JP2005007549A - Manufacturing method of asymmetric nano particle, asymmetric nano particle obtained by the method and its organism - Google Patents

Manufacturing method of asymmetric nano particle, asymmetric nano particle obtained by the method and its organism Download PDF

Info

Publication number
JP2005007549A
JP2005007549A JP2003176727A JP2003176727A JP2005007549A JP 2005007549 A JP2005007549 A JP 2005007549A JP 2003176727 A JP2003176727 A JP 2003176727A JP 2003176727 A JP2003176727 A JP 2003176727A JP 2005007549 A JP2005007549 A JP 2005007549A
Authority
JP
Japan
Prior art keywords
substrate
group
metal nanoparticles
asymmetric
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003176727A
Other languages
Japanese (ja)
Other versions
JP4217781B2 (en
Inventor
Takashi Fukuda
隆史 福田
Masahiro Koto
昌大 琴
Kaoru Tamada
薫 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003176727A priority Critical patent/JP4217781B2/en
Publication of JP2005007549A publication Critical patent/JP2005007549A/en
Application granted granted Critical
Publication of JP4217781B2 publication Critical patent/JP4217781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of asymmetric nano particle, an asymmetric nano particle obtained by the method and its organism. <P>SOLUTION: According to this manufacturing method of a metallic nano particle having geometric structural asymmetry, discrete insular metallic nano particles isolated from each other on a substrate are manufactured by vapor deposition, and then while ultrasonic vibration is applied, the substrate is processed in a solvent to separate the particles from the substrate. Thus, the particles are obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非対称型ナノ微粒子、詳しくは、幾何構造上の非対称構造を有し、さらに非対称面には各々異なる機能性官能基を有する幾何構造上の非対称型ナノ微粒子の製造方法に関する。
【0002】
【従来の技術】
種々の分野において、種々の目的のため、下地上に微粒子を固定することが行われている。
【0003】
例えば、種々の電子デバイスを得る目的で、下地としての基板上に微粒子としての金属、金属酸化物、セラミックス、酸化物超伝導体の超微粒子、あるいは、有機物の超微粒子を規則的に配列する方法が開示されている(特許文献1参照)。具体的には、基板に抗原を2次元的に規則的に配列し、一方この抗原に反応するモノクロナ−ル抗体と超微粒子とを結合させおき、この抗原結合済みの超微粒子を前記抗原配列済み基板に抗原―抗体反応により結合させる方法であった。
また、例えば、微粒子を下地に強固で高密度に配列固定できるバイオ素子を得る目的で、アビジンとビチオンとの特異的結合反応を利用して微粒子の2次元配列する方法が開示されている(特許文献2参照)。具体的には、基板上にアミノ基を有するシランカップリング剤の処理により結合させ、この固定されたアミノ基を電子ビームで選択的に除去してアミノ基の配列パターンを形成し、このアミノ基パターンにビオチン誘導体(NHS−LS−BIOTIN)を結合させ基板にビオチンの配列パターンを形成し、このビオチンパターンにアビジンを有する微粒子を上記のアビジンとビチオンとの特異的結合反応を利用して固定する方法であった。
【0004】
【特許文献1】
特開平3−79774号公報
【特許文献2】
