JP2004516838A - Biotech potato production method - Google Patents

Biotech potato production method Download PDF

Info

Publication number
JP2004516838A
JP2004516838A JP2002553891A JP2002553891A JP2004516838A JP 2004516838 A JP2004516838 A JP 2004516838A JP 2002553891 A JP2002553891 A JP 2002553891A JP 2002553891 A JP2002553891 A JP 2002553891A JP 2004516838 A JP2004516838 A JP 2004516838A
Authority
JP
Japan
Prior art keywords
seed
potato
culture
stem
potatoes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002553891A
Other languages
Japanese (ja)
Inventor
ソー、チャング−ホ
ホワング、エイ−チュング
Original Assignee
バイオ インダストリー ディベロップメント カンパニー、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオ インダストリー ディベロップメント カンパニー、リミテッド filed Critical バイオ インダストリー ディベロップメント カンパニー、リミテッド
Publication of JP2004516838A publication Critical patent/JP2004516838A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/827Solanum tuberosum [potato]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/02Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Virology (AREA)
  • Clinical Laboratory Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Cultivation Of Plants (AREA)

Abstract

本発明は、(1)ジャガイモから種ジャガイモの形成のための基本茎を収得する段階と、(2)密植、直立培養が可能な培養容器で、液体又は固体培地を用いて、前記収得された基本茎を増殖させる段階と、(3)密植・直立培養が可能で、培地と分離されて種ジャガイモの形成が可能な培養容器で、液相又は固相の種ジャガイモ形成培地を用いて、前記増殖された茎を培養して種ジャガイモを生産する段階とを含む種ジャガイモの生産方法を提供する。上述した生産方法によれば、組織培養段階で無菌、無病な高品質の種ジャガイモを量産することができるので、土壌における増殖段階を短縮してウィルス感染率を低めることができ、ビニールハウスではない露地に直播して増殖させることができるので、生産コストを大幅低めることができる。The present invention relates to (1) obtaining a basic stem for forming seed potato from potato, and (2) using a liquid or solid medium in a culture vessel capable of dense planting and upright cultivation. A step of growing a basic stem, and (3) a culture vessel capable of dense planting and upright cultivation and capable of forming seed potatoes separated from the medium, using a liquid phase or solid phase seed potato forming medium, Culturing the proliferated stem to produce a seed potato. According to the above-described production method, aseptic, disease-free, high-quality seed potatoes can be mass-produced at the tissue culture stage, so that the growth stage in the soil can be shortened and the virus infection rate can be reduced, not a greenhouse. Since the seeds can be directly seeded and grown in the open field, production costs can be significantly reduced.

