JP2003045433A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2003045433A
JP2003045433A JP2001230197A JP2001230197A JP2003045433A JP 2003045433 A JP2003045433 A JP 2003045433A JP 2001230197 A JP2001230197 A JP 2001230197A JP 2001230197 A JP2001230197 A JP 2001230197A JP 2003045433 A JP2003045433 A JP 2003045433A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001230197A
Other languages
Japanese (ja)
Other versions
JP4979049B2 (en
JP2003045433A5 (en
Inventor
Fumihiko Kishi
文彦 岸
Shoji Nishihara
昭二 西原
Ichiji Miyata
一司 宮田
Hideaki Katayama
秀昭 片山
Hiroyuki Toshiro
博行 戸城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001230197A priority Critical patent/JP4979049B2/en
Publication of JP2003045433A publication Critical patent/JP2003045433A/en
Publication of JP2003045433A5 publication Critical patent/JP2003045433A5/ja
Application granted granted Critical
Publication of JP4979049B2 publication Critical patent/JP4979049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery in which drop in discharging capacity caused by the increase in internal impedance after charging/ discharging cycles and high temperature storage is suppressed. SOLUTION: This nonaqueous secondary battery has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode contains a phosphate compound or a sulfonated compound having a aromatic substituent group. Therefore, a phosphoric group or a sulfonic group is adsorbed in an alkali component existing on the surface of a composite oxide which is an active material of the positive electrode, and also adsorbed on the surface of a conducting auxiliary material to closely bond the positive active material and the conducting auxiliary material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、更に詳しくは、充放電サイクル後及び高温貯蔵後の
内部インピーダンスの増加による放電容量の低下を抑制
した非水二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery in which a decrease in discharge capacity due to an increase in internal impedance after charge / discharge cycles and after high temperature storage is suppressed. Is.

【0002】[0002]

【従来の技術】電子機器の小型化、携帯電話の普及等に
伴い、それらの電源として高エネルギー密度を有する二
次電池への要求がますます高まっている。現在、この要
求に応える高容量二次電池としては、正極活物質として
リチウム含有複合酸化物であるLiCoO2、LiNi
2又はLiMn24等を用い、負極活物質として炭素
系材料を用いたリチウムイオン二次電池が実用化されて
いる。このリチウムイオン二次電池は、その平均駆動電
圧が3.6Vと高く、従来のニッケル−カドミウム電池
やニッケル水素電池の平均駆動電圧の約3倍である。ま
た、負極活物質として炭素系材料を用い、充放電に関与
するモビリティー(移動体)が軽金属であるリチウム
(イオン)であることから、軽量化も期待できる。
2. Description of the Related Art With the miniaturization of electronic devices and the spread of mobile phones, the demand for secondary batteries having a high energy density as their power sources has been increasing. Currently, as a high-capacity secondary battery that meets this demand, lithium-containing composite oxides such as LiCoO 2 and LiNi are used as positive electrode active materials.
A lithium ion secondary battery using O 2 or LiMn 2 O 4 or the like and a carbon-based material as a negative electrode active material has been put into practical use. This lithium-ion secondary battery has a high average driving voltage of 3.6 V, which is about three times the average driving voltage of conventional nickel-cadmium batteries and nickel-hydrogen batteries. Further, since a carbon-based material is used as the negative electrode active material and the mobility (moving body) involved in charging / discharging is lithium (ion) which is a light metal, weight reduction can be expected.

【0003】リチウムイオン二次電池は、従来のリチウ
ム金属を負極とする非水二次電池とは異なり、前記活物
質を結着剤等とともに溶液中に分散させたペーストと
し、このペーストを用いて帯状の正極集電体、負極集電
体の両面にそれぞれの活物質を含有する塗膜を形成して
正極及び負極を作製するものである。そして、それらの
帯状の正、負電極はセパレータを介して渦巻状に巻回さ
れて電極体を形成し、電池缶に挿入されて電池が構成さ
れている。また、前記正極には正極活物質と結着剤以外
に塗膜中のインピーダンスの低減のため、炭素系材料等
の導電助剤が添加されている。
Unlike conventional non-aqueous secondary batteries using lithium metal as a negative electrode, lithium ion secondary batteries are pastes prepared by dispersing the above-mentioned active material in a solution together with a binder and the like. A positive electrode and a negative electrode are manufactured by forming a coating film containing each active material on both surfaces of a strip-shaped positive electrode current collector and negative electrode current collector. The strip-shaped positive and negative electrodes are spirally wound via a separator to form an electrode body, which is inserted into a battery can to form a battery. In addition to the positive electrode active material and the binder, a conductive auxiliary agent such as a carbon-based material is added to the positive electrode in order to reduce impedance in the coating film.

【0004】今後、携帯情報末端機器の需要拡大によ
り、高容量且つ軽量であるリチウムイオン二次電池の電
源としての重要性はますます増加するとともに、その要
求特性は更に厳しくなることが予測される。この様な中
で、リチウムイオン二次電池の内部インピーダンスの上
昇は、負荷特性や放電容量の低下に繋がるため、内部イ
ンピーダンスの低減が技術上の重要な課題となってい
る。特に充放電サイクル後及び高温貯蔵後の内部インピ
ーダンスの上昇を抑制したリチウムイオン二次電池が要
求されている。
[0004] In the future, as the demand for portable information terminal devices expands, the importance as a power source for a high-capacity and lightweight lithium-ion secondary battery will increase more and more, and its required characteristics are expected to become more severe. . Under these circumstances, an increase in the internal impedance of the lithium-ion secondary battery leads to a decrease in load characteristics and discharge capacity, so reducing the internal impedance is an important technical issue. In particular, there is a demand for a lithium ion secondary battery that suppresses an increase in internal impedance after charge / discharge cycles and after high temperature storage.

【0005】リチウムイオン二次電池の内部インピーダ
ンスの上昇には、様々な要因が挙げられる。例えば、正
極活物質であるLiCoO2等のリチウム含有複合酸化
物の表面上にはアルカリ成分が存在することが知られて
おり、このアルカリ成分と非水電解液との反応により、
非水電解液等の分解物であるガスが発生する。このガス
によりイオンの移動が阻害されて内部インピーダンスが
上昇することになる。
There are various causes for the increase of the internal impedance of the lithium ion secondary battery. For example, it is known that an alkaline component is present on the surface of a lithium-containing composite oxide such as LiCoO 2 which is a positive electrode active material, and a reaction between this alkaline component and the non-aqueous electrolyte solution causes
A gas that is a decomposition product of the non-aqueous electrolyte solution is generated. This gas hinders the movement of ions and raises the internal impedance.