特開平5−226637号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述のいずれの方法においても基板上に固定される微粒子は、非対称型ナノ微粒子ではなく、また、1種類の官能基によって覆われたもので、表面の特性は単一なものに限定されてしまっていたため、その機能を利用しようとする際に制限が生じたり、あるいは、微粒子を吸着・配列させるための煩雑な前処理が必要とされるなどの実用上の制約があった。
そこで、非対称型の金属ナノ微粒子が有する2つの表面(上下)に異種の官能基(機能活性点)を段階的に導入させる技術を考案し、上述の制限の問題を解決し、実用上、簡便で汎用性の極めて高い金属ナノ微粒子の作製法を考案するに至った。また、この方法によれば、金属ナノ微粒子の3次元形状に非対称性を導入できるようになる(球形でない微粒子が得られる)ため、光照射時に金属ナノ微粒子近傍に誘起される局所電場(表面プラズモン)の空間分布にも不対称性を生じせしめることが可能である。そのことにより、集積型バイオチップの光検出などの用途における検出感度を大幅に向上させることが可能となる。
【0006】
【課題を解決するための手段】
上記目的を達成するために、基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、その表面に第一の表面修飾材で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより、粒子を基板から剥離させて未修飾面を第二の表面修飾材で処理することによって非対称な3次元幾何構造、および、2つの異なる機能表面を有する金属ナノ微粒子の製造方法を考案した。
すなわち、基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、その後、超音波振動を与えながら溶剤中で基板を処理することにより、粒子を基板から剥離させて得られる、幾何構造上の非対称性を有する金属ナノ微粒子の製造方法を見出した。
本発明の別の形態では、基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、金属ナノ粒子の表面を第一の表面修飾剤で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより粒子を基板から剥離さることにより得られる、1つの金属表面と1つの異なる機能表面を有する幾何構造上の非対称型金属ナノ微粒子とすることができる。
さらに、本発明の別の形態では、基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、金属ナノ粒子の表面を第一の表面修飾剤で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより粒子を基板から剥離させ、未修飾面を第二の表面修飾剤で処理することにより得られる、2つの異なる機能表面を有する幾何構造上の非対称型金属ナノ微粒子とすることができる。
また、さらに、本発明の別の形態では、基板表面に蒸着される金属ナノ粒子の接着力を制御するためシランカップリング剤で基板表面の処理を行う幾何構造上の非対称型金属ナノ微粒子とすることができる。
【0007】
【発明の実施の形態】
本発明においては、金属ナノ粒子を構成する元素が金、銀、白金、パラジウム、ロジウム、ルテニウムからなる群れより選ばれるチオールが吸着可能な全ての金属、および、それらの合金を用いることができる。
また、本発明においては、第一及び第二の表面修飾剤が、金属ナノ粒子表面と吸着するための、チオール、スルフィド、ジスルフィド、ポリスルフィドからなる群れより選ばれる1種のS官能基を有し、かつ、カルボキシ基、カルボン酸塩基、水酸基、アミノ基、スルホン酸基、スルホン酸塩基、ピリジル基、フラニル基、−DNAからなる群れより選ばれる1種の官能基A又は官能基Bであり、第一の表面修飾剤が官能基A、第二の表面修飾剤が官能基Bをそれぞれ有することができる。
さらに、本発明においては、以上述べた製造方法により得られた非対称型ナノ微粒子に関するものであり、以上述べた製造方法により得られた幾何構造上の非対称型ナノ微粒子を基板上に2次元配列した組織体に関するものである。
【0008】
本発明においては、基板としてガラス、石英、シリコン、マイカなどのシランカップリング剤で表面修飾可能な材質を用いることが好ましい。また、金属ナノ粒子を構成する元素としては金、銀、白金、パラジウム、ロジウム、ルテニウムなどチオールが吸着可能な全ての金属、および、それらの合金を用いることができるが、酸化を受けにくい材質であることから金を用いるのが最も好適である。
さらに、表面修飾剤としては、図2に例示されるチオール、スルフィド、ジスルフィド、ポリスルフィドなどが用いられる。
また、図1に例示するように、種々の官能基を有するシランカップリング剤(官能基Si)を基板上に処理しておけば、金微粒子と基板の間の接着力を調節することが可能となるので、適切な接着強度を持つシランカップリング剤を用いて基板の表面処理を金属の蒸着前に施すことによって、図5の(IV)の過程で得られる金属ナノ微粒子のサイズについて分散度を小さくすることができる。
【0009】
シランカップリング剤を用いた基板の表面処理によって、得られる金属ナノ微粒子のサイズが均一化する原理の概略を図3に図解する。図5の(IV)の過程では超音波振動によって金微粒子を基板から剥離させるが、その際、サイズの大きな金微粒子については基板と官能基との間の結合力が超音波振動によって与えられる力よりも大きいため微粒子ははがれにくい。一方、あるサイズ以下の金微粒子については基板と官能基との間の結合力が超音波振動によって与えられる力よりも小さいので、金微粒子が基板から剥離される。その結果として、粒径がある値以下の金属ナノ微粒子のみが溶媒中に分散して得られるため、大きな粒径の微粒子が排除され、サイズ分布は狭くなる。
