JP2014040644A - Method for producing inorganic fine particles - Google Patents

Method for producing inorganic fine particles Download PDF

Info

Publication number
JP2014040644A
JP2014040644A JP2012184062A JP2012184062A JP2014040644A JP 2014040644 A JP2014040644 A JP 2014040644A JP 2012184062 A JP2012184062 A JP 2012184062A JP 2012184062 A JP2012184062 A JP 2012184062A JP 2014040644 A JP2014040644 A JP 2014040644A
Authority
JP
Japan
Prior art keywords
fine particles
inorganic fine
island
film
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012184062A
Other languages
Japanese (ja)
Other versions
JP5646563B2 (en
Inventor
Akika Kamei
明果 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oike and Co Ltd
Original Assignee
Oike and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oike and Co Ltd filed Critical Oike and Co Ltd
Priority to JP2012184062A priority Critical patent/JP5646563B2/en
Publication of JP2014040644A publication Critical patent/JP2014040644A/en
Application granted granted Critical
Publication of JP5646563B2 publication Critical patent/JP5646563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing nanoparticles of a metal or a metallic compound with high productivity.SOLUTION: A method for producing inorganic fine particles includes the steps of: forming a peeling layer comprising an organic substance on a substrate; forming an island-structure film of an inorganic substance directly above the peeling layer; and dissolving the peeling layer to peel off the island- shaped structure film. The inorganic fine particles preferably include linear fine particles having branches or no branches. Using such an island-shaped structure film, the inorganic fine particles can be readily produced with high productivity.

Description

本発明は、無機微粒子の製造方法に関し、より詳しくは金属や金属の化合物の微粒子の製造方法に関する。   The present invention relates to a method for producing inorganic fine particles, and more particularly to a method for producing fine particles of a metal or a metal compound.

電化製品、電子機器など各種製品の外観に金属光沢を付与するためなどに、金属等の微粒子を含有するインク、ペーストなどが用いられる。これらのインク等は、製品の表面に直接塗工もしくは、樹脂フィルム上に塗工した後インモールド成型等により製品表面に転写されることによって利用される。   In order to impart a metallic luster to the appearance of various products such as electrical appliances and electronic devices, inks and pastes containing fine particles such as metals are used. These inks are used by being applied directly to the surface of the product, or after being applied on a resin film and transferred to the product surface by in-mold molding or the like.

形成する膜の表面平滑性や膜厚の均一性が求められる場合には、粒径が100nm以下であるような金属微粒子、いわゆる金属ナノ粒子、が多く用いられる。さらに、下地の色や質感を活かすために薄い膜を形成する場合や、特に滑らかな表面が求められる場合には、粒径が30nm以下の金属ナノ粒子が用いられることがある。   When the surface smoothness and film thickness uniformity of the film to be formed are required, metal fine particles having a particle size of 100 nm or less, so-called metal nanoparticles are often used. Furthermore, when a thin film is formed to make use of the color and texture of the base, or when a particularly smooth surface is required, metal nanoparticles having a particle size of 30 nm or less may be used.

金属ナノ粒子を製造する方法としては、より大きな塊や薄膜を粉砕する粉砕法、金属化合物を気相または液相中で還元する方法、化学蒸着法、物理蒸着法など、様々な方法が開発・実用化されている。   Various methods have been developed to produce metal nanoparticles, such as a pulverization method for pulverizing larger lumps and thin films, a method for reducing metal compounds in the gas phase or liquid phase, chemical vapor deposition, and physical vapor deposition. It has been put into practical use.

特許文献1には、高分子樹脂フィルムの表面に樹脂による剥離層と金属等の薄膜層を積層し、剥離層を溶解して薄膜層を剥離して得た薄膜を微粉砕して鱗片状薄膜微粉末を得ることが記載されている。   In Patent Document 1, a thin film layer obtained by laminating a release layer made of resin and a thin film layer of metal or the like on the surface of a polymer resin film, dissolving the release layer, and peeling the thin film layer is finely pulverized to give a scaly thin film It is described to obtain a fine powder.

特許文献2には、高分子樹脂基材の表面に、樹脂層と金属層を積層し、金属層を剥離、微粉化することによって得られ、金属の融点a[℃]と基板温度b[℃]との関係が2b≧aを満たす、金属超微粉体が記載されている。その実施例には、粒径が約20〜30nmのインジウムナノ粒子が記載されている。   In Patent Document 2, a resin layer and a metal layer are laminated on the surface of a polymer resin substrate, and the metal layer is peeled off and pulverized to obtain a metal melting point a [° C.] and a substrate temperature b [° C. ], The metal ultrafine powder with which 2b> a is satisfy | filled is described. The example describes indium nanoparticles with a particle size of about 20-30 nm.

特開2011−52041号公報JP 2011-52041 A 特開2006−89781号公報JP 2006-89781 A

しかしながら、従来の金属等微粒子の製造方法にはそれぞれ一長一短があり、当然のことながら改善の余地があった。例えば、粉砕法では粒径が100nm以下の微粒子を製造することは困難であった。また、金属化合物を還元する方法には生産効率の悪いものが多かった。   However, each conventional method for producing fine particles of metal has advantages and disadvantages, and there is, of course, room for improvement. For example, it has been difficult to produce fine particles having a particle size of 100 nm or less by the pulverization method. In addition, many methods for reducing metal compounds have poor production efficiency.

特許文献1に記載された方法では、やはり粒径が数十nmであるような極微小なサイズにまで粉砕することが難しかった。また、特に滑らかな表面が求められるときには、厚さが数十nmであっても鱗片状の微粒子を用いて膜を形成すると、所要の膜の表面平滑性や膜厚の均一性が得られないことがあった。   In the method described in Patent Document 1, it was difficult to pulverize to a very small size such that the particle size was several tens of nm. In addition, when a smooth surface is particularly required, even if the thickness is several tens of nanometers, if the film is formed using scaly particles, the required film surface smoothness and film thickness uniformity cannot be obtained. There was a thing.

特許文献2に記載された方法では、球状の金属微粒子が得られるが、基板温度[℃]を金属の融点[℃]の2倍以上にする必要があり、適用できる金属が低融点のものに限られた。   In the method described in Patent Document 2, spherical metal fine particles can be obtained, but the substrate temperature [° C.] needs to be at least twice the melting point [° C.] of the metal, and the applicable metal has a low melting point. limited.

