JP2005005276A - Nonaqueous electrolyte liquid secondary battery - Google Patents

Nonaqueous electrolyte liquid secondary battery Download PDF

Info

Publication number
JP2005005276A
JP2005005276A JP2004253358A JP2004253358A JP2005005276A JP 2005005276 A JP2005005276 A JP 2005005276A JP 2004253358 A JP2004253358 A JP 2004253358A JP 2004253358 A JP2004253358 A JP 2004253358A JP 2005005276 A JP2005005276 A JP 2005005276A
Authority
JP
Japan
Prior art keywords
secondary battery
binder
copolymer
electrolyte secondary
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253358A
Other languages
Japanese (ja)
Inventor
Kaoru Nakajima
薫 中島
Seiichi Ikuyama
清一 生山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004253358A priority Critical patent/JP2005005276A/en
Publication of JP2005005276A publication Critical patent/JP2005005276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte liquid secondary battery capable of increasing a charging/discharging load by using a crystallization-inhibiting binder. <P>SOLUTION: The nonaqueous electrolyte liquid secondary battery uses an electrode formed by laminating electrode mixtures containing electrode activator particles and the binder on a current collector. The binder is a copolymer of vinylidene fluoride momomer and a momomer having a side chain. As for the composition of the copolymer, a molar ratio of the monomer having the side chain to the vinylidene fluoride monomer is 0.001 to 0.05 (0.1 to 5 mole %). An average molecular weight of the copolymer is 50,000 to 200,000. The monomer having the side chain contains at least one kind selected from styrene, vinyl acetate, propylene, or isoprene. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えばリチウムイオン二次電池などに適用して好適な非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery suitable for application to, for example, a lithium ion secondary battery.

従来、リチウムイオン二次電池の電極の製造においては、電極活物質をバインダー溶液に分散させた懸濁液を集電体に塗布する工程が採られていた。   Conventionally, in manufacturing an electrode of a lithium ion secondary battery, a step of applying a suspension in which an electrode active material is dispersed in a binder solution to a current collector has been adopted.

ここで、バインダーとしては、ポリフッ化ビニリデンが多く用いられていた。   Here, polyvinylidene fluoride was often used as the binder.

しかしながら、このポリフッ化ビニリデンは、結晶性を持つため、電解液の分子の流通が難しく、充放電の負荷を大きくすることが出来なかった。ポリフッ化ビニリデンは、一般には結晶化度が50%程度である。この結晶が融解する温度は140℃近辺にあり、このために−20°〜0℃で用いる電池としては、この結晶構造が性能を阻害していた。   However, since this polyvinylidene fluoride has crystallinity, it is difficult to distribute the molecules of the electrolytic solution, and the charge / discharge load cannot be increased. Polyvinylidene fluoride generally has a crystallinity of about 50%. The temperature at which this crystal melts is in the vicinity of 140 ° C. For this reason, this crystal structure hinders the performance of a battery used at −20 ° C. to 0 ° C.

一方、この分子構造が柔軟性に欠けるという点は、集電体への接着性にも難点をもたらしており、電池をくり返し使用中に、電極合剤が部分的に、あるいはひどい時は全体的にはがれてきて、負荷特性が悪くなったり、容量劣化が起こったりするといった問題があった。   On the other hand, the lack of flexibility of this molecular structure also brings about a difficulty in adhesion to the current collector, and the electrode mixture is partially or severely used repeatedly during repeated use of the battery. As a result, the load characteristics deteriorated and the capacity deteriorated.

本発明は、このような課題に鑑みてなされたものであり、結晶性を阻害するバインダーを用いて、充放電の負荷を大きくすることができる非水電解液二次電池を得ることを目的とする。   This invention is made | formed in view of such a subject, and it aims at obtaining the nonaqueous electrolyte secondary battery which can enlarge the load of charging / discharging using the binder which inhibits crystallinity. To do.