Description

【0001】
技術分野
本発明は、種ジャガイモの生産方法に関するものである。より具体的には、本発明は、ジャガイモの茎を密植・直立培養方法で培養して種ジャガイモを生産する方法及びこの方法により生産された種ジャガイモに関するものである。
【0002】
背景技術
ジャガイモは、真正種子又は栄養繁殖体の形で繁殖することができるが、ジャガイモ栽培の実際においては主として栄養繁殖による方法を使用している。栄養繁殖によるジャガイモ生産は、無病・優良種ジャガイモを播種、栽培すれば収穫量が多くなるが、現実的に無病・優良種ジャガイモの生産及び普及が不充分である。
【0003】
韓国の場合にも、種ジャガイモの供給率が僅か20乃至30%程度に過ぎず、種ジャガイモ増殖体系上、基本種の上位級に相当する種ジャガイモの量産が難しくて少量を生産し、これを6年間増殖して農家に供給している実情である。
【0004】
ところが、増殖期間中に病・害虫に冒される機会が多いため、病虫害、特にウィルスに感染する確率が高くなるので、無病・優良種ジャガイモの供給体系において増殖期間の短縮は非常に重要である。増殖期間の短縮は基本種を低価で量産することが関鍵である(参照:Hussey, G. et al., Anal Bot., 53: 565−578, 1984; Garnet N, et al., Anal. Bot., 63: 663−674, 1989; Lillo C., Norweigian J. Agric. Sci., 3: 23−27, 1989)。
【0005】
一般に、種ジャガイモの生産方法は、ジャガイモ萌芽の生長点培養から始めて茎を形成させ、この茎を培養容器内で継代培養した後、培養された茎から茎挿し法及び養液栽培法で種ジャガイモを生産し、或いは培養された茎から培養条件を変えて種ジャガイモを生産する方法などに大別される。
【0006】
ところが、茎を三角フラスコ又は試験管などを用いて継代培養すれば、茎の勢力が弱化するから、ある程度継代培養が持続すると、茎が細くなるうえ、種ジャガイモの生産能力が低下するため、このような方法による大量生産は難しい。
【0007】
このような問題点を克服するために、生長点から誘導された茎をペトリ皿に培養した後、茎を切断し、茎頂部は茎の継代培養に使用し、茎下部は種ジャガイモの生産に用いる方法が開発された(参照:韓国特許出願第10−1989−3009号)。
【0008】
ところが、ペトリ皿による生産方法は、従来の方法に比べて種ジャガイモを大量生産することはできるが、これは毎日一定量を生産して年間生産累積量が多いことを意味するだけで、他の実際的な問題点を露出した。すなわち、種ジャガイモの生産費が高いうえ、生産された種ジャガイモの全量使用の不可能に起因する経済的損失が多い。生産された種ジャガイモの損失は、種ジャガイモの播種期や休眠期間などによる貯蔵期間中の損失と、ペトリ皿の固体培地内で種ジャガイモが形成され成長するため、発生する皮目肥大による種ジャガイモの腐敗に起因する損失などである。
【0009】
一方、茎挿し法又は養液栽培法で種ジャガイモを直接生産する方法は、栽培時期又は方法によって増殖率の差異がありうり、このためにガラス温室と養液供給装置を備えなければならないなど栽培施設の設備投資費が過多にかかるうえ、停電による被害の発生と病気発生の際に迅速に行われる伝染など生産の安定性が問題となるから、実質的に大規模生産方法としては使用されていない。
【0010】
発明の開示
従って、本発明の目的は、平均水準の増殖率を有する種ジャガイモを短時間内に量産することが可能な方法を提供することにある。
【0011】
上記目的を達成するために、本発明は、(1)ジャガイモから種ジャガイモの形成のための基本茎を収得する段階と、(2)密植、直立培養が可能な培養容器で、液体又は固体培地を用いて、前記収得された基本茎を増殖させる段階と、(3)密植・直立培養が可能で且つ培地と分離して種ジャガイモの形成が可能な培養容器で、液相又は固相の種ジャガイモ形成培地を用いて、前記増殖された茎を培養して種ジャガイモを生産する段階とを含む種ジャガイモ生産方法を提供する。
【0012】
本発明において、ジャガイモから種ジャガイモの形成のための基本茎を収得する方法は、本発明の属する技術分野に広く知られた様々な方法であればいずれも利用可能であるが、ウィルスに感染していない基本茎を得るためには、ジャガイモの萌芽から得た生長点を培養することが好ましい。
【0013】
また、本発明において、前記段階の培養条件は、従来に使用される培養条件と同一の条件が適用されるが、前記(1)段階又は前記(2)段階の培養は20乃至30℃の温度、3,000ルクス以上の照度及び明期と暗期との割合が13:11乃至17:7(時間)の照明周期の条件で行われることが好ましく、前記(3)段階の培養は15乃至25℃の暗条件の下で行われることが好ましい。
【0014】
また、本発明において、前記(2)又は前記(3)の培養容器は、汚染した空気を濾過するためのフィルタが取り付けられた上部キャップと、コップ状の区画に分けられた形態を有し、前記区画毎に1本の基本茎が置床されて培養される培養支持板と、前記上部キャップに完全に密着して外部の空気を遮断する下部支えとから構成されることが好ましい。
【0015】
前記培養支持板は、所定の深さを有するコップ状の区画に分けられており、基本茎が直立した状態で置床及び培養が可能であり、またコップ状区画の下部に液相又は固相の培養培地が満たされる。この結果、種ジャガイモが培養支持板上で形成されるので、培地中に種ジャガイモが形成されることを防止することができる。
【0016】
また、外部空気は培養容器の上部キャップに取り付けられたフィルタを介してのみ培養容器内に入ることができるので、空気による病原菌の流入を遮断することができる。
【0017】
この発明の前記及び他の目的、特徴及びその他の利点は、添付図面を参照する次の説明によって明確に理解されるであろう。図1は本発明の培養容器の一実施例を示す斜視図である。図2は本発明の培養容器の一実施例を示す断面図である。図3は培養支持板の部分断面図である。
【0018】
発明を実施するための最良の形態
以下、添付図面を参照して本発明の種ジャガイモ生産方法を段階別に分けて具体的に説明する。また、本明細書では、従来の方法によって生成された種ジャガイモと区別するために、本発明によって生成された種ジャガイモを、便宜上、「バイオテク種ジャガイモ」と命名する。
【0019】
第1段階:基本茎の収得
ジャガイモの生長点を採取し、培養して基本茎を収得する。この際、生長点はジャガイモを培養し、発芽した萌芽の頂端部から採取する。培養は植物の組織培養に一般に使用されるMS培地を用いて行い、生長点から増殖された茎が長さ3乃至7cm程度の茎を継代培養して基本茎を収得する。
【0020】
また、収得された基本茎の培養は、硝酸カリウム、硝酸アンモニウム、燐酸カリウム、塩化カルシウムなどを含むpH5.7乃至6.0の培地を用いて20乃至30℃の温度、3000ルクス以上の照度、及び13:11乃至17:7(時間)の明期と暗期との割合を有する照明周期の条件下で行うことができる。この培養条件に限定されるのではない。
【0021】
第2段階:基本茎の増殖
前記収得された基本茎を密植・直立培養し、増殖された茎を収得する。この際、基本茎の密植・直立培養は培養支持板を含む培養容器で固体又は液体培地を用いて行うことができる。
【0022】
培養の際に使用される培地は、茎の成長速度の面からみる時、固体培地より液体培地とすることが好ましいが、液体培地を使用する場合、茎が培地に浸るおそれがあり、培養の際に培地内で茎同士の相互干渉によって均一な茎の成長が阻害されるおそれがあるため、これまでは固体培地で茎を培養し増殖させた。
【0023】
ところが、本発明では、それぞれの区画に分けられた培養支持板を含む培養容器を採用することにより、前記液体培地の短所を解決し且つ成長速度の速い液体培地を用いた培養の長所を極大化して基本茎を培養することができる。
【0024】
本発明の基本茎の増殖に使用した培養支持板を含む培養容器の一実施例を図1に示した。図1は培養支持板を含む培養容器の斜視図である。図1に示すように、培養容器は汚染した空気を濾過するためのフィルター4が取り付けられた上部キャップ1、実質的に基本茎の密植・直立培養が行われる培養支持板2、及び上部キャップ1と完全に密着して外部の空気を遮断する下部支え3から構成されている。
【0025】
一方、図2は本発明の培養容器の一実施例の断面図を示す。図2に示すように、培養支持板2はコップ状の区画に分けられた形態を取っており、各区画毎にそれぞれ1本の基本茎を培養して増殖させる。また、培養支持板2は下部支え3に取り付けられるように構成されているが、前記区画の大きさ及び数は特別に制限されない。
【0026】
また、図3は培養支持板2の部分断面図を示すが、培養容器の上部キャップ1及び下部支え3は、上部キャップ1に取り付けられたフィルタ4を通して濾過された空気を除いては、空気の流入及び流出が遮断できるように密着している。
【0027】
しかも、本段階の培養条件も特別に限定されるものではない。前記第1段階の培養条件と同一の条件で培養することができる。
【0028】
第3段階:バイオテク種ジャガイモの生産
前記第2段階で増殖された茎を15乃至25℃及び暗条件の下に種ジャガイモ形成培地で培養してバイオテク種ジャガイモを生産する。この際、長さ5乃至10cmの茎を使用することが好ましく、種ジャガイモ形成培地はユニコナゾル(uniconazol)、抗ジベレリン(anti−zibbrellin)化合物又はパクロブトラゾル(paclobutrazol)、イナベンフィド(inabenfide)、アンシミドール(ancymidol)、フルルプリミドール(flurprimidol)などのトリアゾール(triazole)系化合物を含み、培養条件は15乃至25℃で50乃至60日間培養することが好ましい。
【0029】
本発明の方法により生産されたバイオテク種ジャガイモは、従来の方法に比べて短時間内に多量の種ジャガイモを提供することができるため、品種によって差異があるが、およそ自然休眠期間50乃至120日を考慮して播種適期から逆算して生産することができたから、生産された後で常温で保管すると播種適期に発芽して直ちに播種ができるし、保管期間中の損失も発生しない。このような生産方法は、従来の種ジャガイモ生産方法の中から、4℃の低温で休眠期を延長させる段階を省くことができるため、生産コストを著しく低めることができる。
【0030】
本発明は、培養容器内で小塊茎を生産するという点において、従来の技術の人工種ジャガイモの量産方法(韓国特許出願第10−1989−3009号)と類似であるが、次の点において明確な差が付く。
【0031】
一つ目、従来ではペトリ皿タイプの培養容器を使用したが、本発明では培養支持板を含む培養容器を使用する。
【0032】
二つ目、従来では固体培地を使用したが、本発明では固体媒体又は液体培地を両方とも使用することができる。
【0033】
三つ目、従来では茎を培地に取り木して20日周期で継代培養したが、本発明では培養支持板を用いて密植・直立培養方法で9日周期で茎を継代培養する。
【0034】
四つ目、従来では茎が容器内で相互縺れた状態で培養されるため、継代培養を機械化することができなかったが、本発明では茎が一定の配列を有する直立形態になっているため、機械化による継代培養が可能である。
【0035】
五つ目、従来では培地内又は培地表面に密着した状態で種ジャガイモが生産されたが、本発明では培地から隔離して培養支持板上で種ジャガイモを生産する。
【0036】
六つ目、従来の技術により生産された種ジャガイモは大きさが不均一であるが、本発明により生産された種ジャガイモは大きさが均一である。
【0037】
七つ目、従来では年中毎日茎の継代培養作業と人工種ジャガイモ生産作業とを併行したが、本発明では年中一定の期間には茎の継代培養のみを行い、次いで一定の期間にはバイオテク種ジャガイモを生産する。
【0038】
八つ目、従来では同一品種であっても、生産日付に応じて休眠打破時点がそれぞれ異なったが、本発明では同一品種であれば、休眠打破時期が同様である。
【0039】
九つ目、従来の技術により生産された種ジャガイモは休眠期間を調節するために低温で保管するが、本発明により生産された種ジャガイモは休眠期間を調節する必要がなくて常温で保管することができる。
【0040】
十つ目、従来の技術により生産された種ジャガイモは、皮目肥大現象が発生し、組織が硬くなくて露地直播増殖が容易ではなかったが、本発明で生産された種ジャガイモは皮目肥大現象が発生せず、組織が硬くて露地直播増殖が比較的容易である。
【0041】
以下、実施例によって本発明を添付図面に基づいてより詳細に説明する。これらの実施例は本発明をより具体的に説明するためのもので、本発明の範囲がこれらの実施例に制限されないことは本発明の属する技術分野で通常の知識を有する者には明らかなことである。
【0042】
実施例1:バイオテク種ジャガイモの生産
ジャガイモを2週間培養して発芽した萌芽から生長点を採取し、培養培地(2.25g/L potassium nitrate, 1.8g/L ammonium nitrate, 214mg/L dipotassium phosphate, 332mg/L calcium chloride, 181mg/L magnesium sulfate, 35.5mg/L EDTA, 28.5mg/L ferrous sulfate heptahydrate, 12.8mg/L manganese sulfate, 6.5mg/L borric acid, 8.2mg/L zinc sulfate, 0.85mg/L potassium iodide, 0.27mg/L sodium molybdate dihydrate, 0.028mg/L cupric sulfate pentahydrate, 0.028mg/L cobalt chloride hexahydrate, 115mg/L myo−inositol, 0.5mg/L thiamine, 0.5mg/L pyridoxine, 30g/L sucrose, 0.45mg/L riboflavin, 1.1mg/L biotin, 1.1mg/L calcium pantothenate, 0.5mg/L nicotinic acid, 2g/L yeast extract, 1g/L brain heart broth, pH 5.7−6.0)で振盪培養して8乃至10cmの長さに成長させた後、酵素免疫検定法により、ウィルスに感染していない個体を選別した。選別された個体を前記培養培地で、25℃、4000ルクスの照度で明期と暗期が15:9(時間)の照明条件で培養して種ジャガイモ形成用の基本茎を収得した。
【0043】
前記収得した基本茎を2乃至3節ずつ切断し、これを図1乃至図3に示した培養容器の培養支持板2の各区画に区画当たり1個ずつ置床し、各区画に前記液相の培養培地を注入した後、前述した条件と同一の条件で9日間培養する継代培養を4回繰り返し行い、2乃至3節に切断された1本の基本茎から36日間256本の基本茎を収得した。
【0044】
前記収得した基本茎を前述と同一の方法で培養容器の培養支持板2に置床した後、液相の種ジャガイモ形成培地(1.6g/L potassium nitrate, 1.1g/L ammonium nitrate, 698mg/L dipotassium phosphate, 332mg/L calcium chloride, 181mg/L magnesium sulfate, 35.5mg/L EDTA, 28.5mg/L ferrous sulfate heptahydrate, 12.8mg/L manganese sulfate, 6.5mg/L borric acid, 8.2mg/L zinc sulfate, 0.85mg/L potassium iodide, 0.27mg/L sodium molybdate dihydrate, 0.028mg/L cupric sulfate pentahydrate, 0.028mg/L cobalt chloride hexahydrate, 115mg/L myo−inositol, 0.5mg/L thiamine, 0.5mg/L pyridoxine, 80g/L sucrose, 0.45mg/L riboflavin, 1.1mg/L biotin, 1.1mg/L calcium pantothenate, 0.5mg/L nicotinic acid, 50mg/L uniconazole, pH 5.7−6.0)600mLを培養容器に入れ、暗条件、21℃で60日間培養して種ジャガイモを収得した。