【0006】この非水電解液の分解を抑えるため、非水
電解液に6員環の環状エーテルを使用することにより、
非水電解液の分解によるガス発生を抑制して、その結果
電池の内部インピーダンスの上昇を防止して放電容量の
低下を防ぐことが特開平9−213368号公報に提案
されている。また、正極活物質の表面のアルカリ成分を
中和するため、正極に有機酸や無機酸を添加することに
より、塩基性の強いLiNiO2のペーストのゲル化を
防止して、放電特性等の電池特性に優れた非水二次電池
を提供することが特開平10−79244号公報に提案
されている。
In order to suppress the decomposition of this non-aqueous electrolyte, by using a 6-membered cyclic ether in the non-aqueous electrolyte,
It has been proposed in Japanese Patent Laid-Open No. 9-213368 to suppress gas generation due to decomposition of the non-aqueous electrolyte, thereby preventing an increase in internal impedance of the battery and preventing a decrease in discharge capacity. Further, in order to neutralize the alkaline component on the surface of the positive electrode active material, by adding an organic acid or an inorganic acid to the positive electrode, gelation of the strongly basic LiNiO 2 paste is prevented, and a battery having a discharge characteristic or the like is provided. It has been proposed in JP-A-10-79244 to provide a non-aqueous secondary battery having excellent characteristics.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記従来の提
案は、いずれも初期の内部インピーダンスの低減には効
果があるが、充放電サイクル後及び高温貯蔵後の内部イ
ンピーダンスの上昇を抑制することはできないという問
題があった。この原因として、充放電時において、正極
活物質であるリチウム含有複合酸化物が収縮・膨張する
ことにより、正極活物質と導電助剤との間に隙間が発生
して接触面積が減少することが考えられる。また、高温
貯蔵時に正極表面での非水電解液の分解の促進、あるい
は結着剤の膨潤による正極活物質と導電助剤との接触面
積の減少が内部インピーダンス上昇の原因となってい
る。
However, although the above-mentioned conventional proposals are all effective in reducing the initial internal impedance, it is impossible to suppress the increase in the internal impedance after the charge / discharge cycle and after the high temperature storage. There was a problem that I could not. This is because the lithium-containing composite oxide, which is the positive electrode active material, contracts and expands during charging and discharging, which may cause a gap between the positive electrode active material and the conductive additive to reduce the contact area. Conceivable. Further, promotion of decomposition of the non-aqueous electrolyte solution on the surface of the positive electrode during high temperature storage, or reduction of the contact area between the positive electrode active material and the conductive auxiliary agent due to swelling of the binder causes the internal impedance to increase.

【0008】そこで、本発明は前記従来の問題を解決す
るためになされたものであり、充放電サイクル後及び高
温貯蔵後の内部インピーダンスの増加による放電容量の
低下を抑制した非水二次電池を提供することを目的とす
る。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and provides a non-aqueous secondary battery that suppresses a decrease in discharge capacity due to an increase in internal impedance after a charge / discharge cycle and after high temperature storage. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非水二次電池は、正極、負極及び電解質を
備えた非水二次電池であって、前記正極に芳香族性の置
換基を有するリン酸化合物又はスルホン酸化合物を含有
させたことを特徴とする。
To achieve the above object, a non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode is aromatic. It is characterized by containing a phosphoric acid compound or a sulfonic acid compound having a substituent.

【0010】また、本発明の非水二次電池は、前記芳香
族性の置換基を有するリン酸化合物又はスルホン酸化合
物が、正極活物質に対して0.01〜1質量%の割合で
前記正極に含有されていることが好ましい。
In the non-aqueous secondary battery of the present invention, the phosphoric acid compound or sulfonic acid compound having the aromatic substituent is contained in a proportion of 0.01 to 1% by mass based on the positive electrode active material. It is preferably contained in the positive electrode.

【0011】これにより、充放電サイクル後及び高温貯
蔵後の内部インピーダンスの増加を抑制することができ
る。これは、正極に芳香族性の置換基を有するリン酸化
合物又はスルホン酸化合物を含有させることにより、L
iCoO2等のリチウム含有複合酸化物の表面に存在す
るアルカリ成分に極性基であるリン酸基又はスルホン酸
基が吸着するとともに、黒鉛やカーボンブラック等の導
電助剤の表面には芳香族性の置換基が吸着することによ
り、正極活物質と導電助剤とがより密着して存在するこ
とが可能になり、充放電サイクル後及び高温貯蔵後の内
部インピーダンスが上昇することを抑えることができる
ものである。
As a result, it is possible to suppress an increase in internal impedance after charge / discharge cycles and after high temperature storage. This is because when the positive electrode contains a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent, L
While the phosphoric acid group or sulfonic acid group, which is a polar group, is adsorbed on the alkaline component existing on the surface of the lithium-containing composite oxide such as iCoO 2 , the surface of the conductive auxiliary agent such as graphite or carbon black has an aromatic property. By adsorbing the substituent, it becomes possible for the positive electrode active material and the conductive auxiliary agent to exist in closer contact with each other, and it is possible to suppress an increase in internal impedance after charge / discharge cycles and after high temperature storage. Is.

【0012】また、芳香族性の置換基を有するリン酸化
合物又はスルホン酸化合物は、正極活物質に対して0.
01〜1質量%という少量を正極に含有させても効果が
発揮されるという優れた特徴を有する。
Further, the phosphoric acid compound or sulfonic acid compound having an aromatic substituent is added to the positive electrode active material in an amount of 0.
It has an excellent feature that the effect is exhibited even when a small amount of 01 to 1 mass% is contained in the positive electrode.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0014】本発明の非水二次電池は、正極、負極及び
電解質を備えた非水二次電池であって、前記正極に芳香
族性の置換基を有するリン酸化合物又はスルホン酸化合
物を含有させたものである。
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode contains a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent. It was made.

【0015】本発明に用いる芳香族性の置換基を有する
リン酸化合物又はスルホン酸化合物については何ら限定
されることはなく、種々のものが使用できる。例えば、
芳香族性の置換基を有するリン酸化合物としては、下記
一般式(1)で示されるものが使用できる。
The phosphoric acid compound or sulfonic acid compound having an aromatic substituent used in the present invention is not particularly limited and various compounds can be used. For example,
As the phosphoric acid compound having an aromatic substituent, those represented by the following general formula (1) can be used.

【0016】[0016]

【化1】 [Chemical 1]

【0017】式中、Xは芳香族性の置換基であり、Mは
水素原子又はアルカリ金属原子である。
In the formula, X is an aromatic substituent and M is a hydrogen atom or an alkali metal atom.

【0018】また、芳香族性の置換基を有するスルホン
酸化合物としては、下記一般式(2)で示されるものが
使用できる。
Further, as the sulfonic acid compound having an aromatic substituent, those represented by the following general formula (2) can be used.

【0019】[0019]

【化2】 [Chemical 2]

【0020】式中、X1は芳香族性の置換基であり、X2
は水素原子又はアルカリ金属原子である。
In the formula, X 1 is an aromatic substituent, and X 2
Is a hydrogen atom or an alkali metal atom.

【0021】上記芳香族性の置換基は、芳香族環を有す
る置換基であり、フェニル基、ビフェニリル基、p−テ
ルフェニリル基、ナフチル基、アントラセン基、インデ
ニル基等の種々のものが該当する。中でもフェニル基は
導電助剤によく吸着するため特に好ましい。即ち、正極
活物質及び導電助剤に上記化合物が吸着した場合、導電
助剤と正極活物質が十分に接触していることが望まし
く、フェニル基を置換基とした場合にはその立体構造か
ら導電助剤により密着するとともに、正極活物質にリン
酸基又はスルホン酸基が吸着し、内部インピーダンスの
低減に最も効果的である。
The aromatic substituent is a substituent having an aromatic ring, and various substituents such as phenyl group, biphenylyl group, p-terphenylyl group, naphthyl group, anthracene group and indenyl group are applicable. Among them, the phenyl group is particularly preferable because it is well adsorbed by the conductive additive. That is, when the above compound is adsorbed on the positive electrode active material and the conductive auxiliary agent, it is desirable that the conductive auxiliary agent and the positive electrode active material are sufficiently in contact with each other. It is most effective in reducing the internal impedance because the phosphoric acid group or the sulfonic acid group is adsorbed on the positive electrode active material while being adhered by the auxiliary agent.

