JP2011084801A - Method and apparatus for manufacturing surface roughened copper plate - Google Patents

Method and apparatus for manufacturing surface roughened copper plate Download PDF

Info

Publication number
JP2011084801A
JP2011084801A JP2009240696A JP2009240696A JP2011084801A JP 2011084801 A JP2011084801 A JP 2011084801A JP 2009240696 A JP2009240696 A JP 2009240696A JP 2009240696 A JP2009240696 A JP 2009240696A JP 2011084801 A JP2011084801 A JP 2011084801A
Authority
JP
Japan
Prior art keywords
copper plate
copper
cathode
roughened
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009240696A
Other languages
Japanese (ja)
Other versions
JP5448710B2 (en
Inventor
Takayuki Matsuoka
孝幸 松岡
Hajime Watanabe
元 渡辺
Kiyoaki Yamamoto
清旭 山本
Sadao Ishihama
貞夫 石浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2009240696A priority Critical patent/JP5448710B2/en
Publication of JP2011084801A publication Critical patent/JP2011084801A/en
Application granted granted Critical
Publication of JP5448710B2 publication Critical patent/JP5448710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a surface roughened copper plate by which the surface of the copper sheet is inexpensively and efficiently roughened and an apparatus for manufacturing the same. <P>SOLUTION: A first process part 120 includes a multistage structure that right and left electrodes 122 between which one copper sheet 101 is held is defined as one station and tow or more stations are provided and an anodic treatment for forming copper particles in necessary quantity to form fine bump like projecting on right and left both surface of the steel sheet 101 by electrolyzing using a copper plate 101 as an anode and an electrode 122 as a cathode is carried out. A second process part 130 also has a multistage structure provided with the two or more stations and a cathodic treatment is carried out by reversing the polarity to be the copper plate 101 as the anode and the electrode 132 as the anode. A constant potential control is carried out in the first process part 120 and a constant current control is carried out in the second process part 130. A plating bath 121 and the other plating bath 131 communicate with each other and the anodic treatment and the cathodic treatment are carried out using the same plating solution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、メタルコア回路基板のメタルコア等に使用される表面粗化銅板の製造方法および製造装置に関するものである。   The present invention relates to a method and apparatus for producing a roughened copper plate used for a metal core or the like of a metal core circuit board.

メタルコア回路基板は、絶縁基板の内部に熱伝導性に優れた金属板を埋め込むことで、均熱性および放熱性を高めたものである。金属板の埋め込みにより基板の熱的特性が向上することで、同じ回路パターンでもより大きな電流を流すことが可能となる。   The metal core circuit board has improved thermal uniformity and heat dissipation by embedding a metal plate having excellent thermal conductivity in the insulating substrate. Since the thermal characteristics of the substrate are improved by embedding the metal plate, a larger current can flow even in the same circuit pattern.

図7は、メタルコア回路基板の一例を示す断面図である。同図に示すメタルコア回路基板900において、901は絶縁基板(プリプレグを加圧加熱して硬化させたもの)、902は絶縁基板901内に埋め込まれた金属板、903は絶縁基板901の表面に形成された回路パターン、904はスルーホール、および905はソルダーレジストをそれぞれ示している。   FIG. 7 is a cross-sectional view showing an example of a metal core circuit board. In the metal core circuit board 900 shown in the figure, reference numeral 901 is an insulating substrate (a prepreg is heated and cured), 902 is a metal plate embedded in the insulating substrate 901, and 903 is formed on the surface of the insulating substrate 901. 904 is a through hole, and 905 is a solder resist.

メタルコア回路基板900のコアとなる金属板902としては、銅板、銅合金板、アルミ板、またはアルミ合金板が使用されるが、熱伝導性の点で銅板が好ましい。メタルコア回路基板900が十分な均熱性、放熱性を発揮するためには、金属板902に銅板を用いた場合でも100〜500μm程度の厚さが必要とされる。   As the metal plate 902 serving as the core of the metal core circuit board 900, a copper plate, a copper alloy plate, an aluminum plate, or an aluminum alloy plate is used, but a copper plate is preferable in terms of thermal conductivity. In order for the metal core circuit board 900 to exhibit sufficient heat uniformity and heat dissipation, a thickness of about 100 to 500 μm is required even when a copper plate is used as the metal plate 902.

メタルコア回路基板900は、部品実装工程でリフロー炉等によるハンダ付けが行われるが、その際の加熱によって金属板902と絶縁基板901との界面に剥離が生じないことが要求される。また、メタルコア回路基板900に形成された回路を使用中に発生する熱に対しても、金属板902と絶縁基板901とが剥離しない十分な接着性(密着性)が求められる。このように、金属板902と絶縁基板901との接着性を高めるために、金属板902の両面を粗化する処理が行われる。   The metal core circuit board 900 is soldered by a reflow furnace or the like in the component mounting process, but it is required that peeling at the interface between the metal plate 902 and the insulating substrate 901 does not occur due to heating at that time. In addition, sufficient adhesion (adhesion) is required for the metal plate 902 and the insulating substrate 901 not to be peeled against heat generated during use of a circuit formed on the metal core circuit board 900. Thus, in order to improve the adhesiveness between the metal plate 902 and the insulating substrate 901, a process of roughening both surfaces of the metal plate 902 is performed.

また、メタルコア回路基板900の金属板902には、両面に配置された回路パターン903間を導通させるスルーホール904を設けるための穴が多数形成されることが多い。穴が形成されていない銅板の両面に粗化処理を行い、その後に穴あけ加工を行うと、穴あけ加工時に粗化面を損傷させてしまう可能性が高く、かつ穴あけ加工時に加工油が付着するため再洗浄しなければならない等の問題がある。これらの点を考慮すると、コア用金属板902にスルーホール904用の穴を形成した後に、その両面を粗化処理するのが望ましい。   In many cases, the metal plate 902 of the metal core circuit board 900 is provided with a large number of holes for providing through holes 904 that conduct between the circuit patterns 903 arranged on both surfaces. If roughening is performed on both sides of a copper plate with no holes, and then drilling is performed, there is a high possibility that the roughened surface will be damaged during drilling, and processing oil will adhere during drilling. There are problems such as having to re-clean. Considering these points, it is desirable to roughen both surfaces of the core metal plate 902 after the holes for the through holes 904 are formed.

メタルコア回路基板900のコアに好適な厚さ略100μm以上の銅板として、ロール圧延により比較的安価に製造できる圧延銅板を用いることができれば、大幅なコスト低減を図ることができる。しかし、圧延銅板は両面が平滑であることから、これを絶縁基板内に埋め込んで用いるためには、絶縁基板材料(ガラスエポキシ基板)との接着性を高めるために、圧延銅板の両面を粗化する処理を行う必要がある。   If a rolled copper sheet that can be manufactured at a relatively low cost by roll rolling can be used as a copper sheet having a thickness of about 100 μm or more suitable for the core of the metal core circuit board 900, a significant cost reduction can be achieved. However, since both sides of the rolled copper plate are smooth, in order to embed it in an insulating substrate, the both sides of the rolled copper plate are roughened in order to improve the adhesion to the insulating substrate material (glass epoxy substrate). It is necessary to perform processing.

銅板の表面を粗化する手段として、プリント回路基板用銅箔のように、銅板(銅箔)の表面に高電流密度で銅めっき処理を行う方法が知られている(例えば特許文献1)。このような銅めっき処理により、銅板の表面に微細瘤状突起を形成して粗化状態にすることができる。銅めっき処理を用いた従来の方法では、図8に示すように、前処理後の複数の銅板911を端部で重なるように水平に並べ、これをロール912で水平方向に移動させながらめっき槽の中を水平方向に移動させてめっき処理している。   As a means for roughening the surface of a copper plate, a method of performing copper plating on the surface of a copper plate (copper foil) at a high current density, such as a copper foil for printed circuit boards, is known (for example, Patent Document 1). By such a copper plating process, fine bumps can be formed on the surface of the copper plate and roughened. In the conventional method using the copper plating process, as shown in FIG. 8, a plurality of copper plates 911 after the pretreatment are arranged horizontally so as to overlap each other at the end, and are moved horizontally by a roll 912 while being plated. The metal plate is moved horizontally in the plating process.

上記のめっき処理の工程では2種類のめっき液が用いられ、第1のめっき液を注入しためっき槽を通過する間に銅板911の表面に微細瘤状突起が形成され、その後第2のめっき液を注入しためっき槽でコートめっきが行われる。各めっき槽には、それぞれ1つの電極が設けられている。微細瘤状突起はアンカー効果があるため、エッチングや化学処理で銅板表面を粗化する場合より、絶縁基板材料との接着性を高めるのに極めて有効である、   In the above plating process, two types of plating solutions are used, and fine bumps are formed on the surface of the copper plate 911 while passing through the plating tank into which the first plating solution is injected, and then the second plating solution. Coat plating is performed in a plating tank into which is injected. Each plating tank is provided with one electrode. Because the microscopic projections have an anchor effect, they are extremely effective in improving the adhesion with the insulating substrate material, compared to roughening the copper plate surface by etching or chemical treatment.