本発明で用いる溶剤としては、エタノール、トルエン、クロロホルム、メタノールなどが使われた。
本発明で用いる蒸着は、孤立・離散した島状の金属ナノ粒子がガラス表面に付着されるような条件が好ましく、蒸着の厚さは重量平均膜厚として、0.1〜20オングストロームが望ましく、特に1〜5オングストロームが特に好適である(図4参照)。
【0010】
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
図5に示すプロセス図の順に操作の詳細を記す。
I)蒸着による金微粒子の製造
基板には市販のスライドグラス(Matunami S−1111)を用い、それを洗浄剤(EXTRAN MA 20wt%水溶液)の中で15分間超音波洗浄した。さらに、蒸留水で2回超音波洗浄(15分間)によりリンスを行ってから、100℃条件下で10時間乾燥した。その後、1%(v/v)の3−(ジエトキシメチルシリル)プロピルアミン(官能基Si)を含むトルエン溶液中に70℃条件下8時間浸漬した後、室温で8時間放置したものを、トルエンおよびアセトンで洗浄し、100℃条件下で真空乾燥を行い基板の表面修飾を行った。この基板上に金を真空蒸着することにより金微粒子を形成した。蒸着は0.9x10−4Paの真空下において抵抗加熱方式によって行い、水晶振動子式膜厚計によって重量平均膜厚を測定しながら行った。重量平均膜厚を調節することによって微粒子の大きさを調節することができる。重量平均膜厚は0.1から20オングストロームの間で実験を行った。
II )微粒子表面への官能基 の導入
I)の操作によって得られた金微粒子付きガラス基板を2−フランメタンチオールのエタノール溶液(濃度1%(v/v))に70℃条件下にて浸漬した。
III )余剰チオールのリンス
12時間静置した後、エタノールとアセトンでリンスを行い、余剰チオールの除去を行った。
IV )微粒子表面への官能基 の導入
III)の操作後、2−アミノエタンチオールを1%(v/v)含むクロロホルム溶液の中に基板を浸漬し、超音波振動を与えながら30分間放置させた。
)非対称型金ナノ微粒子の濃縮・精製
IV)の操作後、溶液中に分散している金微粒子を回収するため、クロロホルム溶媒の約2倍量のエタノールを加えて、30分間静置した。それによって凝集・沈殿した金微粒子を濾紙で濃し取り、未反応の2−アミノエタンチオールを除去した。ろ過ペーパに集められた金ナノ微粒子は再びクロロホルム溶媒に可溶である。これに再び約2倍量のエタノールを加えて、金微粒子を沈殿させ、濾過するという操作を3回繰り返して目的物の精製を行った。最後にナノサイズの金微粒子以外の不純物などを除去するためメンブレンフィルター (Millipore, 0.22 μmφ)でろ過して保管した。
【0011】
(その他の実施例)
実施例1と同様にして本発明の幾何構造上の非対称型金属ナノ微粒子を作製することができる。その作成例を表1に示す。
【0012】
【表1】

Figure 2005007549
表1の修飾剤は金属の表面において自己組織化が可能、かつ種々の極性や反応性末端を有する機能性化合物の一例である。大別すると、チオール、するフィド、ジスルフィド、ポリスルフィド等の修飾剤群に分類できる。中でも、生体由来物質またはタンパク・DNAなどを認識する機能を持つ官能基を有するチオールはバイオセンサーなどの用途において有用である。
【0013】
【本発明の効果】
上述の説明からも明らかなように、基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、その表面に第一の表面修飾材で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより、粒子を基板から剥離させて未修飾面を第二の表面修飾材で処理することによって非対称な3次元幾何構造、および、2つの異なる機能表面を有する金属ナノ微粒子を作製することが出来た。このような構造を持つ金属微粒子は今まで報告されておらず、バイオチップ等への応用などを考える上で汎用性の向上とプロセスの簡略化に大きく貢献する技術である。また、金属ナノ微粒子が球形でない構造を取るため、光検出型バイオセンサーなどの用途においても検出感度を数倍〜数百倍程度大幅に向上させることが可能となり大きなメリットがある。
【図面の簡単な説明】
【図1】金属ナノ微粒子の接着力を制御するシランカップリング剤の例図
【図2】シランカップリング剤と金属ナノ微粒子間の接着強度によりサイズ分布を制御できることの概念図
【図3】ガラス基板上に作製された孤立・離散した島状金属ナノ粒子の典型的な電子顕微鏡写真
【図4】本発明の手順概略を示すプロセス図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an asymmetric nanoparticulate, and more particularly, to a method for producing an asymmetric nanoparticulate having a geometric structure having an asymmetric structure and further having different functional functional groups on the asymmetric surface.
[0002]
[Prior art]
In various fields, fine particles are fixed on a substrate for various purposes.