【0045】
種ジャガイモは基本茎当たり1.32個が生産され、これを換算すれば、単位面積(cm)当たり0.31個の生産性を示すので、韓国特許出願第10−1989−3009号に開示されたペトリ皿型の容器を用いた種ジャガイモの生産性[単位面積(cm)当たり0.096個]より3倍以上の生産性を示すことが分った。また、ペトリ皿型の容器で生産された種ジャガイモは、固体培地に接触した状態で形成され、貯蔵中の腐敗発生原因である皮目肥大現象が発生する。ところが、本発明と同様の培養容器を使用する場合には、種ジャガイモが培地に接触しないように培養支持板上に形成され、皮目肥大現象が発生しない。
【0046】
実施例2:バイオテク種ジャガイモの増殖栽培
本発明のバイオテク種ジャガイモの増殖栽培は1次増殖栽培と2次増殖栽培に区分される。
【0047】
実施例2−1:バイオテク種ジャガイモの1次増殖栽培
本発明のバイオテク種ジャガイモ(品種:大藷)の1次増殖栽培はビニールポット栽培、養液栽培又は露地栽培法で行われる。
【0048】
実施例2−1−1:バイオテク種ジャガイモのビニールポット栽培
サイズ3mm程度の萌芽を有するバイオテク種ジャガイモを直径15cm、高さ13cmの黒色ビニールポットに床土を満たしてバイオテク種ジャガイモをポット当たり1つずつ播種し、1坪当たり140個のポットを培養し、2乃至3日に1回ずつ潅水し、700ポットを栽培した。生育中期に殺虫剤と殺菌剤を10日間隔で3回撒布した。
【0049】
播種後約14日頃から出現し始め、出現後の初期には生長速度が遅かったが、出現後約14日頃から茎長の生長速度が速くなり、任意に選定した50個体を調査した平均値が、播種後80日頃、茎長は45.2cm、分枝数は2.9個、茎数は2.9個であった。
【0050】
200ポットを調査した平均値として、1株当たり地上部生体層が87.6gであり、1株当たり塊茎数及び塊茎重がそれぞれ7.5個及び132.2gであることを確認した。
【0051】
実施例2−1−2:バイオテク種ジャガイモの養液栽培
養液栽培は、高冷地試験場などで使用する通常の方法を適用した。ビニールハウスにスチロフォームで勾配が1/200となるように栽培ベッド(幅60cm、高さ40cm、長さ10m)を作り、ベッドの内側にビニールを敷いた後、噴霧ノズルを20cmの間隔で設置した養液供給用パイプを底部に取り付けて養液供給システムに連結した。ベッドの蓋は25cm間隔で穴が2列に開いたスチロフォームで覆い、栽培の前に養液供給システムをホルマリンで消毒した後揮散させた。
【0052】
バイオテク種ジャガイモをパーライトに播種し、10乃至15cm程度の長さになったとき用心深く抜き出し、ベッド蓋の1つの穴にバイオテク種ジャガイモ1つずつをベッドの中に7乃至10cm程度挿入されるように入れ、ベッドの蓋上を反射フィルムで覆って栽培を開始した。
【0053】
養液の多量元素は単用肥料KNO、Ca(NO・4HO、KNO、NHPO、MgSO・7HOを用いてN:P:K:Ca:Mgを8.7:2:4:4:2(W/W/W/W/W)の割合で混合し、微量元素はFe−EDTA、MgSO・7HO、HBO、ZnSO・7HO、CuSO・7HO、(NHMo24・4HOを供給源としてpHを約5.5に調節して供給した。生育初期から殺虫剤と殺菌剤を10日間隔で6回撒布した。養液の供給濃度は、EC0.4乃至1.5の範囲内で、栄養生長期、塊茎形成期、塊茎肥大期からなる生長期に応じて調節して供給した。
【0054】
栽培開始日から40日後、茎長は43cm程度であり、栽培開始日から92日後、塊茎は1株当たり平均31個が生産されたが、5g以下が9.3個、5乃至20gが18.1個、20g以上が3.6個であることが分った。
【0055】
実施例2−1−3:バイオテク種ジャガイモの露地栽培
バイオテク種ジャガイモを露地に一般種ジャガイモと同一の条件で播種栽培した。
【0056】
栽培面積はそれぞれ50坪であり、ジャガイモ用複合肥料(11−8−13)を10a当たり100kgずつ施肥し、黒色ビニールマルチングを行った。栽植株数は坪当たり18株であり、バイオテク種ジャガイモは3乃至5mmの萌芽を有するものを播種した。播種方法はビニールマルチング上に一定の間隔で深さ10cmの穴を開けてバイオテク種ジャガイモを入れた後、5cm程度の覆土を行った。萌芽が出現して茎長が10cm程度になった際、ジャガイモ茎の周辺に覆土及び除草作業を行い、播種後から出現まで土壌水分が乾燥しないように管理し、生育初期から10日間隔で殺虫剤を撒布し、生育中期から殺菌剤をさらに撒布して油虫及び疫病を防除した。
【0057】
播種後30日に調査した出現率は95%以上であり、播種後70日に調査した茎長は平均65cmであり、平均収穫量は1坪当たり10.2kgであることを確認した。
【0058】
実施例2−2:バイオテク種ジャガイモの2次増殖栽培
前記実施例2−1−1乃至実施例2−1−3で生産した種ジャガイモを露地で2次増殖した。前記実施例で生産した種ジャガイモの中から、重量10乃至30gのジャガイモをそれぞれ1,000個ずつ選別して播種した。播種面積はそれぞれ50坪であり、栽培方法は実施例2−1−3の方法を使用した。
【0059】
出現率はそれぞれ95%以上であり、播種後80日に測定した茎長は68乃至75cm、分枝数は14乃至15個であって、1次増殖栽培方法による差異を示さなかった。ジャガイモの1坪当たり平均総イモ重は11.8乃至13.2kgであって、30乃至250gのジャガイモが80%程度を占めることが分った。
【0060】
前記1次増殖栽培と2次増殖栽培で栽培されたジャガイモは、外形上奇形を示しておらず、生育期間中に形態、生長速度などにおいて一般ジャガイモとの差異もなく、ウィルスに感染した罹病株も発生しなかった。しかも、個体当たり及び単位面積当たり生産量はいずれも従来の種ジャガイモの一般的水準の増殖率を示し、本発明に係るバイオテク種ジャガイモを増殖用種ジャガイモとして使用することができ、特に露地増殖方法でもビニールポットを用いた増殖方法と類似水準の増殖収率を得ることができたので、経済的に種ジャガイモを生産することができることが分った。
【0061】
産業上の利用可能性
以上述べたように、本発明に係るバイオテク種ジャガイモの生産方法は、組織培養段階で無菌、無病な高品質のバイオテク種ジャガイモを量産することができるので、土壌の増殖段階を短縮してウィルス感染率を低めることができ、ビニールハウスではない露地に直播して増殖させることができるので、生産コストを大幅低めることができる。
【0062】
以上、本発明を例示的に記述したが、使用した用語は本発明を限定するためのものでなく、本発明の特徴を説明するために意図されたものと理解されるべきである。本発明の様々な変更及び変形は前記開示された内容に照らして可能である。したがって、添付された請求の範囲から外れない範囲内で、本発明は前述した実施例以外の方式で別に実施できるものと理解すべきである。
【図面の簡単な説明】
【図1】
本発明の培養容器の一実施例を示す斜視図である。
【図2】
本発明の培養容器の一実施例を示す断面図である。
【図3】
培養支持板の部分断面図である。
[0001]
TECHNICAL FIELD The present invention relates to a method for producing seed potatoes. More specifically, the present invention relates to a method for producing seed potatoes by culturing potato stems by a dense planting and upright culture method, and to a seed potato produced by this method.
[0002]
BACKGROUND ART Although potatoes can be propagated in the form of genuine seeds or vegetative propagation bodies, the practice of potato cultivation uses mainly vegetative propagation methods. For potato production by vegetative propagation, sowing and cultivating disease-free and excellent potatoes increases the yield, but the production and spread of disease-free and excellent potatoes are practically insufficient.
[0003]
In the case of Korea as well, the supply rate of seed potatoes is only about 20 to 30%, and it is difficult to mass-produce seed potatoes, which are equivalent to the upper class of the basic species in the seed potato breeding system, and produce small quantities. It is the fact that it has been growing and supplying farmers for six years.
[0004]
However, shortening the growth period is very important in the supply system of disease-free and excellent varieties of potatoes because the chances of being infected with diseases and pests during the growth period increase the probability of infection with diseases and insects, especially viruses. . The key to shortening the growth period is to mass-produce the basic species at low cost (see: Hussey, G. et al., Anal Bot., 53: 565-578, 1984; Garnet N, et al., Anal. Bot., 63: 663-674, 1989; Lillo C., Norwegian J. Agric. Sci., 3: 23-27, 1989).
[0005]
In general, seed potatoes are produced by starting from the growth point culture of potato sprouts, forming stems, subculturing the stems in a culture vessel, and then seeding from the cultured stems by stem cutting and nutrient solution. The method is broadly classified into a method of producing potatoes or a method of producing seed potatoes by changing culture conditions from cultured stems.
[0006]
However, if the stem is subcultured using an Erlenmeyer flask or a test tube, the power of the stem is weakened, and if the subculture is continued to some extent, the stem becomes thinner and the production capacity of the seed potato decreases. However, mass production by such a method is difficult.
[0007]
To overcome these problems, stems derived from the growing point are cultured in a Petri dish, the stem is cut, the stem apex is used for subculture of stems, and the lower stem is used for seed potato production. (Ref: Korean Patent Application No. 10-1989-3009).
[0008]
However, the production method using a petri dish can produce a large amount of seed potatoes compared to the conventional method, but this only means that a certain amount is produced every day and the annual production volume is large. Exposed practical problems. That is, the production cost of seed potatoes is high, and there are many economic losses due to the inability to use all of the produced seed potatoes. The loss of the produced seed potatoes occurs during the storage period due to the seeding period and dormancy period of the seed potatoes, and because the seed potatoes are formed and grown in the solid medium of the Petri dish, the seed potatoes due to the skin enlargement that occurs Such as losses due to the decay of the corn.
[0009]
On the other hand, in the method of directly producing seed potatoes by the stalk cutting method or the nutrient cultivation method, the growth rate may differ depending on the cultivation time or method, and for this reason, cultivation such as having to provide a glass greenhouse and a nutrient solution supply device It is used as a large-scale production method because it requires excessive capital investment for the facility, and there is a problem of production stability such as transmission due to the occurrence of power outage damage and disease swiftness. Absent.
[0010]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method capable of mass-producing seed potatoes having an average growth rate in a short time.
[0011]