特開2005−8973号公報Japanese Patent Laying-Open No. 2005-8873

しかしながら、銅めっき処理により銅板の表面を粗化する従来の方法では、高電流密度で銅めっき処理を行うため、銅めっき液の銅イオンの減少が激しく、多量の銅めっき液を消費してコスト高になるという問題があった。また、銅板の周囲に未粗化領域が形成されてしまい、また端部に銅粉が多数付着するため、銅粉が剥落して製造工程を汚してしまうといった問題もあった。とくに、スルーホール部分には銅粉の付着量が多く、短絡の原因となっていた。   However, in the conventional method of roughening the surface of the copper plate by copper plating treatment, the copper plating treatment is performed at a high current density, so the copper ion in the copper plating solution is drastically reduced, and a large amount of copper plating solution is consumed and the cost is reduced. There was a problem of becoming high. In addition, an unroughened region is formed around the copper plate, and a large amount of copper powder adheres to the end portion, so that there is a problem that the copper powder is peeled off to contaminate the manufacturing process. In particular, the amount of copper powder adhering to the through-hole portion was large, causing a short circuit.

そこで、本発明はこのような問題を解決するためになされたものであり、銅板の表面を低コストで効率よく粗化できる表面粗化銅板の製造方法および製造装置を提供することを目的とする。   Then, this invention was made | formed in order to solve such a problem, and it aims at providing the manufacturing method and manufacturing apparatus of the surface roughening copper plate which can roughen the surface of a copper plate efficiently at low cost. .

本発明の表面粗化銅板の製造方法の第1の態様は、銅板の表面を粗化する表面粗化銅板の製造方法であって、めっき液が注入されためっき槽に前記銅板を導入し、前記めっき槽の内部に対向配置された2段以上の陰極電極のいずれか1段の間に前記銅板を非接触に挟み、前記銅板を陽極とし前記陰極電極を陰極として電気分解を行い、前記電気分解を前記2段以上の陰極電極のそれぞれで順次行う第一工程と、前記銅板を前記めっき槽からこれに連通して前記めっき液が注入された別のめっき槽に移動させ、前記別のめっき槽の内部に対向配置された1段以上の陽極電極のいずれか1段の間に前記銅板を非接触に挟み、前記銅板を陰極とし前記陽極電極を陽極として銅めっきを行い、前記銅めっきを前記1段以上の陽極電極のそれぞれで順次行う第二工程と、を有することを特徴とする。   1st aspect of the manufacturing method of the surface roughening copper plate of this invention is a manufacturing method of the surface roughening copper plate which roughens the surface of a copper plate, Comprising: The said copper plate is introduce | transduced into the plating tank into which the plating solution was inject | poured, The copper plate is sandwiched in a non-contact manner between any one of two or more stages of cathode electrodes disposed opposite to each other inside the plating tank, and electrolysis is performed using the copper plate as an anode and the cathode electrode as a cathode. A first step of sequentially performing decomposition at each of the two or more stages of cathode electrodes, and moving the copper plate from the plating tank to another plating tank into which the plating solution has been injected, The copper plate is sandwiched in a non-contact manner between any one or more of the anode electrodes arranged opposite to each other inside the tank, and the copper plating is performed using the copper plate as a cathode and the anode electrode as an anode. Sequentially at each of the one or more stages of anode electrodes Cormorant and having a second step.

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程では、少なくとも1段の前記銅板と前記陰極電極との間の電圧が所定値となるように定電圧制御し、前記第二工程では、前記銅板と前記陽極電極との間の電流が所定値となるように定電流制御することを特徴とする。   In another aspect of the method for producing a surface-roughened copper plate of the present invention, in the first step, constant voltage control is performed so that a voltage between at least one stage of the copper plate and the cathode electrode becomes a predetermined value, In the second step, constant current control is performed so that a current between the copper plate and the anode electrode becomes a predetermined value.

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧のうち少なくとも一部を個別に定電圧制御し、前記第二工程では、前記1段以上の陽極電極と前記銅板との間の電流を一括または個別に定電流制御することを特徴とする。この態様では、第一工程において、2段以上の陰極電極と前記銅板との間の電圧をすべて定電圧制御するか、あるいは一部を定電圧制御とし他を定電流制御としてもよい。また、第二工程では、1段以上の陽極電極と前記銅板との間の電流を一括して定電流制御するか、または個別に定電流制御してもよい。   In another aspect of the method for producing a surface-roughened copper plate of the present invention, in the first step, at least a part of the voltage between the two or more stages of cathode electrodes and the copper plate is individually controlled at a constant voltage, In the second step, the current between the one or more anode electrodes and the copper plate is constant-current controlled individually or individually. In this aspect, in the first step, all the voltages between the two or more stages of cathode electrodes and the copper plate may be controlled at a constant voltage, or some of them may be controlled at a constant voltage and the others may be controlled at a constant current. In the second step, the current between one or more stages of anode electrodes and the copper plate may be collectively controlled at a constant current or may be controlled individually.

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧がすべて所定の同じ電圧値となるように定電圧制御することを特徴とする。   In another aspect of the method for producing a surface roughened copper plate of the present invention, in the first step, the constant voltage is set such that all the voltages between the two or more stages of cathode electrodes and the copper plate have the same predetermined voltage value. It is characterized by controlling.

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧のすべてを各段で個別に決定された電圧値となるように定電圧制御することを特徴とする。   In another aspect of the method for producing a surface-roughened copper plate of the present invention, in the first step, all the voltages between the two or more stages of cathode electrodes and the copper plate are individually determined at each stage. It is characterized by constant voltage control so that

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧が、前記銅板を移動させる方向に順次高くなるように定電圧制御することを特徴とする。   In another aspect of the method for producing a surface-roughened copper plate of the present invention, in the first step, the voltage between the two or more stages of cathode electrodes and the copper plate is sequentially increased in the direction in which the copper plate is moved. It is characterized by constant voltage control.

本発明の表面粗化銅板の製造方法の他の態様は、前記第一工程と前記第二工程とを1サイクルとし、これを1サイクル以上行うことを特徴とする。   Another aspect of the method for producing a surface-roughened copper plate of the present invention is characterized in that the first step and the second step are set as one cycle, and this is performed for one cycle or more.

本発明の表面粗化銅板製造装置の第1の態様は、銅板の表面を粗化する表面粗化銅板製造装置であって、めっき液が注入されためっき槽と、前記銅板を陽極としてこれを非接触に挟むように前記めっき槽の内部に対向配置された陰極電極とを有する第一工程部と、前記めっき槽と連通されて前記めっき液が注入された別のめっき槽と、前記銅板を陰極としてこれを非接触に挟むように前記別のめっき槽の内部に対向配置された陽極電極を有する第二工程部と、を備え、前記銅板の1つを挟む前記陰極電極を1段としてこれが前記第一工程部の内部に2段以上縦列配置され、前記陰極の銅板の1つを挟む前記陽極電極を1段としてこれが前記第二工程部の内部に1段以上縦列配置されていることを特徴とする。   1st aspect of the surface roughening copper plate manufacturing apparatus of this invention is a surface roughening copper plate manufacturing apparatus which roughens the surface of a copper plate, Comprising: This is made into the plating tank into which the plating solution was inject | poured, and the said copper plate is made into an anode. A first process part having a cathode electrode disposed opposite to the inside of the plating tank so as to be sandwiched in a non-contact manner, another plating tank communicated with the plating tank and injected with the plating solution, and the copper plate A second process part having an anode electrode disposed opposite to the inside of the another plating tank so as to sandwich it in a non-contact manner as a cathode, and the cathode electrode sandwiching one of the copper plates as one stage. Two or more stages are arranged in tandem in the first process section, and the anode electrode sandwiching one of the copper plates of the cathode is used as one stage, which is arranged in one or more stages in the second process section. Features.

本発明の表面粗化銅板製造装置の他の態様は、前記第一工程部は、少なくとも1段の前記銅板と前記陰極電極との間の電圧が所定値となるように定電圧制御する定電圧制御手段を備え、前記第二工程部は、前記銅板と前記陽極電極との間の電流が所定値となるように定電流制御する定電流制御手段を備えることを特徴とする。   In another aspect of the apparatus for producing a surface roughened copper sheet according to the present invention, the first process section is a constant voltage that is controlled at a constant voltage so that a voltage between at least one stage of the copper sheet and the cathode electrode becomes a predetermined value. The second process unit includes a constant current control unit that performs constant current control so that a current between the copper plate and the anode electrode becomes a predetermined value.

