JP2004511885A5 - - Google Patents

Download PDF

Info

Publication number
JP2004511885A5
JP2004511885A5 JP2002535177A JP2002535177A JP2004511885A5 JP 2004511885 A5 JP2004511885 A5 JP 2004511885A5 JP 2002535177 A JP2002535177 A JP 2002535177A JP 2002535177 A JP2002535177 A JP 2002535177A JP 2004511885 A5 JP2004511885 A5 JP 2004511885A5
Authority
JP
Japan
Prior art keywords
electrically conductive
nanocrystalline diamond
ultra
nitrogen
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002535177A
Other languages
Japanese (ja)
Other versions
JP2004511885A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2001/031388 external-priority patent/WO2002031891A1/en
Publication of JP2004511885A publication Critical patent/JP2004511885A/en
Publication of JP2004511885A5 publication Critical patent/JP2004511885A5/ja
Pending legal-status Critical Current

Links

Claims (43)

1019原子/cm以上の窒素を有する電気伝導性の超ナノ結晶体ダイヤモンドからなる表面を有する電極。An electrode having a surface made of electrically conductive ultra-nanocrystalline diamond containing nitrogen of 10 19 atoms / cm 3 or more. 上記超ナノ結晶体ダイヤモンドがフィルムである請求項1記載の電極。The electrode according to claim 1, wherein the ultrananocrystalline diamond is a film. 上記超ナノ結晶体ダイヤモンドは、0.2から2.0nm幅の結晶粒界と1(Ωcm)−1以上の周囲温度における伝導性を有する請求項1記載の電極。The electrode according to claim 1, wherein the ultra-nanocrystalline diamond has conductivity at a grain boundary of 0.2 to 2.0 nm in width and an ambient temperature of 1 (Ωcm) -1 or more. 周囲温度における伝導性が10(Ωcm)−1以上である請求項1記載の電極。The electrode according to claim 1, wherein the conductivity at ambient temperature is 10 (Ωcm) −1 or more. 上記フィルムは、2000Å以上の厚さを有し、かつ実質的にピンホールがない請求項1記載の電極。The electrode according to claim 1, wherein the film has a thickness of 2000 mm or more and is substantially free of pinholes. 上記炭素の供給源が、CHまたはその前駆体、Cまたはその前駆体、C60化合物のうちの1又は2以上である請求項1記載の電極。The electrode according to claim 1, wherein the carbon source is one or more of CH 4 or a precursor thereof, C 2 H 2 or a precursor thereof, and a C 60 compound. 上記炭素が、原料ガス中に体積比で20%以下含まれている請求項6記載の電極。The electrode according to claim 6, wherein the carbon is contained in the source gas at a volume ratio of 20% or less. 原料ガス中における炭素の原子パーセントが約1%であり、その炭素の体積パーセントが20%以下であり、希ガスと平衡状態にある請求項7記載の電極。8. The electrode of claim 7, wherein the atomic percent of carbon in the source gas is about 1%, the volume percent of carbon is 20% or less, and is in equilibrium with a noble gas. 15nmまたはそれ以下の平均結晶粒径を有しかつ1019原子/cm以上の窒素を有し、カーボン源と窒素源を供給し、超ナノ結晶体物質を形成するためのプラズマを発生させるためにそのカーボン源と窒素を希ガス中でエネルギー源に曝して蒸発させることによって作製された電気伝導性の超ナノ結晶体ダイヤモンドからなる表面を有する電極であって、上記原料ガスには2%以下の炭素が含まれている電極。To generate a plasma having an average crystal grain size of 15 nm or less and having nitrogen of 10 19 atoms / cm 3 or more, supplying a carbon source and a nitrogen source, and forming a super nanocrystalline material And an electrode having a surface made of ultra-nanocrystalline diamond, which is produced by exposing the carbon source and nitrogen to an energy source in a rare gas and evaporating, and the source gas contains 2% or less. An electrode that contains carbon. 