本発明の非水電解液二次電池は、正極活物質とバインダーを含有する正極合剤を正極集電体両面に塗布した正極と、負極活物質とバインダーを含有する負極合剤を負極集電体両面に塗布した負極を、セパレータを介して巻回した非水電解液二次電池において、このバインダーが、フッ化ビニリデンモノマーと側鎖を持つモノマーとの共重合体であり、共重合体の平均分子量が、50,000〜200,000である。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode in which a positive electrode mixture containing a positive electrode active material and a binder is applied on both sides of a positive electrode current collector, and a negative electrode mixture containing a negative electrode active material and a binder. In a non-aqueous electrolyte secondary battery in which the negative electrode applied on both sides of the body is wound through a separator, this binder is a copolymer of a vinylidene fluoride monomer and a monomer having a side chain, The average molecular weight is 50,000 to 200,000.

また、本発明の非水電解液二次電池は、共重合体の組成が、全モノマーに対する側鎖をもつモノマーのモル比が、0.001〜0.05(0.1〜5モル%)である上述構成の非水電解液二次電池である。   In the non-aqueous electrolyte secondary battery of the present invention, the copolymer composition has a molar ratio of monomers having side chains to all monomers of 0.001 to 0.05 (0.1 to 5 mol%). This is a non-aqueous electrolyte secondary battery having the above-described configuration.

また、本発明の非水電解液二次電池は、側鎖をもつモノマーが、スチレン、酢酸ビニル、プロピレン、またはイソプレンの中から選ばれる一種を少なくとも含む上述構成の非水電解液二次電池である。   Further, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having the above-described configuration in which the monomer having a side chain includes at least one selected from styrene, vinyl acetate, propylene, or isoprene. is there.

また、本発明の非水電解液二次電池は、正極活物質がリチウム複合酸化物からなる上述構成の非水電解液二次電池である。   The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having the above-described configuration in which the positive electrode active material is made of a lithium composite oxide.

また、本発明の非水電解液二次電池は、負極活物質が炭素材料からなる上述構成の非水電解液二次電池である。   The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having the above-described configuration in which the negative electrode active material is made of a carbon material.

本発明の非水電解液二次電池によれば、電極活物質粒子とバインダーを含有する電極合剤を、集電体上に積層した電池電極を用いる非水電解液二次電池において、このバインダーを、フッ化ビニリデンモノマーと側鎖をもつモノマーとの共重合体とすることにより、バインダーの結晶化を防止することができ、充放電の負荷を大きくすることができる。   According to the non-aqueous electrolyte secondary battery of the present invention, in a non-aqueous electrolyte secondary battery using a battery electrode in which an electrode mixture containing electrode active material particles and a binder is laminated on a current collector, this binder is used. Is a copolymer of a vinylidene fluoride monomer and a monomer having a side chain, crystallization of the binder can be prevented, and the charge / discharge load can be increased.

以上説明したように、本発明によれば、ポリフッ化ビニリデンに、スチレンモノマーのようなフェニル基というかさ高い基を共重合で導入することにより、共重合体の結晶化を阻害することができ、電池特性としては、充放電の負荷を大きくすることができる。
また、この効果は、フェニル基に限らず、1,2−ブタジエン共重合物、酢酸ビニル共重合体のような、それぞれビニル基(−CH=CH)やアセトキシ基(−OCOCH )のような置換基でもかさ高いため、同様に得ることができる。
As described above, according to the present invention, by introducing a bulky group such as a phenyl group such as a styrene monomer into a polyvinylidene fluoride by copolymerization, crystallization of the copolymer can be inhibited, As battery characteristics, the charge / discharge load can be increased.
In addition, this effect is not limited to phenyl groups, such as 1,2-butadiene copolymers and vinyl acetate copolymers, such as vinyl groups (—CH═CH 2 ) and acetoxy groups (—OCOCH 3 ), respectively. Even a small substituent can be obtained similarly because it is bulky.

以下、非水電解液二次電池にかかる発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the invention relating to a nonaqueous electrolyte secondary battery will be described.

