 A JP 2005008972A JP 2003176924 A JP2003176924 A JP 2003176924A JP 2003176924 A JP2003176924 A JP 2003176924A JP 2005008972 A JP2005008972 A JP 2005008972A
Authority
JP
Japan
Prior art keywords
copper foil
anode electrode
plating
current density
surface roughening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176924A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
保之 伊藤
Hajime Sasaki
元 佐々木
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003176924A priority Critical patent/JP2005008972A/en
Publication of JP2005008972A publication Critical patent/JP2005008972A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface roughening method and a surface roughening device for copper foil with which the consumption of an anode electrode is reduced even in roughening plating treatment at a high current density, and the roughening plating treatment can easily be performed at a high current density. <P>SOLUTION: The surface roughening device for copper foil is provided with: a plating tank 3 storing a plating liquid 4; an anode electrode 2 having a circular recessed face at the inside of the plating tank 3; and a roll 5 for plating arranged so as to be opposed to the anode electrode 2 and dipping the copper foil 1 into the plating liquid 4. The current density applied to the copper foil 1 on plating is controlled to 50 to 200 A/dm<SP>2</SP>, and the current density applied to the anode electrode 2 is controlled to ≤0.8 times that applied to the copper foil 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、銅箔の表面粗化方法及び表面粗化装置に係り、更に詳しくは、プリント配線板やLiイオン電池負極材等の導電体用途に於いて好適な銅箔を提供できる表面粗化方法及び表面粗化装置に関するものである。
【0002】
【従来の技術】
電子回路基板用やLiイオン二次電池の負極集電体用の分野で、現在銅箔が大量に使用されている。例えば、電子回路基板の分野ではガラスエポキシ基材と熱プレスしたり、接着剤付きのポリイミドフィルムとラミネートしたり、あるいはポリイミドワニスを塗布後キュアして基板としたりして、プリント配線板の基本的な構成要素となる。またLiイオン二次電池の負極集電体の場合、銅箔表面に活物質と呼ばれる黒鉛とバインダーを混合したものが塗布されるが、最近ではSn或いはSn系合金を銅箔表面に被覆する検討が行われている。
【0003】
前記において、銅箔と樹脂あるいは銅箔と電池用活物質との間の密着性を向上させるため、銅箔にはいわゆるトリート処理と称する表面粗化処理が施される。銅箔には電解銅箔と圧延銅箔があるが、表面粗化処理についてはいずれも同様の方法がとられる。すなわち銅イオンを含有する電解液中で銅箔を陰極電解し、銅箔表面に樹枝状や米粒状の銅電着層を形成する。最適な表面状態を得るため電解液中には微量の塩素イオン、ゼラチンあるいは複数の金属イオンが共添されることがある。このようにして形成された凹凸を持った銅電着層は樹脂などと接着されるときアンカー効果により密着性を向上させることになる。
【0004】
しかしながら、近年の配線ピッチの微細化や樹脂層の極薄化が進み、銅箔の粗度が高いと回路形成のためエッチングをした際に、銅箔の一部が完全にエッチングされずに残ってしまい、樹脂によっては完全には絶縁されないために電子回路上の不都合が起こり易くなってきた。このため、銅箔の粗度はできるだけ低い方が良いとされ、銅箔のロープロファイル化が求められるようになってきている。しかし、粗度が低いと樹脂との密着性が十分ではない。このため、ロープロファイルかつ高密着性といった相反する性能を持った銅箔の開発がさらに求められる結果となっている。
【0005】
図5に、従来より用いられている銅箔の表面粗化装置の概略図を示す。この装置では、銅イオンを含有するめっき液4を収容しためっき槽3内に、一対の銅製平板状陽極電極12,12が設けられている。その陽極電極12,12間を陰極となる銅箔1が連続的に搬送される。銅箔1が2枚の陽極電極12,12の間を搬送される際、陽極電極12の面積と、その陽極電極12と対向する位置に有る、めっきされるべき銅箔1の面積はほぼ等しい関係となっている。
【0006】
この装置においては、銅箔1は図示しない巻き出しリールから送り出され、めっき槽3を経由して、図示しない巻き取りリールによって巻き取られる、いわゆるリール・ツー・リール方式により搬送される。銅箔1は、2枚の陽極電極12,12の間を搬送される際に、銅イオンを含有するめっき液4中で陰極電解され、銅箔1の表面に樹枝状や米粒状の凹凸を持った銅電着層が形成されて、表面粗化処理が行われる。
【0007】
一方、帯状導電材料の電解処理方法において、図6に示すような装置も用いられている(特許文献1)。
【0008】
【特許文献1】
特公昭53−12450号
【0009】
この電解処理装置では、電解液21を収容している電解槽23の内部に円弧状の陽極電極25を有し、その対向位置に直径250mmの電解用ロール27が陽極電極25と20mmの間隔を置いて配されている。電解用ロール27はその周面の約2/5が部分的に電解液21中に浸漬されている。更に、電解用ロール27の上流側及び下流側にそれぞれガイドロール31,33が設けられている。銅箔29は、ガイドロール31から送り出され、電解用ロール27により電解槽23内部の電解液21に浸漬される。電解液21は硫酸銅−硫酸浴が用いられ浴温50℃で陰極電流密度7A/dmの条件で銅箔29の片面に粗めっきが行われる。
【0010】
【発明が解決しようとする課題】
銅箔の表面に対し粗化めっき処理を行なう場合、高電流密度の電着であるほど、そのめっき膜形態は微細化し、アンカー効果が増大して樹脂との密着性が向上する。しかしながら、図5に示した銅箔の表面粗化装置では、陽極電極12,12の面積とめっきされる銅箔1との面積が等しいため、高電流密度の電流を用いて粗化めっき処理を行おうとするとそれと同じ電流密度の電流を陽極電極12,12に流すことが必要となる。このため陽極電極12,12の消耗が激しくなってしまい、取替えによるコストがかさむという不具合があった。従って、対費用効果といった面から使用する電流密度がある一定の限度に抑えられ、十分に高くすることができなかった。
【0011】
また、図6に示した帯状導電材料の電解処理装置においても、円弧状の陽極電極25の曲率半径(135mm)に対して、電解用ロール27の半径がかなり大きい(125mm)ため、陽極電極25の面積とめっきされる銅箔29の面積とが実質的に等しくなり、銅箔29に高電流密度の電流を流すと陽極電極25にも実質的に同じ電流密度の電流が流れてしまい、図5に示す銅箔の表面粗化装置と同様の不都合があった。
【0012】
従って、本発明の目的は、高電流密度での粗化めっき処理においても陽極電極の消耗が少なく、高い電流密度で容易に粗化めっき処理を行なうことができる銅箔の表面粗化方法及び表面粗化装置を提供することである。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明の銅箔の表面粗化方法は、銅めっき液中で陽極電極に対向する位置にある銅箔を陰極としてめっき処理を施し、銅箔の表面に突起状の銅電着物からなる粗化処理層を形成する銅箔の表面粗化方法において、めっき処理時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としたことを特徴とする。