上記超ナノ結晶体ダイヤモンドは2000Å以上の厚さを有するフィルムである請求項1記載の電極。2. The electrode according to claim 1, wherein the ultra-nanocrystalline diamond is a film having a thickness of 2000 mm or more. 有毒な物質を有する水溶液を矯正する方法であって、有毒な物質を有する水溶液を、少なくとも一方が1019原子/cm以上の窒素を有し、0.1(Ωcm)−1以上の周囲温度における伝導性を有する電気伝導性の超ナノ結晶体ダイヤモンドからなる表面を有する2つの電極間の電気ポテンシャルに曝すことを含む方法。A method for correcting an aqueous solution having a toxic substance, wherein at least one of the aqueous solutions having a toxic substance has nitrogen of 10 19 atoms / cm 3 or more and an ambient temperature of 0.1 (Ωcm) −1 or more. Exposing to an electrical potential between two electrodes having a surface made of electrically conductive ultra-nanocrystalline diamond having conductivity at. 1019原子/cm以上の窒素を有し、0.1(Ωcm)−1以上の周囲温度における伝導性を有する電気伝導性の超ナノ結晶体ダイヤモンド電極を用いて、神経を横切って電気ポテンシャルを印加することを含む神経を刺激する方法。Electrical potential across the nerve using an electrically conductive ultra-nanocrystalline diamond electrode having nitrogen of 10 19 atoms / cm 3 or more and conductivity at ambient temperature of 0.1 (Ωcm) −1 or more A method of stimulating a nerve comprising applying 1019原子/cm以上の窒素を有し、0.1(Ωcm)−1以上の周囲温度における伝導性を有する電気伝導性の超ナノ結晶体ダイヤモンドを含む電子放射デバイス。An electron-emitting device comprising an electrically conductive ultra-nanocrystalline diamond having a nitrogen of 10 19 atoms / cm 3 or more and having a conductivity at an ambient temperature of 0.1 (Ωcm) −1 or more. 上記デバイスは、フラットディスプレイパネル、質量分析又は電子顕微鏡のような電子装置、x線装置、半導体型センサー又はアクチエーター装置における反動推進エンジン又はセンサーにおける1又は2以上の冷陰極である請求項13の電子放射デバイス。14. The device is one or more cold cathodes in a flat display panel, an electronic device such as a mass spectrometer or an electron microscope, an x-ray device, a reaction propulsion engine or sensor in a semiconductor sensor or actuator device. Electron emitting device. アノードとカソードと電解質型水溶液とを有しており、そのアノードとカソードのうちの少なくとも1つは1019原子/cm以上の窒素を有し、0.1(Ωcm)−1以上の周囲温度における伝導性を有する電気伝導性の超ナノ結晶体ダイヤモンドからなる表面を有する電気化学セル。An anode, a cathode, and an electrolyte-type aqueous solution, at least one of the anode and the cathode having nitrogen of 10 19 atoms / cm 3 or more and an ambient temperature of 0.1 (Ωcm) −1 or more. An electrochemical cell having a surface made of electrically conductive ultra-nanocrystalline diamond having conductivity. 1019原子/cm以上の窒素を含み、周囲温度において0.1(Ω・cm)−1以上の電気伝導性を有する電気伝導性超ナノ結晶体ダイヤモンド。An electrically conductive ultra-nanocrystalline diamond containing 10 19 atoms / cm 3 or more of nitrogen and having an electrical conductivity of 0.1 (Ω · cm) −1 or more at ambient temperature. 前記超ナノ結晶体ダイヤモンドがフィルムである請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, wherein the ultra-nanocrystalline diamond is a film. 0.2〜2.0nmの範囲の結晶粒界を有する請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, having a grain boundary in the range of 0.2 to 2.0 nm. 平均結晶粒径が3〜15nmの範囲内にある請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, wherein the average crystal grain size is in the range of 3 to 15 nm. 周囲温度において略1(Ω・cm)−1以上の電気伝導性を有する請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, which has an electrical conductivity of about 1 (Ω · cm) −1 or more at ambient temperature. 