本発明は以上の点を考慮してなされたものであり、金属や金属の化合物のナノ粒子を、生産性良く製造可能な方法を提供することを目的とする。   The present invention has been made in consideration of the above points, and an object of the present invention is to provide a method capable of producing metal or metal compound nanoparticles with high productivity.

本発明の無機微粒子の製造方法は、基体上に有機物からなる剥離層を形成する工程と、前記剥離層の直上に無機物の島状構造膜を形成する工程と、前記剥離層を溶解して前記島状構造膜を剥離する工程とを有する。   The method for producing inorganic fine particles of the present invention includes a step of forming a release layer made of an organic material on a substrate, a step of forming an inorganic island-like structure film directly on the release layer, and dissolving the release layer to And a step of peeling the island-like structure film.

このように島状構造膜を利用して無機微粒子を製造することによって、生産性良く、容易に無機微粒子を製造することができる。また、前記剥離層が無機微粒子表面に一部残留するときには、微粒子の凝集が抑制されるので、分散性の良い無機微粒子が得られる。   Thus, by manufacturing inorganic fine particles using an island-shaped structure film, inorganic fine particles can be easily manufactured with good productivity. Further, when the release layer partially remains on the surface of the inorganic fine particles, the aggregation of the fine particles is suppressed, so that inorganic fine particles having good dispersibility can be obtained.

上記無機微粒子の製造方法において、前記無機微粒子は分岐を有する又は有しない鎖状の微粒子を含んでいてもよい。   In the method for producing inorganic fine particles, the inorganic fine particles may include chain-shaped fine particles with or without branching.

好ましくは、上記無機微粒子の製造方法において、前記島状構造膜を形成する工程が真空蒸着工程である。島状構造膜を形成するには各種の成膜法を利用することができるが、中でも真空蒸着法を用いることにより島状構造の形成および制御が容易になる。   Preferably, in the method for producing inorganic fine particles, the step of forming the island-shaped structure film is a vacuum deposition step. Various film formation methods can be used to form the island-shaped structure film, and the formation and control of the island-shaped structure can be facilitated by using the vacuum deposition method.

上記無機微粒子の製造方法において、前記島状構造膜の平均膜厚を1〜20nmとすることができる。   In the method for producing inorganic fine particles, an average film thickness of the island-shaped structure film can be 1 to 20 nm.

好ましくは、上記無機微粒子の製造方法において、前記無機物が、銀、金、アルミニウム、銅、クロム、ニッケル、珪素、チタン、白金、酸化アルミニウム、酸化珪素、酸化チタン、硫化亜鉛からなる群より選ばれる1種以上の無機物である。これらの金属または金属化合物のナノ粒子は、従来技術で生産性よく製造することが難しかったのに対して、島状構造のサイズ等を制御することが比較的容易であるため、本発明の製造方法によることが特に適している。   Preferably, in the method for producing inorganic fine particles, the inorganic substance is selected from the group consisting of silver, gold, aluminum, copper, chromium, nickel, silicon, titanium, platinum, aluminum oxide, silicon oxide, titanium oxide, and zinc sulfide. One or more inorganic substances. While these metal or metal compound nanoparticles were difficult to produce with high productivity by the prior art, it is relatively easy to control the size of the island-like structure, etc. The method is particularly suitable.

好ましくは、上記無機微粒子の製造方法において、前記無機物が銀であり、前記島状構造膜を形成する工程が真空蒸着工程である。   Preferably, in the method for producing inorganic fine particles, the inorganic substance is silver, and the step of forming the island-shaped structure film is a vacuum deposition step.

好ましくは、上記無機微粒子の製造方法において、前記剥離層がセルロース・アセテート・ブチレートからなる。これにより、特に分散性の良い無機微粒子が得られる。   Preferably, in the method for producing inorganic fine particles, the release layer is made of cellulose / acetate / butyrate. Thereby, inorganic fine particles having particularly good dispersibility can be obtained.

本発明の無機微粒子の製造方法によれば、金属や金属の化合物のナノ粒子を、生産性良く製造することが可能となる。   According to the method for producing inorganic fine particles of the present invention, it is possible to produce nanoparticles of a metal or a metal compound with high productivity.

本発明の一実施形態である金属微粒子製造方法のフロー図である。It is a flowchart of the metal microparticle manufacturing method which is one Embodiment of this invention. 実施例1で製造した銀ナノ粒子の透過電子顕微鏡(TEM)像である。2 is a transmission electron microscope (TEM) image of silver nanoparticles produced in Example 1. FIG. 実施例2で製造した銀ナノ粒子のTEM像である。2 is a TEM image of silver nanoparticles produced in Example 2. FIG. 実施例3で製造した銀ナノ粒子のTEM像である。4 is a TEM image of silver nanoparticles produced in Example 3. FIG. 実施例4で製造した銀ナノ粒子のTEM像である。4 is a TEM image of silver nanoparticles produced in Example 4. FIG. 実施例4で製造した銀ナノ粒子の高解像度のTEM像である。4 is a high-resolution TEM image of silver nanoparticles produced in Example 4. FIG. 実施例1で製造した銀ナノ粒子の熱分析結果である。3 is a result of thermal analysis of silver nanoparticles produced in Example 1. 実施例2で製造した銀ナノ粒子の熱分析結果である。4 is a thermal analysis result of silver nanoparticles produced in Example 2. 実施例4で製造した銀ナノ粒子の熱分析結果である。It is a thermal analysis result of the silver nanoparticle manufactured in Example 4.

本実施形態の無機微粒子製造方法によって製造される無機微粒子は、球状・塊状の微粒子および/または鎖状の微粒子からなる。球状・塊状の微粒子とは、島状構造膜の島を形成していた球状その他の塊状の微粒子のことをいう。鎖状の微粒子とは、球状・塊状の微粒子が鎖状(数珠状)に連結して一体化した微粒子のことをいい、途中で分岐していない線状のものと途中で分岐したものの両方を含む。また、本実施形態の無機微粒子の表面には、少なくとも一部に、剥離層として用いた有機物の層が形成されている。この有機物層は、粒子が凝集することを抑制する機能を有しており、塊状粒子の表面全体でなくその一部に形成されていても、十分に機能を発揮する。   The inorganic fine particles produced by the inorganic fine particle production method of the present embodiment are composed of spherical and massive fine particles and / or chain fine particles. Spherical and massive fine particles refer to spherical and other massive fine particles that formed islands of island-like structure films. Chain-shaped fine particles are fine particles in which spherical and massive particles are connected in a chain (beaded) and integrated, and both linear and non-branched particles are branched. Including. In addition, an organic layer used as a release layer is formed at least partially on the surface of the inorganic fine particles of the present embodiment. This organic material layer has a function of suppressing the aggregation of particles, and even if it is formed not on the entire surface of the massive particles but on a part thereof, it fully functions.

