JP2005003194A - Air temperature type liquefied gas vaporizer - Google Patents

Air temperature type liquefied gas vaporizer Download PDF

Info

Publication number
JP2005003194A
JP2005003194A JP2004102146A JP2004102146A JP2005003194A JP 2005003194 A JP2005003194 A JP 2005003194A JP 2004102146 A JP2004102146 A JP 2004102146A JP 2004102146 A JP2004102146 A JP 2004102146A JP 2005003194 A JP2005003194 A JP 2005003194A
Authority
JP
Japan
Prior art keywords
liquefied gas
temperature type
air temperature
gas vaporizer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004102146A
Other languages
Japanese (ja)
Inventor
Shinobu Tamura
忍 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004102146A priority Critical patent/JP2005003194A/en
Publication of JP2005003194A publication Critical patent/JP2005003194A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air temperature type liquefied gas vaporizer capable of increasing the vaporizing efficiency of a liquefied gas at a vaporizing part, capable of preventing the fins of finned tubes from being corroded, and manufacturable at a low cost. <P>SOLUTION: This air temperature type liquefied gas vaporizer 1 comprises the vaporizing parts 2 having a plurality of vertically extending finned tubes 8 and a plurality of vertically extending steam flow tubes 17 disposed between the finned tubes 2 of the vaporizing part 2. The steam flow tubes 17 comprise longitudinally extending aluminum extruded structural angle tubes 18 formed, on the outer peripheral surface, by integrating a plurality of radiating fins 18a with each other and a stainless steel inner tube 19 inserted into an outer tube 18 and covering the inner peripheral surface of the outer tube 18. A heat radiation film 21 formed of a black coating and having a heat emissivity of 95% or higher is formed on the outer peripheral surface of the outer tube 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は空温式液化ガス気化器に関する。   The present invention relates to an air temperature type liquefied gas vaporizer.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、この明細書および特許請求の範囲において、図1の上下を上下というものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum. In this specification and claims, the top and bottom of FIG.

たとえば天然ガス、酸素、窒素、アルゴン、ヘリウム、水素、炭酸ガス、メタン、プロパン、エチレンなどのガスは、輸送時や貯蔵時には、タンクの容量を小さくするために液化した状態で蓄えられている。そして、需要に応じて空温式液化ガス気化器により再ガス化され、使用されるようになっている。   For example, natural gas, oxygen, nitrogen, argon, helium, hydrogen, carbon dioxide, methane, propane, ethylene, and other gases are stored in a liquefied state in order to reduce the capacity of the tank during transportation and storage. And it is regasified and used by an air temperature type liquefied gas vaporizer according to demand.

従来、このような空温式液化ガス気化器としては、蒸発部および加温部を備えており、蒸発部が、上下方向に間隔をおいて互いに平行に配された1対の直管状マニホルド管と、両マニホルド管間に配されかつ上下両端部がそれぞれ両マニホルド管に接続された上下方向に伸びるフィン付き管とよりなる蒸発ユニットを、マニホルド管およびフィン付き管と直交する方向に並列状に複数配置することにより構成されており、加温部が、フィン付き蛇行管を各蒸発ユニットと対応する位置に来るように並列状に複数配置することにより構成されており、各フィン付き蛇行管の管本体の一端部が各蒸発ユニットの上マニホルド管に接続され、蒸発ユニットの下マニホルド管内にその一端から流入した液化ガスが、全てのフィン付き管に分流した後フィン付き管を通って上マニホルド管内に流入し、上マニホルド管からフィン付き蛇行管に流入するようになされたものが知られている(たとえば特許文献1参照)。   Conventionally, as such an air temperature type liquefied gas vaporizer, an evaporation part and a heating part are provided, and a pair of straight manifold pipes in which the evaporation parts are arranged in parallel with each other in the vertical direction. And an evaporating unit consisting of a vertically extending finned pipe disposed between the manifold pipes and having both upper and lower ends connected to the two manifold pipes in a direction perpendicular to the manifold pipe and the finned pipe. It is configured by arranging a plurality of, and the heating unit is configured by arranging a plurality of finned meandering tubes in parallel so as to come to positions corresponding to the respective evaporation units. One end of the pipe body is connected to the upper manifold pipe of each evaporation unit, and the liquefied gas flowing from one end into the lower manifold pipe of the evaporation unit is divided into all finned pipes before Flows into the upper manifold pipe through the emission with pipe, which was made to flow from the upper manifold tube serpentine tubes finned is known (e.g. see Patent Document 1).

このような空温式液化ガス気化器において、蒸発部での液化ガスの蒸発効率を向上させるために、種々の対策が施されている。たとえば、空気吸い込み口および空気吹き出し口を有し、かつ空気吹き出し口が蒸発部の下方に位置するように配置されたダクトと、ダクトの中間部に設けられた空気加熱器と、ダクトの空気吸い込み口から空気を吸い込むとともに、空気加熱器で加熱された高温の空気を空気吹き出し口から吹き出す送風機とを備えた空温式液化ガス気化器が知られている(たとえば特許文献2参照)。   In such an air temperature type liquefied gas vaporizer, various measures are taken in order to improve the evaporation efficiency of the liquefied gas in the evaporation section. For example, a duct having an air inlet and an air outlet, the duct being arranged so that the air outlet is located below the evaporator, an air heater provided in the middle of the duct, and an air inlet of the duct There is known an air-temperature liquefied gas vaporizer equipped with a blower that sucks air from a mouth and blows out high-temperature air heated by an air heater from an air blowing port (for example, see Patent Document 2).

また、蒸発部のフィン付き管間に、上下方向に伸びる蒸気吹き出し管が配置され、蒸気吹き出し管に形成された多数の蒸気吹き出し口からフィン付き管に向かって蒸気が吹き付けられるようになされた空温式液化ガス気化器も知られている(たとえば特許文献3参照)。   Further, a steam blowing pipe extending in the vertical direction is arranged between the finned pipes of the evaporation section, and the steam is blown from a large number of steam blowing openings formed in the steam blowing pipe toward the finned pipe. A warm liquefied gas vaporizer is also known (see, for example, Patent Document 3).