本発明の表面粗化銅板製造装置の他の態様は、前記第一工程部は、前記2段以上縦列配置された前記陰極電極の電圧のうち少なくとも一部を個別に制御する2以上の前記定電圧制御手段を備え、前記第二工程部は、前記1段以上縦列配置された前記陰極電極の電流を一括または個別に制御する1つの前記定電流制御手段を備えることを特徴とする。   In another aspect of the apparatus for producing a surface roughened copper sheet according to the present invention, the first process unit may control two or more of the constants individually controlling at least a part of the voltages of the cathode electrodes arranged in two or more stages. Voltage control means is provided, and the second process section includes one constant current control means for controlling currents of the cathode electrodes arranged in one or more stages in a lump or individually.

本発明の表面粗化銅板製造装置の他の態様は、前記第一工程部と前記第二工程部からなる組が、2組以上縦列に接続されていることを特徴とする。   Another aspect of the surface roughened copper sheet producing apparatus of the present invention is characterized in that two or more sets of the first process part and the second process part are connected in a column.

本発明の表面粗化銅板製造装置の他の態様は、表面を粗化する前の前記銅板を洗浄する前処理部と、表面を粗化した後の前記銅板を洗浄する後処理部とをさらに備え、前記銅板が、前記前処理部、前記第一工程部、前記第二工程部、および前記後処理部を連続して移動可能に連結されていることを特徴とする。   In another aspect of the apparatus for producing a roughened surface copper plate according to the present invention, a pretreatment unit that cleans the copper plate before the surface is roughened, and a posttreatment unit that cleans the copper plate after the surface is roughened are further provided. The copper plate is connected to the pretreatment unit, the first process unit, the second process unit, and the post-treatment unit so as to be continuously movable.

本発明によれば、銅板の表面に微細瘤状突起を形成して定着させることで粗化する表面粗化銅板の製造方法および製造装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method and manufacturing apparatus of the surface roughening copper plate roughened by forming and fixing a fine knob-like processus | protrusion on the surface of a copper plate.

本発明の第1実施形態の表面粗化銅板製造装置の第一工程部および第二工程部の詳細な構成を示す平面図および側面図である。の構成を示すブロック図である。It is the top view and side view which show the detailed structure of the 1st process part of the surface roughening copper plate manufacturing apparatus of 1st Embodiment of this invention, and a 2nd process part. It is a block diagram which shows the structure of these. 第1実施形態の表面粗化銅板製造装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the surface roughening copper plate manufacturing apparatus of 1st Embodiment. 第1実施形態の第一工程部における定電圧制御を説明するための説明図である。It is explanatory drawing for demonstrating the constant voltage control in the 1st process part of 1st Embodiment. 第2実施形態の第一工程部における定電圧多段制御を説明するための説明図である。It is explanatory drawing for demonstrating the constant voltage multistage control in the 1st process part of 2nd Embodiment. 第3実施形態の表面粗化銅板製造装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the surface roughening copper plate manufacturing apparatus of 3rd Embodiment. 第3実施形態の2つのめっき槽および2つの別のめっき槽における制御方法の一例を示すグラフである。It is a graph which shows an example of the control method in two plating tanks and two other plating tanks of 3rd Embodiment. メタルコア回路基板の一例を示す断面図である。It is sectional drawing which shows an example of a metal core circuit board. 従来のめっき処理方法を説明するための説明図である。It is explanatory drawing for demonstrating the conventional plating process method.

本発明の好ましい実施の形態における表面粗化銅板の製造方法および製造装置の構成について、図面を参照して以下に詳細に説明する。なお、同一機能を有する各構成部については、図示および説明簡略化のため、同一符号を付して示す。   The structure of the manufacturing method and manufacturing apparatus of the surface roughening copper plate in preferable embodiment of this invention is demonstrated in detail below with reference to drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

(第1実施形態)
本発明の第1の実施の形態に係る表面粗化銅板の製造方法および製造装置を、図1、2を用いて説明する。図2は、本実施形態の表面粗化銅板製造装置100の概略構成を示す構成図であり、図1は、図2に示す表面粗化銅板製造装置100のうち、第一工程部120および第二工程部130の詳細な構成を示す平面図および側面図である。但し、第一工程部120および第二工程部130の側面図については、それぞれめっき槽121および別のめっき槽131の側面を除いた構成を示している。
(First embodiment)
A method and apparatus for producing a roughened copper plate according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a configuration diagram illustrating a schematic configuration of the surface roughened copper plate manufacturing apparatus 100 according to the present embodiment. FIG. 1 illustrates the first process unit 120 and the first process portion of the surface roughened copper plate manufacturing apparatus 100 illustrated in FIG. It is the top view and side view which show the detailed structure of the 2 process part 130. FIG. However, about the side view of the 1st process part 120 and the 2nd process part 130, the structure except the side surface of the plating tank 121 and another plating tank 131 is shown, respectively.

表面粗化銅板製造装置100は、前処理部110、第一工程部120、第二工程部130、および後処理部140を備えている。本実施形態の表面粗化銅板の製造方法は、前処理部110で行われる前処理工程、第一工程部120で行われる第一工程、第二工程部130で行われる第二工程、および後処理部140で行われる後処理工程からなり、各工程を連続して行うことが可能となるように、前処理部110、第一工程部120、第二工程部130、および後処理部140が連続した構成となっている。   The surface roughened copper plate manufacturing apparatus 100 includes a pretreatment unit 110, a first process unit 120, a second process unit 130, and a posttreatment unit 140. The manufacturing method of the surface roughening copper plate of this embodiment is a pre-processing process performed in the pre-processing part 110, the 1st process performed in the 1st process part 120, the 2nd process performed in the 2nd process part 130, and back The pre-processing unit 110, the first process unit 120, the second process unit 130, and the post-processing unit 140 are composed of post-processing steps performed in the processing unit 140 so that each process can be performed continuously. It has a continuous configuration.

また、本実施形態では、第一工程を行うめっき槽121と第二工程を行う別のめっき槽131が連通されており、各槽内に注入されるめっき液も1種類だけとしている。このような構成とすることで、めっき槽121内のめっき液と別のめっき槽131内のめっき液とが混合されるようにしている。第一工程では銅板から析出した銅がめっき液中の銅イオン濃度を高める一方、第二工程では銅イオンがめっきに使用されて減少していく。そこで、本実施形態ではめっき槽121と別のめっき槽131とを連通させた構成とすることで、第一工程で増加した銅イオンが第二工程で減少する銅イオンを補給するようにしている。これにより、めっき液中の銅イオンの減少を大幅に低減することができ、めっき液の消費を抑えて低コスト化を図ることができる。   Moreover, in this embodiment, the plating tank 121 which performs a 1st process, and the separate plating tank 131 which performs a 2nd process are connected, and only one type of plating solution is inject | poured into each tank. With such a configuration, the plating solution in the plating tank 121 and the plating solution in another plating tank 131 are mixed. In the first step, copper deposited from the copper plate increases the copper ion concentration in the plating solution, while in the second step, copper ions are used for plating and decrease. Therefore, in the present embodiment, the configuration is such that the plating tank 121 and another plating tank 131 are in communication with each other, so that the copper ions increased in the first step are replenished with copper ions that decrease in the second step. . Thereby, the reduction | decrease of the copper ion in a plating solution can be reduced significantly, the consumption of a plating solution can be suppressed and cost reduction can be achieved.

本実施形態の表面粗化銅板製造装置100は、粗化処理する表面が移動方向と平行となるように銅板101を上部からラックに吊下げた縦型構造となっており、銅板101を垂直方向に吊下げた状態で各工程間を移動させている。これは、一般のめっき処理装置と同じ構造であることから、一般のめっき設備を本実施形態の表面粗化銅板製造装置100に流用することが可能となる。前処理部110および後処理部140では、銅板101を垂直方向に移動させる上下動作と水平方向に移動させるスライド動作があるが、第一工程部120および第二工程部130では、銅板101を水平方向に移動させるスライド動作のみの移動が行われる。   The surface roughened copper plate manufacturing apparatus 100 of this embodiment has a vertical structure in which the copper plate 101 is suspended from the top so that the surface to be roughened is parallel to the moving direction. It is moved between each process in a state suspended from Since this is the same structure as a general plating processing apparatus, it becomes possible to divert a general plating equipment to the surface roughening copper plate manufacturing apparatus 100 of this embodiment. In the pre-processing unit 110 and the post-processing unit 140, there are an up-and-down operation for moving the copper plate 101 in the vertical direction and a sliding operation for moving in the horizontal direction. In the first process unit 120 and the second process unit 130, the copper plate 101 is moved horizontally. Only the sliding movement to move in the direction is performed.