上述のように、本発明の非水電解液二次電池は、バインダーとしてフッ化ビニリデンを共重合体の一成分とし、これにかさ高い側鎖をもったモノマーを共重合させたものを用いる。   As described above, the non-aqueous electrolyte secondary battery of the present invention uses a vinylidene fluoride as a component of a copolymer as a binder and a copolymer with a monomer having a bulky side chain.

また、共重合体の数平均分子量が50,000〜200,000のものを用いる。ここで、数平均分子量が、50,000より小さくなると引っ張り強さなどの機械的強度が小さくなりすぎ、バインダーとして用いることができなくなる。また、数平均分子量が200,000より大きくなると、溶媒に溶かしても粘度が高くて集電体への塗布が困難となる。   Further, a copolymer having a number average molecular weight of 50,000 to 200,000 is used. Here, if the number average molecular weight is smaller than 50,000, the mechanical strength such as tensile strength becomes too small and it cannot be used as a binder. On the other hand, when the number average molecular weight is larger than 200,000, even if dissolved in a solvent, the viscosity is high and application to the current collector becomes difficult.

また、全モノマーに対する側鎖をもつモノマーのモル比は0.001〜0.05(0.1〜5モル%)である。ここで、モル比が0.001より小さいと、共重合体の結晶化を防止することができない。また、モル比が0.05より大きくなると、共重合体を合成する際溶媒を変える必要があり、既存の製造プロセスを用いることができなくなる。   Moreover, the molar ratio of the monomer having a side chain to the total monomer is 0.001 to 0.05 (0.1 to 5 mol%). Here, when the molar ratio is less than 0.001, crystallization of the copolymer cannot be prevented. On the other hand, when the molar ratio is larger than 0.05, it is necessary to change the solvent when synthesizing the copolymer, and the existing production process cannot be used.

また、フッ化ビニリデンに共重合させるかさ高い側鎖をもったモノマーとして、スチレン、酢酸ビニル、プロピレン、イソプレンの中から少くとも一種類選んだものを用いる。これらのものは、価格が安く、電解液とも反応しにくい特徴を持っている。また、特に酢酸ビニルやイソプレンを用いた共重合体は、柔らかく接着効果も大きい。
このほか、かさ高い側鎖をもったモノマーとしては、ビニルピリジン、N−ビニル−2−ピロリドン、N−ビニルカルバゾールブタジエン、パラメトキシスチレン、メチルメタクリレート、メチルアクリレート、ブチルアクリレート、ヘプチルアクリレート、酢酸イソプロペニルなどが用いることができることはもちろんである。
As the monomer having a bulky side chain to be copolymerized with vinylidene fluoride, at least one selected from styrene, vinyl acetate, propylene and isoprene is used. These products are inexpensive and difficult to react with the electrolyte. In particular, a copolymer using vinyl acetate or isoprene is soft and has a large adhesive effect.
In addition, monomers having bulky side chains include vinyl pyridine, N-vinyl-2-pyrrolidone, N-vinyl carbazole butadiene, paramethoxy styrene, methyl methacrylate, methyl acrylate, butyl acrylate, heptyl acrylate, isopropenyl acetate. Of course, etc. can be used.

以下、本発明非水電解液二次電池の実施例について、図1及び図2を参照しながら説明しよう。
まず、本例で用いたバインダーの説明をする前に、従来用いられているバインダーについて、その化学構造を説明する。次式化1はポリフッ化ビニリデン(PVdF)である。
Hereinafter, examples of the nonaqueous electrolyte secondary battery of the present invention will be described with reference to FIGS. 1 and 2.
First, before describing the binder used in this example, the chemical structure of a conventionally used binder will be described. Formula 1 is polyvinylidene fluoride (PVdF).

Figure 2005005276
Figure 2005005276

このポリフッ化ビニリデンのポリマーは分子パッキングが良いため、図3に示すように、結晶化しやすい性質を持つものである。図3のように、固体状態の中では部分的に結晶部分1aがあり、この結晶部分1aの間はポリマーのアモルファス部分1bで満たされている。   Since this polyvinylidene fluoride polymer has good molecular packing, it has the property of being easily crystallized as shown in FIG. As shown in FIG. 3, in the solid state, there is partly a crystal part 1a, and the space between the crystal parts 1a is filled with an amorphous part 1b of the polymer.