図1に本実施形態の工程フローを示す。本実施形態の無機微粒子製造方法は、基体を準備する工程と、基体上に有機物からなる剥離層を塗工する工程と、剥離層の直上に無機物の島状構造膜を成膜する工程と、剥離層を溶解する工程からなる。剥離層を溶解することによって、基体から島状構造膜が剥離し、島状構造が***して個々の島が微粒子となって、無機微粒子分散液が得られる。その後、この分散液から無機微粒子を回収することや、分散液をそのままインク・ペースト等の原料として利用することができる。また、無機微粒子は、必要に応じて粉砕、分級することができる。   FIG. 1 shows a process flow of the present embodiment. The inorganic fine particle production method of the present embodiment includes a step of preparing a base, a step of applying a release layer made of an organic substance on the base, a step of forming an inorganic island-like structure film directly on the release layer, It consists of a step of dissolving the release layer. By dissolving the release layer, the island-like structure film is peeled from the substrate, the island-like structure is disrupted, and the individual islands become fine particles, whereby an inorganic fine particle dispersion is obtained. Thereafter, the inorganic fine particles can be recovered from the dispersion, or the dispersion can be used as it is as a raw material for inks and pastes. The inorganic fine particles can be pulverized and classified as necessary.

基体としては、平滑な表面を有する各種のものを用いることができる。中でも、可撓性、耐熱性、耐溶剤性および寸法安定性を有する樹脂フィルムを、好適に用いることができる。   Various substrates having a smooth surface can be used as the substrate. Among these, a resin film having flexibility, heat resistance, solvent resistance, and dimensional stability can be preferably used.

剥離層としては、後の工程で溶解可能な各種の有機物を用いることができる。また、剥離層を構成する有機物材料を適切に選択すれば、島状構造膜表面に付着・残留した有機物を、無機微粒子の保護層として機能させることができるので、好適である。ここで保護層とは、無機微粒子の凝集、酸化、溶媒への溶出等を抑制する機能を有する。特に、粒径が30nm以下であるような金属ナノ粒子の製造に当たっては、その凝集を防止するために表面処理を行う必要があるが、剥離層に用いた有機物を保護層として利用することにより、表面処理工程を別途設ける必要がなくなるので好ましい。保護層として利用可能な剥離層を構成する有機物としては、セルロース・アセテート・ブチレート(CAB)、その他のセルロース誘導体、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルブチラール、アクリル酸共重合体、変性ナイロン樹脂等を用いることができる。中でも、保護層としての機能の高さから、剥離層としてCABを用いることが特に好ましい。剥離層は、各種公知の塗工方法で形成することができる。   As the release layer, various organic substances that can be dissolved in a later step can be used. In addition, if the organic material constituting the release layer is appropriately selected, it is preferable that the organic material adhered to or remaining on the island-like structure film surface can function as a protective layer for inorganic fine particles. Here, the protective layer has a function of suppressing aggregation, oxidation, elution into a solvent, and the like of inorganic fine particles. In particular, in the production of metal nanoparticles having a particle size of 30 nm or less, it is necessary to perform a surface treatment to prevent the aggregation, but by using the organic substance used for the release layer as a protective layer, This is preferable because it is not necessary to separately provide a surface treatment step. Organic substances constituting the release layer that can be used as a protective layer include cellulose acetate butyrate (CAB), other cellulose derivatives, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyacrylic acid, polyacrylamide, polyvinyl butyral, and acrylic acid. Copolymers, modified nylon resins and the like can be used. Among these, it is particularly preferable to use CAB as the release layer because of its high function as a protective layer. The release layer can be formed by various known coating methods.

島状構造膜を形成する無機物としては、Ag、Au、Al、Cu、Cr、Ni、Si、Ti、Pt等の金属や、酸化アルミニウム、酸化珪素、酸化チタン、硫化亜鉛等の金属の化合物を用いることができる。これらの無機物は、いずれも融点が500℃以上であり、特許文献2に記載された方法を適用することが難しい。他方、これらの無機物は、いずれも島状構造膜を形成可能で、また島状構造のサイズ等を制御することが比較的容易である。   Examples of inorganic substances forming the island-shaped structure film include metals such as Ag, Au, Al, Cu, Cr, Ni, Si, Ti, and Pt, and metal compounds such as aluminum oxide, silicon oxide, titanium oxide, and zinc sulfide. Can be used. All of these inorganic substances have a melting point of 500 ° C. or higher, and it is difficult to apply the method described in Patent Document 2. On the other hand, any of these inorganic substances can form an island-like structure film, and it is relatively easy to control the size of the island-like structure.

島状構造膜の成膜方法としては、真空蒸着法、スパッタリング法、めっき法などの各種の方法によって形成することができる。中でも、真空蒸着法によることが好ましい。真空蒸着法は、樹脂基体にも成膜可能である点、廃液が出ない点等においてめっき法より好ましく、真空度を高くできる点、成膜速度が大きい点等においてスパッタリング法より好ましい。   As a method for forming the island-shaped structure film, it can be formed by various methods such as vacuum deposition, sputtering, and plating. Among these, it is preferable to use a vacuum evaporation method. The vacuum deposition method is preferable to the plating method in that the film can be formed on the resin substrate and the waste liquid is not generated. The vacuum evaporation method is preferable to the sputtering method in that the degree of vacuum can be increased and the film forming speed is high.