しかしながら、特許文献2記載の空温式液化ガス気化器においては、ダクト、空気加熱器および送風機などの付属機器を必要とするので、コストが高くなるという問題がある。また、特許文献3記載の空温式液化ガス気化器においては、フィン付き管に吹き付けられた蒸気が凝縮してフィン付き管の外周面に付着し、その結果着霜が発生してフィン付き管と大気との間での熱交換効率が低下し、液化ガスの蒸発効率が低下するおそれがある。しかも、フィン付き管のフィンに腐食が発生するおそれがある。
特開2000−39099号公報(段落0010〜0012) 特開平9−165588号公報(特許請求の範囲) 特開平6−123398号公報(段落0011)
However, the air temperature type liquefied gas vaporizer described in Patent Document 2 requires an accessory device such as a duct, an air heater, and a blower, and thus has a problem of high cost. Further, in the air temperature type liquefied gas vaporizer described in Patent Document 3, the steam blown to the finned tube is condensed and adheres to the outer peripheral surface of the finned tube, resulting in frost formation and the finned tube. There is a risk that the efficiency of heat exchange between the air and the atmosphere will decrease, and the evaporation efficiency of the liquefied gas will decrease. In addition, the fins of the finned tube may corrode.
JP 2000-39099 A (paragraphs 0010 to 0012) JP-A-9-165588 (Claims) JP-A-6-123398 (paragraph 0011)

この発明の目的は、上記問題を解決し、蒸発部での液化ガスの蒸発効率を向上させることができるとともに、フィン付き管のフィンの腐食を防止することができ、しかもコストの安い空温式液化ガス気化器を提供することにある。   The object of the present invention is to solve the above problems, improve the evaporation efficiency of the liquefied gas in the evaporation section, prevent corrosion of the fins of the finned tube, and is low in cost. The object is to provide a liquefied gas vaporizer.

本発明は、上記課題を解決するために次の態様からなる。   In order to solve the above-mentioned problems, the present invention comprises the following aspects.

1)上下方向に伸びる複数のフィン付き管を有する蒸発部を備えており、上下方向に伸びる複数の蒸気流通管が、蒸発部のフィン付き管間に配置されている空温式液化ガス気化器。   1) An air temperature type liquefied gas vaporizer having an evaporation section having a plurality of finned pipes extending in the vertical direction, and a plurality of vapor flow pipes extending in the vertical direction disposed between the finned pipes of the evaporation section .

2)蒸気流通管の外周面に熱放射膜が形成されている上記1)記載の空温式液化ガス気化器。   2) The air temperature type liquefied gas vaporizer according to 1) above, wherein a heat radiation film is formed on the outer peripheral surface of the steam flow pipe.

3)熱放射膜の熱放射率が95%以上である上記2)記載の空温式液化ガス気化器。   3) The air temperature type liquefied gas vaporizer described in 2) above, wherein the thermal radiation rate of the thermal radiation film is 95% or more.

4)熱放射膜が黒色塗膜からなる上記2)または3)記載の空温式液化ガス気化器。   4) The air temperature type liquefied gas vaporizer according to 2) or 3) above, wherein the heat radiation film is a black coating film.

5)蒸気流通管の外周面に放熱フィンが設けられている上記1)〜4)のうちのいずれかに記載の空温式液化ガス気化器。   5) The air temperature type liquefied gas vaporizer according to any one of the above 1) to 4), wherein heat radiation fins are provided on the outer peripheral surface of the steam flow pipe.

6)蒸気流通管の放熱フィンが、フィン付き管のフィンに対して非接触状態となっている上記5)記載の空温式液化ガス気化器。   6) The air temperature type liquefied gas vaporizer according to 5) above, wherein the heat dissipating fins of the steam flow pipe are in non-contact with the fins of the finned pipe.

7)蒸気流通管の放熱フィンの表面に熱放射膜が形成されている上記5)または6)記載の空温式液化ガス気化器。   7) The air temperature type liquefied gas vaporizer according to 5) or 6) above, wherein a heat radiation film is formed on the surface of the heat radiation fin of the steam flow pipe.

8)熱放射膜の熱放射率が95%以上である上記7)記載の空温式液化ガス気化器。   8) The air temperature type liquefied gas vaporizer described in 7) above, wherein the thermal radiation rate of the thermal radiation film is 95% or more.

9)熱放射膜が黒色塗膜からなる上記7)または8)記載の空温式液化ガス気化器。   9) The air-temperature type liquefied gas vaporizer as described in 7) or 8) above, wherein the heat radiation film is a black coating film.

10)蒸気流通管が、外周面に長さ方向に伸びる複数の放熱フィンが一体に形成されたアルミニウム押出形材製外管と、外管内に挿入されかつ外管の内周面を覆うステンレス鋼製内管とよりなる上記1)〜9)のうちのいずれかに記載の空温式液化ガス気化器。   10) Outer tube made of extruded aluminum material, in which a steam circulation pipe is integrally formed with a plurality of radiating fins extending in the length direction on the outer peripheral surface, and stainless steel inserted into the outer tube and covering the inner peripheral surface of the outer tube The air-temperature type liquefied gas vaporizer according to any one of the above 1) to 9), comprising an inner pipe.

11)蒸発部の下方に、空気を上向きに送る送風機が配置されている上記1)〜10)のうちのいずれかに記載の空温式液化ガス気化器。   11) The air-temperature liquefied gas vaporizer according to any one of 1) to 10) above, wherein a blower that sends air upward is disposed below the evaporation unit.