【0022】芳香族性の置換基を有するリン酸化合物又
はスルホン酸化合物を正極に含有させる方法は特に制限
されない。例えば、正極塗料中に添加してもよいし、正
極塗膜に添加してもよい。正極塗料中に添加する場合
は、正極活物質を結着剤、導電助剤、有機溶媒等ととも
に混合、分散する時に、芳香族性の置換基を有するリン
酸化合物又はスルホン酸化合物を同時に混合してもよ
し、また、正極塗料作製後に添加してもよい。正極塗膜
に添加する場合は、正極塗膜を作製した後に、芳香族性
の置換基を有するリン酸化合物又はスルホン酸化合物を
含む溶液を正極塗膜上に滴下又は塗布してもよい。ま
た、正極塗膜を芳香族性の置換基を有するリン酸化合物
又はスルホン酸化合物を溶解した非水溶媒中に浸漬して
もよい。非水溶媒としては、例えば、N−メチルピロリ
ドン、ジメチルアセトアミド、ジメチルホルムアミド等
を単独又は2種以上混合したものが使用できる。
The method of incorporating the phosphoric acid compound or sulfonic acid compound having an aromatic substituent into the positive electrode is not particularly limited. For example, it may be added to the positive electrode coating material or may be added to the positive electrode coating film. When added to the positive electrode coating material, when the positive electrode active material is mixed and dispersed with a binder, a conductive additive, an organic solvent, etc., a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent is simultaneously mixed. Alternatively, it may be added after preparation of the positive electrode coating material. When it is added to the positive electrode coating film, a solution containing a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent may be dropped or applied onto the positive electrode coating film after the positive electrode coating film is prepared. Further, the positive electrode coating film may be immersed in a non-aqueous solvent in which a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent is dissolved. As the non-aqueous solvent, for example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, etc. may be used alone or in combination of two or more.

【0023】芳香族性の置換基を有するリン酸化合物又
はスルホン酸化合物は、正極活物質に対して0.01〜
1質量%の割合で正極に含有されていることが好まし
い。0.01質量%以上とすることにより、芳香族性の
置換基を有するリン酸化合物又はスルホン酸化合物が正
極活物質の表面に存在するアルカリ成分に十分に吸着す
ることができ、アルカリ成分と電解液との反応によるガ
ス発生の抑制能力を十分に発揮することができ、また導
電助剤にも十分に吸着でき、充放電サイクル後及び高温
貯蔵後の内部インピーダンスの上昇を抑えることができ
る。また、1質量%以下とすることにより、正極活物質
等に吸着していない芳香族性の置換基を有するリン酸化
合物又はスルホン酸化合物が存在しなくなるため、充放
電サイクル時及び高温貯蔵時において未吸着分の前記化
合物の分解が生じることがない。
The phosphoric acid compound or sulfonic acid compound having an aromatic substituent is added to the positive electrode active material in an amount of 0.01 to
It is preferably contained in the positive electrode in a proportion of 1% by mass. When the content is 0.01% by mass or more, the phosphoric acid compound or sulfonic acid compound having an aromatic substituent can be sufficiently adsorbed on the alkaline component present on the surface of the positive electrode active material, and the alkaline component and the electrolysis The ability to suppress the generation of gas due to the reaction with the liquid can be sufficiently exerted, and the conductive auxiliary agent can also be sufficiently adsorbed to suppress the increase of the internal impedance after the charge / discharge cycle and the high temperature storage. Further, when the content is 1% by mass or less, the phosphoric acid compound or the sulfonic acid compound having an aromatic substituent that is not adsorbed on the positive electrode active material and the like does not exist, and therefore, during the charge / discharge cycle and the high temperature storage. The unadsorbed portion of the compound is not decomposed.

【0024】本発明において、正極活物質としては特に
限定されることはないが、例えば、LiCoO2等のリ
チウムコバルト酸化物、LiMnO2等のリチウムマン
ガン酸化物、LiNiO2等のリチウムニッケル酸化
物、二酸化マンガン、五酸化バナジウム、クロム酸化物
等の金属酸化物、又はこれらを基本構造とする複合酸化
物(例えば、異種金属元素での置換品)、あるいは二硫
化チタン、二硫化モリブデン等の金属硫化物等が、単独
で又は2種以上の混合物として、あるいはそれらの固溶
体として用いられる。また、LiMO2又はLiM24
で示され、MがCo、Ni、Mn、Fe、Cu等の金属
元素を少なくとも1つ以上を含んだリチウム含有金属化
合物であってもよい。中でもLiNiO2、LiCo
2、LiMn24等の充電時の開路電圧がLi基準で
4V以上を示すリチウム含有複合酸化物を正極活物質と
して用いるのが、高エネルギー密度が得られる点で好ま
しい。
In the present invention, the positive electrode active material is not particularly limited, but examples thereof include lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMnO 2 and lithium nickel oxide such as LiNiO 2 . Metal oxides such as manganese dioxide, vanadium pentoxide, and chromium oxides, or composite oxides having these as basic structures (eg, substitution products with different metal elements), or metal sulfides such as titanium disulfide and molybdenum disulfide. Etc. are used alone or as a mixture of two or more kinds, or as a solid solution thereof. In addition, LiMO 2 or LiM 2 O 4
And M may be a lithium-containing metal compound containing at least one metal element such as Co, Ni, Mn, Fe, and Cu. Among them, LiNiO 2 and LiCo
It is preferable to use a lithium-containing composite oxide such as O 2 or LiMn 2 O 4 which has an open circuit voltage of 4 V or more on the basis of Li as the positive electrode active material in terms of high energy density.

【0025】また、正極は、例えば、前記正極活物質を
含み、必要に応じて鱗片状黒鉛、カーボンブラック等の
導電助剤を含み、更に結着剤を含むペーストを正極集電
体上に塗布して乾燥し、正極集電体上に少なくとも正極
活物質と結着剤を含有する塗膜を形成する工程を経て作
製される。前記正極活物質含有ペーストの調製にあたっ
て、結着剤はあらかじめ溶剤に溶解させた溶液として用
い、前記正極活物質等の固体粒子と混合して調製するこ
とが好ましい。
The positive electrode contains, for example, the positive electrode active material and, if necessary, a conductive auxiliary agent such as scaly graphite or carbon black, and a paste containing a binder is coated on the positive electrode current collector. Then, it is dried and formed through a step of forming a coating film containing at least a positive electrode active material and a binder on the positive electrode current collector. In preparing the positive electrode active material-containing paste, it is preferable that the binder is used as a solution previously dissolved in a solvent and mixed with solid particles such as the positive electrode active material.

【0026】本発明において、前記正極集電体の厚さと
しては、5〜60μm、特に8〜40μmが好ましく、
また、前記正極活物質含有塗膜の厚さとしては、片面当
たり30〜300μm、特に50〜150μmが好まし
い。
In the present invention, the thickness of the positive electrode current collector is preferably 5 to 60 μm, more preferably 8 to 40 μm,
Further, the thickness of the coating film containing the positive electrode active material is preferably 30 to 300 μm, and particularly preferably 50 to 150 μm per one surface.