前処理工程は、粗化対象の銅板101の表面を洗浄する工程であり、第一工程を開始するための準備を行う手段が設けられている。   The pretreatment step is a step of cleaning the surface of the copper plate 101 to be roughened, and means for preparing for starting the first step is provided.

前処理部110において洗浄された銅板101は、次に第一工程部120に移動されて第一工程の処理が行われる。第一工程部120の構成を、図1を用いて説明する。第一工程部120は、電極122を複数備えており、銅板101を陽極、電極122を陰極とする電気分解により、銅板101の左右両面に微細瘤状突起を形成するのに必要な量の銅微粒子を生成させる陽極処理を行う。ここで、銅板101の左右両面とは、銅板101を垂直方向に吊下げてスライド動作させる方向を前方としたときの左右の面を示しており、メタルコア回路基板に用いたときに絶縁基板と最も大きな面積で接する面に相当する。   The copper plate 101 cleaned in the pretreatment unit 110 is then moved to the first process unit 120 to perform the first process. The structure of the 1st process part 120 is demonstrated using FIG. The first process unit 120 includes a plurality of electrodes 122, and an amount of copper necessary to form microscopic protrusions on both the left and right sides of the copper plate 101 by electrolysis using the copper plate 101 as an anode and the electrode 122 as a cathode. Anodizing to produce fine particles is performed. Here, both the left and right surfaces of the copper plate 101 are the left and right surfaces when the direction in which the copper plate 101 is suspended in the vertical direction and the sliding operation is set to the front is the most when the metal plate is used as a metal core circuit board. It corresponds to the surface that touches in a large area.

図1では、1つの銅板101を挟んでその左右に陰電極122を3つずつ配置した構成を示している。陰極に用いる電極122は、これに限定されず、銅板101の左右面に対向して各面を覆うように配置するのがよい。すなわち、銅板101の左右面の面積以上の対向面積を有する電極をそれぞれの面に対向させて配置させてもよく、あるいは図1に示すように、銅板101の左右面より小さい面積の電極を銅板101の左右面の面積以上の対向面積となるような領域に複数並べてもよい。   FIG. 1 shows a configuration in which three negative electrodes 122 are arranged on the left and right sides of one copper plate 101. The electrode 122 used for the cathode is not limited to this, and it is preferable that the electrode 122 is disposed so as to face the left and right surfaces of the copper plate 101 and cover each surface. In other words, electrodes having opposing areas that are equal to or larger than the area of the left and right surfaces of the copper plate 101 may be arranged to face each other, or, as shown in FIG. A plurality of regions may be arranged in a region having an opposing area that is equal to or larger than the area of the left and right surfaces of 101.

本実施形態の表面粗化銅板製造装置100の第一工程部120は、1つの銅板101を挟む左右の電極122(図1では、左右3つずつの電極122)を1つのステーション123として、これを2以上備えた多段構成とするのを特徴としている。1つのステーション123に対しては、1台の整流器(図示せず)を設けて左右3つずつの電極122を同時に制御している。図1に示す第一工程部120では、1つのめっき槽121に5つのステーション123を設けており、5台の整流器をそれぞれのステーション123に1台ずつ個別に設けている。なお、ここではステーション123を5段設ける構成としたが、これに限らず、例えば6段以上としてもよい。   The first process unit 120 of the surface roughened copper plate manufacturing apparatus 100 of the present embodiment uses the left and right electrodes 122 (three electrodes 122 on the left and right in FIG. 1) sandwiching one copper plate 101 as one station 123. It is characterized by having a multi-stage configuration including two or more. For one station 123, one rectifier (not shown) is provided to control the left and right electrodes 122 simultaneously. In the first process unit 120 shown in FIG. 1, five stations 123 are provided in one plating tank 121, and five rectifiers are individually provided in each station 123. In addition, although it was set as the structure which provides the station 123 5 steps here, it is not restricted to this, For example, it is good also as 6 steps or more.

上記のようにステーション123毎に個別に整流器を設けることで、本実施形態の第一工程部120では、陽極の銅板101と陰極の電極122との間の電圧をステーション123毎に個別に制御できるようにしている。従来の第二工程では、めっき厚が電流値に依存することから、定電流制御が行われるのが一般である。定電流制御の場合には、銅イオンの移動による銅板101の電気抵抗の変化により、電圧が変化する。   By providing a rectifier for each station 123 as described above, in the first process unit 120 of this embodiment, the voltage between the anode copper plate 101 and the cathode electrode 122 can be individually controlled for each station 123. I am doing so. In the conventional second step, constant current control is generally performed because the plating thickness depends on the current value. In the case of constant current control, the voltage changes due to the change in electrical resistance of the copper plate 101 due to the movement of copper ions.

これに対し、銅板表面を粗化処理する場合には、銅板表面のめっき厚より粗化形状が重要となり、発明者は、粗化形状が第一工程における電圧変化の影響を受けることを見出した。そこで、第一工程を2段以上に分け、各段で定電圧制御するのが好ましい。本実施形態では、ステーション123毎に設けられた整流器を個別に定電圧制御する定電圧制御手段を第一工程部120に設けている。本実施形態の定電圧制御手段は、各ステーション123で同じ電圧値となるように制御している。   On the other hand, when roughening the copper plate surface, the roughened shape is more important than the plating thickness of the copper plate surface, and the inventors have found that the roughened shape is affected by the voltage change in the first step. . Therefore, it is preferable to divide the first step into two or more stages and perform constant voltage control at each stage. In the present embodiment, the first process unit 120 is provided with constant voltage control means for performing constant voltage control on the rectifiers provided for each station 123 individually. The constant voltage control means of this embodiment controls each station 123 to have the same voltage value.

第一工程部120の全てのステーション123を通過してきた銅板101は、次に第二工程部130に移動されて第二工程の処理が行われる。第二工程部130も電極132を複数備えているが、ここでは極性を反転させて銅板101を陰極、電極132を陽極とする陰極処理を行っている。この陰極処理により、銅板101の左右両面に形成された微細瘤状突起に電気めっきを施して各面に定着させている。   The copper plate 101 that has passed through all the stations 123 of the first process section 120 is then moved to the second process section 130 to be processed in the second process. The second process unit 130 also includes a plurality of electrodes 132. Here, the polarity is reversed to perform the cathode treatment using the copper plate 101 as a cathode and the electrode 132 as an anode. By this cathodic treatment, the fine bumps formed on the left and right surfaces of the copper plate 101 are electroplated and fixed on each surface.

第一工程部120と同様に、第二工程部130も、1つの銅板101を挟んでその左右に陽電極132を3つずつ配置した構成を有している。陽極に用いる電極132は、これに限定されず、銅板101の左右面に対向して各面を覆うように配置するのがよい。すなわち、銅板101の左右面の面積以上の対向面積を有する電極をそれぞれの面に対向させて配置させてもよく、あるいは図1に示すように、銅板101の左右面より小さい面積の電極を銅板101の左右面の面積以上の対向面積となるような領域に複数並べてもよい。   Similar to the first process section 120, the second process section 130 has a configuration in which three positive electrodes 132 are arranged on the left and right sides of one copper plate 101. The electrode 132 used for the anode is not limited to this, and it is preferable that the electrode 132 is disposed so as to face the left and right surfaces of the copper plate 101 and cover each surface. In other words, electrodes having opposing areas that are equal to or larger than the area of the left and right surfaces of the copper plate 101 may be arranged to face each other, or, as shown in FIG. A plurality of regions may be arranged in a region having an opposing area that is equal to or larger than the area of the left and right surfaces of 101.

第二工程部130では、1つの銅板101を挟む左右の電極132(図1では、左右3つずつの電極132)を1つのステーション133として、これを1段だけ備える構成とすることができ、あるいは2以上備えた多段構成としてもよい。第二工程は定電流制御で行われることから、第二工程部130を1段のステーション133だけで構成することができる。図1では、第二工程部130を5つのステーション133で構成する多段構成の例を示している。   In the second process section 130, the left and right electrodes 132 (three electrodes 132 on the left and right in FIG. 1) sandwiching one copper plate 101 can be configured as one station 133, and this can be configured to include only one stage. Or it is good also as a multistage structure provided with two or more. Since the second process is performed by constant current control, the second process unit 130 can be configured by only one station 133. In FIG. 1, the example of the multistage structure which comprises the 2nd process part 130 by the five stations 133 is shown.