[0003]
For example, for the purpose of obtaining various electronic devices, a method of regularly arranging metal, metal oxide, ceramics, oxide superconductor ultrafine particles, or organic ultrafine particles as fine particles on a substrate as a base Is disclosed (see Patent Document 1). Specifically, antigens are regularly arranged two-dimensionally on a substrate, while a monoclonal antibody that reacts with the antigen and ultrafine particles are bound to each other, and the antigen-bound ultrafine particles are arranged on the antigen array. This was a method of binding to a substrate by an antigen-antibody reaction.
In addition, for example, for the purpose of obtaining a bio-element capable of fixing microparticles firmly and densely on a base, a method of two-dimensionally arranging microparticles using a specific binding reaction between avidin and vithione is disclosed (patent) Reference 2). Specifically, the substrate is bonded by treatment with a silane coupling agent having an amino group, and the fixed amino group is selectively removed by an electron beam to form an amino group arrangement pattern. A biotin derivative (NHS-LS-BIOTIN) is bound to the pattern to form a biotin sequence pattern on the substrate, and microparticles having avidin in this biotin pattern are immobilized using the above specific binding reaction between avidin and vithione. Was the way.
[0004]
[Patent Document 1]
JP-A-3-79774 [Patent Document 2]
Japanese Patent Application Laid-Open No. H5-222637
[Problems to be solved by the invention]
However, in any of the above-described methods, the fine particles fixed on the substrate are not asymmetrical nano fine particles and are covered with one kind of functional group, and the surface characteristics are limited to a single one. Therefore, there have been practical restrictions such as limitations when trying to use the function, or complicated pretreatment for adsorbing and arranging fine particles.
Therefore, we devised a technique to introduce different types of functional groups (functional active sites) in stages on the two surfaces (upper and lower) of the asymmetric metal nanoparticles, solving the above-mentioned limitations and making it practical and simple. And has come up with a method for producing metal nanoparticles with extremely high versatility. In addition, according to this method, asymmetry can be introduced into the three-dimensional shape of the metal nanoparticle (a non-spherical particle can be obtained), and therefore a local electric field (surface plasmon) induced in the vicinity of the metal nanoparticle upon light irradiation. It is also possible to cause asymmetry in the spatial distribution of). As a result, it is possible to greatly improve the detection sensitivity in applications such as optical detection of integrated biochips.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, isolated and discrete island-shaped metal nanoparticles are produced on a substrate by vapor deposition, treated with a first surface modifier on the surface, and then subjected to ultrasonic vibration in a solvent. Of the metal nanoparticles having an asymmetric three-dimensional geometric structure by separating the particles from the substrate and treating the unmodified surface with the second surface modifier, and two different functional surfaces. A manufacturing method was devised.
In other words, it is possible to obtain isolated and discrete island-shaped metal nanoparticles on a substrate by vapor deposition, and then treating the substrate in a solvent while applying ultrasonic vibration, thereby removing the particles from the substrate. A method for producing metal nanoparticles having structural asymmetry has been found.
In another embodiment of the present invention, isolated and discrete island-shaped metal nanoparticles are produced on a substrate by vapor deposition, the surface of the metal nanoparticles is treated with a first surface modifier, and then ultrasonic vibration is applied. However, it is possible to obtain asymmetric metal nanoparticles having a geometric structure having one metal surface and one different functional surface, which can be obtained by treating the substrate in a solvent to peel the particles from the substrate.
Furthermore, in another embodiment of the present invention, isolated and discrete island-shaped metal nanoparticles are produced on a substrate by vapor deposition, the surface of the metal nanoparticles is treated with a first surface modifier, and then ultrasonic vibration is performed. The geometrically asymmetric type with two different functional surfaces obtained by treating the substrate in a solvent while imparting a particle and separating the particles from the substrate and treating the unmodified surface with a second surface modifier. Metal nanoparticles can be obtained.
Furthermore, in another embodiment of the present invention, asymmetric metal nanoparticles having a geometric structure in which the substrate surface is treated with a silane coupling agent in order to control the adhesion force of the metal nanoparticles deposited on the substrate surface. be able to.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, all metals that can adsorb a thiol selected from the group consisting of gold, silver, platinum, palladium, rhodium, and ruthenium as elements constituting the metal nanoparticles, and alloys thereof can be used.
In the present invention, the first and second surface modifiers have one S functional group selected from the group consisting of thiol, sulfide, disulfide, and polysulfide for adsorbing to the surface of the metal nanoparticles. And a functional group A or a functional group B selected from the group consisting of a carboxy group, a carboxylate group, a hydroxyl group, an amino group, a sulfonate group, a sulfonate group, a pyridyl group, a furanyl group, and -DNA, The first surface modifier can have a functional group A, and the second surface modifier can have a functional group B.