【0014】
更に、Ni、Co、Mo、Znの1種以上の金属を前記銅箔上にめっきすることもできる。
【0015】
更に、クロメート処理及び/又はシランカップリング処理を前記銅箔上に施すこともできる。
【0016】
また、本発明の銅箔の表面粗化装置は、銅めっき液を収容しためっき槽と、該めっき槽の内部に円弧状の凹面を有する陽極電極と、該陽極電極に対向して配置され銅箔を銅めっき液中に浸漬するめっき用ロールとを備え、めっき時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としたことを特徴とする。
【0017】
前記陽極電極を複数に分割し、分割した陽極電極でそれぞれ独自に電流密度を設定できるようにすることもできる。
【0018】
前記めっき用ロールの回転軸位置を前記陽極電極の円弧状の凹面の曲率の中心位置から偏心させることもできる。
【0019】
また、前記陽極電極を不溶性金属または不溶性金属を表面にめっきした金属板とすることもできる。
【0020】
【発明の実施の形態】
以下、本発明に係る銅箔の表面粗化方法及び表面粗化装置の実施形態について説明する。
【0021】
本実施形態において、粗化めっき処理を行なう銅箔は、電解銅箔と圧延銅箔のどちらでも良い。まず、粗化めっき処理の前処理として、電解脱脂処理、酸洗処理を行なった方が、得られるめっき膜の均一性が向上するため好ましい。電解脱脂処理は、陰極電解または陽極電解で行ない、液組成としては水酸化ナトリウム1〜100g/L、炭酸ナトリウム1〜100g/Lを用い、温度10〜50℃、電流密度1〜10A/dm、処理時間1〜60秒で行なうことができる。また、酸洗処理については液組成として硫酸1〜200g/Lで、温度10〜50℃、処理時間1〜60秒の条件で行なうことができる。
【0022】
次に、銅めっき液中で銅箔を陰極として高電流密度でめっき処理を施し、銅箔の表面に突起状の銅電着物からなる粗化処理層を形成して銅箔の表面に粗化めっき処理を行なう。
【0023】
図1に、本発明の銅箔の表面粗化方法を好適に実施するための銅箔の表面粗化装置の第一実施形態を示す。この装置では、めっき槽3の内壁に断面が円弧状の凹面を有する陽極電極2が形成され、更に陽極電極2に対向して、銅箔1をめっき液4中に浸漬するめっき用ロール5が、めっき液4中にその周面が半分程度浸潰するように配置されている。また、めっき用ロール5の上流側及び下流側にはそれぞれ銅箔1の搬送用ロール6が配置されている。
【0024】
ここで、めっき用ロール5の回転軸の位置は、陽極電極2の円弧状の凹面の曲率の中心部に対応するように形成され、めっき用ロール5の半径は陽極電極2の凹面の曲率半径の0.8倍以下に形成されている。めっき用ロール5の周面のうち銅箔1と接触しかつめっき液4中に浸漬される部分の面積(即ち、銅箔1がめっきされる面積)は、陽極電極2の面積の0.2倍以上0.8倍以下が好ましく、0.4倍以上0.6倍以下に形成されていることがより好ましい。0.8倍を超えると下記に規定する銅箔1に流す電流の電流密度範囲で、陽極電極2に流れる電流密度が40A/dm以上となり、消耗が激しくなって使用できなくなり、0.2倍未満では銅箔1への銅めっき効率が悪くなってしまう。
【0025】
陽極電極2としては、比較的に高電流密度まで溶出が少なく、不溶性金属であるPtまたはTi、Fe、Ni、Zn、Cuもしくはこれらのいくつかを含有する合金にPtめっきを行なった金属板が好ましいが、Cuそのものを陽極電極2として使用することも可能である。
【0026】
めっき時に銅箔1に流す電流の電流密度として、ロープロファイルかつ樹脂との密着性の良い粗化めっき膜を得るために、50A/dm以上200A/dm以下であることが望ましい。50A/dm未満ではめっき膜形態は平坦なものとなるか、比較的凹凸の大きい形状となってしまう。逆に200A/dmを超えると銅箔1に流れる電流によって銅箔1が発熱し、銅箔1の表面状態や機械的特性が変化してしまい、目的のめっき膜形状を得ることが難しくなる。
【0027】
めっき液4は、一般的な銅めっき液が用いられる。組成としては例えば硫酸濃度10〜200g/L、硫酸銅濃度10〜300g/Lが適当である。適宜、塩化ナトリウムを1〜100ppm、添加しても良い。温度は10〜50℃が好ましい。
【0028】
本実施形態の銅箔の表面粗化装置において、銅箔1は、図示しない巻き出しリールから送り出され、搬送用ロール6を経由し、めっき用ロール5によりめっき液4中に浸漬された後、搬送用ロール6を経由して、図示しない巻き取りリールにより巻き取られる。
【0029】
銅箔1がめっき用ロール5によりめっき液4中に浸漬される際、めっき用ロール5の半径が陽極電極2の曲率半径の0.8倍以下に形成され、めっき用ロール5の周面のうち銅箔1と接触しかつめっき液4中に浸漬される部分の面積(即ち、銅箔1がめっきされる面積)が、陽極電極2の面積の0.8倍以下に形成されているので、銅箔1に流れる電流が集中される。よって陽極電極2に流れる電流の電流密度に対して、銅箔1に流れる電流の実質的な電流密度を高めることができる。従って、めっき時に銅箔1の電流密度が50A/dm以上200A/dm以下の高電流密度となっても、陽極電極2の電流密度が銅箔1の電流密度の0.8倍以下とできるため、陽極電極2の消耗を最小限に抑えることが出来る。
【0030】
図2に、本発明に係る銅箔の表面粗化装置の第二実施形態を示す。この装置では、図1に示す銅箔の表面粗化装置の陽極電極2を二分割して、第1の陽極電極7と第2の陽極電極8とし、第1の陽極電極7と第2の陽極電極8とでそれぞれ独自に電流密度を設定することができるようにしたものである。
【0031】
本実施形態の銅箔の表面粗化装置においては、第一実施形態の銅箔の表面粗化装置と同様の効果を奏する他、第1の陽極電極7と第2の陽極電極8とでそれぞれ独自に電流密度を設定することが出来るため、例えば第1の陽極電極7で電流密度10〜50A/dmで被覆銅めっきを行ない、銅箔素地の影響を無くした後に、第2の陽極電極8で電流密度50〜200A/dmの粗化めっきを行なうというように、銅箔1のめっき膜形態の制御を行なうことが出来る。
【0032】
また、図3に、本発明に係る銅箔の表面粗化装置の第三実施形態を示す。この装置では、図1に示す銅箔の表面粗化装置の陽極電極2を四分割して、第1の陽極電極15、第2の陽極電極16、第3の陽極電極17、第4の陽極電極18とし、それぞれ独自に電流密度を設定することができるようにしたものである。
【0033】
本実施形態の銅箔の表面粗化装置においては、第一実施形態の銅箔の表面粗化装置と同様の効果を奏する他、第1から第4の陽極電極間でそれぞれ独自に電流密度を設定することが出来るため、銅箔1のめっき膜形態の制御を更に細かく行なうことが出来るという効果を奏することができる。
【0034】
図4に、本発明に係る銅箔の表面粗化装置の第四実施形態を示す。この装置では、図1に示す銅箔の表面粗化装置のめっき用ロール5の回転軸位置を陽極電極の円弧状の凹面の曲率の中心位置から偏心させて配置したものである。
【0035】
本実施形態の銅箔の表面粗化装置においては、第一実施形態の銅箔の表面粗化装置と同様の効果を奏する他、陽極電極2と銅箔1の間隔が狭い領域に電流が集中するため、陽極電極2を二分割した第二実施形態と同様の効果を奏することが可能となる。
【0036】
上述した第一乃至第四の実施の形態の銅箔の表面粗化装置により銅箔に粗化めっき処理を行なった後、必要に応じて公知の方法によって耐熱性、耐薬品性を向上させる処理を行ない、また、防錆処理を施すことができる。耐熱性、耐薬品性を向上させる処理は、Ni、Co、Mo、Zn等の金属を公知の技術を用いてめっきすることにより行われる。また、さらに防錆処理を施すため、クロメート処理やシランカップリング処理等が行なわれる。ただし、樹脂との密着性が求められる場合にはベンゾトリアゾール系の有機防錆処理は行なわない方が望ましい。
【0037】
【実施例】
以下、本発明の実施例について説明する。
【0038】
【実施例1】
厚さ16.3μmの圧延銅箔を、水酸化ナトリウム40g/L、炭酸ナトリウム20g/Lにおいて温度25℃、電流密度6A/dm、処理時間10秒で陰極電解にて電解脱脂処理した後、硫酸50g/Lにおいて温度25℃、処理時間10秒で酸洗処理を行なった。この銅箔を用いて図1に示す第一の実施形態の銅箔の表面粗化装置にて、めっき液4として硫酸100g/L、硫酸銅200g/Lの電解液を用い、電流密度を20A/dmから80A/dmまで変化させ、温度25℃でめっき膜厚が理論値で0.5μmになるように粗化めっき処理を行なった。また、陽極電極2の曲率半径を150mm、めっき用ロール5の半径を50mmとしている。
【0039】