剥離層上に無機物の薄膜を成膜すると、その初期には孤立・離散した核(島)が形成され、島が成長して大きくなるにつれて、やがていくつかの島が接触・連結され、最終的には連続した一様な薄膜が形成される。したがって、連続した一様な薄膜に至らない段階で成膜を終えることによって、島状構造膜を得ることができる。本明細書中で島状構造膜とは、いくつかの島が接触・連結しており、全体として膜形状を有するが、未だ一様な連続膜には至らない状態をいう。このような島状構造膜は、基体上にあるときは膜の形態を保持しているが、基体から剥がされると***して個々の島が微粒子となる。   When an inorganic thin film is formed on the release layer, isolated and discrete nuclei (islands) are formed at the initial stage, and as the island grows and grows, several islands eventually come into contact with and connect to each other. A continuous and uniform thin film is formed. Therefore, the island-shaped structure film can be obtained by finishing the film formation at a stage where the continuous thin film is not reached. In this specification, an island-shaped structure film refers to a state in which several islands are in contact with each other and connected to each other and have a film shape as a whole, but have not yet reached a uniform continuous film. Such an island-like structure film retains the form of the film when it is on the substrate, but when it is peeled off from the substrate, it breaks up and individual islands become fine particles.

最終的に得られる無機微粒子の形状や大きさは、島状構造膜の平均膜厚(以下単に「膜厚」ということがある)を変えることによって制御することができる。島状構造膜の平均膜厚は、成膜中に膜の干渉を利用して測定することができるので、無機微粒子の形状や大きさとの関係を予め求めておくことにより、所望の形状と大きさを有する無機微粒子を容易に得ることができる。   The shape and size of the finally obtained inorganic fine particles can be controlled by changing the average film thickness of the island-like structure film (hereinafter sometimes simply referred to as “film thickness”). The average film thickness of the island-shaped structure film can be measured by utilizing the interference of the film during the film formation. Therefore, by obtaining the relationship with the shape and size of the inorganic fine particles in advance, the desired shape and size can be obtained. Inorganic fine particles having thickness can be easily obtained.

ここで、平均膜厚が大きくなると、前述のとおりやがて一様な連続膜が形成されてしまうので、どの程度の膜厚まで島状構造が維持できるかが問題となる。これに影響する操業要因としては、成膜方法、金属の種類、基体に飛来する金属のエネルギー(運動エネルギー・温度など)、剥離層の材質・温度、基体の冷却方法・温度、成膜速度などが挙げられる。   Here, when the average film thickness is increased, a uniform continuous film is formed over time as described above, and thus it becomes a problem to what extent the island-like structure can be maintained. Operating factors that affect this include the film formation method, the type of metal, the energy of the metal flying to the substrate (kinetic energy, temperature, etc.), the material and temperature of the release layer, the substrate cooling method and temperature, the film formation rate, etc. Is mentioned.

例えば、銀を含めてほとんどの金属で、島状構造膜と一様連続膜の境界は平均膜厚で概ね5〜15nmにある。真空蒸着法で銀を成膜する場合には、島状構造膜と一様連続膜の境界は平均膜厚で概ね9〜13nmにある。   For example, in most metals including silver, the boundary between the island-shaped structure film and the uniform continuous film is approximately 5 to 15 nm in average film thickness. When silver is formed by vacuum deposition, the boundary between the island-shaped structure film and the uniform continuous film is approximately 9 to 13 nm in average film thickness.

剥離層を溶解するための溶剤は、剥離層を溶解可能であれば特に限定されないが、得られる無機微粒子分散液の溶媒としてそのまま用いることができるものが好ましい。例えば、後に印刷用のインク・ペースト中に残留しても支障のないものを用いることが好ましい。また、実際に印刷用のインク・ペーストに用いられる溶剤を用いることもできる。   The solvent for dissolving the release layer is not particularly limited as long as the release layer can be dissolved, but a solvent that can be used as it is as a solvent for the obtained inorganic fine particle dispersion is preferable. For example, it is preferable to use a material that does not interfere with the ink paste for printing. Moreover, the solvent actually used for the ink paste for printing can also be used.

剥離層を溶解することによって、基体から島状構造膜が剥離し、島状構造が***して個々の島が微粒子となる。これにより、特に粉砕工程を経ることなく無機微粒子分散液が得られるが、必要に応じて、粉砕を行ってもよい。また、無機微粒子の一次粒子が凝集している場合には、必要に応じて、これを解砕してもよい。また、必要に応じて、微粒子の回収や物性の調整のために種々の処理を行ってもよい。例えば、分級によって無機微粒子の粒度を調整してもよいし、遠心分離、吸引ろ過などの方法で無機微粒子を回収することや、分散液の固形分濃度を調整してもよい。また、溶媒置換を行ってもよいし、添加剤を用いて粘度調整等を行ってもよい。また、分散剤を添加してもよいが、前述のとおり、本実施形態では、剥離層として適切な有機物を選択しておけば分散性の良い無機微粒子が得られるので、新たに分散剤を添加しなくてもよい。   By dissolving the release layer, the island-like structure film is peeled from the substrate, and the island-like structure is split to form individual islands as particles. As a result, an inorganic fine particle dispersion can be obtained without going through a pulverization step, but pulverization may be performed as necessary. Moreover, when the primary particle of inorganic fine particles has aggregated, you may crush this as needed. Moreover, you may perform a various process for collection | recovery of microparticles | fine-particles and adjustment of a physical property as needed. For example, the particle size of the inorganic fine particles may be adjusted by classification, the inorganic fine particles may be collected by a method such as centrifugal separation or suction filtration, or the solid content concentration of the dispersion may be adjusted. Moreover, solvent substitution may be performed and a viscosity adjustment etc. may be performed using an additive. Although a dispersant may be added, as described above, in this embodiment, if an appropriate organic substance is selected as the release layer, inorganic fine particles having good dispersibility can be obtained. You don't have to.

次に、上記実施形態の製造方法について、銀ナノ粒子を製造した実施例に基づいて、より詳細に説明する。   Next, the manufacturing method of the above embodiment will be described in more detail based on examples of manufacturing silver nanoparticles.