このポリフッ化ビニリデンを電極剤のバインダーとして用いた場合は、結晶化度が50%にも達するようなバインダーでは、図4のように電極剤2(例えば、正極:LiCoO、負極:Carbon)をとりかこむことになる。 When this polyvinylidene fluoride is used as a binder for an electrode agent, the electrode agent 2 (for example, positive electrode: LiCoO 2 , negative electrode: Carbon) is used as shown in FIG. Will be involved.

こういう状態であると、電解液中のLi+ の輸送が重要な電池では、結晶部分はLi+ の通路となり得ず阻害として働き、正極剤から負極剤あるいはその逆方向へのLi+ のやりとりが阻害されることになる。 In such a state, in a battery in which the transport of Li + in the electrolyte is important, the crystal part cannot act as a Li + passage and acts as an inhibition, and exchange of Li + from the positive electrode agent to the negative electrode agent or vice versa is possible. Will be disturbed.

かかる状況を鑑み発明者らは、結晶化を防ぎ電解液の流通を良くするものはないかと鋭意努力した結果、ポリフッ化ビニリデンの分子中に、かさ高い置換基をもったビニル化合物を共重合させることにより目的が達せられることを見出した。   In view of this situation, the inventors have made intensive efforts to prevent crystallization and improve the flow of the electrolyte, and as a result, copolymerize a vinyl compound having a bulky substituent in the polyvinylidene fluoride molecule. I found out that the purpose was achieved.

なお、実施例に用いた共重合体は、フッ化ビニリデンとスチレンあるいは酢酸ビニルを一定量加え、ラジカル共重合で得られた。共重合パーセントは、0.1〜5%の範囲であった。   The copolymer used in the examples was obtained by radical copolymerization with a certain amount of vinylidene fluoride and styrene or vinyl acetate added. The percent copolymerization was in the range of 0.1-5%.

実施例1
本例では、バインダーとして、次に組成のものを用いた。すなわち、フッ化ビニリデンモノマーとスチレンモノマーの共重合体である。その共重合体の組成は、以下の通りである。
フッ化ビニリデン 単位 98モル%
スチレン 単位 2モル%
(分子量 Mn=150,000)
この共重合体の構造式は、以下の化2で示される。
Example 1
In this example, the binder having the following composition was used. That is, it is a copolymer of vinylidene fluoride monomer and styrene monomer. The composition of the copolymer is as follows.
Vinylidene fluoride unit 98 mol%
Styrene unit 2 mol%
(Molecular weight Mn = 150,000)
The structural formula of this copolymer is represented by the following chemical formula 2.

Figure 2005005276
Figure 2005005276

この共重合体(化2)の結晶性は、X線回折による分析の結果、0であることが判明した。   The crystallinity of this copolymer (Chemical Formula 2) was found to be 0 as a result of analysis by X-ray diffraction.

この共重合体(化2)をバインダーとして用いて電極ミックスを作成し電池とした。ここで、ミックスの組成以外は、プロセスも全く従来法と同じである。ミックスの組成は、以下に示すとおりである。   An electrode mix was prepared using this copolymer (Chemical Formula 2) as a binder to obtain a battery. Here, except for the composition of the mix, the process is completely the same as the conventional method. The composition of the mix is as shown below.

正極ミックス
LiCoO 68重量部
導電性カ−ボン 3重量部
バインダー(化2) 3重量部
溶媒(N−メチルピロリドン) 25重量部
Positive electrode mix LiCoO 2 68 parts by weight Conductive carbon 3 parts by weight Binder (Chemical Formula 2) 3 parts by weight Solvent (N-methylpyrrolidone) 25 parts by weight

負極ミックス
フルフリルアルコール樹脂焼成体 47重量部
バインダー(化2) 5重量部
溶媒(N−メチルピロリドン) 47重量部
Negative electrode mix Furfuryl alcohol resin fired body 47 parts by weight Binder (Chemical formula 2) 5 parts by weight Solvent (N-methylpyrrolidone) 47 parts by weight

プロセスの概略は、図1に示すとおりである。ここで、図1を参照しながら、本例の非水電解液二次電池の製造工程を説明する。   The outline of the process is as shown in FIG. Here, the manufacturing process of the nonaqueous electrolyte secondary battery of this example will be described with reference to FIG.