この粗化銅箔の粗面をエポキシ型接着剤付きポリイミドフィルムと温度160℃、圧力0.15MPaでロールラミネートし、その後170℃にて30分加熱した。この試料を用いて、銅箔幅5mm、垂直方向に50mm/minの速度で引き剥がした際の引き剥がし強度を測定した。その結果を表1に示す。また、原子間力顕微鏡により粗面の表面粗さRzを測定した結果も表1に併せて示す。
【0040】
【表1】

Figure 2005008972
【0041】
上記表1の結果より、電流密度が20A/dmと低いサンプルAでは、引き剥がし強度が0.2N/mmと不十分であったが、電流密度が60A/dm(サンプルB)、80A/dm(サンプルC)では、引き剥がし強度が大幅に向上していることが分かった。また、サンプルB、サンプルCにおいては高電流密度の電流を流しているにもかかわらず、陽極電極2の消耗はほとんど観察されなかった。
【0042】
【実施例2】
実施例1と同様に、16.3μmの圧延銅箔を用いて電解脱脂処理、酸洗処理を行なった後、図2に示す第二の実施形態の銅箔の表面粗化装置にて、めっき液4として硫酸100g/L、硫酸銅150g/Lの電解液を用い、温度25℃でめっき膜厚が0.4μmとなるように粗化めっき処理を行なった。ここで、めっきの始めに第1の陽極電極7により電流密度(1)がかかり、その後第2の陽極電極8により電流密度(2)がかかることとした。また、第1の陽極電極7及び第2の陽極電極8が合わせて形成される凹面の曲率半径を150mm、めっき用ロール5の半径を50mmとした。この粗化銅箔の粗面を、実施例1と同様の方法で引き剥がし強度と表面粗さを測定した。その結果を表2に示す。
【0043】
【表2】
Figure 2005008972
【0044】
上記表2の結果より、電流密度を(1)または(2)のいずれかで80A/dmから100A/dmとすることにより、引き剥がし強度がサンプルAと比較して大幅に向上していることが分かった。また、サンプルD〜サンプルIのいずれにおいても、高電流密度の電流を流しているにもかかわらず、陽極電極7及び陽極電極8の消耗はほとんど観察されなかった。
【0045】
【実施例3】
実施例1において粗化めっき処理を行った粗化銅箔の両面について、電着によってNiの膜厚が0〜100nm、Znの膜厚が0〜400nmとなるようなめっきを行なった。この銅箔をエッチングにより回路を作製した後、Snめっきを行なった。また、大気中にて150℃で168時間加熱し、その前後の引き剥がし強度の減少率を測定した。結果を表3に示す。
【0046】
【実施例4】
実施例3と同様にNi、Znめっきを行なったうえに、電解にてクロメート処理を行なった。クロメートの条件は、クロム酸濃度0.2g/L、pH2.5、電流密度1.0A/dm、温度25℃、処理時間5秒とした。この銅箔を用いて大気中にて300℃で10分加熱し、その酸化の度合いを調査した。結果を表3に示す。
【0047】
【実施例5】
実施例3と同様にNi、Znめっきを行なったうえに、粗面に対してシランカップリング処理を行なった。シランカップリング処理は市販のシランカップリング剤に、温度25℃で10秒浸漬することで行なった。その銅箔を実施例1と同様の方法で引き剥がし強度を測定し、シランカップリング処理前後の引き剥がし強度の増加率を調査した。その結果を表3に示す。
【0048】
【表3】
Figure 2005008972
【0049】
上記表3の結果より、NiめっきとZnめっきを施したサンプルK〜Nは、めっきを施さないもの(サンプルJ)と比較して加熱後の引き剥がし強度増加率が低下しているものの、クロメート処理後の耐酸化性が良好となることが確認された。また、シランカップリング処理による引き剥がし強度増加率も概ね良好であることが認められた。
【0050】
【発明の効果】
本発明の銅箔の表面粗化方法は、めっき処理時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としているので、高電流密度で粗化めっき処理を行っているにもかかわらず陽極電極の消耗が少ないものとなる。このため、従来の技術では困難であった高電流密度での粗化めっき処理を容易に行なうことができ、これによりロープロファイルかつ樹脂との密着性の高い粗化銅箔を容易に提供することが可能となる。
【0051】
また、Ni、Co、Mo、Znの1種以上の金属を前記銅箔上にめっきすることにより、さらに耐熱性、耐薬品性を向上させることができる。
【0052】
更に、クロメート処理及び/又はシランカップリング処理を前記銅箔上に施すことにより、さらに防錆力を向上させることが可能となる。
【0053】
また、本発明の銅箔の表面粗化装置は、円弧状の凹面を有する陽極電極を備え、めっき時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としているので、高電流密度で粗化めっき処理を行っているにもかかわらず陽極電極の消耗が少ないものとすることができる。
【0054】
更に、陽極電極を複数に分割し、分割した陽極電極でそれぞれ独自に電流密度を設定できるようにすることにより、銅箔のめっき膜形態をより微細に制御することが可能となる。
【0055】
また、めっき用ロールの回転軸位置を陽極電極の円弧状の凹面の曲率の中心位置から偏心させることにより、陽極電極と銅箔の間隔が狭い領域に電流が集中するため、陽極電極を分割した場合と同様の効果を奏することが可能となる。
【0056】
また、陽極電極を不溶性金属または不溶性金属を表面にめっきした金属板とすることにより、さらに陽極電極の耐久性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る銅箔の表面粗化装置の第一の実施形態を示す概略断面図である。
【図2】本発明に係る銅箔の表面粗化装置の第二の実施形態を示す概略断面図である。
【図3】本発明に係る銅箔の表面粗化装置の第三の実施形態を示す概略断面図である。
【図4】本発明に係る銅箔の表面粗化装置の第四の実施形態を示す概略断面図である。
【図5】従来の銅箔の表面粗化装置を示す概略断面図である。
【図6】従来の帯状導電材料の電解処理装置を示す概略断面図である。
【符号の説明】
1 銅箔
2 陽極電極
3 めっき槽
4 めっき液
5 めっき用ロール
7 第1の陽極電極
8 第2の陽極電極
15 第1の陽極電極
16 第2の陽極電極
17 第3の陽極電極
18 第4の陽極電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface roughening method and a surface roughening apparatus for copper foil, and more specifically, surface roughening capable of providing a copper foil suitable for conductor applications such as printed wiring boards and Li-ion battery negative electrode materials. The present invention relates to a method and a surface roughening apparatus.
[0002]
[Prior art]
Currently, a large amount of copper foil is used in the fields of electronic circuit boards and negative electrode current collectors for Li ion secondary batteries. For example, in the field of electronic circuit boards, it is possible to heat press with a glass epoxy substrate, laminate with a polyimide film with an adhesive, or cure after applying a polyimide varnish to form a basic printed wiring board. It becomes a necessary component. In addition, in the case of a negative electrode current collector of a Li-ion secondary battery, a mixture of graphite and a binder called an active material is applied to the copper foil surface, but recently, a study of coating the surface of the copper foil with Sn or an Sn-based alloy is applied. Has been done.
[0003]