第二工程の処理が終了すると、後処理工程の処理が行われる。後処理部140では、前処理工程と同様に、表面粗化された銅板101の洗浄が行われる。後処理工程の処理が終了した銅板101は、表面粗化銅板製造装置100から排出される。   When the process of the second process is completed, the process of the post-process is performed. In the post-processing unit 140, the copper plate 101 whose surface has been roughened is cleaned as in the pre-processing step. The copper plate 101 that has been subjected to the post-processing process is discharged from the surface roughened copper plate manufacturing apparatus 100.

上記のように、本実施形態の表面粗化銅板製造装置100では、第一工程部120における陽極処理を定電圧制御で行い、第二工程部130における陰極処理を定電流制御で行うことにより、銅板の表面を効率よく粗化することができる。これにより、絶縁基板材料等との接着性に優れた微細瘤状突起を表面に定着させた銅板を提供することができる。一例として、図3に示すように、第一工程部120における陽極処理を、銅板101と電極122との間の電圧が各ステーション123とも2Vとなるような定電圧制御で行い、第二工程部130における陰極処理を、各ステーション133の電流が72Aとなるような定電流制御で行うことができる。   As described above, in the surface roughened copper plate manufacturing apparatus 100 of the present embodiment, the anodizing process in the first process unit 120 is performed by constant voltage control, and the cathodic process in the second process unit 130 is performed by constant current control. The surface of the copper plate can be efficiently roughened. Thereby, it is possible to provide a copper plate in which fine bumps having excellent adhesion to an insulating substrate material or the like are fixed on the surface. As an example, as shown in FIG. 3, the anodizing process in the first process section 120 is performed by constant voltage control so that the voltage between the copper plate 101 and the electrode 122 is 2 V at each station 123, and the second process section Cathodic treatment at 130 can be performed with constant current control such that the current at each station 133 is 72A.

また、めっき槽121と別のめっき槽131とを連続した1つの槽で形成することで、槽内の同じ電気めっき液の中で陽極処理と陰極処理を行わせており、これによりめっきによる銅イオンの消費を電気分解による銅イオンの供給で補うことができ、銅イオンの消費を低減してめっき液を長時間使用可能とすることができるといった低コスト化を実現できる。   Also, the plating tank 121 and another plating tank 131 are formed in one continuous tank, so that anodizing and cathodic treatment are performed in the same electroplating solution in the tank. The consumption of ions can be supplemented by the supply of copper ions by electrolysis, and the cost can be reduced such that the consumption of copper ions can be reduced and the plating solution can be used for a long time.

図1に示す実施形態では、第一工程部120における陽極処理を5つのステーション123で行い、第二工程部130における陰極処理も5つのステーション133で行う構成としている。このように、第一工程部120および第二工程部130のステーションの数を調整することで、同時に処理できる銅板101の数を調整できるとともに、銅板101を移動させる周期、すなわちタクトタイムを調整することができる。このタクトタイムは、銅板101を水平方向に移動させるスライド動作に要する時間とは独立して決めることができる。   In the embodiment shown in FIG. 1, the anodizing process in the first process unit 120 is performed at five stations 123, and the cathodic process in the second process unit 130 is also performed at five stations 133. In this way, by adjusting the number of stations of the first process unit 120 and the second process unit 130, the number of copper plates 101 that can be processed simultaneously can be adjusted, and the cycle in which the copper plate 101 is moved, that is, the tact time is adjusted. be able to. This tact time can be determined independently of the time required for the slide operation for moving the copper plate 101 in the horizontal direction.

例えば、第一工程部120および第二工程部130のステーション数を増やすことで、同時に処理できる銅板101の数を増やすとともに、タクトタイムを短くすることができる。図1に示すように、第一工程部120を5つのステーション123で構成し、第二工程部130も5つのステーション133で構成することで、タクトタイムを1分程度とすることができる。   For example, by increasing the number of stations of the first process unit 120 and the second process unit 130, the number of copper plates 101 that can be processed simultaneously can be increased and the tact time can be shortened. As shown in FIG. 1, the tact time can be set to about 1 minute by configuring the first process unit 120 with five stations 123 and the second process unit 130 with five stations 133.

本実施形態では、銅板101の周囲の未粗化領域を低減することができ、銅板101の大部分を粗化して有効に利用することができる。また、銅板101の端部やスルーホール部分に付着する銅粉を少なくして、銅粉の剥落による製造工程の汚染を低減するとともに、短絡の発生を低減することができるといった効果も得られ、表面粗化銅板の品質向上を図ることができる。   In this embodiment, the unroughened region around the copper plate 101 can be reduced, and most of the copper plate 101 can be roughened and used effectively. Moreover, while reducing the copper powder adhering to the edge part and through-hole part of the copper plate 101, while reducing the contamination of the manufacturing process by peeling of a copper powder, the effect that generation | occurrence | production of a short circuit can also be obtained is also acquired, The quality of the surface roughened copper plate can be improved.

(第2実施形態)
本発明の第2の実施の形態に係る表面粗化銅板の製造方法および製造装置を、以下に説明する。本実施形態の表面粗化銅板製造装置は、第1の実施形態と同様の図1、2に示す構成を有しており、第一工程部120及び第二工程部130がそれぞれ複数のステーション123、133からなる多段構成となっている。
(Second Embodiment)
A method and apparatus for producing a surface roughened copper sheet according to the second embodiment of the present invention will be described below. The surface roughened copper plate manufacturing apparatus of the present embodiment has the same configuration as shown in FIGS. 1 and 2 as in the first embodiment, and the first process unit 120 and the second process unit 130 each include a plurality of stations 123. , 133 in a multistage configuration.

本実施形態の表面粗化銅板の製造方法は、第一工程部120における定電圧制御の方式が第1の実施形態と異なる。すなわち、第一工程部120における定電圧制御として、第1の実施形態では第一工程部120内の全てのステーションに対し同じ電圧値となるように制御していたのに対し、本実施形態では銅板101の左右面の処理状態に応じて、それぞれで最適な電圧値となるように多段の定電圧制御を行っている。   The method of manufacturing the surface roughened copper plate of the present embodiment differs from the first embodiment in the constant voltage control method in the first process section 120. That is, as constant voltage control in the first process unit 120, in the first embodiment, control is performed so that all stations in the first process unit 120 have the same voltage value, whereas in this embodiment, Depending on the processing state of the left and right surfaces of the copper plate 101, multi-stage constant voltage control is performed so that the respective voltage values are optimum.

銅板101は、第一工程部120における陽極処理である電気分解の進行に従って、左右両面に形成される微細瘤状突起の形成状態が変化し、それに応じて電気抵抗も変化していく。そこで、本実施形態では、陽極処理の進行状態に応じて銅板101と電極122との間に適切な大きさの電流が流れるように、ステーション123毎に好適な電圧を設定して多段に定電圧制御するようにしている。   In the copper plate 101, as the electrolysis, which is anodizing in the first process section 120, progresses, the formation state of the fine protrusions formed on the left and right surfaces changes, and the electrical resistance changes accordingly. Therefore, in this embodiment, a suitable voltage is set for each station 123 so that a current having an appropriate magnitude flows between the copper plate 101 and the electrode 122 according to the progress of the anodization, and a constant voltage is set in multiple stages. I try to control it.

銅板101の電気抵抗は、電解処理していない銅板101では小さく、電解処理の進行とともに上昇していく。そのため、すべてのステーションを同じ電圧値で定電圧制御すると、ステーション123を先に進むほど電流値が低下していく。そこで、第一工程部120の複数のステーション123に対し、銅板101の移動方向に向けて、各ステーション123の電圧を順次高くしていくのがよい。これにより、各ステーション123の電流値をほぼ均一にすることができる。このように、銅板101の左右両面の状態に応じて、銅板101と電極122との間の電圧を適切に設定して多段に定電圧制御することで、銅板101の左右両面に好適な形状の微細瘤状突起を効率よく形成することができる。   The electrical resistance of the copper plate 101 is small in the copper plate 101 not subjected to electrolytic treatment, and increases as the electrolytic treatment proceeds. Therefore, if constant voltage control is performed on all stations with the same voltage value, the current value decreases as the station 123 proceeds further. Therefore, it is preferable to sequentially increase the voltage of each station 123 toward the moving direction of the copper plate 101 with respect to the plurality of stations 123 of the first process unit 120. Thereby, the current value of each station 123 can be made substantially uniform. Thus, according to the state of both the left and right sides of the copper plate 101, the voltage between the copper plate 101 and the electrode 122 is appropriately set and controlled at a constant voltage in multiple stages, so that the shape suitable for the left and right sides of the copper plate 101 is obtained. Fine knob-like projections can be formed efficiently.