12)上記1)〜11)のうちのいずれかに記載された空温式液化ガス気化器において、液化ガスを、蒸発部のフィン付き管内に下方から上方に流し、高温蒸気を、蒸気流通管内に上方から下方に流すことを特徴とする空温式液化ガス気化器の運転方法。   12) In the air temperature type liquefied gas vaporizer described in any one of the above 1) to 11), the liquefied gas is caused to flow upward from below into the finned tube of the evaporation section, and the high temperature steam is allowed to flow into the vapor flow tube. An air temperature type liquefied gas vaporizer operating method characterized by flowing from above to below.

上記1)の空温式液化ガス気化器によれば、液化ガスがフィン付き管内を流れる間に、高温蒸気が蒸気流通管内を流れると、高温蒸気の有する熱が蒸気流通管から放熱され、この熱によりフィン付き管のフィンが加熱されるとともにフィンの有する熱がフィン付き管内を流れる液化ガスに伝わり、液化ガスの蒸発効率が向上する。また、蒸発部においては、フィン付き管内を流れる液化ガスによりフィン付き管の周囲の空気が冷却されて下向きの空気の流れが発生するとともに、蒸気流通管から放熱された熱により空気が加熱されて上向きの空気の流れも発生し、空気の流れに乱れが生じる。その結果、液化ガスからフィン付き管のフィンを介しての空気への伝熱性が向上し、液化ガスの蒸発効率が向上する。また、蒸気はフィン付き管に接触しないので、フィン付き管の外周面への着霜が防止され、その結果蒸発効率の低下が防止されるとともに、フィン付き管のフィンの腐食が防止される。さらに、特許文献2記載の空温式液化ガス気化器のようなダクト、空気加熱器および送風機などの付属機器を必要としないので、コストが安くなる。   According to the air temperature type liquefied gas vaporizer of 1), when the high temperature steam flows in the steam flow pipe while the liquefied gas flows in the finned pipe, the heat of the high temperature steam is radiated from the steam flow pipe, The fins of the finned tube are heated by the heat, and the heat of the fins is transmitted to the liquefied gas flowing through the finned tube, thereby improving the evaporation efficiency of the liquefied gas. In the evaporating section, the air around the finned tube is cooled by the liquefied gas flowing in the finned tube to generate a downward air flow, and the air is heated by the heat radiated from the steam circulation tube. An upward air flow is also generated, and the air flow is disturbed. As a result, the heat transfer from the liquefied gas to the air through the fins of the finned tube is improved, and the evaporation efficiency of the liquefied gas is improved. Further, since the steam does not contact the finned tube, frost formation on the outer peripheral surface of the finned tube is prevented, and as a result, a decrease in evaporation efficiency is prevented and corrosion of the fins of the finned tube is prevented. Furthermore, since a duct such as the air temperature type liquefied gas vaporizer described in Patent Document 2 and an auxiliary device such as an air heater and a blower are not required, the cost is reduced.

上記2)の空温式液化ガス気化器によれば、高温蒸気の有する熱の蒸気流通管からの放熱が効率よく行われ、液化ガスの蒸発効率も一層向上する。   According to the air temperature type liquefied gas vaporizer of 2), the heat of the high-temperature steam is efficiently radiated from the steam circulation pipe, and the evaporation efficiency of the liquefied gas is further improved.

上記3)の空温式液化ガス気化器によれば、高温蒸気の有する熱の蒸気流通管からの放熱が一層効率よく行われ、液化ガスの蒸発効率も一層向上する。   According to the air temperature type liquefied gas vaporizer of 3), the heat of the high-temperature steam is radiated from the steam flow pipe more efficiently, and the evaporation efficiency of the liquefied gas is further improved.

上記4)の空温式液化ガス気化器によれば、蒸気流通管に熱放射膜を比較的安価に形成することができる。   According to the air temperature type liquefied gas vaporizer of 4), the heat radiation film can be formed on the steam flow pipe at a relatively low cost.

上記5)の空温式液化ガス気化器によれば、高温蒸気の有する熱の蒸気流通管からの放熱が一層効率よく行われ、液化ガスの蒸発効率も一層向上する。   According to the air temperature type liquefied gas vaporizer of the above 5), the heat of the high-temperature steam is radiated from the steam flow pipe more efficiently, and the evaporation efficiency of the liquefied gas is further improved.

上記6)の空温式液化ガス気化器によれば、蒸気流通管の放熱フィンとフィン付き管のフィンとが接触していないので、両者の熱膨張の差に起因するひずみの発生が防止される。   According to the air temperature type liquefied gas vaporizer of 6) above, since the heat dissipating fins of the steam flow pipe and the fins of the finned pipe are not in contact with each other, the generation of strain due to the difference in thermal expansion between them is prevented. The

上記7)および8)の空温式液化ガス気化器によれば、高温蒸気の有する熱の蒸気流通管からの放熱が一層効率よく行われ、液化ガスの蒸発効率も一層向上する。   According to the air temperature type liquefied gas vaporizers of 7) and 8) above, the heat of the high-temperature steam is radiated from the steam flow pipe more efficiently, and the evaporation efficiency of the liquefied gas is further improved.

上記9)の空温式液化ガス気化器によれば、放熱フィンに熱放射膜を比較的安価に形成することができる。   According to the air temperature type liquefied gas vaporizer of the above 9), the heat radiation film can be formed on the heat radiation fin at a relatively low cost.

上記10)の空温式液化ガス気化器によれば、高温蒸気による蒸気流通管の腐食を防止することができる。   According to the air temperature type liquefied gas vaporizer of 10) above, corrosion of the steam flow pipe due to high temperature steam can be prevented.