In the above, in order to improve the adhesion between the copper foil and the resin or between the copper foil and the battery active material, the copper foil is subjected to a surface roughening treatment called so-called treating treatment. The copper foil includes an electrolytic copper foil and a rolled copper foil, and the same method is used for the surface roughening treatment. That is, the copper foil is subjected to cathodic electrolysis in an electrolytic solution containing copper ions to form a dendritic or rice granular copper electrodeposition layer on the copper foil surface. In order to obtain an optimum surface state, a trace amount of chlorine ions, gelatin or a plurality of metal ions may be co-added to the electrolytic solution. When the copper electrodeposition layer having irregularities formed in this manner is bonded to a resin or the like, the adhesion is improved by the anchor effect.
[0004]
However, in recent years, when the wiring pitch has become finer and the resin layer has become extremely thin, and the copper foil has a high roughness, a portion of the copper foil remains unetched when etching is performed for circuit formation. As a result, some resins are not completely insulated, so that inconveniences in electronic circuits are likely to occur. For this reason, it is considered that the roughness of the copper foil should be as low as possible, and the low profile of the copper foil has been demanded. However, if the roughness is low, the adhesion with the resin is not sufficient. For this reason, the development of copper foil having contradictory performance such as low profile and high adhesion has been further demanded.
[0005]
In FIG. 5, the schematic of the surface roughening apparatus of the copper foil conventionally used is shown. In this apparatus, a pair of copper plate-like anode electrodes 12 and 12 are provided in a plating tank 3 containing a plating solution 4 containing copper ions. The copper foil 1 serving as a cathode is continuously conveyed between the anode electrodes 12 and 12. When the copper foil 1 is transported between the two anode electrodes 12, 12, the area of the anode electrode 12 is substantially equal to the area of the copper foil 1 to be plated at a position facing the anode electrode 12. It has become a relationship.
[0006]
In this apparatus, the copper foil 1 is fed out from an unillustrated unwinding reel, and is conveyed by a so-called reel-to-reel system through a plating tank 3 and taken up by an unillustrated winding reel. When the copper foil 1 is transported between the two anode electrodes 12, 12, it is subjected to cathodic electrolysis in a plating solution 4 containing copper ions, and the surface of the copper foil 1 has dendritic and rice-like irregularities. A copper electrodeposition layer is formed, and surface roughening is performed.
[0007]
On the other hand, an apparatus as shown in FIG. 6 is also used in an electrolytic treatment method for a strip-shaped conductive material (Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Publication No.53-12450
In this electrolytic treatment apparatus, an arc-shaped anode electrode 25 is provided inside an electrolytic cell 23 containing an electrolytic solution 21, and an electrolysis roll 27 having a diameter of 250 mm is spaced from the anode electrode 25 by a distance of 20 mm at the opposite position. It is arranged. About 2/5 of the circumferential surface of the electrolysis roll 27 is partially immersed in the electrolytic solution 21. Furthermore, guide rolls 31 and 33 are provided on the upstream side and the downstream side of the electrolysis roll 27, respectively. The copper foil 29 is fed from the guide roll 31 and immersed in the electrolytic solution 21 inside the electrolytic bath 23 by the electrolysis roll 27. As the electrolytic solution 21, a copper sulfate-sulfuric acid bath is used, and rough plating is performed on one surface of the copper foil 29 under conditions of a bath temperature of 50 ° C. and a cathode current density of 7 A / dm 2 .