In order to achieve the above object, the present invention provides (1) a step of obtaining a basic stem for forming seed potato from potato, and (2) a liquid or solid medium in a culture vessel capable of dense planting and upright culture. And (3) a liquid phase or solid phase seed in a culture vessel capable of dense planting and upright cultivation and capable of forming seed potatoes separately from the medium. Culturing the grown stem using a potato-forming medium to produce a seed potato.
[0012]
In the present invention, any of various methods widely known in the technical field to which the present invention pertains can be used as a method for obtaining a basic stem for forming a seed potato from a potato. In order to obtain a basic stem that has not been grown, it is preferable to culture the growth point obtained from the sprout of potato.
[0013]
In addition, in the present invention, the same culture conditions as those conventionally used are applied to the culture conditions in the step, but the culture in the step (1) or the step (2) is performed at a temperature of 20 to 30 ° C. , 3,000 lux or more, and the ratio of the light period to the dark period is preferably 13:11 to 17: 7 (hour), and the illumination cycle is preferably performed. It is preferably performed under a dark condition of 25 ° C.
[0014]
Further, in the present invention, the culture vessel of (2) or (3) has a form divided into an upper cap to which a filter for filtering contaminated air is attached, and a cup-shaped section, It is preferable that the culture system comprises a culture support plate on which one basic stalk is placed and cultured for each section, and a lower support that completely adheres to the upper cap and blocks external air.
[0015]
The culture support plate is divided into a cup-shaped section having a predetermined depth, can be placed and cultured in a state where the basic stem is upright, and a liquid phase or a solid phase below the cup-shaped section. The culture medium is filled. As a result, since seed potatoes are formed on the culture support plate, it is possible to prevent seed potatoes from being formed in the medium.
[0016]
Further, since the external air can enter the culture container only through the filter attached to the upper cap of the culture container, the inflow of the pathogenic bacteria by the air can be blocked.
[0017]
The above and other objects, features and other advantages of the present invention will be clearly understood by the following description with reference to the accompanying drawings. FIG. 1 is a perspective view showing one embodiment of the culture vessel of the present invention. FIG. 2 is a sectional view showing one embodiment of the culture vessel of the present invention. FIG. 3 is a partial sectional view of the culture support plate.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a seed potato of the present invention will be specifically described step by step with reference to the accompanying drawings. Also, in the present specification, the seed potato produced according to the present invention is referred to as “biotech seed potato” for convenience to distinguish it from the seed potato produced by the conventional method.
[0019]
First step: harvesting of basic stalk Potato growth points are collected and cultured to obtain a basic stalk. At this time, the growing point is obtained by cultivating a potato and collecting it from the apical end of the germinated sprout. The cultivation is carried out using an MS medium generally used for tissue culture of plants, and a stem grown from a growing point and having a length of about 3 to 7 cm is subcultured to obtain a basic stem.
[0020]
Further, the culture of the obtained basic stem was carried out using a medium having a pH of 5.7 to 6.0 containing potassium nitrate, ammonium nitrate, potassium phosphate, calcium chloride, etc. at a temperature of 20 to 30 ° C., an illuminance of 3000 lux or more, and 13 : 11 to 17: 7 (hours) under the condition of an illumination cycle having a ratio between a light period and a dark period. It is not limited to this culture condition.
[0021]
Second step: Propagation of the basic stem The obtained basic stem is densely planted and cultivated upright to obtain a proliferated stem. At this time, dense planting and upright culturing of the basic stem can be performed using a solid or liquid medium in a culture vessel including a culture support plate.
[0022]
The culture medium used in the culture is preferably a liquid culture medium rather than a solid culture medium from the viewpoint of the growth rate of the stem.However, when a liquid culture medium is used, the stem may be immersed in the culture medium. At this time, there is a possibility that the growth of uniform stems may be inhibited by mutual interference between the stems in the medium. Therefore, the stems have been cultured and grown on a solid medium until now.
[0023]
However, in the present invention, by adopting a culture vessel including a culture support plate divided into respective compartments, the disadvantages of the liquid medium are solved, and the advantages of culture using a liquid medium having a high growth rate are maximized. The basic stem can be cultured.
[0024]
FIG. 1 shows an embodiment of a culture vessel including a culture support plate used for growing the basic stem of the present invention. FIG. 1 is a perspective view of a culture vessel including a culture support plate. As shown in FIG. 1, the culture vessel is composed of an upper cap 1 to which a filter 4 for filtering contaminated air is attached, a culture support plate 2 for substantially performing dense planting and upright culture of a basic stem, and an upper cap 1. And a lower support 3 for completely blocking the outside air in close contact.
[0025]
On the other hand, FIG. 2 shows a sectional view of one embodiment of the culture vessel of the present invention. As shown in FIG. 2, the culture support plate 2 has a form divided into cup-shaped sections, and one basic stem is cultured and propagated in each section. The culture support plate 2 is configured to be attached to the lower support 3, but the size and number of the compartments are not particularly limited.
[0026]
FIG. 3 shows a partial cross-sectional view of the culture support plate 2. The upper cap 1 and the lower support 3 of the culture vessel are formed of air except for air filtered through a filter 4 attached to the upper cap 1. Closely adhered so that inflow and outflow can be blocked.
[0027]
In addition, the culture conditions at this stage are not particularly limited. The culture can be performed under the same conditions as those in the first stage.
[0028]
Third step: Production of biotech seed potato The stem grown in the second step is cultured in a seed potato forming medium at 15 to 25 ° C and under dark conditions to produce a biotech seed potato. At this time, it is preferable to use a stem having a length of 5 to 10 cm. It contains a triazole-based compound such as ancimidol or flurprimidol, and the culture is preferably performed at 15 to 25 ° C for 50 to 60 days.
[0029]