Furthermore, in the present invention, the present invention relates to asymmetric nanoparticles obtained by the production method described above, and the asymmetric nanoparticles having a geometric structure obtained by the production method described above are two-dimensionally arranged on a substrate. It is about the organization.
[0008]
In the present invention, it is preferable to use a material that can be surface-modified with a silane coupling agent such as glass, quartz, silicon, or mica as the substrate. In addition, as the elements constituting the metal nanoparticles, all metals capable of adsorbing thiols such as gold, silver, platinum, palladium, rhodium and ruthenium, and alloys thereof can be used, but they are not susceptible to oxidation. For this reason, it is most preferable to use gold.
Furthermore, as the surface modifier, thiol, sulfide, disulfide, polysulfide and the like exemplified in FIG. 2 are used.
In addition, as illustrated in FIG. 1, if the silane coupling agent (functional group Si) having various functional groups is processed on the substrate, the adhesive force between the gold fine particles and the substrate can be adjusted. Thus, by applying a surface treatment of the substrate before vapor deposition of the metal using a silane coupling agent having an appropriate adhesive strength, the degree of dispersion of the size of the metal nanoparticles obtained in the process of (IV) of FIG. Can be reduced.
[0009]
FIG. 3 illustrates an outline of the principle that the size of the obtained metal nanoparticles is made uniform by the surface treatment of the substrate using a silane coupling agent. In the process of (IV) in FIG. 5, the gold fine particles are peeled off from the substrate by ultrasonic vibration. At this time, for the gold fine particles having a large size, the force given by the ultrasonic vibration is the bonding force between the substrate and the functional group. It is difficult to peel off the particles because it is larger. On the other hand, since the bonding force between the substrate and the functional group is smaller than the force given by ultrasonic vibration for the gold fine particle having a certain size or less, the gold fine particle is peeled off from the substrate. As a result, only metal nanoparticles having a particle size equal to or smaller than a certain value are obtained by being dispersed in a solvent, so that particles having a large particle size are excluded and the size distribution becomes narrow.
As the solvent used in the present invention, ethanol, toluene, chloroform, methanol and the like were used.
Vapor deposition used in the present invention preferably has conditions such that isolated and discrete island-shaped metal nanoparticles are attached to the glass surface, and the thickness of the vapor deposition is preferably 0.1 to 20 angstroms as a weight average film thickness. In particular, 1 to 5 angstroms is particularly suitable (see FIG. 4).
[0010]
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Example 1)
Details of the operation will be described in the order of the process diagram shown in FIG.
I) Production of gold fine particles by vapor deposition A commercially available slide glass (Matunami S-1111) was used as a substrate, and it was ultrasonically cleaned in a cleaning agent (EXTRAN MA 20 wt% aqueous solution) for 15 minutes. Furthermore, after rinsing with distilled water twice by ultrasonic cleaning (15 minutes), it was dried at 100 ° C. for 10 hours. Then, after immersing in a toluene solution containing 1% (v / v) 3- (diethoxymethylsilyl) propylamine (functional group Si) for 8 hours under a condition of 70 ° C., The substrate was washed with toluene and acetone, and vacuum-dried at 100 ° C. to modify the surface of the substrate. Gold fine particles were formed by vacuum-depositing gold on this substrate. Vapor deposition was performed by a resistance heating method under a vacuum of 0.9 × 10 −4 Pa, while measuring the weight average film thickness with a crystal oscillator film thickness meter. The size of the fine particles can be adjusted by adjusting the weight average film thickness. The experiment was conducted with a weight average film thickness of 0.1 to 20 angstroms.
II ) Introduction of functional group A onto fine particle surface The glass substrate with gold fine particles obtained by the operation of I) was placed in an ethanol solution of 2-furanmethanethiol (concentration 1% (v / v)) at 70 ° C. Soaked.
III ) Rinse of excess thiol After standing for 12 hours, rinse with ethanol and acetone to remove excess thiol.
IV ) Introduction of functional group B onto fine particle surface After the operation of III), the substrate is immersed in a chloroform solution containing 1% (v / v) of 2-aminoethanethiol and left for 30 minutes while applying ultrasonic vibration. I let you.