【0027】負極に用いる材料としては、リチウムイオ
ンをドープ(吸蔵)、脱ドープ(放出)することができ
るものであればよく、本発明においては、そのようなリ
チウムイオンをドープ、脱ドープすることができる物質
を負極活物質という。この負極活物質としては、特に限
定されることはないが、例えば、黒鉛、熱分解炭素類、
コークス類、ガラス状炭素類、有機高分子化合物の焼成
体、メソカーボンマイクロビーズ、炭素繊維、活性炭等
の炭素材料、アルミニウム、ケイ素、錫、インジウム等
とリチウムとの合金、又はリチウムに近い低電圧で充放
電できるケイ素、錫、インジウム等の酸化物等を用いる
ことができる。
The material used for the negative electrode may be any material that can dope (occlude) and dedope (release) lithium ions. In the present invention, such lithium ions should be doped and dedoped. A substance that can do so is called a negative electrode active material. The negative electrode active material is not particularly limited, for example, graphite, pyrolytic carbons,
Cokes, glassy carbons, fired bodies of organic polymer compounds, carbon materials such as mesocarbon microbeads, carbon fibers and activated carbon, alloys of aluminum, silicon, tin, indium and lithium with lithium, or low voltage close to lithium Oxides such as silicon, tin, and indium that can be charged and discharged in the above can be used.

【0028】負極活物質として炭素材料を用いる場合、
その炭素材料としては下記の特性を持つものが好まし
い。即ち、その結晶の(002)面の面間距離(d00
2)に関しては、0.350nm以下が好ましく、より
好ましくは0.345nm以下、更に好ましくは0.3
40nm以下である。また、c軸方向の結晶子の大きさ
(Lc)に関しては、3nm以上が好ましく、より好ま
しくは8nm以上、更に好ましくは25nm以上であ
る。そして、前記炭素材料の平均粒径は、8〜20μ
m、特に10〜15μmが好ましい。また、その純度は
99.9質量%以上が好ましい。
When a carbon material is used as the negative electrode active material,
The carbon material preferably has the following characteristics. That is, the inter-plane distance (d00) of the (002) plane of the crystal
Regarding 2), it is preferably 0.350 nm or less, more preferably 0.345 nm or less, still more preferably 0.3.
It is 40 nm or less. The crystallite size (Lc) in the c-axis direction is preferably 3 nm or more, more preferably 8 nm or more, still more preferably 25 nm or more. The average particle size of the carbon material is 8 to 20 μm.
m, especially 10 to 15 μm is preferable. Further, its purity is preferably 99.9% by mass or more.

【0029】また、負極は、例えば、前記負極活物質に
ポリフッ化ビニリデンやポリテトラフルオロエチレン等
の結着剤を適宜添加し、更に要すれば導電助剤を適宜添
加して、溶剤でペースト状にし、その負極活物質含有ペ
ーストを銅箔等からなる負極集電体に塗布して乾燥し、
負極集電体上に負極活物質含有塗膜を形成することによ
って作製される。なお、結着剤はあらかじめ溶剤に溶解
させておいてから負極活物質等と混合してもよい。
Further, the negative electrode may be prepared by adding a binder such as polyvinylidene fluoride or polytetrafluoroethylene to the negative electrode active material, and a conductive auxiliary agent if necessary, and then forming a paste with a solvent. The negative electrode active material-containing paste is applied to a negative electrode current collector made of copper foil or the like and dried,
It is produced by forming a coating film containing a negative electrode active material on the negative electrode current collector. The binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material and the like.

【0030】前記負極集電体の厚さとしては、5〜60
μm、特に8〜40μmが好ましく、また、前記負極活
物質含有塗膜の厚さとしては、片面当たり30〜300
μm、特に50〜150μmが好ましい。
The thickness of the negative electrode current collector is 5 to 60.
μm, particularly preferably 8 to 40 μm, and the thickness of the negative electrode active material-containing coating film is 30 to 300 per side.
μm, particularly 50 to 150 μm is preferable.

【0031】前記正極及び負極に使用される結着剤とし
ては,熱可塑性樹脂、ゴム弾性を有するポリマー及び多
糖類を一種又はこれらの混合物として用いることができ
る。具体的には、ポリテトラフルオロエチレン、ポリフ
ッ化ビニリデン、ポリエチレン、ポリプロピレン、エチ
レン−プロピレン−ジエン共重合体、スチレンブタジエ
ンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオ
キシド、ポリビニルピロリドン、ポリエステル樹脂、ア
クリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニ
ルアルコール、ヒドロキシプロピルセルロース等のセル
ロース樹脂等が挙げられる。中でも正極活物質含有ペー
ストの結着剤としてポリフッ化ビニリデンを使用するこ
とにより、本発明の効果を最も発揮することができる。
As the binder used for the positive electrode and the negative electrode, thermoplastic resins, polymers having rubber elasticity, and polysaccharides can be used alone or as a mixture thereof. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-diene copolymer, styrene butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, polyvinylpyrrolidone, polyester resin, acrylic resin, phenol resin , Epoxy resins, polyvinyl alcohol, cellulose resins such as hydroxypropyl cellulose, and the like. Above all, by using polyvinylidene fluoride as a binder of the paste containing the positive electrode active material, the effects of the present invention can be most exerted.

【0032】前記正極集電体及び負極集電体としては、
例えば、アルミニウム、銅、ニッケル、ステンレス鋼、
チタン等の金属の箔、エキスパンドメタル、網、フォー
ムメタル等が用いられるが、正極集電体としては特にア
ルミニウム箔が好ましく、負極集電体としては特に銅箔
が好ましい。
As the positive electrode current collector and the negative electrode current collector,
For example, aluminum, copper, nickel, stainless steel,
A metal foil such as titanium, an expanded metal, a net, or a foam metal is used, but an aluminum foil is particularly preferable as the positive electrode current collector, and a copper foil is particularly preferable as the negative electrode current collector.

【0033】前記正極及び負極の作製にあたって、前記
正極活物質含有ペースト及び負極活物質含有ペーストを
集電体に塗布する際の塗布方法としては、例えば、押出
しコーター、リバースローラー、ドクターブレード等を
はじめ、各種の塗布方法を採用することができる。
In the production of the positive electrode and the negative electrode, the method for applying the positive electrode active material-containing paste and the negative electrode active material-containing paste to the current collector is, for example, an extrusion coater, a reverse roller, a doctor blade, or the like. Various coating methods can be adopted.