[0010]
[Problems to be solved by the invention]
When roughening plating is performed on the surface of the copper foil, the higher the electrodeposition with a higher current density, the finer the plated film form becomes, and the anchor effect increases to improve the adhesion to the resin. However, in the copper foil surface roughening apparatus shown in FIG. 5, since the areas of the anode electrodes 12 and 12 and the copper foil 1 to be plated are equal, the rough plating process is performed using a high current density current. In order to do so, it is necessary to pass a current having the same current density to the anode electrodes 12 and 12. For this reason, the anode electrodes 12 and 12 are worn out and there is a problem that the cost for replacement becomes high. Accordingly, the current density used is limited to a certain limit from the viewpoint of cost effectiveness, and cannot be sufficiently increased.
[0011]
Also in the electrolytic processing apparatus for the strip-shaped conductive material shown in FIG. 6, the radius of the electrolysis roll 27 is considerably large (125 mm) with respect to the radius of curvature (135 mm) of the arcuate anode electrode 25, so that the anode electrode 25 And the area of the copper foil 29 to be plated are substantially equal. When a high current density current is passed through the copper foil 29, a current with substantially the same current density also flows through the anode electrode 25. 5 had the same inconvenience as the copper foil surface roughening apparatus shown in FIG.
[0012]
Accordingly, an object of the present invention is to provide a surface roughening method and a surface of a copper foil that can be easily subjected to rough plating treatment at a high current density with less consumption of the anode electrode even in rough plating treatment at high current density. It is to provide a roughening device.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the copper foil surface roughening method according to the present invention is a method in which a copper foil at a position facing the anode electrode in the copper plating solution is plated as a cathode, and the surface of the copper foil has a protruding shape. In the surface roughening method of the copper foil for forming the roughening treatment layer made of the copper electrodeposit, the current density given to the copper foil during the plating treatment is set to 50 A / dm 2 or more and 200 A / dm 2 or less, and the current density given to the anode electrode is The current density applied to the copper foil is 0.8 times or less.
[0014]
Furthermore, one or more kinds of metals of Ni, Co, Mo, and Zn can be plated on the copper foil.
[0015]
Further, a chromate treatment and / or a silane coupling treatment may be performed on the copper foil.
[0016]
Further, the copper foil surface roughening apparatus of the present invention includes a plating tank containing a copper plating solution, an anode electrode having an arcuate concave surface inside the plating tank, and a copper electrode disposed opposite to the anode electrode. A plating roll for immersing the foil in a copper plating solution, a current density applied to the copper foil during plating is 50 A / dm 2 or more and 200 A / dm 2 or less, and a current density applied to the anode electrode is given to the copper foil It is characterized by being 0.8 times or less.
[0017]
The anode electrode can be divided into a plurality of parts, and the divided anode electrodes can individually set the current density.
[0018]
The rotation axis position of the plating roll can be decentered from the center position of the curvature of the arcuate concave surface of the anode electrode.
[0019]
Further, the anode electrode may be a metal plate having a surface plated with an insoluble metal or an insoluble metal.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a surface roughening method and a surface roughening apparatus for a copper foil according to the present invention will be described.
[0021]
In the present embodiment, the copper foil to be subjected to the roughing plating process may be either an electrolytic copper foil or a rolled copper foil. First, as the pretreatment for the roughening plating treatment, it is preferable to perform electrolytic degreasing treatment and pickling treatment because the uniformity of the obtained plating film is improved. The electrolytic degreasing treatment is carried out by cathodic electrolysis or anodic electrolysis. As the liquid composition, sodium hydroxide 1-100 g / L, sodium carbonate 1-100 g / L is used, temperature 10-50 ° C., current density 1-10 A / dm 2. The treatment time can be 1 to 60 seconds. In addition, the pickling treatment can be performed under conditions of 1 to 200 g / L sulfuric acid as a liquid composition, a temperature of 10 to 50 ° C., and a treatment time of 1 to 60 seconds.
[0022]
Next, plating is performed at a high current density using copper foil as a cathode in a copper plating solution, and a roughening treatment layer made of protruding copper electrodeposits is formed on the surface of the copper foil to roughen the surface of the copper foil. Plating is performed.
[0023]
In FIG. 1, 1st embodiment of the surface roughening apparatus of the copper foil for implementing suitably the surface roughening method of the copper foil of this invention is shown. In this apparatus, an anode electrode 2 having a concave surface with an arc-shaped cross section is formed on the inner wall of the plating tank 3, and a plating roll 5 for dipping the copper foil 1 in the plating solution 4 facing the anode electrode 2. In the plating solution 4, it is arranged so that its peripheral surface is immersed about half. Moreover, the conveyance roll 6 of the copper foil 1 is arrange | positioned at the upstream and downstream of the roll 5 for plating, respectively.
[0024]
Here, the position of the rotating shaft of the plating roll 5 is formed so as to correspond to the center of the curvature of the arcuate concave surface of the anode electrode 2, and the radius of the plating roll 5 is the radius of curvature of the concave surface of the anode electrode 2. Of 0.8 times or less. The area of the peripheral surface of the plating roll 5 that is in contact with the copper foil 1 and immersed in the plating solution 4 (that is, the area on which the copper foil 1 is plated) is 0.2 of the area of the anode electrode 2. It is preferably from 2 to 0.8 times, more preferably from 0.4 to 0.6 times. If it exceeds 0.8 times, the current density flowing through the anode electrode 2 becomes 40 A / dm 2 or more in the current density range of the current flowing through the copper foil 1 specified below, and the wear becomes intense and cannot be used. If it is less than double, the copper plating efficiency to the copper foil 1 will deteriorate.
[0025]
The anode electrode 2 is a metal plate obtained by performing Pt plating on Pt, which is an insoluble metal, or an alloy containing Ti, Fe, Ni, Zn, Cu, or some of them, with little elution to a relatively high current density. Although it is preferable, Cu itself can be used as the anode electrode 2.
[0026]
In order to obtain a rough plating film having a low profile and good adhesion to the resin, the current density of the current flowing through the copper foil 1 during plating is desirably 50 A / dm 2 or more and 200 A / dm 2 or less. If it is less than 50 A / dm 2 , the plating film form is flat or has a relatively large unevenness. Conversely, if it exceeds 200 A / dm 2 , the copper foil 1 generates heat due to the current flowing through the copper foil 1, and the surface state and mechanical properties of the copper foil 1 change, making it difficult to obtain the desired plated film shape. .