本実施形態の第一工程部120における定電圧多段制御の一例を図4に示す。図1に示す表面粗化銅板製造装置100では、第一工程部120に5つのステーション123が設けられている。本実施形態の表面粗化銅板の製造方法によれば、各ステーション123を多段に定電圧制御する一例として、それぞれに対し順次高くなる電圧値で定電圧制御することができる。このように、銅板101の移動方向に向けて、銅板101と電極122との間の電圧値を順次高くしていく定電圧多段制御を行うことで、銅板101の左右両面に好適な形状の微細瘤状突起を形成することができる。   An example of constant voltage multi-stage control in the first process section 120 of the present embodiment is shown in FIG. In the surface roughened copper plate manufacturing apparatus 100 shown in FIG. 1, five stations 123 are provided in the first process section 120. According to the surface roughened copper plate manufacturing method of the present embodiment, constant voltage control can be performed with voltage values that increase sequentially with respect to each station 123 as an example of constant voltage control of each station 123 in multiple stages. In this way, by performing constant voltage multi-stage control in which the voltage value between the copper plate 101 and the electrode 122 is sequentially increased in the moving direction of the copper plate 101, fine shapes having suitable shapes on both the left and right sides of the copper plate 101 are obtained. A knob-like projection can be formed.

上記では、銅板101の移動方向に向けて、銅板101と電極122との間の電圧値を順次高くしていく定電圧多段制御について説明したが、銅板101の表面状態によっては、最初に電圧を高くし、徐々に低下させていくのが好ましい場合もある。あるいは、最初に低い電圧として徐々に高くして行き、中央のステーションで最も高くした後再び低下させていくような定電圧多段制御も考えられる。   In the above description, the constant voltage multi-stage control in which the voltage value between the copper plate 101 and the electrode 122 is sequentially increased in the moving direction of the copper plate 101 has been described. In some cases, it is preferable to increase the value and gradually decrease it. Alternatively, a constant voltage multi-stage control may be considered in which the voltage is gradually increased as a low voltage first, then increased at the central station and then decreased again.

さらに、各ステーションの電圧をあらかじめ設定する代わりに、1つ前のステーションにおける電圧、電流、および電気抵抗等をフィードバックして当該ステーションの電圧設定値を決定するようにすることも可能である。これにより、微細瘤状突起をステーション毎に最適な条件で形成させるようにすることができる。   Furthermore, instead of setting the voltage of each station in advance, the voltage setting value of the station can be determined by feeding back the voltage, current, electric resistance, etc. of the previous station. Thereby, the fine knob-like projections can be formed under optimum conditions for each station.

(第3実施形態)
本発明の第3の実施の形態に係る表面粗化銅板の製造方法および製造装置を、図5を用いて説明する。図5は、本実施形態の表面粗化銅板製造装置200の概略構成を示す構成図である。本実施形態の表面粗化銅板製造装置200は、第1の実施形態と同じ第一工程部120および第二工程部130を2組備えており、第一工程部120における陽極処理および第二工程部130における陰極処理を2回繰り返している。このように、陽極処理と陰極処理を繰り返し行うことにより、微細瘤状突起を銅板表面に安定化させるとともに、絶縁基板等との接着性を高めるのに好適な表面粗化を効率よく行うことができる。
(Third embodiment)
A method and apparatus for producing a surface roughened copper sheet according to a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram showing a schematic configuration of the surface roughened copper sheet manufacturing apparatus 200 of the present embodiment. The surface roughened copper plate manufacturing apparatus 200 of the present embodiment includes two sets of the first process part 120 and the second process part 130 that are the same as those of the first embodiment, and the anodizing process and the second process in the first process part 120. The cathode treatment in the unit 130 is repeated twice. In this way, by repeating the anodizing and cathodic treatment, the fine bump-like projections can be stabilized on the copper plate surface, and the surface roughening suitable for improving the adhesion to the insulating substrate can be efficiently performed. it can.

表面粗化銅板製造装置200を用いた本実施形態の表面粗化銅板の製造方法を、図6を用いて説明する。図6は、2つの第一工程部120および2つの第二工程部130における制御方法の一例を示すグラフであり、銅板101と電極122、132との間の電圧(符号11で示す)、電流(符号12で示す)、および銅板の電気抵抗(符号13で示す)の変化を示している。第一工程部120における陽極処理では、銅板101と電極122との間の電圧が所定値となるように定電圧制御を行っており、第二工程部130における陰極処理では、各ステーション133の電流が所定値となるように定電流制御を行っている。   The manufacturing method of the surface roughening copper plate of this embodiment using the surface roughening copper plate manufacturing apparatus 200 is demonstrated using FIG. FIG. 6 is a graph showing an example of the control method in the two first process parts 120 and the two second process parts 130, and the voltage (indicated by reference numeral 11) and current between the copper plate 101 and the electrodes 122 and 132. (Shown by reference numeral 12), and changes in electrical resistance (shown by reference numeral 13) of the copper plate. In the anodizing process in the first process section 120, constant voltage control is performed so that the voltage between the copper plate 101 and the electrode 122 becomes a predetermined value. In the cathodic process in the second process section 130, the current of each station 133 is controlled. Constant current control is performed so that becomes a predetermined value.

図6において、横軸は、銅板101が第1の第一工程部120に投入されてからの経過時間を示しており、グラフの上部には、時間の経過とともに第1の第一工程部120から第1の第二工程部130、第2の第一工程部120、および第2の第二工程部130へと銅板101が順次移動されていく状態を示している。   In FIG. 6, the horizontal axis indicates the elapsed time since the copper plate 101 was put into the first first process part 120, and the first first process part 120 with the passage of time is shown in the upper part of the graph. The state in which the copper plate 101 is sequentially moved from the first second process part 130, the second first process part 120, and the second second process part 130 is shown.

図6に示す例では、銅板101が第一工程部120を通過する間は電圧11が2Vに定電圧制御され、第二工程部130を通過する間は電流12が72Aに定電流制御されている。定電圧制御が行われる第一工程部120では、未処理状態のときに低い値を示していた銅板101の電気抵抗13が、微細瘤状突起が形成されるに伴って徐々に高くなることが示されている。また、銅板101の電気抵抗13が高くなるのに従って、電流12が低下していくことがわかる。微細瘤状突起の形状が電圧変化の影響を受けることから、電流12が図6に例示するような変化を示すのにかかわらず、電圧11を一定にする定電圧制御を行うことで、微細瘤状突起を好適な形状に形成することが可能となる。   In the example shown in FIG. 6, the voltage 11 is controlled to a constant voltage of 2V while the copper plate 101 passes through the first process part 120, and the current 12 is controlled to a constant current of 72A while passing through the second process part 130. Yes. In the first process unit 120 in which constant voltage control is performed, the electrical resistance 13 of the copper plate 101 that had shown a low value in the unprocessed state may gradually increase as the fine bumps are formed. It is shown. Moreover, it turns out that the electric current 12 falls as the electrical resistance 13 of the copper plate 101 becomes high. Since the shape of the fine knob-like projections is affected by the voltage change, the constant voltage control is performed to make the voltage 11 constant regardless of whether the current 12 shows the change illustrated in FIG. It becomes possible to form the protrusions in a suitable shape.

これに対し第二工程部130では、電流12を一定にする定電流制御を行うことで、第一工程部120で形成された微細瘤状突起にほぼ均一にめっきを施すことができ、微細瘤状突起を銅板101の表面に安定化させることができる。なお、第二工程部130では、電圧11及び電気抵抗13が変化するが、その変化量は比較的小さい。   On the other hand, in the second process part 130, by performing constant current control to make the current 12 constant, it is possible to perform the plating almost uniformly on the fine protrusions formed in the first process part 120. The protrusions can be stabilized on the surface of the copper plate 101. In the second process unit 130, the voltage 11 and the electrical resistance 13 change, but the changes are relatively small.

上記説明のように、本実施形態では、陽極処理と陰極処理を2回繰り返し行うことにより、微細瘤状突起を銅板表面に安定化させることができ、絶縁基板等との接着性を高めるのに好適な表面粗化を効率よく行うことができる。なお、ここでは、第一工程部120と第二工程部130を2組設けて陽極処理と陰極処理を2回繰り返す実施形態を示したが、さらに、第一工程部120と第二工程部130を3組以上設けて陽極処理と陰極処理を3回以上繰り返し行うようにすることも可能であり、本実施形態と同様に、銅板101に好適な表面粗化を効率よく行うことができる。   As described above, in this embodiment, by repeating the anodic treatment and the cathodic treatment twice, the fine protrusions can be stabilized on the copper plate surface, and the adhesion to the insulating substrate or the like is improved. Suitable surface roughening can be performed efficiently. Here, an embodiment in which two sets of the first process part 120 and the second process part 130 are provided and the anodizing process and the cathode process are repeated twice has been described, but the first process part 120 and the second process part 130 are further shown. It is possible to repeat the anodization and the cathodic treatment three or more times by providing three or more sets, and the surface roughening suitable for the copper plate 101 can be efficiently performed as in the present embodiment.