【0034】本発明で用いる電解質としては、通常、液
状電解質(以下、これを「電解液」という)が用いられ
る。そして、その電解液としては、有機溶媒に溶質を溶
解させた有機溶媒系の非水電解液が用いられる。その有
機溶媒系電解液の溶媒は特に限定されるものではない
が、鎖状エステルを主溶媒として用いることが特に好ま
しい。そのような鎖状エステルとしては、例えば、ジエ
チルカーボネート(DEC)、ジメチルカーボネート
(DMC)、エチルメチルカーボネート(EMC)、酢
酸エチル(EA)、プロピオン酸メチル(MP)等の鎖
状のCOO−結合を有する有機溶媒が挙げられる。この
鎖状エステルが電解液の主溶媒であるということは、こ
れらの鎖状エステルが全電解液溶媒中の50体積%より
多い体積を占めることを意味しており、特に鎖状エステ
ルが全電解液溶媒中の65体積%以上、とりわけ鎖状エ
ステルが全電解液溶媒中の70体積%以上を占めること
が好ましく、中でも鎖状エステルが全電解液溶媒中の7
5体積%以上を占めることが最も好ましい。
As the electrolyte used in the present invention, a liquid electrolyte (hereinafter, referred to as "electrolyte solution") is usually used. Then, as the electrolytic solution, an organic solvent-based non-aqueous electrolytic solution in which a solute is dissolved in an organic solvent is used. The solvent of the organic solvent-based electrolytic solution is not particularly limited, but it is particularly preferable to use a chain ester as the main solvent. Examples of such chain esters include chain COO-bonds such as diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethyl acetate (EA), methyl propionate (MP), and the like. An organic solvent having The fact that the chain ester is the main solvent of the electrolytic solution means that the chain ester occupies a volume of more than 50% by volume in the total electrolytic solution solvent. It is preferable that 65% by volume or more in the liquid solvent, especially the chain ester accounts for 70% by volume or more in the whole electrolytic solution solvent, and among them, the chain ester is 7% in the whole electrolytic solution solvent.
Most preferably, it accounts for 5% by volume or more.

【0035】ただし、電解液の溶媒としては、前記鎖状
エステルのみで構成するよりも、電池容量の向上を図る
ために、前記鎖状エステルに誘電率の高いエステル(誘
電率30以上のエステル)を混合して用いることが好ま
しい。そのような誘電率の高いエステルの全電解液溶媒
中で占める量としては、10体積%以上、特に20体積
%以上が好ましい。
However, as a solvent for the electrolytic solution, an ester having a higher dielectric constant (ester having a dielectric constant of 30 or more) is added to the chain ester in order to improve the battery capacity, as compared with the case where only the chain ester is used. It is preferable to mix and use. The amount of the ester having such a high dielectric constant in the whole electrolytic solution solvent is preferably 10% by volume or more, and particularly preferably 20% by volume or more.

【0036】前記誘電率の高いエステルとしては、例え
ば、エチレンカーボネート(EC)、プロピレンカーボ
ネート(PC)、ブチレンカーボネート(BC)、γ−
ブチロラクトン(γ−BL)、エチレングリコールサル
ファイト(EGS)等が挙げられ、特にエチレンカーボ
ネート、プロピレンカーボネート等の環状構造のものが
好ましく、とりわけ環状のカーボネートが好ましく、具
体的にはエチレンカーボネート(EC)が最も好まし
い。
Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and γ-.
Examples thereof include butyrolactone (γ-BL) and ethylene glycol sulfite (EGS), and those having a cyclic structure such as ethylene carbonate and propylene carbonate are preferable, and cyclic carbonate is particularly preferable, and specifically ethylene carbonate (EC). Is most preferred.

【0037】また、前記誘電率の高いエステル以外に併
用可能な溶媒としては、例えば、1,2−ジメトキシエ
タン(1,2−DME)、1,3−ジオキソラン(1,
3−DO)、テトラヒドロフラン(THF)、2−メチ
ル−テトラヒドロフラン(2−Me−THF)、ジエチ
ルエーテル(DEE)等が挙げられる。そのほか、アミ
ン系又はイミド系の有機溶媒や、含イオウ系又は含フッ
素系の有機溶媒等も用いることができる。
Examples of the solvent that can be used in combination with the ester having a high dielectric constant include 1,2-dimethoxyethane (1,2-DME) and 1,3-dioxolane (1,2).
3-DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2-Me-THF), diethyl ether (DEE) and the like. In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can be used.

【0038】電解液の溶質としては、例えば、LiCl
4、LiPF6、LiBF4、LiAsF6、LiSbF
6、LiCF3SO3、LiC49SO3、LiCF3
2、Li224(SO32、LiN(CF3
22、LiC(CF3SO23、LiCn2n+1SO3
(n≧2)等が、単独で又は2種以上混合して用いられ
る。特に、LiPF6やLiC49SO3等が、充放電特
性が良好なことから好ましい。電解液中における溶質の
濃度は特に限定されるものではないが、0.3〜1.7
mol/dm3、特に0.4〜1.5mol/dm3程度
が好ましい。
As the solute of the electrolytic solution, for example, LiCl
O 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF
6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 C
O 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3
(N ≧ 2) and the like are used alone or in combination of two or more. In particular, LiPF 6 , LiC 4 F 9 SO 3, and the like are preferable because they have good charge and discharge characteristics. The concentration of solute in the electrolytic solution is not particularly limited, but it is 0.3 to 1.7.
mol / dm 3, in particular 0.4~1.5mol / dm about 3 are preferred.

【0039】本発明において、電解質としては前記電解
液以外にも固体状又はゲル状の電解質を用いることがで
きる。このような電解質としては、無機固体電解質のほ
か、ポリエチレンオキサイド、ポリプロピレンオキサイ
ド又はこれらの誘導体等を主材にした有機固体電解質等
を挙げることができる。
In the present invention, a solid or gel electrolyte can be used as the electrolyte in addition to the electrolyte solution. Examples of such an electrolyte include an inorganic solid electrolyte, and an organic solid electrolyte mainly composed of polyethylene oxide, polypropylene oxide, or a derivative thereof.

【0040】本発明に用いるセパレ−タとしては、例え
ば不織布や微孔性フィルムが用いられる。前記不織布の
材質としては、ポリプロピレン、ポリエチレン、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート等
がある。微孔性フィルムの材質としては、ポリプロピレ
ン、ポリエチレン、ポリエチレン−プロピレン共重合体
等がある。
As the separator used in the present invention, for example, a nonwoven fabric or a microporous film is used. Examples of the material of the non-woven fabric include polypropylene, polyethylene, polyethylene terephthalate and polybutylene terephthalate. Examples of the material of the microporous film include polypropylene, polyethylene, polyethylene-propylene copolymer and the like.

【0041】前記セパレータは、強度が十分でしかも電
解液を多く保持できるものが好ましく、そのような観点
から、厚さが10〜50μmで、開孔率が30〜70%
のポリプロピレン製、ポリエチレン製又はエチレン−プ
ロピレン共重合体製の微孔性フィルムや不織布等が好ま
しい。
The separator is preferably one having sufficient strength and capable of holding a large amount of electrolytic solution. From such a viewpoint, the thickness is 10 to 50 μm and the porosity is 30 to 70%.
The polypropylene, polyethylene, or ethylene-propylene copolymer microporous film or non-woven fabric, etc. are preferable.

【0042】本発明において、負極のリード体は、前記
のようにして作製された負極に、抵抗溶接、超音波溶接
等により負極集電体の露出部分に溶接されるが、この負
極のリード体の断面積としては、大電流が流れた場合の
抵抗を低減して発熱量を低減するために、0.1mm2
以上で1.0mm2以下が好ましく、0.3mm2以上で
0.7mm2以下がより好ましい。負極のリード体の材
質としては、ニッケルが一般に用いられるが、銅、チタ
ン、ステンレス鋼等も用いることができる。
In the present invention, the negative electrode lead body is welded to the negative electrode produced as described above on the exposed portion of the negative electrode current collector by resistance welding, ultrasonic welding or the like. The cross-sectional area of 0.1 mm 2 is to reduce the resistance when a large current flows and to reduce the amount of heat generation.
It is preferably 1.0 mm 2 or less, more preferably 0.3 mm 2 or more and 0.7 mm 2 or less. Nickel is generally used as the material of the lead body of the negative electrode, but copper, titanium, stainless steel, or the like can also be used.