(実施例1)
厚さが12μmのポリエチレンテレフタレート(PET)フィルム上に、5質量%のセルロース・アセテート・ブチレート(CAB)を含む溶液をグラビアコートで塗工し、100℃以下で乾燥して、剥離層を形成した。CABの塗工量は0.06±0.01g/mであった。剥離層上に、高周波誘導加熱・真空蒸着法によって、平均膜厚が7nmの銀の島状構造膜を形成した。この際、全面蒸着を行い、冷却効果はメインドラムのみに依った。平均膜厚は、成膜中に膜の干渉を利用して測定した。次に、剥離層および銀の島状構造膜を形成したPETフィルム面に酢酸ブチルをスプレーして剥離層を溶解し、銀の島状構造膜をドクターブレードで掻き落とした。これにより、銀の島状構造膜が***して個々の島が銀ナノ粒子となった。このようにして得られた銀ナノ粒子分散液から遠心分離を用いて銀ナノ粒子を回収し、回収した銀ナノ粒子を新たに酢酸ブチルに分散させ、固形分濃度を15質量%とした。この分散液を、超音波ホモジナイザー(株式会社日本精機製作所、US−300T)で処理して、銀ナノ粒子の一次粒子が一部凝集したものを解砕した。なお、この超音波処理条件では、銀ナノ粒子の一次粒子がさらに細かく粉砕されることはなかった。以上の方法によって、実施例1による銀ナノ粒子の分散液を得た。
Example 1
On a polyethylene terephthalate (PET) film having a thickness of 12 μm, a solution containing 5% by mass of cellulose acetate butyrate (CAB) was applied by gravure coating and dried at 100 ° C. or less to form a release layer. . The coating amount of CAB was 0.06 ± 0.01 g / m 2 . On the release layer, a silver island-like structure film having an average film thickness of 7 nm was formed by high-frequency induction heating / vacuum evaporation. At this time, vapor deposition was performed on the entire surface, and the cooling effect depended only on the main drum. The average film thickness was measured using film interference during film formation. Next, butyl acetate was sprayed on the surface of the PET film on which the release layer and the silver island structure film were formed to dissolve the release layer, and the silver island structure film was scraped off with a doctor blade. As a result, the island-like structure film of silver was split and individual islands became silver nanoparticles. Silver nanoparticles were collected from the silver nanoparticle dispersion thus obtained by centrifugation, and the collected silver nanoparticles were newly dispersed in butyl acetate, so that the solid content concentration was 15% by mass. This dispersion was treated with an ultrasonic homogenizer (Nippon Seiki Seisakusho, US-300T) to crush the aggregated primary particles of silver nanoparticles. In this ultrasonic treatment condition, the primary particles of the silver nanoparticles were not further finely pulverized. By the above method, a dispersion of silver nanoparticles according to Example 1 was obtained.

(実施例2)
銀の島状構造膜の平均膜厚を5nmとした以外は、実施例1と同じ方法で、実施例2の銀ナノ粒子の分散液を作製した。
(Example 2)
A silver nanoparticle dispersion of Example 2 was prepared in the same manner as in Example 1 except that the average film thickness of the silver island-shaped structure film was 5 nm.

(実施例3)
銀の島状構造膜の平均膜厚を3nmとした以外は、実施例1と同じ方法で、実施例3の銀ナノ粒子の分散液を作製した。
(Example 3)
A silver nanoparticle dispersion of Example 3 was prepared in the same manner as in Example 1 except that the average film thickness of the silver island structure film was 3 nm.

(実施例4)
銀の島状構造膜の平均膜厚を9nmとした以外は、実施例1と同じ方法で、実施例4の銀ナノ粒子の分散液を作製した。
Example 4
A silver nanoparticle dispersion of Example 4 was prepared in the same manner as in Example 1 except that the average film thickness of the silver island-shaped structure film was 9 nm.

図2〜5に、それぞれ実施例1〜4で作製した銀ナノ粒子の透過電子顕微鏡(TEM)像を示す。図下のスケールの長さは100nmを示している。   2 to 5 show transmission electron microscope (TEM) images of the silver nanoparticles prepared in Examples 1 to 4, respectively. The length of the scale at the bottom of the figure indicates 100 nm.

図2(実施例1)より、粒径が10nm程度の塊状の粒子と、分岐を有するおよび有しない鎖状の粒子が存在していることが分かる。鎖状粒子の細径(太さ)は約10〜28nmで、長さは数百nm程度に及ぶものもある。もちろん、実施例1の銀ナノ粒子に粉砕処理を施せば、塊状粒子の割合が増え、鎖状粒子の長さは全体的に短くなる。図3(実施例2)では、図2と比べて、より小さな塊状粒子の割合が多くなっている。また、鎖状粒子は、分岐を有しないものの割合が多くなっている。鎖状粒子の細径は約10〜20nmで、この点では図2と大きな違いはなかった。図4(実施例3)では、すべて塊状粒子からなり、鎖状粒子は見られない。塊状粒子の粒径は約1〜25nmで、一部に30nmを超えるものも見られた。図5(実施例4)では、ごく少量の塊状粒子を含み、鎖状粒子が発達して大きなネットワークが形成されている。鎖状粒子の細径は約10〜30nmで、この点では図2および図3と大きな違いはなかった。   From FIG. 2 (Example 1), it can be seen that there are agglomerated particles having a particle size of about 10 nm and chained particles with and without branching. The chain particles have a small diameter (thickness) of about 10 to 28 nm and a length of about several hundred nm. Of course, if the silver nanoparticles of Example 1 are pulverized, the ratio of the massive particles increases, and the length of the chain particles is reduced overall. In FIG. 3 (Example 2), the proportion of smaller massive particles is larger than that in FIG. Moreover, the ratio of the chain particles that do not have a branch is increased. The fine diameter of the chain particles was about 10 to 20 nm, and this point was not significantly different from FIG. In FIG. 4 (Example 3), all consist of massive particles, and no chain particles are seen. The particle size of the massive particles was about 1 to 25 nm, and some of them exceeded 30 nm. In FIG. 5 (Example 4), a very small amount of massive particles are included, and chain particles are developed to form a large network. The fine diameter of the chain particles was about 10 to 30 nm, and there was no significant difference from FIG. 2 and FIG. 3 in this respect.

図2、3、5のように鎖状の微粒子を有していると、鎖状の微粒子を有しない場合と比較して、導電ペースト等を塗工したときに緻密性の高い塗膜を形成しやすい。   As shown in FIGS. 2, 3, and 5, when the fine particles are chain-like, a highly dense coating film is formed when a conductive paste or the like is applied, compared to the case without the fine particles. It's easy to do.

実施例1〜4の銀ナノ粒子分散液を、ガラス容器中で、室温で24時間静置したところ、銀粒子の凝集は観察されなかった。   When the silver nanoparticle dispersion liquids of Examples 1 to 4 were allowed to stand at room temperature for 24 hours in a glass container, no aggregation of silver particles was observed.