The biotechnological potato produced according to the method of the present invention can provide a large amount of seed potato in a shorter time than the conventional method, and although there is a difference depending on the cultivar, the natural dormancy period is about 50 to 120 days. In consideration of the above, it was possible to produce by calculating backward from the suitable seeding time, so that if it is stored at room temperature after production, it can germinate immediately after sowing and be sown immediately, and no loss occurs during the storage period. Such a production method can omit the step of extending the dormant period at a low temperature of 4 ° C. from the conventional seed potato production method, so that the production cost can be significantly reduced.
[0030]
The present invention is similar to the conventional method for mass-producing artificial potatoes (Korean Patent Application No. 10-1989-3009) in that small tubers are produced in a culture vessel, but the following points are clear. There is a big difference.
[0031]
First, a culture vessel of a Petri dish type is conventionally used, but a culture vessel including a culture support plate is used in the present invention.
[0032]
Second, a solid medium is conventionally used, but in the present invention, both a solid medium and a liquid medium can be used.
[0033]
Third, in the past, stems were taken in a medium and subcultured on a 20-day cycle, but in the present invention, stems are subcultured on a 9-day cycle by a dense planting and upright culture method using a culture support plate.
[0034]
Fourth, since the stems were conventionally cultivated in a mutually entangled state in the container, the subculture could not be mechanized, but in the present invention, the stems are in an upright form having a fixed arrangement. Therefore, subculture by mechanization is possible.
[0035]
Fifth, in the past, seed potatoes were produced in the medium or in close contact with the surface of the medium, but in the present invention, seed potatoes are produced on a culture support plate separated from the medium.
[0036]
Sixth, seed potatoes produced according to the prior art are non-uniform in size, whereas seed potatoes produced according to the present invention are uniform in size.
[0037]
Seventh, in the past, the subculture of stems every day of the year and the artificial potato production work were performed in parallel, but in the present invention, only a subculture of the stems was performed for a certain period of the year, and then for a certain period of time. Produces biotech seed potatoes.
[0038]
Eighth, in the related art, even when the breeds are the same, the sleep break points are different depending on the production date, but in the present invention, the sleep break time is the same for the same breed.
[0039]
Ninth, seed potatoes produced by conventional techniques are stored at a low temperature to control the dormancy period, whereas seed potatoes produced according to the present invention need to be stored at room temperature without the need to adjust the dormancy period. Can be.
[0040]
Tenth, seed potatoes produced by conventional techniques suffered from skin hypertrophy, and the tissues were not hard and easy to grow directly in the open field, but the seed potatoes produced according to the present invention did not The phenomenon does not occur, the tissue is hard, and direct sowing propagation is relatively easy.
[0041]
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings by way of examples. These examples are for describing the present invention more specifically, and it is obvious to those skilled in the art to which the present invention belongs that the scope of the present invention is not limited to these examples. That is.
[0042]
Example 1: Production of biotech potatoes Potatoes were cultured for 2 weeks, and the growth points were collected from the germinated sprouts and cultured in a culture medium (2.25 g / L potassium nitrate, 1.8 g / L ammonium nitrate, 214 mg / L dipotassium phosphate). , 332 mg / L calcium chloride, 181 mg / L magnesium sulfate, 35.5 mg / L EDTA, 28.5 mg / L ferrous sulfate heptahydrate, 12.8 mg / L manganese. zinc sulfate, 0.85 mg / L potassium iodide, 0.27 mg / L sodium Molybdate dihydrate, 0.028 mg / L cupric pentahydrate, 0.028 mg / L cobalt chloride hexahydrate, 115 mg / L myo-inositol, 0.5 mg / L thyroid / 0.5 mil. / L riboflavin, 1.1 mg / L biotin, 1.1 mg / L calcium pantothenate, 0.5 mg / L nicotinic acid, 2 g / L yeast extract, 1 g / L brain heart. After shaking culture and growing to a length of 8 to 10 cm, the enzyme immunoassay was used to Individuals not infected with the virus were selected. The selected individuals were cultured in the above-mentioned culture medium at 25 ° C. and 4000 lux illuminance under lighting conditions of a light period and a dark period of 15: 9 (hour) to obtain a basic stem for forming seed potatoes.
[0043]
The obtained basic stalks are cut by 2 to 3 nodes, and one section is placed on each section of the culture support plate 2 of the culture vessel shown in FIGS. 1 to 3 for each section. After injecting the culture medium, subculture for 9 days under the same conditions as described above was repeated four times, and 256 basic stems were cut from one basic stem cut into 2 or 3 nodes for 36 days. I got it.
[0044]
After the obtained basic stems are placed on the culture support plate 2 of the culture vessel in the same manner as described above, a liquid phase seed potato forming medium (1.6 g / L potassium nitrate, 1.1 g / L ammonium nitrate, 698 mg / l) L dipotassium phosphate, 332 mg / L calcium chloride, 181 mg / L magnesium sulphate, 35.5 mg / L EDTA, 28.5 mg / L ferrous sulphate8 mg / L. 2 mg / L zinc sulfate, 0.85 mg / L potassium iodide, 0.27 mg / L sodium molybdenum ybdate dihydrate, 0.028 mg / L cupric pentahydrate, 0.028 mg / L cobalt chloride hexahydrate, 115 mg / L myo-inositol, 0.5 mg / L thyroid / 0.5 thymineLegamine / Lexamine / Lexamine / Lexamine / Lexamine / Lexamine / Lexamine80 mg / L thiamineLegamine / L riboflavin, 1.1 mg / L biotin, 1.1 mg / L calcium pantothenate, 0.5 mg / L nicotinic acid, 50 mg / L uniconazole, pH 5.7-6.0) 600 mL in a culture vessel, and dark conditions. And cultured at 21 ° C. for 60 days to obtain seed potatoes.
[0045]
1.32 seed potatoes are produced per basic stem, which translates into a productivity of 0.31 per unit area (cm 2 ), and is disclosed in Korean Patent Application No. 10-1989-3009. It has been found that the productivity of seed potatoes using the Petri dish-shaped container obtained is more than three times higher than the productivity [0.096 pieces per unit area (cm 2 )]. Seed potatoes produced in a Petri dish-shaped container are formed in contact with a solid medium, and cause a skin enlargement phenomenon that causes rot during storage. However, when the same culture vessel as that of the present invention is used, the seed potato is formed on the culture support plate so as not to come into contact with the culture medium, and the skin enlargement phenomenon does not occur.
[0046]
Example 2: Propagation and cultivation of biotech seed potato The cultivation and cultivation of the biotech potato of the present invention are classified into primary cultivation and secondary cultivation.
[0047]