上記11)の空温式液化ガス気化器によれば、高温蒸気の有する熱が内管および外管を介して放熱フィンから放熱されることにより加熱された空気を、送風機により上向きに流すことができ、その結果フィン付き管のフィンを介しての液化ガスへの伝熱性が一層向上し、液化ガスの蒸発効率が向上する。しかも、送風機の他にダクトおよび空気加熱器を必要とする特許文献2記載の空温式液化ガス気化器に比べてコストが安くなるとともに、省スペース化を図ることができる。また、送風機により上向きの空気の流れが発生するだけであるから、曲がったダクト内に空気を流す特許文献2記載の空温式液化ガス気化器に比べて、圧損が減少する。   According to the air temperature type liquefied gas vaporizer of the above 11), the air heated by the heat of the high-temperature steam being radiated from the radiation fins through the inner tube and the outer tube can be caused to flow upward by the blower. As a result, the heat transfer property to the liquefied gas through the fins of the finned tube is further improved, and the evaporation efficiency of the liquefied gas is improved. In addition, the cost can be reduced and the space can be saved as compared with the air temperature type liquefied gas vaporizer described in Patent Document 2 which requires a duct and an air heater in addition to the blower. Moreover, since only the upward air flow is generated by the blower, the pressure loss is reduced as compared with the air temperature type liquefied gas vaporizer described in Patent Document 2 in which the air flows in the bent duct.

上記12)の空温式液化ガス気化器の運転方法によれば、熱交換による沸騰によって気相に相変化する液化ガスを下方から上方に、同じく凝縮によって液相に相変化する蒸気を上方から下方に流すので、これらの流体を効率よく流すことができる。   According to the operation method of the air temperature type liquefied gas vaporizer of the above 12), the liquefied gas that changes in phase to the gas phase by boiling due to heat exchange is directed from above to below, and the vapor that changes in phase to the liquid phase due to condensation is also observed from above. Since it flows downward, these fluids can be efficiently flowed.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2はこの発明による空温式液化ガス気化器の全体構成を示し、図3および図4はその要部の構成を示す。なお、以下の説明において、図1の左右を左右というものとする。また、図2の下側を前、上側を後というものとする。   1 and 2 show the overall configuration of an air temperature type liquefied gas vaporizer according to the present invention, and FIGS. 3 and 4 show the configuration of the main part thereof. In the following description, the left and right in FIG. In addition, the lower side of FIG.

図1〜図3において、空温式液化ガス気化器(1)は、複数の蒸発ユニット(3)を前後方向に間隔をおいて並列状に配置してなる蒸発部(2)と、複数のフィン付き蛇行管(5)を前後方向に間隔をおいて並列状に配置してなる加温部(4)とを備えている。   1 to 3, the air temperature type liquefied gas vaporizer (1) includes a plurality of evaporation units (3) arranged in parallel at intervals in the front-rear direction, and a plurality of evaporation units (3). And a heating section (4) in which finned meandering pipes (5) are arranged in parallel at intervals in the front-rear direction.

蒸発ユニット(3)は、上下方向に間隔をおいて互いに平行に配されかつ左右方向に伸びる上下1対のアルミニウム製マニホルド管(6)(7)と、両マニホルド管(6)(7)間にマニホルド管(6)(7)の長さ方向(左右方向)に間隔をおいて配されかつ上下両端部がそれぞれ両マニホルド管(6)(7)に接続された上下方向に伸びるアルミニウム製フィン付き管(8)とよりなる。したがって、蒸発部(2)は、複数の蒸発ユニット(3)を、マニホルド管(6)(7)およびフィン付き管(8)と直交する方向に並列状に配置することにより構成されている。   The evaporation unit (3) is arranged between a pair of upper and lower aluminum manifold pipes (6) (7), which are arranged in parallel to each other at an interval in the vertical direction and extend in the left-right direction, and both manifold pipes (6) (7). Aluminum fins extending in the vertical direction with the upper and lower ends connected to both manifold pipes (6) and (7), spaced apart in the length direction (left and right direction) of the manifold pipes (6) and (7) It consists of a tube (8). Therefore, the evaporation section (2) is configured by arranging a plurality of evaporation units (3) in parallel in a direction orthogonal to the manifold tubes (6) (7) and the finned tube (8).

各蒸発ユニット(3)の上マニホルド管(6)の左端開口は閉鎖されている。各蒸発ユニット(3)における下マニホルド管(7)の左端は、前後方向に伸びかつ両端が閉鎖された入口ヘッダ管(9)に接続されている。入口ヘッダ管(9)の長さ方向の中央部に入口(11)が形成されている。下マニホルド管(7)の右端開口は閉鎖されている。   The left end opening of the upper manifold pipe (6) of each evaporation unit (3) is closed. The left end of the lower manifold pipe (7) in each evaporation unit (3) is connected to an inlet header pipe (9) extending in the front-rear direction and closed at both ends. An inlet (11) is formed at the central portion in the length direction of the inlet header pipe (9). The right end opening of the lower manifold tube (7) is closed.

各蒸発ユニット(3)のフィン付き管(8)は、たとえばアルミニウム押出形材からなるものであり、外周面に上下方向に伸びる複数、ここでは8枚のフィン(8a)が放射状に一体に形成され、内周面に上下方向に伸びる複数の凸条からなるインナーフィン(図示略)が周方向に間隔をおいて一体に形成されたものである。なお、インナーフィンは必ずしも必要としない。各蒸発ユニット(3)において、前後方向および左右方向に隣接するフィン付き管(8)のフィン(8a)は、上下両端部において連結部材(12)により連結されている。連結部材(12)は、熱の影響により入口ヘッダ管(9)および上下マニホルド管(6)(7)が長さ方向に伸縮した場合や、熱の影響によりフィン付き管(8)が径方向に伸縮した場合にこれを吸収しうるように、たとえば横断面S字状となされている。   The finned tube (8) of each evaporation unit (3) is made of, for example, an aluminum extruded shape, and a plurality of, in this case, eight fins (8a) extending vertically are integrally formed radially on the outer peripheral surface. In addition, inner fins (not shown) made up of a plurality of ridges extending in the vertical direction on the inner peripheral surface are integrally formed at intervals in the circumferential direction. The inner fin is not necessarily required. In each evaporation unit (3), the fins (8a) of the finned tube (8) adjacent in the front-rear direction and the left-right direction are connected by connecting members (12) at both upper and lower ends. The connecting member (12) can be used when the inlet header pipe (9) and the upper and lower manifold pipes (6) (7) expand and contract in the length direction due to the influence of heat, or when the finned pipe (8) extends in the radial direction due to the influence of heat. For example, it has a S-shaped cross section so that it can be absorbed when it expands and contracts.