[0027]
As the plating solution 4, a general copper plating solution is used. As the composition, for example, a sulfuric acid concentration of 10 to 200 g / L and a copper sulfate concentration of 10 to 300 g / L are suitable. As appropriate, 1 to 100 ppm of sodium chloride may be added. The temperature is preferably 10 to 50 ° C.
[0028]
In the copper foil surface roughening apparatus of the present embodiment, the copper foil 1 is fed from an unillustrated unwinding reel, passed through a transporting roll 6, and immersed in the plating solution 4 by the plating roll 5, It is taken up by a take-up reel (not shown) via the transport roll 6.
[0029]
When the copper foil 1 is immersed in the plating solution 4 by the plating roll 5, the radius of the plating roll 5 is formed to be 0.8 times or less the radius of curvature of the anode electrode 2, and the circumferential surface of the plating roll 5 is Among them, the area of the portion that is in contact with the copper foil 1 and is immersed in the plating solution 4 (that is, the area where the copper foil 1 is plated) is formed to be 0.8 times or less the area of the anode electrode 2. The current flowing through the copper foil 1 is concentrated. Therefore, the substantial current density of the current flowing through the copper foil 1 can be increased with respect to the current density of the current flowing through the anode electrode 2. Therefore, even when the current density of the copper foil 1 is 50 A / dm 2 or more and 200 A / dm 2 or less at the time of plating, the current density of the anode electrode 2 is 0.8 times or less of the current density of the copper foil 1. Therefore, the consumption of the anode electrode 2 can be minimized.
[0030]
In FIG. 2, 2nd embodiment of the surface roughening apparatus of the copper foil which concerns on this invention is shown. In this apparatus, the anode electrode 2 of the copper foil surface roughening apparatus shown in FIG. 1 is divided into two to form a first anode electrode 7 and a second anode electrode 8, and the first anode electrode 7 and the second anode electrode 8. The current density can be set independently for each anode electrode 8.
[0031]
In the copper foil surface roughening apparatus of the present embodiment, the same effects as those of the copper foil surface roughening apparatus of the first embodiment are obtained, and the first anode electrode 7 and the second anode electrode 8 respectively. Since the current density can be set independently, for example, the first anode electrode 7 is coated with copper at a current density of 10 to 50 A / dm 2 and the influence of the copper foil substrate is eliminated. 8, the plating film form of the copper foil 1 can be controlled such that rough plating is performed at a current density of 50 to 200 A / dm 2 .
[0032]
FIG. 3 shows a third embodiment of the copper foil surface roughening apparatus according to the present invention. In this apparatus, the anode electrode 2 of the copper foil surface roughening apparatus shown in FIG. 1 is divided into four, and the first anode electrode 15, the second anode electrode 16, the third anode electrode 17, and the fourth anode. The electrode 18 is used so that the current density can be set independently.
[0033]
In the copper foil surface roughening apparatus of the present embodiment, the same effect as that of the copper foil surface roughening apparatus of the first embodiment is obtained, and the current density is independently set between the first to fourth anode electrodes. Since it can set, the effect that the control of the plating film form of the copper foil 1 can be performed more finely can be produced.
[0034]
FIG. 4 shows a fourth embodiment of the copper foil surface roughening apparatus according to the present invention. In this apparatus, the rotational axis position of the plating roll 5 of the copper foil surface roughening apparatus shown in FIG. 1 is arranged so as to be eccentric from the center position of the curvature of the arcuate concave surface of the anode electrode.
[0035]
In the copper foil surface roughening apparatus of the present embodiment, the same effect as the copper foil surface roughening apparatus of the first embodiment is obtained, and current is concentrated in a region where the distance between the anode electrode 2 and the copper foil 1 is narrow. Therefore, the same effect as that of the second embodiment in which the anode electrode 2 is divided into two can be obtained.
[0036]
After the roughening plating treatment is performed on the copper foil by the copper foil surface roughening apparatus according to the first to fourth embodiments described above, the heat resistance and chemical resistance are improved by a known method as necessary. In addition, rust prevention treatment can be performed. The treatment for improving the heat resistance and chemical resistance is performed by plating a metal such as Ni, Co, Mo, Zn or the like using a known technique. Further, a chromate treatment, a silane coupling treatment, or the like is performed in order to perform a rust prevention treatment. However, when adhesion to a resin is required, it is desirable not to perform benzotriazole organic rust prevention treatment.
[0037]
【Example】
Examples of the present invention will be described below.
[0038]
[Example 1]
After subjecting a rolled copper foil having a thickness of 16.3 μm to electrolytic degreasing treatment by cathodic electrolysis at a temperature of 25 ° C., a current density of 6 A / dm 2 at a sodium hydroxide of 40 g / L and a sodium carbonate of 20 g / L and a treatment time of 10 seconds, The pickling treatment was performed at a temperature of 25 ° C. and a treatment time of 10 seconds at 50 g / L of sulfuric acid. In the copper foil surface roughening apparatus of the first embodiment shown in FIG. 1 using this copper foil, an electrolytic solution of sulfuric acid 100 g / L and copper sulfate 200 g / L is used as the plating solution 4, and the current density is 20A. / Dm 2 was changed from 80 A / dm 2, and the roughening plating treatment was performed at a temperature of 25 ° C. so that the plating film thickness was 0.5 μm in theory. The radius of curvature of the anode electrode 2 is 150 mm, and the radius of the plating roll 5 is 50 mm.
[0039]
The rough surface of the roughened copper foil was roll-laminated with a polyimide film with an epoxy adhesive at a temperature of 160 ° C. and a pressure of 0.15 MPa, and then heated at 170 ° C. for 30 minutes. Using this sample, the peel strength when peeled at a copper foil width of 5 mm and a vertical direction of 50 mm / min was measured. The results are shown in Table 1. Table 1 also shows the results of measuring the surface roughness Rz of the rough surface with an atomic force microscope.
[0040]
[Table 1]
Figure 2005008972
[0041]
From the results of Table 1 above, the sample A having a low current density of 20 A / dm 2 had an insufficient peel strength of 0.2 N / mm, but the current density was 60 A / dm 2 (sample B), 80 A In / dm 2 (sample C), it was found that the peel strength was greatly improved. In Samples B and C, the anode electrode 2 was hardly consumed even though a high current density current was passed.