Example 2-1: Primary breeding cultivation of biotech seed potato The primary cultivation cultivation of the biotech seed potato (variety: large potato) of the present invention is performed by a plastic pot cultivation, a nutrient cultivation or an open-field cultivation method.
[0048]
Example 2-1-1: Plastic pot of biotech seed potato Cultivation of a biotech seed potato having a sprout of about 3 mm in size was filled in a black vinyl pot having a diameter of 15 cm and a height of 13 cm with floor soil, and one biotech seed potato was used per pot. Each pot was cultivated, and 140 pots per tsubo were cultivated, irrigated once every two to three days, and 700 pots were cultivated. In the middle of growth, insecticides and fungicides were sprayed three times at 10-day intervals.
[0049]
It began to appear about 14 days after sowing, and the growth rate was slow in the early stage after the appearance, but the growth rate of the stem length increased from about 14 days after the appearance, and the average value of 50 randomly selected individuals was investigated. About 80 days after sowing, the stem length was 45.2 cm, the number of branches was 2.9, and the number of stems was 2.9.
[0050]
As an average value of 200 pots, it was confirmed that the above-ground biological layer per plant was 87.6 g, and the number of tubers and tuber weight per plant were 7.5 and 132.2 g, respectively.
[0051]
Example 2-1-2: Hydroponic cultivation of biotech potatoes Hydroponic cultivation was performed by a normal method used in a test site for high-temperature regions. A cultivation bed (width 60 cm, height 40 cm, length 10 m) is made in a greenhouse with a styrofoam with a gradient of 1/200. After laying vinyl inside the bed, spray nozzles are installed at intervals of 20 cm. The nutrient solution supply pipe was attached to the bottom and connected to the nutrient solution supply system. The bed lid was covered with styrofoam with two rows of holes at 25 cm intervals, and before the cultivation, the nutrient solution supply system was disinfected with formalin and then volatilized.
[0052]
Sowing the biotech seed potatoes on perlite and carefully pulling out when the length is about 10 to 15 cm, insert each biotech seed potato into one hole of the bed lid about 7 to 10 cm into the bed. The cultivation was started by covering the lid of the bed with a reflective film.
[0053]
The major elements in the nutrient solution were N: P: K: Ca using single fertilizers KNO 3 , Ca (NO 3 ) 2 .4H 2 O, KNO 3 , NH 4 H 2 PO 4 , and MgSO 4 .7H 2 O: the mg 8.7: 2: 4: 4 : 2 were mixed at a ratio of (W / W / W / W / W), trace elements Fe-EDTA, MgSO 4 · 7H 2 O, H 3 BO 3, ZnSO 4 · 7H 2 O, CuSO 4 · 7H 2 O, were supplied by adjusting the (NH 4) 6 Mo 7 O 24 · 4H pH of about 5.5 as a source of 2 O. From the early growth stage, insecticides and fungicides were sprayed six times at 10-day intervals. The supply concentration of the nutrient solution was adjusted within the range of EC 0.4 to 1.5 and adjusted according to the growth period consisting of the vegetative growth period, tuber formation stage and tuber enlargement period.
[0054]
Forty days after the start of cultivation, the stem length was about 43 cm, and after 92 days from the start of cultivation, an average of 31 tubers were produced per plant, but 9.3 for 5 g or less and 18.20 for 5 to 20 g. It turned out that 3.6 pieces of 1 piece and 20 g or more.
[0055]
Example 2-1-3: Field cultivation of biotech potatoes The biotech potatoes were sown and cultivated in the open field under the same conditions as general potatoes.
[0056]
The cultivation area was 50 tsubo each, and a compound fertilizer for potatoes (11-8-13) was applied 100 kg per 10a, and black vinyl mulching was performed. The number of plants planted was 18 per tsubo, and potatoes having a germination of 3 to 5 mm were sown for biotech seed potatoes. The seeding method was such that holes of 10 cm in depth were made at regular intervals on a vinyl mulching, and a potato of biotech seed was put therein, and then a soil covering of about 5 cm was performed. When the sprouts emerge and the stem length is about 10 cm, cover the soil around the potato stalks and weed out, manage so that the soil moisture does not dry from after seeding until emergence, and kill insects every 10 days from the initial growth. The agent was sprayed, and a fungicide was further sprayed from the middle stage of growth to control oily insects and plague.
[0057]
The appearance rate examined 30 days after sowing was 95% or more. The stem length examined 70 days after sowing was 65 cm on average, and the average yield was 10.2 kg per tsubo.
[0058]
Example 2-2: Secondary breeding cultivation of biotech seed potatoes The seed potatoes produced in the above Examples 2-1-1 to 2-1-3 were secondarily grown in the open ground. From the seed potatoes produced in the above example, 1,000 potatoes each weighing 10 to 30 g were selected and sown. The sowing area was 50 tsubo each, and the cultivation method used was the method of Example 2-1-3.
[0059]
The appearance rates were 95% or more, and the stem length measured 80 days after sowing was 68 to 75 cm, and the number of branches was 14 to 15, indicating no difference according to the primary propagation cultivation method. The average total weight of potatoes per tsubo was 11.8 to 13.2 kg, and it was found that 30 to 250 g of potatoes accounted for about 80%.
[0060]
The potatoes cultivated in the primary breeding cultivation and the secondary breeding cultivation do not show any malformation in appearance, have no difference in morphology, growth rate, etc. from general potatoes during the growing period, and are infected with the virus. Also did not occur. Moreover, both the production amount per individual and per unit area show a general level of growth rate of conventional seed potatoes, and the biotech seed potato according to the present invention can be used as a seed seed for growth, However, since it was possible to obtain the same level of growth yield as the growth method using a plastic pot, it was found that seed potatoes could be produced economically.
[0061]
INDUSTRIAL APPLICABILITY As described above, the biotechnological potato production method according to the present invention is capable of mass-producing aseptic, disease-free, high-quality biotechnological potatoes in the tissue culture stage, and therefore, in the soil growth stage. As a result, the virus infection rate can be reduced, and the seeds can be directly sown in a non-greenhouse and propagated, so that the production cost can be significantly reduced.
[0062]
Although the invention has been described by way of example, it is to be understood that the terms used are not intended to limit the invention, but rather to describe the features of the invention. Various modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that the present invention can be implemented in a manner other than the above-described embodiment without departing from the scope of the appended claims.
[Brief description of the drawings]
FIG.
It is a perspective view showing one example of a culture container of the present invention.
FIG. 2
FIG. 2 is a cross-sectional view showing one embodiment of the culture container of the present invention.
FIG. 3
It is a partial sectional view of a culture support plate.