まず、正極活物質としてのリチウム・コバルト複合酸化物(LiCoO)を次のように合成する。市販の炭酸リチウム粉末(Li Co)と炭酸コバルト(CoCO )とをリチウム原子及びコバルト原子の比率が1:1となくように計算し、振動ミルを用いて充分に混合した後、空気中で電気炉を用いて900℃で5時間焼成し、その後、自動乳鉢を用いて粉砕して、LiCoO粉末を得る。 First, lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material is synthesized as follows. A commercially available lithium carbonate powder (Li 2 Co 3 ) and cobalt carbonate (CoCO 3 ) were calculated so that the ratio of lithium atom and cobalt atom was not 1: 1, and after thoroughly mixing using a vibration mill, air It is fired at 900 ° C. for 5 hours in an electric furnace, and then pulverized using an automatic mortar to obtain LiCoO 2 powder.

次に、正極を次のようにしてつくる。上述の合成されたリチウム・コバルト複合酸化物(LiCoO)を正極活物質として用い、この正極活物質68重量部に導電材として導電性カ−ボン4重量部、バインダー(化2)3重量部を加えてから混合して、正極ミックスをつくる。そして、これらの正極ミックスを溶剤N−メチル−2−ピロリドン25重量部に分散させて、スラリーにする。 Next, a positive electrode is produced as follows. Using the synthesized lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 4 parts by weight of conductive carbon as a conductive material, 68 parts by weight of this positive electrode active material, and 3 parts by weight of binder (Chemical Formula 2) And then mix to make a positive mix. Then, these positive electrode mixes are dispersed in 25 parts by weight of a solvent N-methyl-2-pyrrolidone to form a slurry.

次に、これらの正極ミックススラリーを、正極集電体としてのアルミニウム箔の両面に均一に塗布して乾燥し、その後に、ローラープレス機により圧縮成型し、さらに裁断して帯状の正極を得る。   Next, these positive electrode mix slurries are uniformly applied to both sides of an aluminum foil as a positive electrode current collector and dried, and then compression molded by a roller press machine and further cut to obtain a strip-shaped positive electrode.

一方、負極は次のようにしてつくる。粉砕したフルフリルアルコール樹脂焼成体を負極活物質として用い、このフルフリルアルコール樹脂焼成体47重量部及びバインダー(化2)5重量部を加えてから混合して、負極ミックスとする。そして、この負極ミックスを溶剤N−メチル−2−ピロリドン47重量部に分散させて、スラリーにする。次に、この負極ミックススラリーを、負極集電体としての銅箔の両側に均一に塗布して、乾燥する。乾燥後に、ローラープレス機により圧縮成型し、さらに裁断して帯状の負極を得る   On the other hand, the negative electrode is produced as follows. Using the pulverized furfuryl alcohol resin fired body as a negative electrode active material, 47 parts by weight of this furfuryl alcohol resin fired body and 5 parts by weight of binder (Chemical Formula 2) are added and mixed to obtain a negative electrode mix. Then, this negative electrode mix is dispersed in 47 parts by weight of a solvent N-methyl-2-pyrrolidone to form a slurry. Next, this negative electrode mix slurry is uniformly applied to both sides of a copper foil as a negative electrode current collector and dried. After drying, it is compression molded with a roller press and further cut to obtain a strip-shaped negative electrode

次に、厚さ25μmの微孔性ポリプロピレンフィルムからなる一対のセパレータを、負極、セパレータ、正極、セパレータの順序で積層してから、この積層体を巻芯上に渦巻型に多数回巻回することによって、巻回体を作製する。   Next, after laminating a pair of separators made of a microporous polypropylene film having a thickness of 25 μm in the order of negative electrode, separator, positive electrode, and separator, this laminate is wound many times in a spiral shape on the core. Thus, a wound body is produced.