周囲温度において略10(Ω・cm)−1以上の電気伝導性を有する請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, which has an electrical conductivity of about 10 (Ω · cm) −1 or more at ambient temperature. 周囲温度において略100(Ω・cm)−1以上の電気伝導性を有する請求項16記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 16, which has an electrical conductivity of about 100 (Ω · cm) −1 or more at ambient temperature. 15nmまたはそれ以下の平均結晶粒径を有しかつ1019原子/cm以上の窒素を有し、カーボン源と窒素源を供給し、超ナノ結晶体物質を形成するためのプラズマを発生させるためにそのカーボン源と窒素を希ガス中でエネルギー源に曝して蒸発させることによって作製された電気伝導性の超ナノ結晶体ダイヤモンドからなる表面を有する電極であって、その原料ガスには2%以下の炭素が含まれている電気伝導性超ナノ結晶体ダイヤモンド。To generate a plasma having an average crystal grain size of 15 nm or less and having nitrogen of 10 19 atoms / cm 3 or more, supplying a carbon source and a nitrogen source, and forming a super nanocrystalline material An electrode having a surface composed of electrically conductive ultra-nanocrystalline diamond produced by exposing the carbon source and nitrogen to an energy source in a rare gas and evaporating, and the source gas contains 2% or less Electrically conductive ultra-nanocrystalline diamond containing carbon. 上記体積プロセスにおいて350℃以上の温度に維持された基板上に成長されたフィルム状のダイヤモンドである請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, wherein the diamond is a film-like diamond grown on a substrate maintained at a temperature of 350 ° C or higher in the volumetric process. 炭素源が、CH又はその前駆体、C又はその前駆体及びC60化合物の1又は2以上である請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, wherein the carbon source is one or more of CH 4 or a precursor thereof, C 2 H 2 or a precursor thereof and a C 60 compound. 前記原料ガス中に窒素が20体積%以上含まれている請求項25記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 25, wherein the raw material gas contains 20% by volume or more of nitrogen. 原料ガス中の炭素の原子%が略1%であり、前記原料ガス中に窒素が20体積%以上含まれている請求項26記載の電気伝導性超ナノ結晶体ダイヤモンド。27. The electrically conductive ultra-nanocrystalline diamond according to claim 26, wherein atomic percent of carbon in the source gas is about 1%, and nitrogen is contained in the source gas at 20 volume% or more. 前記超ナノ結晶体ダイヤモンドは、100Torr以上のトータル圧力下において350℃〜800℃に維持された基板上に成長されたフィルムからなる請求項26記載の電気伝導性超ナノ結晶体ダイヤモンド。27. The electrically conductive ultra-nanocrystalline diamond according to claim 26, wherein the ultra-nanocrystalline diamond consists of a film grown on a substrate maintained at 350 to 800 [deg.] C. under a total pressure of 100 Torr or more. 前記基板は、金属又は非金属からなる請求項28記載の電気伝導性超ナノ結晶体ダイヤモンド。29. The electrically conductive ultra-nanocrystalline diamond according to claim 28, wherein the substrate is made of metal or nonmetal. 前記基板は、シリコン又はシリコン酸化物からなる請求項28記載の電気伝導性超ナノ結晶体ダイヤモンド。29. The electrically conductive ultra-nanocrystalline diamond according to claim 28, wherein the substrate is made of silicon or silicon oxide. 周囲温度において0.1(Ω・cm)−1以上の電気伝導性を有する請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, having an electrical conductivity of 0.1 (Ω · cm) -1 or more at ambient temperature. 