Claims (6)

(1)ジャガイモから種ジャガイモの形成のための基本茎を収得する段階と、
(2)密植、直立培養が可能な培養容器で、液体又は固体培地を用いて、前記収得された基本茎を増殖させる段階と、
(3)密植・直立培養が可能で且つ培地と分離して種ジャガイモの形成が可能な培養容器で、液相又は固相の種ジャガイモ形成培地を用いて、前記増殖された茎を培養して種ジャガイモを生産する段階とを含む種ジャガイモの生産方法。
(1) obtaining a basic stem for forming seed potato from potato;
(2) a step of growing the obtained basic stem using a liquid or solid medium in a culture vessel capable of dense planting and upright culturing;
(3) In a culture vessel capable of dense planting and upright cultivation and capable of forming seed potatoes separately from the medium, the grown stem is cultured using a liquid or solid phase seed potato forming medium. Producing a seed potato.
請求項1において、前記(1)段階の基本茎の収得が、ジャガイモの萌芽から生長点を採取し、前記生長点を培養する段階によって行われることを特徴とする種ジャガイモの生産方法。2. The method for producing a seed potato according to claim 1, wherein the step of obtaining the basic stem in the step (1) is performed by collecting a growing point from a sprout of the potato and culturing the growing point. 請求項1又は2において、前記(1)段階又は前記(2)段階の培養が20乃至30℃の温度、3,000ルクス以上の照度、及び13:11乃至17:7(時間)の明期と暗期との割合を有する照明周期の条件で行われることを特徴とする種ジャガイモの生産方法。3. The method according to claim 1, wherein the culture in the step (1) or the step (2) is performed at a temperature of 20 to 30 ° C., an illuminance of 3,000 lux or more, and a light period of 13:11 to 17: 7 (hour). A method for producing a seed potato, characterized in that the method is performed under the condition of an illumination cycle having a ratio of a dark period to a dark period. 請求項1又は2において、前記(3)段階の培養が15乃至25℃の暗条件の下で行われることを特徴とする種ジャガイモの生産方法。3. The method for producing a seed potato according to claim 1, wherein the culturing in the step (3) is performed under a dark condition of 15 to 25 ° C. 請求項1又は2において、
前記(2)又は前記(3)の培養容器が、
汚染した空気を濾過するためのフィルタが取り付けられた上部キャップと、
コップ状の区画に分けられた形状を有し、前記区画毎に1本の基本茎が置床されて培養される培養支持板と、
前記上部キャップに完全に密着して外部の空気を遮断する下部支えとから構成されることを特徴とする種ジャガイモの生産方法。
In claim 1 or 2,
The culture container according to (2) or (3),
An upper cap fitted with a filter for filtering contaminated air;
A culture support plate having a shape divided into cup-shaped compartments, and one basic stem is placed and cultured for each compartment,
A method for producing seed potatoes, comprising: a lower support that completely adheres to the upper cap to block external air.
請求項1乃至5のいずれか1項の方法によって生産された種ジャガイモ。Seed potato produced by the method of any one of claims 1 to 5.
JP2002553891A 2000-12-28 2001-12-27 Biotech potato production method Pending JP2004516838A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000083442A KR100361652B1 (en) 2000-12-28 2000-12-28 Process for Preparing Bio-tech Microtuber Seed Potato
PCT/KR2001/002280 WO2002052925A1 (en) 2000-12-28 2001-12-27 Process for preparing bio-tech seed potato