加温部(4)は、各フィン付き蛇行管(5)を、前後方向に関して各蒸発ユニット(3)と対応する位置に来るように、各蒸発ユニット(3)の右側に並列状に配置することにより構成されている。各フィン付き蛇行管(5)は、たとえば複数の直管状フィン付き管(13)をUベンド(14)で接続することにより形成されている。直管状フィン付き管(13)は、蒸発ユニット(3)のフィン付き管(8)と同様な構成であり、各フィン付き蛇行管(5)における隣接する直管状フィン付き管(13)のフィン(13a)の上下両端部どうし、および前後に隣接するフィン付き蛇行管(5)における直管状フィン付き管(13)のフィン(13a)の上下両端部どうしは、それぞれ連結部材(12)により連結されている。連結部材(12)は、熱の影響によりフィン付き蛇行管(5)や後述する出口ヘッダ管(16)が長さ方向に伸縮した場合や、熱の影響によりフィン付き蛇行管(5)が径方向に伸縮した場合に、これを吸収するようになっている。また、各フィン付き蛇行管(5)の左端部の直管状フィン付き管(13)のフィン(13a)の上下両端部と、各蒸発ユニット(3)の右端部のフィン付き管(8)のフィン(8a)の上下両端部も、連結部材(12)により連結されている。各フィン付き蛇行管(5)の一端は、各蒸発ユニット(3)の上マニホルド管(6)の右端にLベンド(15)を介して接続され、同じく他端は、加温部(4)の下方に配されかつ前後方向に伸びるとともに両端が閉鎖された出口ヘッダ管(16)に接続されている。出口ヘッダ管(16)の中央部に出口(20)が形成されている。   The heating unit (4) arranges the finned meandering pipes (5) in parallel on the right side of each evaporation unit (3) so as to be in a position corresponding to each evaporation unit (3) in the front-rear direction. It is constituted by. Each finned meandering tube (5) is formed, for example, by connecting a plurality of straight tubular finned tubes (13) with U-bends (14). The straight tubular finned tube (13) has the same configuration as the finned tube (8) of the evaporation unit (3), and the fin of the adjacent straight tubular finned tube (13) in each finned meandering tube (5) The upper and lower ends of (13a) and the upper and lower ends of the fin (13a) of the straight tubular finned tube (13) in the finned meandering tube (5) adjacent to each other are connected by a connecting member (12). Has been. The connecting member (12) has a fin-shaped serpentine tube (5) having a diameter when the finned serpentine tube (5) and an outlet header tube (16), which will be described later, expand or contract in the length direction due to heat. When it expands and contracts in the direction, it absorbs this. Further, the upper and lower ends of the fin (13a) of the straight tubular finned tube (13) at the left end of each finned meandering tube (5) and the finned tube (8) at the right end of each evaporation unit (3) The upper and lower ends of the fin (8a) are also connected by the connecting member (12). One end of each finned meander pipe (5) is connected to the right end of the upper manifold pipe (6) of each evaporation unit (3) via an L bend (15), and the other end is also connected to the heating section (4). And is connected to an outlet header pipe (16) extending in the front-rear direction and closed at both ends. An outlet (20) is formed at the center of the outlet header pipe (16).

蒸発部(2)のフィン付き管(8)間に、上下方向に伸びる複数の蒸気流通管(17)が配置されている。ここでは前後、左右に隣り合う4本のフィン付き管(8)に囲まれた部分に、それぞれ蒸気流通管(17)が配置されている。各蒸気流通管(17)は、外周面に長さ方向に伸びる複数、ここでは4枚の放熱フィン(18a)が放射状に一体形成されたアルミニウム押出形材製外管(18)と、外管(18)内に密に挿入されかつ外管(18)の内周面を覆うステンレス鋼製内管(19)とよりなる(図4参照)。   A plurality of steam flow pipes (17) extending in the vertical direction are arranged between the finned pipes (8) of the evaporation section (2). Here, the steam flow pipes (17) are respectively disposed in portions surrounded by four finned pipes (8) adjacent to each other in the front and rear and left and right directions. Each of the steam flow pipes (17) includes an outer extruded pipe (18) made of an aluminum extruded shape member, in which a plurality of, in this case, four radiating fins (18a) extending in the lengthwise direction on the outer peripheral surface are integrally formed. (18) It consists of a stainless steel inner pipe (19) that is tightly inserted into the inner pipe and covers the inner peripheral surface of the outer pipe (18) (see FIG. 4).

蒸気流通管(17)の外管(18)の外周面および放熱フィン(18a)の表面には、図3に示すように、たとえば黒色塗膜からなる熱放射率が95%以上である熱放射膜(21)がそれぞれ形成されている(図4においては図示略)。放熱フィン(18a)は、フィン付き管(8)のフィン(8a)と非接触状態となっている。すなわち、フィン付き管(8)には8枚のフィン(8a)が設けられ、外管(18)、すなわち蒸気流通管(17)にはフィン(8a)と突出高さの等しい4枚の放熱フィン(18a)が設けられ、放熱フィン(18a)が、前後、左右に隣接するフィン付き管(8)のフィン(8a)間に来るように配置されることにより、放熱フィン(18a)が、フィン付き管(8)のフィン(8a)と非接触状態となっている。なお、放熱フィン(18a)の突出高さをフィン付き管(8)のフィン(8a)の突出高さよりも低くすることにより、両者を非接触状態としてもよい。この場合、放熱フィン(18a)の枚数は適宜変更可能である。   On the outer peripheral surface of the outer pipe (18) of the steam flow pipe (17) and the surface of the heat dissipating fin (18a), as shown in FIG. A film (21) is formed (not shown in FIG. 4). The radiating fin (18a) is not in contact with the fin (8a) of the finned tube (8). That is, the finned pipe (8) is provided with eight fins (8a), and the outer pipe (18), that is, the steam flow pipe (17), has four pieces of heat radiation having the same height as the fin (8a). The fin (18a) is provided, and the heat dissipating fin (18a) is disposed between the fins (8a) of the finned tube (8) adjacent to the front and rear, left and right, so that the heat dissipating fin (18a) It is in a non-contact state with the fin (8a) of the finned tube (8). Note that the projecting height of the heat dissipating fin (18a) may be made lower than the projecting height of the fin (8a) of the finned tube (8) so that they are not in contact with each other. In this case, the number of radiating fins (18a) can be changed as appropriate.