【0043】本発明の非水二次電池は、例えば、前記の
ようにして作製されたシート状の正極とシート状の負極
との間にセパレータを介在させて重ね合わせ、それを渦
巻状、楕円状、長円形状等に巻回して作製した巻回構造
の電極体又はこれらを積層した電極体を、ニッケルメッ
キを施した鉄やステンレス鋼、又はアルミニウム若しく
はアルミニウム合金製の電池缶、あるいは金属ラミネー
トフィルム内に挿入し、電解液を注入した後に封口する
工程を経て作製される。また、前記電池には、通常、電
池内部に発生したガスをある一定圧力まで上昇した段階
で電池外部に排出して、電池の内圧上昇による破裂を防
止するための防爆機構が取り付けられている。
In the non-aqueous secondary battery of the present invention, for example, a sheet-shaped positive electrode and a sheet-shaped negative electrode produced as described above are superposed with a separator interposed therebetween, and the sheet-shaped positive electrode and the sheet-shaped negative electrode are spiral-shaped or elliptical. Shape, elliptical shape or other wound electrode body or laminated electrode body, nickel-plated iron or stainless steel, aluminum or aluminum alloy battery can, or metal laminate It is manufactured through a process of inserting the film into the film, injecting an electrolytic solution, and then sealing. Further, the battery is usually provided with an explosion-proof mechanism for preventing the gas generated inside the battery from being discharged outside the battery when it rises to a certain constant pressure and preventing the battery from bursting due to an increase in internal pressure.

【0044】[0044]

【実施例】次に、実施例に基づき本発明をより具体的に
説明する。ただし、本発明はこれらの実施例のみに限定
されるものではない。
EXAMPLES Next, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples.

【0045】(実施例1)先ず、以下のようにして正極
を作製した。正極活物質としてLiCoO2を190質
量部、導電助剤としてアセチレンブラックを4質量部、
結着剤としてポリフッ化ビニリデンを6質量部、芳香族
性の置換基を有すリン酸化合物としてフェニルホスホン
酸を正極活物質に対して0.2質量%となるように均一
に混合し、更にN−メチルピロリドン60質量部を加え
て混合し、ペースト状の正極塗料を調製した。このペー
スト状の正極塗料を70メッシュの網を通過させて大き
なものを取り除いた後、厚さ15μmの帯状のアルミニ
ウム箔からなる正極集電体の両面に均一に塗布し、乾燥
して正極活物質含有塗膜を形成した。乾燥後の塗膜の厚
さは215μmであり、単位面積当たりの電極質量は2
5.0mg/cm2であった。この帯状の電極体を乾燥
後、厚み170μmに圧縮成形した。その後、所定の大
きに切断し、アルミニウム製リード体を溶接して、シー
ト状の正極を得た。
(Example 1) First, a positive electrode was prepared as follows. 190 parts by mass of LiCoO 2 as a positive electrode active material, 4 parts by mass of acetylene black as a conductive additive,
6 parts by mass of polyvinylidene fluoride as a binder and phenylphosphonic acid as a phosphoric acid compound having an aromatic substituent are uniformly mixed in an amount of 0.2% by mass with respect to the positive electrode active material. 60 parts by mass of N-methylpyrrolidone were added and mixed to prepare a paste-like positive electrode coating material. This paste-like positive electrode coating material is passed through a 70-mesh net to remove large ones, and then uniformly applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 15 μm and dried to obtain a positive electrode active material. A coating film containing was formed. The thickness of the coating film after drying was 215 μm, and the electrode mass per unit area was 2
It was 5.0 mg / cm 2 . The strip-shaped electrode body was dried and then compression-molded to a thickness of 170 μm. After that, it was cut into a predetermined size and an aluminum lead body was welded to obtain a sheet-shaped positive electrode.

【0046】次に、以下のようにして負極を作製した。
負極活物質として黒鉛系炭素材料〔ただし、その結晶の
(002)面の面間距離(d002)=0.337n
m、c軸方向の結晶子の大きさ(Lc)=95nm、平
均粒径10μm、純度99.9質量%以上という特性を
持つ炭素材料〕180質量部を、ポリフッ化ビニリデン
14質量部をN−メチルピロリドン190質量部に溶解
させた溶液と混合してペースト状の負極塗料を調製し
た。このペースト状の負極塗料を厚さ10μmの帯状の
銅箔からなる負極集電体の両面に均一に塗布し、乾燥し
て負極活物質含有塗膜を形成した。乾燥後の塗膜の厚さ
は243μmであり、単位面積当たりの電極質量は1
2.0mg/cm2であった。この帯状の電極体を乾燥
後、厚み175μmに圧縮成形した。その後、所定の大
きさに切断し、ニッケル製のリード体を溶接して、シー
ト状の負極を得た。
Next, a negative electrode was prepared as follows.
A graphite-based carbon material as the negative electrode active material [however, the interplanar distance (d002) of the (002) plane of the crystal is 0.337n.
180 parts by weight of carbon material having characteristics of crystallite size (Lc) in the m- and c-axis directions (Lc) = 95 nm, average particle size of 10 μm, and purity of 99.9% by mass or more, and 14 parts by mass of polyvinylidene fluoride are N- A paste-like negative electrode coating material was prepared by mixing with a solution prepared by dissolving 190 parts by mass of methylpyrrolidone. This paste-like negative electrode coating material was uniformly applied to both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried to form a negative electrode active material-containing coating film. The thickness of the coating film after drying was 243 μm, and the electrode mass per unit area was 1
It was 2.0 mg / cm 2 . The strip-shaped electrode body was dried and compression-molded to a thickness of 175 μm. After that, it was cut into a predetermined size, and a nickel lead body was welded to obtain a sheet-shaped negative electrode.

【0047】また、以下のようにして電解液を調製し
た。メチルエチルカーボネート(MEC)とエチレンカ
ーボネート(EC)とを体積比2:1の割合で混合した
混合溶媒に、LiPF6を1.2mol/dm3溶解させ
て非水電解液を得た。
An electrolytic solution was prepared as follows. LiPF 6 was dissolved at 1.2 mol / dm 3 in a mixed solvent in which methyl ethyl carbonate (MEC) and ethylene carbonate (EC) were mixed at a volume ratio of 2: 1 to obtain a non-aqueous electrolytic solution.