(第4実施形態)
本発明の第4の実施の形態に係る表面粗化銅板の製造方法および製造装置を、以下に説明する。本実施形態の表面粗化銅板製造装置は、第3の実施形態と同様に、第2の実施形態と同じ第一工程部120および第二工程部130を2組備えており、第一工程部120における陽極処理および第二工程部130における陰極処理を2回繰り返している。本実施形態の第一工程部120は、第2の実施形態と同様に、複数有するステーション123のそれぞれで異なる電圧値を設定して多段の定電圧制御を行っている。一例として、第2の実施形態の第一工程部120と同様に、5つのステーション123のそれぞれに対し、順次高くなる電圧値を設定して多段的に定電圧制御することができる。
(Fourth embodiment)
A method and apparatus for producing a surface roughened copper sheet according to the fourth embodiment of the present invention will be described below. The surface-roughened copper plate manufacturing apparatus of this embodiment includes two sets of the first process part 120 and the second process part 130 that are the same as those of the second embodiment, as in the third embodiment. The anodizing process at 120 and the cathodic process at the second process section 130 are repeated twice. As in the second embodiment, the first process unit 120 of this embodiment performs multi-stage constant voltage control by setting different voltage values in each of the plurality of stations 123. As an example, similarly to the first process unit 120 of the second embodiment, a voltage value that sequentially increases can be set for each of the five stations 123 to perform multi-stage constant voltage control.

このように、本実施形態では、第一工程部120における陽極処理と第二工程部130における陰極処理を2回繰り返し行い、かつ第一工程部120で電圧を適切に変えた多段の定電圧制御を行うことにより、微細瘤状突起を銅板表面に安定化させることができ、絶縁基板との接着性を高めるのにさらに好適な表面粗化を効率よく行うことができる。なお、ここでは、第一工程部120と第二工程部130を2組設けて陽極処理と陰極処理を2回繰り返す実施形態を示したが、さらに、第一工程部120と第二工程部130を3組以上設けて陽極処理と陰極処理を3回以上繰り返し行うようにすることも可能であり、本実施形態と同様に、銅板101に好適な表面粗化を効率よく行うことができる。   As described above, in this embodiment, the anodizing process in the first process unit 120 and the cathodic process in the second process unit 130 are repeated twice, and the voltage is appropriately changed in the first process unit 120. By performing the above, it is possible to stabilize the fine bump-like projections on the surface of the copper plate, and it is possible to efficiently perform surface roughening that is more suitable for improving the adhesion to the insulating substrate. Here, an embodiment in which two sets of the first process part 120 and the second process part 130 are provided and the anodizing process and the cathode process are repeated twice has been described, but the first process part 120 and the second process part 130 are further shown. It is possible to repeat the anodization and the cathodic treatment three or more times by providing three or more sets, and the surface roughening suitable for the copper plate 101 can be efficiently performed as in the present embodiment.

なお、本実施の形態における記述は、本発明に係る表面粗化銅板の製造方法および装置の一例を示すものであり、これに限定されるものではない。本実施の形態における表面粗化銅板の製造方法および装置の細部構成および詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the manufacturing method and apparatus of the surface roughening copper plate which concerns on this invention, and is not limited to this. The detailed configuration and detailed operation of the method and apparatus for producing a surface roughened copper sheet in the present embodiment can be appropriately changed without departing from the spirit of the present invention.

100、200 表面粗化銅板製造装置
101 銅板
110 前処理部
120 第一工程部
121 めっき槽
122、132 電極
123、133 ステーション
130 第二工程部
131 別のめっき槽
140 後処理部
900 メタルコア回路基板
901 絶縁基板
902 金属板
903 回路パターン
904 スルーホール
905 ソルダーレジスト
911 銅板
912 ロール
100, 200 Surface roughened copper plate manufacturing apparatus 101 Copper plate 110 Pretreatment section 120 First process section 121 Plating tank 122, 132 Electrode 123, 133 Station 130 Second process section 131 Another plating tank 140 Post-treatment section 900 Metal core circuit board 901 Insulating substrate 902 Metal plate 903 Circuit pattern 904 Through hole 905 Solder resist 911 Copper plate 912 Roll

Claims (12)

銅板の表面を粗化する表面粗化銅板の製造方法であって、
めっき液が注入されためっき槽に前記銅板を導入し、前記めっき槽の内部に対向配置された2段以上の陰極電極のいずれか1段の間に前記銅板を非接触に挟み、前記銅板を陽極とし前記陰極電極を陰極として電気分解を行い、前記電気分解を前記2段以上の陰極電極のそれぞれで順次行う第一工程と、
前記銅板を前記めっき槽からこれに連通して前記めっき液が注入された別のめっき槽に移動させ、前記別のめっき槽の内部に対向配置された1段以上の陽極電極のいずれか1段の間に前記銅板を非接触に挟み、前記銅板を陰極とし前記陽極電極を陽極として銅めっきを行い、前記銅めっきを前記1段以上の陽極電極のそれぞれで順次行う第二工程と、を有する
ことを特徴とする表面粗化銅板の製造方法。
A method for producing a surface roughened copper plate for roughening the surface of a copper plate,
The copper plate is introduced into a plating tank into which a plating solution has been injected, and the copper plate is sandwiched in a non-contact manner between any one of two or more stages of cathode electrodes disposed opposite to each other inside the plating tank. Electrolysis using the cathode as the anode and the cathode as the cathode, and the electrolysis is sequentially performed at each of the two or more stages of cathode electrodes;
The copper plate is transferred from the plating tank to another plating tank in which the plating solution is injected, and one of the one or more anode electrodes arranged opposite to each other in the other plating tank A second step of sandwiching the copper plate in a non-contact manner, performing copper plating using the copper plate as a cathode and the anode electrode as an anode, and sequentially performing the copper plating on each of the one or more anode electrodes. A method for producing a roughened surface copper plate.
前記第一工程では、少なくとも1段の前記銅板と前記陰極電極との間の電圧が所定値となるように定電圧制御し、
前記第二工程では、前記銅板と前記陽極電極との間の電流が所定値となるように定電流制御する
ことを特徴とする請求項1に記載の表面粗化銅板の製造方法。
In the first step, constant voltage control is performed so that a voltage between the copper plate and the cathode electrode of at least one stage becomes a predetermined value,
2. The method for producing a surface-roughened copper plate according to claim 1, wherein in the second step, constant current control is performed so that a current between the copper plate and the anode electrode becomes a predetermined value.
前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧のうち少なくとも一部を個別に定電圧制御し、
前記第二工程では、前記1段以上の陽極電極と前記銅板との間の電流を一括または個別に定電流制御する
ことを特徴とする請求項2に記載の表面粗化銅板の製造方法。
In the first step, at least a part of the voltage between the two or more stages of cathode electrodes and the copper plate is individually controlled at a constant voltage,
The method for producing a surface-roughened copper plate according to claim 2, wherein in the second step, constant current control is performed on the current between the one or more stages of anode electrodes and the copper plate collectively or individually.
前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧がすべて所定の同じ電圧値となるように定電圧制御する
ことを特徴とする請求項2または3に記載の表面粗化銅板の製造方法。
4. The surface according to claim 2, wherein in the first step, constant voltage control is performed so that the voltages between the two or more stages of cathode electrodes and the copper plate all have the same predetermined voltage value. 5. A method for producing a roughened copper plate.
前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧のすべてを各段で個別に決定された電圧値となるように定電圧制御する
ことを特徴とする請求項3に記載の表面粗化銅板の製造方法。
4. In the first step, constant voltage control is performed so that all voltages between the two or more stages of cathode electrodes and the copper plate have voltage values individually determined in each stage. The manufacturing method of the surface roughening copper plate of description.
前記第一工程では、前記2段以上の陰極電極と前記銅板との間の電圧が、前記銅板を移動させる方向に順次高くなるように定電圧制御する
ことを特徴とする請求項5に記載の表面粗化銅板の製造方法。
6. The constant voltage control according to claim 5, wherein in the first step, constant voltage control is performed so that a voltage between the two or more stages of cathode electrodes and the copper plate sequentially increases in a direction in which the copper plate is moved. Manufacturing method of surface roughening copper plate.
前記第一工程と前記第二工程とを1サイクルとし、これを1サイクル以上行う
ことを特徴とする表面粗化銅板の製造方法。
1st process and said 2nd process are made into 1 cycle, This is performed 1 cycle or more, The manufacturing method of the surface roughening copper plate characterized by the above-mentioned.
銅板の表面を粗化する表面粗化銅板製造装置であって、
めっき液が注入されためっき槽と、前記銅板を陽極としてこれを非接触に挟むように前記めっき槽の内部に対向配置された陰極電極とを有する第一工程部と、
前記めっき槽と連通されて前記めっき液が注入された別のめっき槽と、前記銅板を陰極としてこれを非接触に挟むように前記別のめっき槽の内部に対向配置された陽極電極を有する第二工程部と、を備え、
前記銅板の1つを挟む前記陰極電極を1段としてこれが前記第一工程部の内部に2段以上縦列配置され、
前記陰極の銅板の1つを挟む前記陽極電極を1段としてこれが前記第二工程部の内部に1段以上縦列配置されている
ことを特徴とする表面粗化銅板製造装置。
A surface roughened copper plate manufacturing apparatus for roughening the surface of a copper plate,
A first process section having a plating tank into which a plating solution has been injected, and a cathode electrode disposed opposite to the inside of the plating tank so as to sandwich the copper plate as an anode in a non-contact manner;
A second plating tank that communicates with the plating tank and into which the plating solution is injected, and an anode electrode that is disposed opposite to the inside of the other plating tank so as to sandwich the copper plate as a cathode in a non-contact manner. With two process parts,
The cathode electrode sandwiching one of the copper plates as one stage is arranged in two or more stages inside the first process part,
An apparatus for producing a roughened copper plate, wherein the anode electrode sandwiching one of the copper plates of the cathode is arranged in a single row and is arranged in one or more stages inside the second process section.
前記第一工程部は、少なくとも1段の前記銅板と前記陰極電極との間の電圧が所定値となるように定電圧制御する定電圧制御手段を備え、
前記第二工程部は、前記銅板と前記陽極電極との間の電流が所定値となるように定電流制御する定電流制御手段を備える
ことを特徴とする請求項8に記載の表面粗化銅板製造装置。
The first process unit includes constant voltage control means for performing constant voltage control so that a voltage between the copper plate and the cathode electrode of at least one stage becomes a predetermined value,
9. The surface roughened copper plate according to claim 8, wherein the second process unit includes constant current control means for performing constant current control so that a current between the copper plate and the anode electrode becomes a predetermined value. Manufacturing equipment.
前記第一工程部は、前記2段以上縦列配置された前記陰極電極の電圧のうち少なくとも一部を個別に制御する2以上の前記定電圧制御手段を備え、
前記第二工程部は、前記1段以上縦列配置された前記陰極電極の電流を一括または個別に制御する1つの前記定電流制御手段を備える
ことを特徴とする請求項9に記載の表面粗化銅板製造装置。
The first process section includes two or more constant voltage control means for individually controlling at least a part of the voltages of the cathode electrodes arranged in two or more stages in a column,
10. The surface roughening according to claim 9, wherein the second process unit includes one constant current control unit that collectively or individually controls currents of the cathode electrodes arranged in one or more stages. Copper plate manufacturing equipment.
前記第一工程部と前記第二工程部からなる組が、2組以上縦列に接続されている
ことを特徴とする請求項8乃至10のいずれか1項に表面粗化銅板製造装置。
The surface roughened copper sheet manufacturing apparatus according to any one of claims 8 to 10, wherein two or more sets of the first process part and the second process part are connected in a column.
表面を粗化する前の前記銅板を洗浄する前処理部と、表面を粗化した後の前記銅板を洗浄する後処理部とをさらに備え、
前記銅板が、前記前処理部、前記第一工程部、前記第二工程部、および前記後処理部を連続して移動可能に連結されている
ことを特徴とする請求項8乃至11のいずれか1項に記載の表面粗化銅板製造装置。
A pretreatment section for washing the copper plate before roughening the surface, and a posttreatment section for washing the copper plate after roughening the surface,
The said copper plate is connected so that the said pre-processing part, said 1st process part, said 2nd process part, and the said post-processing part can move continuously, The any one of Claim 8 thru | or 11 characterized by the above-mentioned. The surface roughening copper plate manufacturing apparatus of 1 item | term.
JP2009240696A 2009-10-19 2009-10-19 Method and apparatus for producing surface roughened copper sheet Active JP5448710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240696A JP5448710B2 (en) 2009-10-19 2009-10-19 Method and apparatus for producing surface roughened copper sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240696A JP5448710B2 (en) 2009-10-19 2009-10-19 Method and apparatus for producing surface roughened copper sheet