[0042]
[Example 2]
In the same manner as in Example 1, after performing electrolytic degreasing treatment and pickling treatment using a 16.3 μm rolled copper foil, the surface of the copper foil surface roughening apparatus of the second embodiment shown in FIG. An electrolytic solution of sulfuric acid 100 g / L and copper sulfate 150 g / L was used as the liquid 4, and a rough plating process was performed at a temperature of 25 ° C. so that the plating film thickness was 0.4 μm. Here, the current density (1) is applied by the first anode electrode 7 at the beginning of plating, and the current density (2) is applied by the second anode electrode 8 thereafter. The radius of curvature of the concave surface formed by combining the first anode electrode 7 and the second anode electrode 8 was 150 mm, and the radius of the plating roll 5 was 50 mm. The rough surface of the roughened copper foil was peeled off in the same manner as in Example 1, and the strength and surface roughness were measured. The results are shown in Table 2.
[0043]
[Table 2]
Figure 2005008972
[0044]
From the results of Table 2, by the current density (1) or any at from 80A / dm 2 (2) and 100A / dm 2, peel strength is greatly improved as compared with Sample A I found out. In all of Samples D to I, the anode electrode 7 and the anode electrode 8 were hardly consumed even though a high current density current was passed.
[0045]
[Example 3]
On both surfaces of the roughened copper foil subjected to the roughening plating process in Example 1, plating was performed such that the Ni film thickness was 0 to 100 nm and the Zn film thickness was 0 to 400 nm by electrodeposition. After making a circuit by etching this copper foil, Sn plating was performed. Moreover, it heated at 150 degreeC for 168 hours in air | atmosphere, and the reduction rate of the peeling strength before and behind that was measured. The results are shown in Table 3.
[0046]
[Example 4]
In the same manner as in Example 3, Ni and Zn plating was performed, and chromate treatment was performed by electrolysis. The chromate conditions were chromic acid concentration 0.2 g / L, pH 2.5, current density 1.0 A / dm 2 , temperature 25 ° C., and treatment time 5 seconds. The copper foil was heated in the atmosphere at 300 ° C. for 10 minutes, and the degree of oxidation was investigated. The results are shown in Table 3.
[0047]
[Example 5]
Ni and Zn plating were performed in the same manner as in Example 3, and silane coupling treatment was performed on the rough surface. The silane coupling treatment was performed by immersing in a commercially available silane coupling agent at a temperature of 25 ° C. for 10 seconds. The peel strength of the copper foil was measured in the same manner as in Example 1, and the increase rate of the peel strength before and after the silane coupling treatment was investigated. The results are shown in Table 3.
[0048]
[Table 3]
Figure 2005008972
[0049]
From the results in Table 3 above, the samples K to N plated with Ni and Zn were chromated although the peel strength increase rate after heating was lower than that of the sample not plated (Sample J). It was confirmed that the oxidation resistance after the treatment was good. Further, it was confirmed that the rate of increase in the peel strength by the silane coupling treatment was also generally good.
[0050]
【The invention's effect】
In the method for roughening the surface of the copper foil of the present invention, the current density applied to the copper foil during the plating treatment is set to 50 A / dm 2 or more and 200 A / dm 2 or less, and the current density applied to the anode electrode is set to 0. Since it is 8 times or less, the consumption of the anode electrode is reduced despite the rough plating treatment at a high current density. For this reason, it is possible to easily perform roughing plating processing at a high current density, which has been difficult with the prior art, thereby easily providing a roughened copper foil having a low profile and high adhesion to a resin. Is possible.
[0051]
Moreover, heat resistance and chemical resistance can be further improved by plating one or more metals of Ni, Co, Mo, and Zn on the copper foil.
[0052]
Furthermore, it becomes possible to further improve rust prevention power by performing chromate treatment and / or silane coupling treatment on the copper foil.
[0053]
The copper foil surface roughening apparatus of the present invention includes an anode electrode having an arcuate concave surface, and a current density applied to the copper foil during plating is set to 50 A / dm 2 or more and 200 A / dm 2 or less to be applied to the anode electrode. Since the current density is 0.8 times or less of the current density applied to the copper foil, the anode electrode can be consumed less even though the rough plating process is performed at a high current density.
[0054]
Furthermore, by dividing the anode electrode into a plurality of parts and allowing the divided anode electrodes to independently set the current density, the plated film form of the copper foil can be controlled more finely.
[0055]
In addition, by decentering the rotation axis position of the plating roll from the center position of the curvature of the arcuate concave surface of the anode electrode, the current concentrates in a region where the distance between the anode electrode and the copper foil is narrow, so the anode electrode was divided. The same effect as the case can be achieved.
[0056]
Moreover, the durability of the anode electrode can be further improved by using the anode electrode as a metal plate having an insoluble metal or an insoluble metal plated on the surface.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a copper foil surface roughening apparatus according to the present invention.
FIG. 2 is a schematic sectional view showing a second embodiment of the copper foil surface roughening apparatus according to the present invention.
FIG. 3 is a schematic sectional view showing a third embodiment of the copper foil surface roughening apparatus according to the present invention.
FIG. 4 is a schematic cross-sectional view showing a fourth embodiment of the copper foil surface roughening apparatus according to the present invention.
FIG. 5 is a schematic cross-sectional view showing a conventional copper foil surface roughening apparatus.