図6に、実施例4で作製した銀ナノ粒子の、より高倍率のTEM像を示す。図下のスケールの長さは20nmを示している。図6の矢印の部分にCAB層が確認された。   FIG. 6 shows a higher-magnification TEM image of the silver nanoparticles prepared in Example 4. The length of the scale at the bottom of the figure indicates 20 nm. The CAB layer was confirmed at the portion indicated by the arrow in FIG.

図7〜9および表1に、それぞれ実施例1、2、4で作製した銀ナノ粒子の熱重量−示差熱分析(TG−DTA)の結果を示す。分析は、各分散液を秤量し、24時間自然乾燥して酢酸ブチルを蒸発させた後に行った。試料を示差熱熱重量同時測定装置(株式会社島津製作所、DTG−50H)にセットし、乾燥空気を300mL/分で流しながら、室温から600℃まで約1時間で昇温して行った。   7 to 9 and Table 1 show the results of thermogravimetric-differential thermal analysis (TG-DTA) of the silver nanoparticles prepared in Examples 1, 2, and 4, respectively. The analysis was performed after each dispersion was weighed and naturally dried for 24 hours to evaporate butyl acetate. The sample was set in a differential thermothermal gravimetric simultaneous measurement apparatus (Shimadzu Corporation, DTG-50H) and heated from room temperature to 600 ° C. in about 1 hour while flowing dry air at 300 mL / min.

いずれの試料についても、150℃付近までは重量減少はなだらかで、150℃を超えた辺りから重量減少が速くなり、300℃に近づくにつれて重量が急激に減少し、350℃付近で発熱反応のピークを示すとともに重量減少が完了した。熱重量測定で観測された重量減少のうち、150℃までの重量減少が試料に残留していた酢酸ブチルの蒸発によるもの、それ以上の温度での重量減少がCABの分解によるものと考えられる。各試料の重量減少は約8〜17%の範囲にあった。このうち150℃までの重量減少は約1%に満たないため、この数値は、それぞれの銀ナノ粒子のCAB含有量(銀とCABの重量の合計に対するCABの重量の割合)にほぼ等しいとみなすことができる。   For all samples, the decrease in weight is gentle until near 150 ° C, the decrease in weight increases rapidly from around 150 ° C, the weight decreases rapidly as it approaches 300 ° C, and the peak of exothermic reaction near 350 ° C. The weight reduction was completed. Of the weight loss observed by thermogravimetry, weight loss up to 150 ° C. is considered to be due to evaporation of butyl acetate remaining in the sample, and weight loss at higher temperatures is considered to be due to decomposition of CAB. The weight loss for each sample was in the range of about 8-17%. Since the weight loss up to 150 ° C. is less than about 1%, this value is regarded as almost equal to the CAB content of each silver nanoparticle (ratio of the weight of CAB to the total weight of silver and CAB). be able to.

(比較例1)
厚さが12μmのPETフィルム上に、5質量%のCABを含む溶液をグラビアコートで塗工し、110〜120℃以下で乾燥して、剥離層を形成した。CABの塗工量は0.06±0.01g/mであった。剥離層上に、高周波誘導加熱・真空蒸着法によって、平均厚さが15nmの銀の薄膜を形成した。銀薄膜の平均厚さは、成膜中に膜の干渉を利用して測定した値である。次に、剥離層および銀薄膜を形成したPETフィルム面に酢酸ブチルをスプレーして剥離層を溶解し、銀薄膜をドクターブレードで掻き落とした。銀薄膜は一様連続膜で、得られた銀粒子は鱗片状であった。さらに、得られた鱗片状銀粒子と溶剤である酢酸ブチルの混合物に対して超音波ホモジナイザーを用いて、鱗片状銀粒子の平均粒径が約10μmとなるように粉砕した。平均粒径はレーザー回折法によって、フラウンホーファーの近似法を用いて求めた。次いで、得られた鱗片状銀粒子分散液から遠心分離を用いて鱗片状銀粒子を回収し、回収した鱗片状銀粒子を新たに酢酸ブチルに分散させ、固形分濃度を15質量%として、比較例1の鱗片状銀粒子の分散液を得た。
(Comparative Example 1)
On a PET film having a thickness of 12 μm, a solution containing 5% by mass of CAB was applied by gravure coating and dried at 110 to 120 ° C. or less to form a release layer. The coating amount of CAB was 0.06 ± 0.01 g / m 2 . On the release layer, a silver thin film having an average thickness of 15 nm was formed by high-frequency induction heating / vacuum deposition. The average thickness of the silver thin film is a value measured using film interference during film formation. Next, butyl acetate was sprayed on the PET film surface on which the release layer and the silver thin film were formed to dissolve the release layer, and the silver thin film was scraped off with a doctor blade. The silver thin film was a uniform continuous film, and the obtained silver particles were scaly. Furthermore, the mixture of the obtained flaky silver particles and butyl acetate as a solvent was pulverized using an ultrasonic homogenizer so that the average particle diameter of the flaky silver particles was about 10 μm. The average particle diameter was determined by the laser diffraction method using the Fraunhofer approximation method. Next, the scaly silver particles were recovered from the obtained scaly silver particle dispersion using centrifugation, and the recovered scaly silver particles were newly dispersed in butyl acetate, and the solid content concentration was set to 15% by mass. A dispersion of scale-like silver particles of Example 1 was obtained.

次に、実施例1〜4および比較例1で作製した銀微粒子分散液を塗工・熱処理して、金属光沢膜を作製し、基板との密着性、膜表面の平滑性および光沢度を評価した。   Next, the silver fine particle dispersions produced in Examples 1 to 4 and Comparative Example 1 were applied and heat-treated to produce a metallic gloss film, and the adhesion to the substrate, the smoothness of the film surface, and the glossiness were evaluated. did.

大きさが76mm×26mmのスライドガラス上に、中央に50mm×10mmの部分を残して周縁部をテープでマスキングし、この中央部分に銀粒子分散液をコーティングロッドを用いて塗工し、自然乾燥させた。次に、スライドガラスを室内で60分間放置・乾燥して、またはガス雰囲気炉を用いて120℃で5分間熱処理した。熱処理方法は、スライドガラスをガス雰囲気炉に入れ、大気雰囲気中で、120℃まで10分間で昇温し、その温度で5分間保持し、室温まで自然冷却した。   On the glass slide with a size of 76 mm x 26 mm, the peripheral part is masked with tape, leaving a 50 mm x 10 mm part in the center, and the silver particle dispersion is applied to the central part with a coating rod and dried naturally. I let you. Next, the slide glass was left in the room for 60 minutes and dried, or heat-treated at 120 ° C. for 5 minutes using a gas atmosphere furnace. In the heat treatment method, the slide glass was placed in a gas atmosphere furnace, heated to 120 ° C. for 10 minutes in the air atmosphere, held at that temperature for 5 minutes, and naturally cooled to room temperature.