そして、以上のような巻回体及び非水電解質(六フッ化リン酸リチウムを1モル/L溶解した炭酸プロピレンと、1,2−ジメトキシエタンとを混合して得たもの)を用いて、非水電解質二次電池を作製できる。この場合、上記非水電解質二次電池は、例えば直径20.5mm、高さ42mmの円筒形とすることができ、通常に充電されると、約4.2Vの電圧で使用できるものである。また、実行電極面積は、正極負極とも、680cmである。 And using the winding body and non-aqueous electrolyte as described above (obtained by mixing propylene carbonate in which 1 mol / L of lithium hexafluorophosphate was dissolved and 1,2-dimethoxyethane), A non-aqueous electrolyte secondary battery can be produced. In this case, the non-aqueous electrolyte secondary battery can have a cylindrical shape having a diameter of 20.5 mm and a height of 42 mm, for example, and can be used at a voltage of about 4.2 V when charged normally. In addition, the effective electrode area is 680 cm 2 for both the positive electrode and the negative electrode.

実施例2
ここでは、バインダーとしてフッ化ビニリデンと酢酸ビニルの共重合体を用いた。この共重合体は、フッ化ビニリデンと酢酸ビニルを所定量混合しラジカル共重合して得られたものである。このバインダーの共重合組成は酢酸ビニル成分が2モル%であった。これをバインダーとして用いて実施例1と全く同じプロセスで電池を作成した。用いたバインダーの結晶化度はゼロであった。
Example 2
Here, a copolymer of vinylidene fluoride and vinyl acetate was used as a binder. This copolymer is obtained by radical copolymerization of a predetermined amount of vinylidene fluoride and vinyl acetate. The copolymer composition of this binder was 2 mol% of vinyl acetate component. Using this as a binder, a battery was produced in exactly the same process as in Example 1. The binder used had a crystallinity of zero.

比較例
ここでは、バインダーとして化1で示される従来のポリフッ化ビニリデン(分子量 Mn=100,000〜200,000)を用いた。これをバインダーとして用いて実施例1と全く同じプロセスで電池を作成した。
Comparative Example Here, a conventional polyvinylidene fluoride represented by Chemical Formula 1 (molecular weight Mn = 100,000 to 200,000) was used as a binder. Using this as a binder, a battery was produced in exactly the same process as in Example 1.

次に、上述実施例1、2及び比較例で得られた電池について、電池の負荷特性を測定した。測定条件は、以下に示すとおりである。
充電:定電圧(4.2V)定電流(1A)で5時間充電する。
放電:定電流で放電し、2.75Vに達したところで放電を終了する。
Next, the battery load characteristics were measured for the batteries obtained in Examples 1 and 2 and the comparative example. The measurement conditions are as shown below.
Charge: Charge for 5 hours at a constant voltage (4.2 V) and a constant current (1 A).
Discharge: Discharge with a constant current, and when the voltage reaches 2.75 V, the discharge ends.

電池の負荷特性の測定結果は図2に示すとおりである。ここで、0.2Aの定電流放電時の容量を100%とした。図2からわかるように、結晶化度が0のバインダー(実施例1及び2)を用いた電池ほど大電流で動作が可能である。これは、バインダーに結晶化した部分が無いと分子間に適度なすきまが生じ、電解液の流通が良くなり、負荷特性が良くなるものと思われる。   The measurement results of the load characteristics of the battery are as shown in FIG. Here, the capacity at constant current discharge of 0.2 A was set to 100%. As can be seen from FIG. 2, a battery using a binder having a crystallinity of 0 (Examples 1 and 2) can operate at a larger current. This is presumably that when there is no crystallized portion in the binder, an appropriate gap is generated between the molecules, the flow of the electrolyte is improved, and the load characteristics are improved.