FIG. 6 is a schematic sectional view showing a conventional strip-shaped conductive material electrolytic treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Copper foil 2 Anode electrode 3 Plating tank 4 Plating solution 5 Plating roll 7 1st anode electrode 8 2nd anode electrode 15 1st anode electrode 16 2nd anode electrode 17 3rd anode electrode 18 4th Anode electrode

Claims (7)

銅めっき液中で陽極電極に対向する位置にある銅箔を陰極としてめっき処理を施し、銅箔の表面に突起状の銅電着物からなる粗化処理層を形成する銅箔の表面粗化方法において、めっき処理時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としたことを特徴とする銅箔の表面粗化方法。A copper foil surface roughening method in which a copper foil at a position facing an anode electrode in a copper plating solution is subjected to a plating treatment, and a roughening layer made of a protruding copper electrodeposit is formed on the surface of the copper foil. The current density applied to the copper foil during plating is 50 A / dm 2 or more and 200 A / dm 2 or less, and the current density applied to the anode electrode is 0.8 times or less the current density applied to the copper foil. Copper foil surface roughening method. 更に、Ni、Co、Mo、Znの1種以上の金属を前記銅箔上にめっきしたことを特徴とする請求項1に記載の銅箔の表面粗化方法。Furthermore, 1 or more types of metals, Ni, Co, Mo, and Zn, were plated on the said copper foil, The surface roughening method of the copper foil of Claim 1 characterized by the above-mentioned. 更に、クロメート処理及び/又はシランカップリング処理を前記銅箔上に施したことを特徴とする請求項1又は請求項2に記載の銅箔の表面粗化方法。Furthermore, the surface roughening method of the copper foil of Claim 1 or Claim 2 which performed the chromate process and / or the silane coupling process on the said copper foil. 銅めっき液を収容しためっき槽と、該めっき槽の内部に円弧状の凹面を有する陽極電極と、該陽極電極に対向して配置され銅箔を銅めっき液中に浸漬するめっき用ロールとを備え、めっき時に銅箔に与える電流密度を50A/dm以上200A/dm以下とし、陽極電極に与える電流密度を銅箔に与える電流密度の0.8倍以下としたことを特徴とする銅箔の表面粗化装置。A plating tank containing a copper plating solution, an anode electrode having an arcuate concave surface inside the plating tank, and a plating roll that is disposed facing the anode electrode and immerses the copper foil in the copper plating solution The copper is characterized in that the current density applied to the copper foil during plating is 50 A / dm 2 or more and 200 A / dm 2 or less, and the current density applied to the anode electrode is 0.8 times or less of the current density applied to the copper foil. Foil surface roughening device. 前記陽極電極が複数に分割されており、分割された陽極電極がそれぞれ独自に電流密度を設定できることを特徴とする請求項4に記載の銅箔の表面粗化装置。5. The copper foil surface roughening device according to claim 4, wherein the anode electrode is divided into a plurality of portions, and the divided anode electrodes can each independently set a current density. 前記めっき用ロールの回転軸位置を前記陽極電極の円弧状の凹面の曲率の中心位置から偏心させたことを特徴とする請求項4に記載の銅箔の表面粗化装置。5. The copper foil surface roughening device according to claim 4, wherein the rotational axis position of the plating roll is decentered from the center position of the curvature of the arcuate concave surface of the anode electrode. 前記陽極電極が不溶性金属または不溶性金属を表面にめっきした金属板からなることを特徴とする請求項4乃至請求項6のいずれか1項に記載の銅箔の表面粗化装置。The copper foil surface roughening device according to any one of claims 4 to 6, wherein the anode electrode is made of an insoluble metal or a metal plate having an insoluble metal plated on the surface thereof.
JP2003176924A 2003-06-20 2003-06-20 Surface roughening method and surface roughening device for copper foil Pending JP2005008972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176924A JP2005008972A (en) 2003-06-20 2003-06-20 Surface roughening method and surface roughening device for copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176924A JP2005008972A (en) 2003-06-20 2003-06-20 Surface roughening method and surface roughening device for copper foil

Publications (1)

Publication Number Publication Date
JP2005008972A true JP2005008972A (en) 2005-01-13

Family

ID=34099661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176924A Pending JP2005008972A (en) 2003-06-20 2003-06-20 Surface roughening method and surface roughening device for copper foil

Country Status (1)

Country Link
JP (1) JP2005008972A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108923B1 (en) 2005-05-16 2006-09-19 Hitachi Cable, Ltd. Copper foil for printed circuit board with taking environmental conservation into consideration
US7344785B2 (en) 2005-05-16 2008-03-18 Hitachi Cable, Ltd. Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
US7842397B2 (en) 2005-09-27 2010-11-30 Hitachi Cable, Ltd. Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
JP2011084801A (en) * 2009-10-19 2011-04-28 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing surface roughened copper plate
WO2011125336A1 (en) * 2010-04-09 2011-10-13 富士フイルム株式会社 Anodic oxidation device
JP2012057191A (en) * 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
KR101569185B1 (en) 2013-09-13 2015-11-17 (주)테크윈 An insoluble anode and apparatus for producing electrolytic copperfoil having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108923B1 (en) 2005-05-16 2006-09-19 Hitachi Cable, Ltd. Copper foil for printed circuit board with taking environmental conservation into consideration
US7344785B2 (en) 2005-05-16 2008-03-18 Hitachi Cable, Ltd. Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
US7842397B2 (en) 2005-09-27 2010-11-30 Hitachi Cable, Ltd. Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
JP2011084801A (en) * 2009-10-19 2011-04-28 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing surface roughened copper plate
WO2011125336A1 (en) * 2010-04-09 2011-10-13 富士フイルム株式会社 Anodic oxidation device
JP2011231395A (en) * 2010-04-09 2011-11-17 Fujifilm Corp Anodic oxidation device
CN102834550A (en) * 2010-04-09 2012-12-19 富士胶片株式会社 Anodic oxidation device
JP2012057191A (en) * 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
KR101569185B1 (en) 2013-09-13 2015-11-17 (주)테크윈 An insoluble anode and apparatus for producing electrolytic copperfoil having the same

Similar Documents

Publication Publication Date Title
US5863410A (en) Process for the manufacture of high quality very low profile copper foil and copper foil produced thereby
EP2644753B1 (en) Surface-treated copper foil
FI61425C (en) SAMMANSATT METALLFOLIE OCH SAETT FOER DESS FRAMSTAELLNING
US6132887A (en) High fatigue ductility electrodeposited copper foil
KR101779653B1 (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
US6777108B1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
JP2001068804A (en) Electrolytic copper foil with carrier foil and its manufacture, and copper plated laminate provided therewith
JP3306404B2 (en) Method for producing surface-treated copper foil and copper-clad laminate using surface-treated copper foil obtained by the method
TW201800242A (en) Surface-treated copper foil and copper-clad laminate produced using same
JP2000309898A (en) Electrolytic copper foil with carrier foil, production of the electrolytic copper foil and copper laminated sheet using the electrolytic copper foil
US4961828A (en) Treatment of metal foil
JP3250994B2 (en) Electrolytic copper foil
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
TWI553163B (en) Method for manufacturing metal foil and manufacturing device
KR20090092919A (en) Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
US20040108211A1 (en) Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
EP0250195A2 (en) Double matte finish copper foil
JP2001140090A (en) Electrolytic copper foil with carrier foil and its manufacturing method
JP2005008972A (en) Surface roughening method and surface roughening device for copper foil
KR20110024527A (en) A copper foil and method for producing the same
US6270648B1 (en) Process and apparatus for the manufacture of high peel-strength copper foil useful in the manufacture of printed circuit boards, and laminates made with such foil
KR102323903B1 (en) Copper Foil Capable of Improving Dimension Stability of Flexible Printed Circuit Board, Method for Manufacturing The Same, and Flexible Copper Clad Laminate Comprising The Same
WO2022113806A1 (en) Roughened copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130