Publications (2)

Publication Number Publication Date
JP2011084801A true JP2011084801A (en) 2011-04-28
JP5448710B2 JP5448710B2 (en) 2014-03-19

Family

ID=44077963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240696A Active JP5448710B2 (en) 2009-10-19 2009-10-19 Method and apparatus for producing surface roughened copper sheet

Country Status (1)

Country Link
JP (1) JP5448710B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202500A (en) * 1989-08-28 1991-09-04 Matsushita Electric Works Ltd Coarsening method for copper foil
JPH08120499A (en) * 1994-10-20 1996-05-14 Nikko Gould Foil Kk Surface treatment of copper foil for printed circuit by in-liquid current collection
JPH08158100A (en) * 1994-10-06 1996-06-18 Furukawa Circuit Foil Kk Roughening of copper foil surface
JPH1060698A (en) * 1996-08-23 1998-03-03 Kenshin Ka Method for cleaning and roughening surface of printed circuit board
JPH10168596A (en) * 1996-12-10 1998-06-23 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil
JP2001342600A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Method for manufacturing surface roughened copper and printed board thereby
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2005008972A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method and surface roughening device for copper foil
WO2008108341A1 (en) * 2007-03-02 2008-09-12 The Furukawa Electric Co., Ltd. Production method and device of surface roughened copper plate, and surface roughened copper plate
JP2008223063A (en) * 2007-03-09 2008-09-25 Furukawa Electric Co Ltd:The Roughened rolled copper sheet and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202500A (en) * 1989-08-28 1991-09-04 Matsushita Electric Works Ltd Coarsening method for copper foil
JPH08158100A (en) * 1994-10-06 1996-06-18 Furukawa Circuit Foil Kk Roughening of copper foil surface
JPH08120499A (en) * 1994-10-20 1996-05-14 Nikko Gould Foil Kk Surface treatment of copper foil for printed circuit by in-liquid current collection
JPH1060698A (en) * 1996-08-23 1998-03-03 Kenshin Ka Method for cleaning and roughening surface of printed circuit board
JPH10168596A (en) * 1996-12-10 1998-06-23 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil
JP2001342600A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Method for manufacturing surface roughened copper and printed board thereby
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2005008972A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method and surface roughening device for copper foil
WO2008108341A1 (en) * 2007-03-02 2008-09-12 The Furukawa Electric Co., Ltd. Production method and device of surface roughened copper plate, and surface roughened copper plate
JP2008223063A (en) * 2007-03-09 2008-09-25 Furukawa Electric Co Ltd:The Roughened rolled copper sheet and its manufacturing method

Also Published As

Publication number Publication date
JP5448710B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5684328B2 (en) Method for producing surface roughened copper plate and surface roughened copper plate
US7112271B2 (en) Method and apparatus for making very low roughness copper foil
JP6411741B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
US20200370192A1 (en) Method for producing chromium plated parts, and chromium plating apparatus
KR101569185B1 (en) An insoluble anode and apparatus for producing electrolytic copperfoil having the same
TWI531688B (en) Coating thickness uniform plating method
CN107090589B (en) PCB electroplating device and electroplating thickness control method
JP5448710B2 (en) Method and apparatus for producing surface roughened copper sheet
CN110997989A (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
US20170298530A1 (en) Electroplating anode assembly
KR101639564B1 (en) Belt-type Electroforming Apparatus
JP7145512B2 (en) Treatment method for dummy material used in electrolytic copper plating method
JP2002004095A (en) Insoluble anode and power feeding method for the same
US20170298529A1 (en) Electroplating system
KR200358909Y1 (en) Electroplating apparatus obtain two-sided uniform plated layer
KR100828239B1 (en) Apparatus for manufacturing metal thin film having multi-layer surface
CN106835226A (en) A kind of method for improving plating line depth capability
JP6070521B2 (en) Manufacturing method of special shape electrodeposits
KR200430588Y1 (en) Shielding panel for Uniform plating
JP2010168643A (en) Method and apparatus for producing plated copper strip material
JP2005226139A (en) Surface-smoothened copper foil, and its production method
JP2004131841A (en) Indirect conducting type continuous electrolytic indirect conductive type continuous electrolytic etching method and apparatus for metallic strip
KR101420865B1 (en) Metal Plating Device
CN117512729A (en) Pulse copper plating production line and process
CN114836808A (en) Electroplating device and electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R151 Written notification of patent or utility model registration

Ref document number: 5448710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350