蒸気流通管(17)の内管(19)の上下両端部は外管(18)の上下両端よりも上下に突出している。前後方向に関して同一位置にある複数の蒸気流通管(17)の内管(19)上端部は左右方向に伸びる蒸気用上マニホルド管(22)にそれぞれ接続され、同じく内管(19)下端部は左右方向に伸びる蒸気用下マニホルド管(23)にそれぞれ接続されている。蒸気用上マニホルド管(22)の右端開口は閉鎖され、左端は前後方向に伸びかつ両端が閉鎖された蒸気入口ヘッダ管(24)に接続されている。蒸気入口ヘッダ管(24)の長さの中間部に蒸気供給管(25)が接続されている。蒸気供給管(25)は、空温式液化ガス気化器(1)が設置される工場などに通常設けられている蒸気配管から延ばされている。蒸気用下マニホルド管(23)の右端開口は閉鎖され、左端は前後方向に伸びかつ両端が閉鎖された蒸気出口ヘッダ管(26)に接続されている。蒸気用下マニホルド管(23)の長さの中間部にドレン管(27)が接続され、ドレン管(27)に蒸気トラップ(図示略)が設けられている。蒸気出口ヘッダ管(26)の長さの中間部に蒸気排出管(28)が接続されている。蒸気排出管(28)は、空温式液化ガス気化器(1)が設置される工場などに通常設けられている蒸気配管に延びている。   The upper and lower ends of the inner pipe (19) of the steam flow pipe (17) protrude vertically from the upper and lower ends of the outer pipe (18). The upper ends of the inner pipes (19) of the steam flow pipes (17) at the same position in the front-rear direction are connected to the upper manifold pipe (22) for steam extending in the left-right direction, and the lower ends of the inner pipe (19) are also Each is connected to a lower manifold pipe (23) for steam extending in the left-right direction. The right end opening of the upper manifold pipe (22) for steam is closed, and the left end is connected to a steam inlet header pipe (24) extending in the front-rear direction and closed at both ends. A steam supply pipe (25) is connected to the middle part of the length of the steam inlet header pipe (24). The steam supply pipe (25) is extended from a steam pipe normally provided in a factory or the like where the air temperature type liquefied gas vaporizer (1) is installed. The right end opening of the lower manifold pipe (23) for steam is closed, and the left end is connected to a steam outlet header pipe (26) extending in the front-rear direction and closed at both ends. A drain pipe (27) is connected to an intermediate portion of the length of the lower manifold pipe (23) for steam, and a steam trap (not shown) is provided in the drain pipe (27). A steam discharge pipe (28) is connected to the middle part of the length of the steam outlet header pipe (26). The steam discharge pipe (28) extends to a steam pipe normally provided in a factory or the like where the air temperature type liquefied gas vaporizer (1) is installed.

上記構成の空温式液化ガス気化器(1)において、貯蔵タンクに貯蔵されていた液化ガスは入口(11)から入口ヘッダ管(9)内に送り込まれ、入口ヘッダ管(9)を通って各蒸発ユニット(3)の下マニホルド管(7)内に流入する。下マニホルド管(7)内に流入した液化ガスは全てのフィン付き管(8)に分流し、フィン付き管(8)内を上方に流れる間に、大気と熱交換して再ガス化する。これと同時に、高温蒸気が蒸気供給管(25)から蒸気入口ヘッダ管(24)に送り込まれ、蒸気入口ヘッダ管(24)を通って各蒸気用上マニホルド管(22)内に流入する。蒸気用上マニホルド管(22)内に流入した高温蒸気はすべての蒸気流通管(17)の内管(19)に分流して下方に流れる。そして、高温蒸気の有する熱が、外管(18)外周面の熱放射膜(21)および放熱フィン(18a)表面の熱放射膜(21)を介して放熱され、この熱によりフィン付き管(8)のフィン(8a)が加熱されるとともにフィン(8a)の有する熱がフィン付き管(8)内を流れる液化ガスに伝わり、その結果液化ガスの蒸発効率が向上する。また、蒸発部(2)においては、フィン付き管(8)内を流れる液化ガスによりフィン付き管(8)の周囲の空気が冷却されて下向きの空気の流れが発生するとともに、蒸気流通管(17)の外管(18)外周面および放熱フィン(18a)表面から放熱された熱により空気が加熱されて上向きの空気の流れも発生し、空気の流れに乱れが生じる。その結果、液化ガスからフィン(8a)を介しての空気への伝熱性が向上し、液化ガスの蒸発効率が向上する。   In the air temperature type liquefied gas vaporizer (1) having the above configuration, the liquefied gas stored in the storage tank is fed into the inlet header pipe (9) from the inlet (11) and passes through the inlet header pipe (9). It flows into the lower manifold pipe (7) of each evaporation unit (3). The liquefied gas that has flowed into the lower manifold pipe (7) is diverted to all the finned pipes (8) and is regasified by exchanging heat with the atmosphere while flowing upward in the finned pipe (8). At the same time, high-temperature steam is sent from the steam supply pipe (25) to the steam inlet header pipe (24) and flows into the upper manifold pipes (22) for each steam through the steam inlet header pipe (24). The high-temperature steam that has flowed into the upper manifold pipe (22) for steam is divided into the inner pipes (19) of all the steam flow pipes (17) and flows downward. The heat of the high-temperature steam is radiated through the heat radiation film (21) on the outer peripheral surface of the outer tube (18) and the heat radiation film (21) on the surface of the heat radiation fin (18a). The fin (8a) of 8) is heated and the heat of the fin (8a) is transmitted to the liquefied gas flowing in the finned tube (8), and as a result, the efficiency of evaporation of the liquefied gas is improved. Further, in the evaporation section (2), the air around the finned tube (8) is cooled by the liquefied gas flowing in the finned tube (8), and a downward air flow is generated. The air is heated by heat radiated from the outer peripheral surface of the outer pipe (18) and the surface of the radiating fin (18a) of 17), and an upward air flow is also generated, thereby disturbing the air flow. As a result, heat transfer from the liquefied gas to the air via the fins (8a) is improved, and the evaporation efficiency of the liquefied gas is improved.