このように作製した金属光沢膜の厚さは、段差・表面粗さ測定器(KLA−Tencor Corp.、P−6)を用いて段差を測定して求めた。膜の厚さは、実施例1〜4、比較例1に対して、それぞれ2.8μm、2.5μm、3.9μm、4.0μm、3.0μmであった。膜はいずれも金属光沢を有していたが、実施例1〜4と比較例1を比較すると、前者がより鮮やかであった。   The thickness of the metallic glossy film thus produced was determined by measuring the level difference using a level difference / surface roughness measuring instrument (KLA-Tencor Corp., P-6). The thicknesses of the films were 2.8 μm, 2.5 μm, 3.9 μm, 4.0 μm, and 3.0 μm for Examples 1 to 4 and Comparative Example 1, respectively. All the films had a metallic luster, but when Examples 1 to 4 and Comparative Example 1 were compared, the former was more vivid.

室温で乾燥した金属光沢膜および120℃で熱処理した金属光沢膜について、基板との密着性をテープ剥離試験によって評価した。テープ剥離試験の方法はJIS K5600−5−6:1999(ISO2409:1992)に従い、膜にカッターで直角の格子パターン(格子間隔1mm、25マス)を切り込み、透明粘着テープを格子パターン上にしっかりと貼った後に剥がし、膜の状態を0〜5の6段階で評価した。なお、評価の分類は、0が最も良く(カットの縁が完全に滑らかで、どの格子の目にもはがれがない)、5が最も悪い。   For the metallic glossy film dried at room temperature and the metallic glossy film heat treated at 120 ° C., the adhesion to the substrate was evaluated by a tape peeling test. The method of the tape peeling test is in accordance with JIS K5600-5-6: 1999 (ISO 2409: 1992). A grid pattern (lattice interval 1 mm, 25 squares) is cut into the film with a cutter, and the transparent adhesive tape is firmly attached on the grid pattern. After pasting, the film was peeled off, and the state of the film was evaluated in 6 stages from 0 to 5. As for the classification of evaluation, 0 is the best (the edge of the cut is completely smooth and there is no peeling of any lattice), and 5 is the worst.

テープ剥離試験の結果は、実施例1〜4の銀ナノ粒子を用いて作製した膜は、室温で乾燥したものも120℃で熱処理したものも、いずれも0であった。これに対して、比較例1の銀ナノ粒子を用いて作製した膜は、室温で乾燥したものも120℃で熱処理したものも、いずれも3であった。   As a result of the tape peeling test, the films prepared using the silver nanoparticles of Examples 1 to 4 were 0, both dried at room temperature and heat treated at 120 ° C. On the other hand, the film produced using the silver nanoparticles of Comparative Example 1 was 3 for both those dried at room temperature and those heat-treated at 120 ° C.

室温で乾燥した金属光沢膜について、膜表面の平滑性を測定した。同じ材質の膜同士を比較する場合には、平滑性と光沢度には相関があることが知られている。測定は、表面粗さ測定器(KLA−Tencor Corp.、P−6)を用い、100μm×100μmの範囲の算術平均表面粗さRaを求めた。   The smoothness of the film surface was measured for the metallic glossy film dried at room temperature. When films of the same material are compared, it is known that there is a correlation between smoothness and glossiness. The measurement was performed using a surface roughness measuring instrument (KLA-Tencor Corp., P-6) to determine the arithmetic average surface roughness Ra in the range of 100 μm × 100 μm.

表面粗さRaの値は、比較例1の膜が0.7μmであったのに対して、実施例1〜4の膜はいずれも0.1μmで、実施例の方がより平滑な表面を有することが分かった。なお、目視による官能評価によっても、実施例1〜4の膜は、いずれも比較例1よりも鮮やかな金属光沢を示した。   The value of the surface roughness Ra was 0.7 μm for the film of Comparative Example 1, whereas the films of Examples 1 to 4 were all 0.1 μm, and the Example had a smoother surface. It turns out to have. In addition, also by visual sensory evaluation, all of the films of Examples 1 to 4 showed a brighter metallic luster than Comparative Example 1.

上記表面粗さを測定した金属光沢膜について、鏡面光沢度を測定した。測定は、光沢計(日本電色工業株式会社、VG−7000)を用い、JIS Z8741「鏡面光沢度−測定方法」に準拠した平行光方式で、入射角を20°および60°として行った。結果を表2に示す。得られた数値が大きいほど、高い鏡面光沢性を有することを示している。   The specular glossiness was measured for the metallic gloss film whose surface roughness was measured. The measurement was performed by using a gloss meter (Nippon Denshoku Industries Co., Ltd., VG-7000) with a parallel light system conforming to JIS Z8741 “Specular Glossiness—Measurement Method” with incident angles of 20 ° and 60 °. The results are shown in Table 2. It shows that it has high specular gloss, so that the obtained numerical value is large.

なお、本発明は上記の実施形態、実施例に限定されるものではなく、本発明の技術的思想の範囲内で種々の変更が可能である。例えば、上記実施形態および実施例では1種の金属からなる微粒子の製造方法について説明したが、剥離層上にある金属の核が形成された後に別の金属を堆積すれば、2種の金属が接合した島状構造膜を形成することができ、2種の金属が接合した金属微粒子を得ることができる。   In addition, this invention is not limited to said embodiment and an Example, A various change is possible within the range of the technical idea of this invention. For example, in the above-described embodiments and examples, the method for producing fine particles made of one type of metal has been described. However, if another metal is deposited after the metal nucleus on the release layer is formed, the two types of metal can be obtained. A joined island-like structure film can be formed, and metal fine particles in which two kinds of metals are joined can be obtained.