V ) Concentration / Purification of Asymmetric Gold Nanoparticles After the operation IV), in order to recover the gold fine particles dispersed in the solution, about twice as much ethanol as the chloroform solvent was added and allowed to stand for 30 minutes. The fine gold particles thus aggregated and precipitated were concentrated with a filter paper to remove unreacted 2-aminoethanethiol. Gold nanoparticles collected on the filtration paper are again soluble in chloroform solvent. About twice the amount of ethanol was again added thereto, gold fine particles were precipitated and filtered, and the target product was purified by repeating the operation three times. Finally, in order to remove impurities other than nano-sized gold fine particles, it was filtered and stored with a membrane filter (Millipore, 0.22 μmφ).
[0011]
(Other examples)
In the same manner as in Example 1, asymmetric metal nanoparticles having a geometric structure of the present invention can be produced. An example of its creation is shown in Table 1.
[0012]
[Table 1]
Figure 2005007549
The modifiers in Table 1 are examples of functional compounds that can self-assemble on the metal surface and have various polarities and reactive ends. Broadly speaking, it can be classified into a group of modifiers such as thiol, sulfido, disulfide and polysulfide. Among these, thiols having a functional group having a function of recognizing a biological substance or protein / DNA are useful in applications such as biosensors.
[0013]
[Effect of the present invention]
As is clear from the above description, isolated and discrete island-shaped metal nanoparticles are produced on the substrate by vapor deposition, treated with the first surface modifier on the surface, and then subjected to ultrasonic vibration. By treating the substrate in a solvent, the particles are detached from the substrate and the unmodified surface is treated with a second surface modifier, thereby providing an asymmetric three-dimensional geometric structure and metal nano having two different functional surfaces Fine particles could be produced. A metal fine particle having such a structure has not been reported so far, and is a technology that greatly contributes to improvement in versatility and simplification of the process when considering application to biochips and the like. In addition, since the metal nanoparticle has a non-spherical structure, the detection sensitivity can be greatly improved by several to several hundred times even in applications such as a light detection biosensor, which has a great merit.
[Brief description of the drawings]
FIG. 1 is an example of a silane coupling agent that controls the adhesion force of metal nanoparticles. FIG. 2 is a conceptual diagram that the size distribution can be controlled by the adhesion strength between the silane coupling agent and metal nanoparticles. Typical electron micrograph of isolated and discrete island-shaped metal nanoparticles produced on a substrate. FIG. 4 is a process diagram showing an outline of the procedure of the present invention.

Claims (8)

基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、その後、超音波振動を与えながら溶剤中で基板を処理することにより、粒子を基板から剥離させて得られる、幾何構造上の非対称性を有する金属ナノ微粒子の製造方法。On the geometrical structure, the isolated and discrete island-shaped metal nanoparticles are produced on the substrate by vapor deposition, and then the particles are separated from the substrate by treating the substrate in a solvent while applying ultrasonic vibration. The manufacturing method of the metal nanoparticle which has asymmetry of this. 基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、金属ナノ粒子の表面を第一の表面修飾剤で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより粒子を基板から剥離さることにより得られる、1つの金属表面と1つの異なる機能表面を有する幾何構造上の非対称型金属ナノ微粒子の製造方法。Isolated and discrete island-shaped metal nanoparticles are produced on the substrate by vapor deposition, the surface of the metal nanoparticles is treated with the first surface modifier, and then the substrate is treated in a solvent while applying ultrasonic vibration. A method for producing asymmetric metal nanoparticles on a geometrical structure having one metal surface and one different functional surface obtained by peeling the particles from the substrate. 基板上に孤立・離散した島状の金属ナノ粒子を蒸着により作製し、金属ナノ粒子の表面を第一の表面修飾剤で処理し、その後、超音波振動を与えながら溶剤中で基板を処理することにより粒子を基板から剥離させ、未修飾面を第二の表面修飾剤で処理することにより得られる、2つの異なる機能表面を有する幾何構造上の非対称型金属ナノ微粒子の製造方法。