蒸発部(2)で得られたガスは、上マニホルド管(6)を経て加温部(4)のフィン付き蛇行管(5)に流入し、フィン付き蛇行管(5)内を流れる間に、大気と熱交換して所定温度、たとえば0℃以上に加温される。加温されたガスは出口ヘッダ管(16)内に流入し、出口(20)から送り出される。一方、蒸気流通管(17)の内管(19)内を下方に流れた高温蒸気は、蒸気用下マニホルド管(23)を経て蒸気出口ヘッダ管(26)に流入し、蒸気排出管(28)を通って排出される。蒸気の一部が凝縮することにより発生した凝縮水は、ドレン管(27)の蒸気トラップを経て外部に排出される。   The gas obtained in the evaporation section (2) flows into the finned meander pipe (5) of the heating section (4) through the upper manifold pipe (6) and flows through the finned meander pipe (5). Then, it is heated to a predetermined temperature, for example, 0 ° C. or higher by exchanging heat with the atmosphere. The heated gas flows into the outlet header pipe (16) and is sent out from the outlet (20). On the other hand, the high-temperature steam that has flowed downward in the inner pipe (19) of the steam flow pipe (17) flows into the steam outlet header pipe (26) through the lower manifold pipe (23) for steam, and the steam discharge pipe (28 ) Is discharged through. Condensed water generated by condensing a part of the steam is discharged to the outside through a steam trap of the drain pipe (27).

上記実施形態において、図1に鎖線で示すように、蒸発部(2)の下方に、空気を上向きに送る送風機(F)を配置しておいてもよい。この場合、高温蒸気の有する熱が外管(18)および放熱フィン(18a)から放熱されることにより加熱された空気を、送風機(F)により上向きに流すことができ、これによりフィン付き管(8)のフィン(8a)を介しての液化ガスへの伝熱性が一層向上し、液化ガスの蒸発効率が向上する。   In the said embodiment, as shown with a dashed line in FIG. 1, you may arrange | position the air blower (F) which sends air upwards under the evaporation part (2). In this case, the air heated by the heat of the high-temperature steam being radiated from the outer pipe (18) and the radiating fin (18a) can be caused to flow upward by the blower (F). The heat transfer property to the liquefied gas through the fin (8a) of 8) is further improved, and the evaporation efficiency of the liquefied gas is improved.

上記実施形態においては、蒸発部のフィン付き管(8)の上下両端部は上下マニホルド管(6)(7)に接続されているが、これに限るものではなく、前後方向に関して同一位置にある隣り合うフィン付き管(8)はUベンドを介して接続されていてもよい。   In the above embodiment, the upper and lower end portions of the finned pipe (8) of the evaporation section are connected to the upper and lower manifold pipes (6) and (7). Adjacent finned tubes (8) may be connected via U-bends.

この発明による空温式液化ガス気化器の全体構成を示す正面図である。It is a front view which shows the whole structure of the air temperature type | mold liquefied gas vaporizer by this invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 空温式液化ガス気化器の蒸発部における上部の構成を示す一部省略斜視図である。It is a partially-omission perspective view which shows the structure of the upper part in the evaporation part of an air temperature type | mold liquefied gas vaporizer. 蒸気流通管の横断面図である。It is a cross-sectional view of a steam flow pipe.

符号の説明Explanation of symbols

(1):空温式液化ガス気化器
(2):蒸発部
(8):フィン付き管
(17):蒸気流通管
(18):外管
(18a):放熱フィン
(19):内管
(21):熱放射膜
(F):送風機
(1): Air-temperature liquefied gas vaporizer
(2): Evaporation section
(8): Finned tube
(17): Steam distribution pipe
(18): Outer pipe
(18a): Radiating fin
(19): Inner pipe
(21): Thermal radiation film
(F): Blower

Claims (12)