Claims (7)

基体上に有機物からなる剥離層を形成する工程と、
前記剥離層の直上に無機物の島状構造膜を形成する工程と、
前記剥離層を溶解して前記島状構造膜を剥離する工程とを有する、
無機微粒子の製造方法。
Forming a release layer made of an organic material on a substrate;
Forming an inorganic island-like structure film directly on the release layer;
Dissolving the release layer and peeling the island-shaped structure film,
A method for producing inorganic fine particles.
前記無機微粒子が、分岐を有する又は有しない鎖状の微粒子を含む、
請求項1に記載の無機微粒子の製造方法。
The inorganic fine particles include chain-shaped fine particles with or without branching.
The method for producing inorganic fine particles according to claim 1.
前記島状構造膜を形成する工程が真空蒸着工程である、
請求項1または請求項2に記載の無機微粒子の製造方法。
The step of forming the island-shaped structure film is a vacuum deposition step.
The method for producing inorganic fine particles according to claim 1 or 2.
前記島状構造膜の平均膜厚が1〜20nmである、
請求項1〜3のいずれか一項に記載の無機微粒子の製造方法。
The island-shaped structure film has an average film thickness of 1 to 20 nm.
The manufacturing method of the inorganic fine particle as described in any one of Claims 1-3.
前記無機物が、銀、金、アルミニウム、銅、クロム、ニッケル、珪素、チタン、白金、酸化アルミニウム、酸化珪素、酸化チタン、硫化亜鉛からなる群より選ばれる1種以上の無機物である、
請求項1〜4のいずれか一項に記載の無機微粒子の製造方法。
The inorganic material is one or more inorganic materials selected from the group consisting of silver, gold, aluminum, copper, chromium, nickel, silicon, titanium, platinum, aluminum oxide, silicon oxide, titanium oxide, and zinc sulfide.
The manufacturing method of the inorganic fine particle as described in any one of Claims 1-4.
前記無機物が銀であり、
前記島状構造膜を形成する工程が真空蒸着工程である、
請求項1〜5のいずれか一項に記載の無機微粒子の製造方法。
The inorganic material is silver;
The step of forming the island-shaped structure film is a vacuum deposition step.
The manufacturing method of the inorganic fine particle as described in any one of Claims 1-5.
前記剥離層がセルロース・アセテート・ブチレートからなる、
請求項1〜6のいずれか一項に記載の無機微粒子の製造方法。
The release layer is made of cellulose acetate butyrate,
The manufacturing method of the inorganic fine particle as described in any one of Claims 1-6.
JP2012184062A 2012-08-23 2012-08-23 Method for producing inorganic fine particles Active JP5646563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184062A JP5646563B2 (en) 2012-08-23 2012-08-23 Method for producing inorganic fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184062A JP5646563B2 (en) 2012-08-23 2012-08-23 Method for producing inorganic fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014181345A Division JP2015034345A (en) 2014-09-05 2014-09-05 Method for producing inorganic nanoparticle

Publications (2)

Publication Number Publication Date
JP2014040644A true JP2014040644A (en) 2014-03-06
JP5646563B2 JP5646563B2 (en) 2014-12-24

Family

ID=50393121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184062A Active JP5646563B2 (en) 2012-08-23 2012-08-23 Method for producing inorganic fine particles

Country Status (1)

Country Link
JP (1) JP5646563B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326302A (en) * 1986-07-18 1988-02-03 Kiyoshi Mizushima Production of ultrafine powder
JP2005007549A (en) * 2003-06-20 2005-01-13 National Institute Of Advanced Industrial & Technology Manufacturing method of asymmetric nano particle, asymmetric nano particle obtained by the method and its organism
JP2010047807A (en) * 2008-08-22 2010-03-04 Seiko Epson Corp Compounded metal thin film particle, dispersion of compounded metal thin film particle, ink for producing conductive circuit, method for producing conductive circuit and conductive circuit
JP2011052041A (en) * 2009-08-31 2011-03-17 Oike Ind Co Ltd Scaly thin film fine powder dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326302A (en) * 1986-07-18 1988-02-03 Kiyoshi Mizushima Production of ultrafine powder
JP2005007549A (en) * 2003-06-20 2005-01-13 National Institute Of Advanced Industrial & Technology Manufacturing method of asymmetric nano particle, asymmetric nano particle obtained by the method and its organism
JP2010047807A (en) * 2008-08-22 2010-03-04 Seiko Epson Corp Compounded metal thin film particle, dispersion of compounded metal thin film particle, ink for producing conductive circuit, method for producing conductive circuit and conductive circuit
JP2011052041A (en) * 2009-08-31 2011-03-17 Oike Ind Co Ltd Scaly thin film fine powder dispersion

Also Published As

Publication number Publication date
JP5646563B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6715383B1 (en) Flake-shaped indium particles and method for producing the same, bright pigment, water-based paint, water-based ink, and coating film
Joo et al. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics
CN102575117B (en) For improving the purifying of the metal Nano structure of the transparent conductor mist degree be made up of metal Nano structure
Kaewvilai et al. Electroless copper plating on nano-silver activated glass substrate: A single-step activation
Kao et al. Electroless copper plating onto printed lines of nanosized silver seeds
KR20130050906A (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
Yonezawa et al. Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers
TW201401949A (en) Production method of transparent conductive pattern
KR20110108272A (en) Low temperature sinterable metal nano particle composition and electronic article formed by using the composition
JP6134093B2 (en) Conductive fine powder and conductive fine powder dispersion
Hong et al. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer
He et al. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying
JP2015034345A (en) Method for producing inorganic nanoparticle
JP5646563B2 (en) Method for producing inorganic fine particles
JP5552145B2 (en) Silver particle dispersion, conductive film, and method for producing silver particle dispersion
Zhao et al. Microstructure and strong optical absorption property of the Ag/Al2O3 nano-films
Lu et al. Low temperature preparation of ITO thin films by the coating solutions containing solvothermally synthesized ITO nanoparticles
Ye et al. Coating of ZnO nanorods with nanosized silver particles by electroless plating process
JP5974144B2 (en) Conductive fine powder and method for producing conductive fine powder dispersion
CN104928642A (en) Preparation method of molybdenum dioxide nanowire arrays
JPWO2010090158A1 (en) Transparent conductive film laminated substrate and method for producing the same
Wang et al. Fabrication and characterization of flaky core–shell particles by magnetron sputtering silver onto diatomite
JP2015068736A (en) Surface-enhanced spectroscopic substrate
Soccol et al. Effect of carbon modification of particles on their incorporation rate during electrodeposition
Exbrayat et al. Role of Ceria Nanoparticles on the Electrodeposited Zinc Coating's Growth: Interest of a TEM-Scale Investigation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250