Isolated and discrete island-shaped metal nanoparticles are produced on the substrate by vapor deposition, the surface of the metal nanoparticles is treated with the first surface modifier, and then the substrate is treated in a solvent while applying ultrasonic vibration. A method for producing asymmetric metal nanoparticles having a geometric structure having two different functional surfaces obtained by separating particles from a substrate and treating an unmodified surface with a second surface modifier. 基板表面に蒸着される金属ナノ粒子の接着力を制御するためシランカップリング剤で基板表面の処理を行う請求項1ないし請求項3のいずれかひとつに記載した幾何構造上の非対称型金属ナノ微粒子の製造方法。4. The geometrically asymmetric metal nanoparticles according to any one of claims 1 to 3, wherein the substrate surface is treated with a silane coupling agent in order to control the adhesion of the metal nanoparticles deposited on the substrate surface. Manufacturing method. 金属ナノ粒子を構成する元素が金、銀、白金、パラジウム、ロジウム、ルテニウムからなる群れより選ばれるチオールが吸着可能な全ての金属、および、それらの合金からなる請求項1に記載した幾何構造上の非対称型ナノ微粒子の製造方法。2. The geometric structure according to claim 1, wherein the element constituting the metal nanoparticle is composed of all metals capable of adsorbing thiol selected from the group consisting of gold, silver, platinum, palladium, rhodium and ruthenium, and alloys thereof. A method for producing asymmetric nanoparticle. 第一及び第二の表面修飾剤が、金属ナノ粒子表面と吸着するための、チオール、スルフィド、ジスルフィド、ポリスルフィドからなる群れより選ばれる1種のS官能基を有し、かつ、カルボキシ基、カルボン酸塩基、水酸基、アミノ基、スルホン酸基、スルホン酸塩基、ピリジル基、フラニル基、−DNAからなる群れより選ばれる1種の官能基A又は官能基Bであり、第一の表面修飾剤が官能基A、第二の表面修飾剤が官能基Bをそれぞれ有する請求項2ないし請求項6のいずれかひとつに記載した幾何構造上の非対称型ナノ微粒子の製造方法。The first and second surface modifiers have one S functional group selected from the group consisting of thiol, sulfide, disulfide, and polysulfide for adsorbing to the surface of the metal nanoparticles, An acid group, a hydroxyl group, an amino group, a sulfonic acid group, a sulfonic acid group, a pyridyl group, a furanyl group, a functional group A or a functional group B selected from the group consisting of -DNA, and the first surface modifier is The method for producing an asymmetric nanoparticle having a geometric structure according to any one of claims 2 to 6, wherein the functional group A and the second surface modifier each have a functional group B. 請求項1ないし請求項6のいずれかひとつの製造方法により得られた幾何構造上の非対称型ナノ微粒子。An asymmetric nanoparticle having a geometric structure obtained by the production method according to any one of claims 1 to 6. 請求項1ないし請求項6のいずれかひとつの製造方法により得られた幾何構造上の非対称型ナノ微粒子を基板上に2次元配列した組織体。A tissue body in which asymmetrical nanoparticles having a geometric structure obtained by the production method according to any one of claims 1 to 6 are two-dimensionally arranged on a substrate.
JP2003176727A 2003-06-20 2003-06-20 Method for producing asymmetric nanoparticle, asymmetric nanoparticle obtained by this method and structure thereof Expired - Lifetime JP4217781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176727A JP4217781B2 (en) 2003-06-20 2003-06-20 Method for producing asymmetric nanoparticle, asymmetric nanoparticle obtained by this method and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176727A JP4217781B2 (en) 2003-06-20 2003-06-20 Method for producing asymmetric nanoparticle, asymmetric nanoparticle obtained by this method and structure thereof

Publications (2)

Publication Number Publication Date
JP2005007549A true JP2005007549A (en) 2005-01-13
JP4217781B2 JP4217781B2 (en) 2009-02-04

Family

ID=34099528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176727A Expired - Lifetime JP4217781B2 (en) 2003-06-20 2003-06-20 Method for producing asymmetric nanoparticle, asymmetric nanoparticle obtained by this method and structure thereof

Country Status (1)

Country Link
JP (1) JP4217781B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063605A (en) * 2006-09-06 2008-03-21 Ulvac Japan Ltd Method for forming nanometal particle and nanoorder wiring
US7999025B2 (en) 2008-01-28 2011-08-16 University Of Utah Research Foundation Asymmetrically-functionalized nanoparticles organized on one-dimensional chains
JP2012140692A (en) * 2011-01-06 2012-07-26 Oike Ind Co Ltd Metal ultra-fine powder
US8231969B2 (en) 2008-03-26 2012-07-31 University Of Utah Research Foundation Asymmetrically functionalized nanoparticles
JP2012217443A (en) * 2011-04-14 2012-11-12 Toyo Univ Metal ion supply system
US8551759B2 (en) 2006-07-31 2013-10-08 Samsung Electronics Co., Ltd. Oligomer probe array and method of producing the same