【0048】続いて、以下のようにして非水二次電池を
作製した。前記正極及び負極を乾燥処理後、前記正極を
厚さ25μmの微孔性ポリエチレンフィルムからなるセ
パレータを介して前記負極に重ね、渦巻状に巻回して渦
巻状の巻回構造の電極体を形成した。これを袋状のアル
ミラミネートフィルム内に挿入した。次に、前記電解液
を注入した後に真空封止を行ない、その状態で3時間室
温で放置し、正極、負極、セパレータに電解液を十分に
含浸させて本発明の非水二次電池を得た。
Subsequently, a non-aqueous secondary battery was manufactured as follows. After the positive electrode and the negative electrode were dried, the positive electrode was superposed on the negative electrode via a separator made of a microporous polyethylene film having a thickness of 25 μm and spirally wound to form a spirally wound electrode body. . This was inserted into a bag-shaped aluminum laminate film. Next, after injecting the electrolytic solution, vacuum sealing is performed, and the state is left at room temperature for 3 hours, and the positive electrode, the negative electrode, and the separator are sufficiently impregnated with the electrolytic solution to obtain the non-aqueous secondary battery of the present invention. It was

【0049】(実施例2)実施例1の正極の作製工程に
おけるフェニルホスホン酸を正極活物質に対して0.2
質量%加えることを、p−トルエンスルホン酸を正極活
物質に対して0.2質量%加えることに変更した以外
は、実施例1と同様に本発明の非水二次電池を作製し
た。
(Example 2) 0.2% of phenylphosphonic acid was added to the positive electrode active material in the process of producing the positive electrode of Example 1.
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 1 except that p-toluenesulfonic acid was added in an amount of 0.2% by mass based on the positive electrode active material.

【0050】(実施例3)実施例1の正極の作製工程に
おけるフェニルホスホン酸を正極活物質に対して0.2
質量%加えることを、フェニルホスホン酸を正極活物質
に対して0.005質量%加えることに変更した以外
は、実施例1と同様に本発明の非水二次電池を作製し
た。
Example 3 Phenylphosphonic acid in the positive electrode manufacturing process of Example 1 was added to the positive electrode active material in an amount of 0.2.
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 1 except that the addition of mass% was changed to the addition of 0.005 mass% of phenylphosphonic acid to the positive electrode active material.

【0051】(実施例4)実施例1の正極の作製工程に
おけるフェニルホスホン酸を正極活物質に対して0.2
質量%加えることを、フェニルホスホン酸を正極活物質
に対して5質量%加えることに変更した以外は、実施例
1と同様に本発明の非水二次電池を作製した。
Example 4 Phenylphosphonic acid in the positive electrode manufacturing process of Example 1 was added to the positive electrode active material in an amount of 0.2.
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 1 except that addition of 5% by mass of phenylphosphonic acid was changed to 5% by mass of phenylphosphonic acid.

【0052】(比較例1)実施例1の正極の作製工程に
おけるフェニルホスホン酸を添加しないこと以外は、実
施例1と同様に比較例の非水二次電池を作製した。
(Comparative Example 1) A non-aqueous secondary battery of a comparative example was produced in the same manner as in Example 1 except that phenylphosphonic acid was not added in the step of producing the positive electrode of Example 1.

【0053】(比較例2)実施例1の正極の作製工程に
おけるフェニルホスホン酸を添加しないこと、及び電解
液としてテトラヒドロピランにLiPF6を1.2mo
l/dm3溶解させた非水電解液を使用したこと以外
は、実施例1と同様に比較例の非水二次電池を作製し
た。
COMPARATIVE EXAMPLE 2 Phenylphosphonic acid was not added in the step of producing the positive electrode of Example 1, and 1.2 mol of LiPF 6 was added to tetrahydropyran as an electrolytic solution.
A non-aqueous secondary battery of a comparative example was produced in the same manner as in Example 1 except that the non-aqueous electrolytic solution dissolved in 1 / dm 3 was used.

【0054】(比較例3)実施例1の正極の作製工程に
おけるフェニルホスホン酸を正極活物質に対して0.2
質量%加えることを、トリフロロメタンホスホン酸を正
極活物質に対して0.2質量%加えることに変更した以
外は、実施例1と同様に本発明の非水二次電池を作製し
た。
(Comparative Example 3) Phenylphosphonic acid in the positive electrode manufacturing process of Example 1 was added to the positive electrode active material in an amount of 0.2.
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 1 except that the addition of 0.2% by mass of trifluoromethanephosphonic acid was changed to the addition of 0.2% by mass of trifluoromethanephosphonic acid.

【0055】上記実施例1〜4及び比較例1〜3の各非
水二次電池について充放電を繰り返した時の放電容量及
び内部インピーダンスの変化を測定した。また、高温貯
蔵後の放電容量及び内部インピーダンスの変化も測定し
た。その結果を表1に示す。
With respect to each of the non-aqueous secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3, changes in discharge capacity and internal impedance when charging and discharging were repeated were measured. Also, changes in discharge capacity and internal impedance after high temperature storage were measured. The results are shown in Table 1.

【0056】[0056]

【表1】 [Table 1]

【0057】放電容量の測定方法は、充電を1Cの電流
制限回路を設けて4.2Vの定電圧で行ない、放電を1
Cの電流で電池の電極間電圧が3Vに低下するまで行な
った。そして、比較例1の電池の1サイクル目の放電容
量を100%とし、その放電容量に対する相対値で他の
電池の放電容量(%)を求めた。また、貯蔵特性は、6
0℃で1週間貯蔵した後の放電容量を測定することによ
り評価した。更に、内部インピーダンスは、放電容量の
測定条件と同様の条件で、LCRメータにより1kHz
における内部インピーダンスを測定し、比較例1の電池
の1サイクル目の内部インピーダンスを100%とし、
その内部インピーダンスに対する相対値で他の電池の内
部インピーダンス(%)を求めた。
The measuring method of the discharge capacity is as follows: charging is carried out at a constant voltage of 4.2 V with a current limiting circuit of 1 C provided, and discharging is carried out at 1
The operation was performed until the voltage between the electrodes of the battery was lowered to 3 V by the current of C. Then, the discharge capacity at the first cycle of the battery of Comparative Example 1 was set to 100%, and the discharge capacities (%) of the other batteries were obtained by the relative value to the discharge capacity. The storage characteristics are 6
It was evaluated by measuring the discharge capacity after storage at 0 ° C. for 1 week. Furthermore, the internal impedance was 1 kHz measured by an LCR meter under the same conditions as the discharge capacity measurement conditions.
The internal impedance in the first cycle of the battery of Comparative Example 1 was set to 100%,
The internal impedance (%) of the other battery was determined by the relative value with respect to the internal impedance.

【0058】表1から明らかなように、芳香族性の置換
基を有するリン酸化合物又はスルホン酸化合物を添加し
た正極を用いた実施例1〜4は、比較例1と比べて1サ
イクル目の放電容量が高く、且つ、充放電サイクルを3
00サイクル繰り返した後及び高温で貯蔵した後でも放
電容量の低下は少なかった。また、実施例1〜4は、比
較例1に比べて1サイクル目の内部インピーダンスも低
くなっており、300サイクル後及び高温貯蔵後の内部
インピーダンスの上昇も抑えられていることがわかる。
As is clear from Table 1, Examples 1 to 4 using the positive electrode to which the phosphoric acid compound or the sulfonic acid compound having an aromatic substituent is added are compared with Comparative Example 1 in the first cycle. High discharge capacity and 3 charge / discharge cycles
There was little decrease in discharge capacity even after repeating 00 cycles and after storing at high temperature. In addition, in Examples 1 to 4, the internal impedance in the first cycle was lower than that in Comparative Example 1, and it can be seen that the increase in the internal impedance after 300 cycles and after high temperature storage was suppressed.