上下方向に伸びる複数のフィン付き管を有する蒸発部を備えており、上下方向に伸びる複数の蒸気流通管が、蒸発部のフィン付き管間に配置されている空温式液化ガス気化器。 An air temperature type liquefied gas vaporizer comprising an evaporation section having a plurality of finned tubes extending in the vertical direction, and a plurality of vapor flow pipes extending in the vertical direction disposed between the finned tubes of the evaporation section. 蒸気流通管の外周面に熱放射膜が形成されている請求項1記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 1, wherein a heat radiation film is formed on an outer peripheral surface of the steam flow pipe. 熱放射膜の熱放射率が95%以上である請求項2記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 2, wherein the thermal emissivity of the thermal radiation film is 95% or more. 熱放射膜が黒色塗膜からなる請求項2または3記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 2 or 3, wherein the heat radiation film comprises a black coating film. 蒸気流通管の外周面に放熱フィンが設けられている請求項1〜4のうちのいずれかに記載の空温式液化ガス気化器。 The air-temperature type liquefied gas vaporizer according to any one of claims 1 to 4, wherein heat radiation fins are provided on an outer peripheral surface of the steam flow pipe. 蒸気流通管の放熱フィンが、フィン付き管のフィンに対して非接触状態となっている請求項5記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 5, wherein the heat dissipating fins of the steam flow pipe are in a non-contact state with respect to the fins of the finned pipe. 蒸気流通管の放熱フィンの表面に熱放射膜が形成されている請求項5または6記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 5 or 6, wherein a heat radiation film is formed on a surface of the heat radiation fin of the steam flow pipe. 熱放射膜の熱放射率が95%以上である請求項7記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 7, wherein the heat radiation rate of the heat radiation film is 95% or more. 熱放射膜が黒色塗膜からなる請求項7または8記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer according to claim 7 or 8, wherein the heat radiation film is a black coating film. 蒸気流通管が、外周面に長さ方向に伸びる複数の放熱フィンが一体に形成されたアルミニウム押出形材製外管と、外管内に挿入されかつ外管の内周面を覆うステンレス鋼製内管とよりなる請求項1〜9のうちのいずれかに記載の空温式液化ガス気化器。 A steam flow pipe is made of an extruded aluminum material with a plurality of heat dissipating fins extending in the length direction on the outer peripheral surface, and a stainless steel inner part that is inserted into the outer pipe and covers the inner peripheral surface of the outer pipe The air temperature type liquefied gas vaporizer according to any one of claims 1 to 9, comprising a tube. 蒸発部の下方に、空気を上向きに送る送風機が配置されている請求項1〜10のうちのいずれかに記載の空温式液化ガス気化器。 The air temperature type liquefied gas vaporizer in any one of Claims 1-10 by which the air blower which sends air upwards is arrange | positioned under the evaporation part. 請求項1〜11のうちのいずれかに記載された空温式液化ガス気化器において、液化ガスを、蒸発部のフィン付き管内に下方から上方に流し、高温蒸気を、蒸気流通管内に上方から下方に流すことを特徴とする空温式液化ガス気化器の運転方法。 The air temperature type liquefied gas vaporizer according to any one of claims 1 to 11, wherein the liquefied gas is caused to flow upward from below into the finned tube of the evaporation section, and high-temperature steam is introduced from above into the steam flow tube. An operating method of an air temperature type liquefied gas vaporizer characterized by flowing downward.
JP2004102146A 2003-05-16 2004-03-31 Air temperature type liquefied gas vaporizer Pending JP2005003194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102146A JP2005003194A (en) 2003-05-16 2004-03-31 Air temperature type liquefied gas vaporizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003138357 2003-05-16
JP2004102146A JP2005003194A (en) 2003-05-16 2004-03-31 Air temperature type liquefied gas vaporizer

Publications (1)

Publication Number Publication Date
JP2005003194A true JP2005003194A (en) 2005-01-06

Family

ID=34106291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102146A Pending JP2005003194A (en) 2003-05-16 2004-03-31 Air temperature type liquefied gas vaporizer

Country Status (1)

Country Link
JP (1) JP2005003194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022615A (en) * 2010-08-26 2011-04-20 宣铭雨 LPG (Liquefied Petroleum Gas) air-temperature vaporizer
JP2014228090A (en) * 2013-05-24 2014-12-08 東京ガスケミカル株式会社 Air temperature evaporator
CN114458951A (en) * 2022-04-14 2022-05-10 中国石油化工股份有限公司胜利油田分公司 Air-temperature gasifier for injecting liquid carbon dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022615A (en) * 2010-08-26 2011-04-20 宣铭雨 LPG (Liquefied Petroleum Gas) air-temperature vaporizer
JP2014228090A (en) * 2013-05-24 2014-12-08 東京ガスケミカル株式会社 Air temperature evaporator
CN114458951A (en) * 2022-04-14 2022-05-10 中国石油化工股份有限公司胜利油田分公司 Air-temperature gasifier for injecting liquid carbon dioxide
CN114458951B (en) * 2022-04-14 2022-06-21 中国石油化工股份有限公司胜利油田分公司 Air-temperature gasifier for injecting liquid carbon dioxide

Similar Documents

Publication Publication Date Title
JP3946398B2 (en) Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer
JP6198452B2 (en) Intermediate medium vaporizer
US8117997B2 (en) Dual pipe heat exchanger of boiler for house heating and hot water
US8069906B2 (en) Vehicular exhaust heat recovery apparatus with frozen working fluid melting
JP2008170088A (en) Heat exchanger
PT2856055T (en) Method for exchanging heat between a salt melt and a further medium in a coiled heat-exchanger
JP2006284004A (en) Condenser
US20130075064A1 (en) Heat Exchanger
JP2005003194A (en) Air temperature type liquefied gas vaporizer
JP2008025884A (en) Ebullient cooling type heat exchange device
JP2011052744A (en) Air temperature type liquefied gas vaporizer
JP2005156141A (en) Air temperature type liquefied gas vaporizer
KR102522339B1 (en) Liquefied natural gas vaporizer and cold water supply method
JP2005003347A (en) Meandering pipe with fin and air heating-type liquefied gas vaporizer using this pipe
JP2005069304A (en) Air-temperature type liquified gas vaporizer
JP2004044750A (en) Room temperature type liquefied gas vaporizer and evaporating unit
JPH102616A (en) Evaporation block for heat storage heat pipe-type hot water supply device
JP4181250B2 (en) Natural gas heating method
US11930707B2 (en) Thermoelectric power generation device
JP3818270B2 (en) Heat exchanger
JP4990096B2 (en) Liquefied natural gas vaporizer
JPH0232959Y2 (en)
JP2005337336A (en) Liquefied gas evaporating device
JP2024010996A (en) Heat exchange panel of open rack type vaporizing device, and open rack type vaporizing device comprising the heat exchange panel
JP2007107733A (en) Cold recovering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A02