以上のことから、本例によれば、ポリフッ化ビニリデンに、スチレンモノマーのようなフェニル基というかさ高い基を共重合で導入したところ、結晶性を阻害することが出来て、電池特性としては、充放電の負荷を大きくすることができる。
また、この効果は、フェニル基に限らず、1,2−ブタジエン共重合物、酢酸ビニル共重合体のような、それぞれビニル基(−CH=CH)やアセトキシ基(−OCOCH )のような置換基でもかさ高いため、同様に得ることができる。
From the above, according to this example, when a bulky group such as a phenyl group such as a styrene monomer was introduced into polyvinylidene fluoride by copolymerization, the crystallinity could be inhibited, and the battery characteristics were as follows: The charge / discharge load can be increased.
In addition, this effect is not limited to phenyl groups, such as 1,2-butadiene copolymers and vinyl acetate copolymers, such as vinyl groups (—CH═CH 2 ) and acetoxy groups (—OCOCH 3 ), respectively. Even a small substituent can be obtained similarly because it is bulky.

なお、本発明は上述の実施例に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。   The present invention is not limited to the above-described embodiments, and various other configurations can be adopted without departing from the gist of the present invention.

本発明非水電解液二次電池の製造工程図である。It is a manufacturing-process figure of this invention nonaqueous electrolyte secondary battery. 本発明非水電解液二次電池の負荷特性を示す説明図である。It is explanatory drawing which shows the load characteristic of this invention nonaqueous electrolyte secondary battery. ポリフッ化ビニリデンの結晶化状態を示すモデル図である。It is a model figure which shows the crystallization state of a polyvinylidene fluoride. ポリフッ化ビニリデンと電極剤の接着状態を示すモデル図である。It is a model figure which shows the adhesion state of a polyvinylidene fluoride and an electrode agent.

Claims (5)

正極活物質とバインダーを含有する正極合剤を正極集電体両面に塗布した正極と、負極活物質とバインダーを含有する負極合剤を負極集電体両面に塗布した負極を、セパレータを介して巻回した非水電解液二次電池において、
上記バインダーは、フッ化ビニリデンモノマーと側鎖を持つモノマーとの共重合体であり、共重合体の平均分子量は、50,000〜200,000であることを特徴とする非水電解液二次電池。
A positive electrode in which a positive electrode mixture containing a positive electrode active material and a binder is applied to both sides of the positive electrode current collector, and a negative electrode in which a negative electrode mixture containing a negative electrode active material and a binder is applied to both sides of the negative electrode current collector are interposed via a separator. In a wound non-aqueous electrolyte secondary battery,
The binder is a copolymer of a vinylidene fluoride monomer and a monomer having a side chain, and the average molecular weight of the copolymer is 50,000 to 200,000. battery.
共重合体の組成は、全モノマーに対する側鎖をもつモノマーのモル比が、0.001〜0.05(0.1〜5モル%)であることを特徴とする請求項1に記載の非水電解液二次電池。   The composition of the copolymer is such that the molar ratio of monomers having side chains to all monomers is 0.001 to 0.05 (0.1 to 5 mol%). Water electrolyte secondary battery. 側鎖をもつモノマーは、スチレン、酢酸ビニル、プロピレン、またはイソプレンの中から選ばれる一種を少なくとも含むことを特徴とする請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the monomer having a side chain includes at least one selected from styrene, vinyl acetate, propylene, and isoprene. 正極活物質がリチウム複合酸化物からなることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is made of a lithium composite oxide. 負極活物質が炭素材料からなることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is made of a carbon material.
JP2004253358A 2004-08-31 2004-08-31 Nonaqueous electrolyte liquid secondary battery Pending JP2005005276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253358A JP2005005276A (en) 2004-08-31 2004-08-31 Nonaqueous electrolyte liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253358A JP2005005276A (en) 2004-08-31 2004-08-31 Nonaqueous electrolyte liquid secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04011994A Division JP3610589B2 (en) 1994-03-10 1994-03-10 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005005276A true JP2005005276A (en) 2005-01-06