【0059】また、比較例2及び比較例3と比べても、
実施例1〜4は、300サイクル後及び高温貯蔵後の放
電容量は高くなっており、内部インピーダンスの上昇も
抑えられていることがわかる。
Further, comparing with Comparative Examples 2 and 3,
It is understood that in Examples 1 to 4, the discharge capacity after 300 cycles and after high temperature storage was high, and the increase in internal impedance was suppressed.

【0060】[0060]

【発明の効果】以上のように本発明によれば、非水二次
電池の正極に芳香族性の置換基を有するリン酸化合物又
はスルホン酸化合物を含有させることにより、充放電サ
イクル後及び高温貯蔵後の内部インピーダンスの増加に
よる放電容量の低下を抑制した非水二次電池を提供する
ことができる。
As described above, according to the present invention, by incorporating a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent in the positive electrode of a non-aqueous secondary battery, it is possible to improve the temperature after a charge / discharge cycle and at a high temperature. It is possible to provide a non-aqueous secondary battery in which a decrease in discharge capacity due to an increase in internal impedance after storage is suppressed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 一司 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 片山 秀昭 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 戸城 博行 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ04 AJ05 AK03 AL02 AL06 AL12 AM03 AM04 AM05 AM07 AM16 DJ08 EJ11 HJ02 5H050 AA07 AA10 BA17 CA08 CA09 CB02 CB07 CB12 DA02 DA09 EA22 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazushi Miyata             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. (72) Inventor Hideaki Katayama             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. (72) Inventor Hiroyuki Togi             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F term (reference) 5H029 AJ04 AJ05 AK03 AL02 AL06                       AL12 AM03 AM04 AM05 AM07                       AM16 DJ08 EJ11 HJ02                 5H050 AA07 AA10 BA17 CA08 CA09                       CB02 CB07 CB12 DA02 DA09                       EA22 HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び電解質を備えた非水二次
電池であって、前記正極に芳香族性の置換基を有するリ
ン酸化合物又はスルホン酸化合物を含有させたことを特
徴とする非水二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode contains a phosphoric acid compound or a sulfonic acid compound having an aromatic substituent. Water secondary battery.
【請求項2】 前記芳香族性の置換基を有するリン酸化
合物又はスルホン酸化合物が、正極活物質に対して0.
01〜1質量%の割合で前記正極に含有されている請求
項1に記載の非水二次電池。
2. The phosphoric acid compound or sulfonic acid compound having an aromatic substituent is added to the positive electrode active material in an amount of 0.
The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is contained in the positive electrode at a rate of 0 to 1 mass%.
JP2001230197A 2001-07-30 2001-07-30 Non-aqueous secondary battery Expired - Lifetime JP4979049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230197A JP4979049B2 (en) 2001-07-30 2001-07-30 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230197A JP4979049B2 (en) 2001-07-30 2001-07-30 Non-aqueous secondary battery

Publications (3)

Publication Number Publication Date
JP2003045433A true JP2003045433A (en) 2003-02-14
JP2003045433A5 JP2003045433A5 (en) 2008-08-21
JP4979049B2 JP4979049B2 (en) 2012-07-18

Family

ID=19062440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230197A Expired - Lifetime JP4979049B2 (en) 2001-07-30 2001-07-30 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4979049B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173782A (en) * 2001-09-26 2003-06-20 Mitsubishi Chemicals Corp Lithium secondary battery and positive electrode
JP2009123464A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
WO2010040950A1 (en) * 2008-10-09 2010-04-15 Batscap Electrode comprising a modified complex oxide as active substance
EP2631972A1 (en) 2012-02-24 2013-08-28 Hitachi, Ltd. Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
JP2016219144A (en) * 2015-05-15 2016-12-22 三井化学株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2017517113A (en) * 2014-05-30 2017-06-22 デュラセル、ユーエス、オペレーションズ、インコーポレーテッド Cathode for electrochemical cells comprising at least one cathode additive
JP2017197405A (en) * 2016-04-27 2017-11-02 ユミコア Method for modifying lithium metal composite oxide powder
JP2017197404A (en) * 2016-04-27 2017-11-02 ユミコア Method for modifying lithium metal composite oxide powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878058A (en) * 1994-09-05 1996-03-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2002216768A (en) * 2001-01-18 2002-08-02 Hitachi Maxell Ltd Nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878058A (en) * 1994-09-05 1996-03-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2002216768A (en) * 2001-01-18 2002-08-02 Hitachi Maxell Ltd Nonaqueous secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173782A (en) * 2001-09-26 2003-06-20 Mitsubishi Chemicals Corp Lithium secondary battery and positive electrode
US8178238B2 (en) 2007-11-14 2012-05-15 Sony Corporation Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP2009123464A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
US8486566B2 (en) 2007-11-14 2013-07-16 Sony Corporation Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
FR2937185A1 (en) * 2008-10-09 2010-04-16 Batscap Sa ELECTRODE COMPRISING A MODIFIED COMPLEX OXIDE AS ACTIVE MATERIAL.
JP2012505504A (en) * 2008-10-09 2012-03-01 バスカップ Electrode containing modified composite oxide as active substance
CN102210048A (en) * 2008-10-09 2011-10-05 巴茨卡普公司 Electrode comprising a modified complex oxide as active substance
WO2010040950A1 (en) * 2008-10-09 2010-04-15 Batscap Electrode comprising a modified complex oxide as active substance
EP2631972A1 (en) 2012-02-24 2013-08-28 Hitachi, Ltd. Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
JP2013175325A (en) * 2012-02-24 2013-09-05 Hitachi Ltd Method of manufacturing composition for positive electrode mixture layer formation and method of manufacturing lithium ion secondary battery
JP2017517113A (en) * 2014-05-30 2017-06-22 デュラセル、ユーエス、オペレーションズ、インコーポレーテッド Cathode for electrochemical cells comprising at least one cathode additive
US11075382B2 (en) 2014-05-30 2021-07-27 Duracell U.S. Operations, Inc. Cathode for an electrochemical cell including at least one cathode additive
JP2016219144A (en) * 2015-05-15 2016-12-22 三井化学株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2017197405A (en) * 2016-04-27 2017-11-02 ユミコア Method for modifying lithium metal composite oxide powder
JP2017197404A (en) * 2016-04-27 2017-11-02 ユミコア Method for modifying lithium metal composite oxide powder

Also Published As

Publication number Publication date
JP4979049B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5582587B2 (en) Lithium ion secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP5734708B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
US20040126668A1 (en) Lithium polymer secondary cell
JP2002087807A (en) Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP4979049B2 (en) Non-aqueous secondary battery
JP6345659B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2002270184A (en) Non-aqueous secondary battery
JP2003123764A (en) Nonaqueous secondary battery
JP2006066298A (en) Lithium secondary battery
JP2006261059A (en) Non-aqueous electrolyte secondary battery
JP2006120460A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002216768A (en) Nonaqueous secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP2002352804A (en) Nonaqueous secondary cell
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP2002075330A (en) Nonaqueous secondary battery and its manufacturing method
JP2004273281A (en) Nonaqueous secondary battery
JP2015201283A (en) Manufacturing method of cathode for nonaqueous secondary battery, and cathode for nonaqueous secondary battery
JP2002141111A (en) Nonaqueous secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4979049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term