Publications (1)

Publication Number Publication Date
JP2004516838A true JP2004516838A (en) 2004-06-10

Family

ID=19703735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002553891A Pending JP2004516838A (en) 2000-12-28 2001-12-27 Biotech potato production method

Country Status (3)

Country Link
JP (1) JP2004516838A (en)
KR (1) KR100361652B1 (en)
WO (1) WO2002052925A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723665B1 (en) * 2005-02-28 2007-05-30 (주)포테이토밸리 Method for producing virus-free potato minitubers for rapid multiplication of seed potato
WO2010076954A2 (en) * 2008-11-10 2010-07-08 (주) 마이크로프랜츠 Mass production of potato microtubers by tissue culture and method for producing seed potatoes
CN102630447B (en) * 2012-03-28 2013-07-24 常熟市滨江农业科技有限公司 Rapid propagation method of Taiwan mustard green
CN102870682A (en) * 2012-10-26 2013-01-16 山东省农业科学院蔬菜研究所 Culture medium for in-vitro induced regeneration plants of double-haploid stems of potatoes
KR101544321B1 (en) * 2014-08-13 2015-08-12 김수만 Mass production method of potato seeds
CN104304031B (en) * 2014-11-05 2016-06-01 丽江伯符农业科技发展有限公司 A kind of potato detoxicating tissue cultured seedling water planting rapid propagating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000218A (en) * 1990-06-22 1992-01-29 박원희 Mass production method of artificial seed potatoes using bioreactor
AU8528198A (en) * 1998-07-28 2000-02-21 Institute Of Genetics, Chinese Academy Of Sciences Culture container and process for producing potato microtubers by using the same

Also Published As

Publication number Publication date
KR100361652B1 (en) 2002-11-23
KR20020054386A (en) 2002-07-08
WO2002052925A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
CN102742442A (en) Wild pinellia ternate cultivation method
CN101731067A (en) Research on cultivation technology of organic ornamental peppers
CN102823497B (en) Clonal tissue culture breeding method of Liquidambar formosana hance
CN109673412A (en) A kind of greenhouse strawberry implantation methods of overhead laminar
CN104082007A (en) Cuttage breeding method for annona squamosa linn
CN104855100A (en) Osmanthus tree planting method
CN103190260A (en) White bark pine seedling method
CN103583243B (en) Cultivation method of milk jujube grafted seedlings
CN109168885A (en) A kind of navel orange cultivating superior high-yield method
CN104186304B (en) A kind of hybrid rice opens the selection of fragrant excellent No. 3
CN109757274B (en) High-yield and high-efficiency transplanting method for momordica grosvenori tissue culture seedlings
CN107306647A (en) Tomato paddy rice broccoli rice field-upland field rotation cultural method
CN107047413A (en) One seed shrimp, paddy rice, precocious Chinese cabbage continuous cropping ecological circulation breeding new model
CN107223563A (en) A kind of method for cultivating stingless black fruit fructus lycii
CN1918971B (en) Seeds production method for few-seed purple eggplant first-filial generation
CN104365309A (en) Efficient mode and high yield cultivation technique for spring sweet corn, autumn watermelon and winter lettuce
CN104871778A (en) Cape gooseberry seedling cultivation method
CN107409684A (en) A kind of greenhouse sponge gourd implantation methods for improving yield
CN104160856B (en) A kind of cultivation method improving kale cut-flower amount and production of hybrid seeds amount
JP2004516838A (en) Biotech potato production method
CN108476954B (en) Production method for strawberry seedling breeding and celery rotation in northern area
CN106332648A (en) Single-plant temporary planting method of sugarcane tissue culture rooting bottle seedling
CN105103970A (en) Standardized cultivation method for Tingjiangfei chrysanthemums
CN106489477B (en) A kind of Ecology Chinese podophyllum root method for culturing seedlings
CN110972840A (en) Plastic greenhouse chestnut-flavor pumpkin cultivation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424