Family

ID=34101477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253358A Pending JP2005005276A (en) 2004-08-31 2004-08-31 Nonaqueous electrolyte liquid secondary battery

Country Status (1)

Country Link
JP (1) JP2005005276A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123956A (en) * 2010-12-07 2012-06-28 Hitachi Ltd Lithium secondary battery
WO2015016283A1 (en) * 2013-08-01 2015-02-05 協立化学産業株式会社 Binder for non-aqueous electricity storage element, and non-aqueous electricity storage element
JPWO2013151062A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Positive electrode paste for batteries
JPWO2013150778A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Battery positive electrode and battery
JP2021051838A (en) * 2019-09-21 2021-04-01 Tdk株式会社 Lithium secondary battery
JP2021153029A (en) * 2020-03-25 2021-09-30 Tdk株式会社 Positive electrode active material layer, positive electrode using the same, and secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123956A (en) * 2010-12-07 2012-06-28 Hitachi Ltd Lithium secondary battery
JPWO2013151062A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Positive electrode paste for batteries
JPWO2013150778A1 (en) * 2012-04-03 2015-12-17 株式会社Gsユアサ Battery positive electrode and battery
US10211460B2 (en) 2012-04-03 2019-02-19 Gs Yuasa International Ltd. Positive electrode for battery, and battery
WO2015016283A1 (en) * 2013-08-01 2015-02-05 協立化学産業株式会社 Binder for non-aqueous electricity storage element, and non-aqueous electricity storage element
CN105453306A (en) * 2013-08-01 2016-03-30 协立化学产业株式会社 Binder for non-aqueous electricity storage element, and non-aqueous electricity storage element
TWI627784B (en) * 2013-08-01 2018-06-21 Kyoritsu Chemical & Co Ltd Non-aqueous storage element bonding agent and non-aqueous storage element
JP2021051838A (en) * 2019-09-21 2021-04-01 Tdk株式会社 Lithium secondary battery
JP7314739B2 (en) 2019-09-21 2023-07-26 Tdk株式会社 lithium secondary battery
JP2021153029A (en) * 2020-03-25 2021-09-30 Tdk株式会社 Positive electrode active material layer, positive electrode using the same, and secondary battery
JP7400580B2 (en) 2020-03-25 2023-12-19 Tdk株式会社 Positive electrode active material layer, positive electrode and secondary battery using the same

Similar Documents

Publication Publication Date Title
JP7034409B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
TWI345847B (en) Lithium secondary batteries with enhanced safety and performance
CN106848160A (en) Porous layer
JP5713198B2 (en) Method for manufacturing lithium secondary battery
CN102318108A (en) Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
KR20110111482A (en) Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry
CN103891003A (en) Protective film and composition for preparing same, slurry, and electrical storage device
JP2010034024A (en) Lithium-ion secondary battery
JP7361116B2 (en) Compositions for electrochemical devices, positive electrode mixtures, positive electrode structures, and secondary batteries
WO2016147857A1 (en) Binder resin composition, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2003187799A (en) Non-aqueous electrolyte battery
JP2013073670A (en) Lithium secondary battery and manufacturing method thereof
US20080206645A1 (en) Non-aqueous electrolyte secondary battery and method for producing same
JP5066804B2 (en) Lithium ion secondary battery
JP4354214B2 (en) Positive electrode plate and non-aqueous electrolyte secondary battery including the same
JP2005005276A (en) Nonaqueous electrolyte liquid secondary battery
JP4581170B2 (en) Non-aqueous electrolyte battery binder, battery electrode mixture using the same, and non-aqueous electrolyte battery
JP2013062038A (en) Lithium ion secondary battery
JP6682609B2 (en) Method for forming positive electrode plate and slurry used for positive electrode plate
JP2013114983A (en) Nonaqueous electrolyte battery
JP3610589B2 (en) Non-aqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2005026229A (en) Polymer electrolyte for lithium secondary battery and lithium secondary battery containing this

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621