JP2014040643A (en) * 2012-08-23 2014-03-06 Oike Ind Co Ltd Silver particle dispersion liquid, conductive film and method of manufacturing silver particle dispersion liquid
JP2014040644A (en) * 2012-08-23 2014-03-06 Oike Ind Co Ltd Method for producing inorganic fine particles
CN104707491A (en) * 2013-12-17 2015-06-17 帕尔公司 Skinless polyethersulfone membrane
CN113231632A (en) * 2021-05-12 2021-08-10 厦门大学附属心血管病医院 Gold-palladium asymmetric heterogeneous nano structure and synthesis method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442638A (en) * 2011-09-15 2012-05-09 王利兵 Preparation method of asymmetric gold nano particle dimmer with chiral signal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551759B2 (en) 2006-07-31 2013-10-08 Samsung Electronics Co., Ltd. Oligomer probe array and method of producing the same
JP2008063605A (en) * 2006-09-06 2008-03-21 Ulvac Japan Ltd Method for forming nanometal particle and nanoorder wiring
US7999025B2 (en) 2008-01-28 2011-08-16 University Of Utah Research Foundation Asymmetrically-functionalized nanoparticles organized on one-dimensional chains
US8231969B2 (en) 2008-03-26 2012-07-31 University Of Utah Research Foundation Asymmetrically functionalized nanoparticles
JP2012140692A (en) * 2011-01-06 2012-07-26 Oike Ind Co Ltd Metal ultra-fine powder
JP2012217443A (en) * 2011-04-14 2012-11-12 Toyo Univ Metal ion supply system
JP2014040643A (en) * 2012-08-23 2014-03-06 Oike Ind Co Ltd Silver particle dispersion liquid, conductive film and method of manufacturing silver particle dispersion liquid
JP2014040644A (en) * 2012-08-23 2014-03-06 Oike Ind Co Ltd Method for producing inorganic fine particles
CN104707491A (en) * 2013-12-17 2015-06-17 帕尔公司 Skinless polyethersulfone membrane
CN104707491B (en) * 2013-12-17 2017-04-19 帕尔公司 Skinless polyethersulfone membrane
CN113231632A (en) * 2021-05-12 2021-08-10 厦门大学附属心血管病医院 Gold-palladium asymmetric heterogeneous nano structure and synthesis method thereof

Also Published As

Publication number Publication date
JP4217781B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
Liu et al. Biofunctional ZnO nanorod arrays grown on flexible substrates
US7670831B2 (en) Conductive carbon nanotubes dotted with metal and method for fabricating a biosensor using the same
JP4217781B2 (en) Method for producing asymmetric nanoparticle, asymmetric nanoparticle obtained by this method and structure thereof
Leonardo et al. Past, present and future of diatoms in biosensing
Perumal et al. A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods
Coffer Semiconducting silicon nanowires for biomedical applications
Wildt et al. Electrochemical template synthesis of multisegment nanowires: Fabrication and protein functionalization
Kafi et al. Engineered peptide-based nanobiomaterials for electrochemical cell chip
JP2012246162A (en) Nano-porous thin film and method for producing the same
Ta et al. Surface Functionalization of WO 3 Thin Films with (3-Aminopropyl) triethoxysilane and Succinic Anhydride
KR101473853B1 (en) Graphene patterning method
CN112816454A (en) SERS solid-state chip for accurately capturing and detecting coronavirus and preparation method thereof
Joshi et al. Fabrication of high aspect ratio gold nanowires within the microtubule lumen
Jani et al. Soft and hard surface manipulation of nanoporous anodic aluminum oxide (AAO)
TW201438246A (en) Single electron transistor and method for fabricating the same
US10895013B2 (en) Gold nanostructures and processes for their preparation
KR20040107225A (en) Biosensor using the conductive carbon nanotubes and method thereof
US20120322977A1 (en) Micropatterned multifunctional inorganic nanoparticle arrays based on patterned peptide constructs
Padalkar et al. Protein-templated semiconductor nanoparticle chains
Ahsanulhaq et al. Immobilization of angiotensin II and bovine serum albumin on strip-patterned ZnO nanorod arrays
TW202102851A (en) Linker of bioprobes
CN106694902B (en) ZnO-CdS@Au nanocomposite and its application
Carreño-Fuentes et al. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification
Choi et al. Self-Assembly of Silver− Aminosilica Nanocomposites through Silver Nanoparticle Fusion on Hydrophobic Surfaces
KR101948038B1 (en) Strain sensor device using gold nanostructure and preparing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4217781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term