周囲温度において1(Ω・cm)−1以上の電気伝導性を有する請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, having an electrical conductivity of 1 (Ω · cm) -1 or more at ambient temperature. 周囲温度において10(Ω・cm)−1以上の電気伝導性を有する請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, having an electrical conductivity of 10 (Ω · cm) -1 or more at ambient temperature. 周囲温度において100(Ω・cm)−1以上の電気伝導性を有する請求項23記載の電気伝導性超ナノ結晶体ダイヤモンド。The electrically conductive ultra-nanocrystalline diamond according to claim 23, having an electrical conductivity of 100 (Ω · cm) -1 or more at ambient temperature. ガス及び希ガスを含む窒素及び炭素の混合ガスをエネルギー源に曝して、窒素組入れ超ナノ結晶体ダイヤモンドフィルムを堆積させることからなる電気伝導性超ナノ結晶体ダイヤモンドフィルムを製造する方法であって、上記原料ガス中の炭素の原子パーセントは約2%未満であり、窒素は約2体積%から約25体積%の範囲で存在し、総量で約1019原子/cm以上の窒素が存在する超ナノ結晶体ダイヤモンドフィルムを製造する方法。A method for producing an electrically conductive ultra-nanocrystalline diamond film comprising exposing a mixed gas of nitrogen and carbon containing a gas and a rare gas to an energy source to deposit a nitrogen-embedded ultra-nanocrystalline diamond film, The atomic percent of carbon in the source gas is less than about 2%, the nitrogen is present in the range of about 2% to about 25% by volume, and the total amount is more than about 10 19 atoms / cm 3 of nitrogen. A method for producing a nanocrystalline diamond film. 上記炭素源がCHまたはその前駆体、Cまたはその前駆体及びC60化合物のうちの1以上である請求項35記載の方法。The carbon source is CH 4 or a precursor thereof, C 2 H 2 or 1 or higher The method of claim 35, wherein one of the precursors and C 60 compounds. 上記原料ガス中の炭素の原子パーセントが約1%であり、窒素は総量で約20体積パーセント以下が存在し、アルゴンと平衡状態である請求項36記載の方法。37. The method of claim 36, wherein the atomic percent of carbon in the source gas is about 1%, the total amount of nitrogen is less than about 20 volume percent, and is in equilibrium with argon. 上記電気伝導性の超ナノ結晶体ダイヤモンドが、約800℃、約100トールの全圧及び800ワットのマイクロ波パワーで維持されたSiまたはSiO基板上に成長されたフィルムである請求項27記載の方法。The electric conductivity of the ultrasonic nano crystal diamond, from about 800 ° C., according to claim 27, wherein the film grown on about 100 Torr total pressure and 800 watts microwave power Si or SiO 2 on a substrate maintained at the method of. 上記電気伝導性の超ナノ結晶体ダイヤモンドが、周囲温度で約0.1(Ωcm)−1以上の伝導性を有する請求項35記載の方法。36. The method of claim 35, wherein the electrically conductive ultra-nanocrystalline diamond has a conductivity of about 0.1 (Ωcm) −1 or greater at ambient temperature. 上記電気伝導性の超ナノ結晶体ダイヤモンドが、周囲温度で約1(Ωcm)−1以上の伝導性を有する請求項35記載の方法。36. The method of claim 35, wherein the electrically conductive ultra-nanocrystalline diamond has a conductivity of about 1 (Ωcm) −1 or greater at ambient temperature. 上記電気伝導性の超ナノ結晶体ダイヤモンドが、周囲温度で約10(Ωcm)−1以上の伝導性を有する請求項35記載の方法。36. The method of claim 35, wherein the electrically conductive ultra-nanocrystalline diamond has a conductivity of about 10 (Ωcm) −1 or greater at ambient temperature. 上記電気伝導性の超ナノ結晶性ダイアモンドが、周囲温度で約100(Ωcm)−1以上の伝導性を有する請求項35記載の方法。36. The method of claim 35, wherein the electrically conductive ultra-nanocrystalline diamond has a conductivity of about 100 (Ωcm) −1 or greater at ambient temperature. ガス及び希ガスを含む窒素及び炭素の混合ガスをエネルギー源に曝して、窒素組入れ超ナノ結晶体ダイヤモンドフィルムを堆積させることからなる既定の伝導性を有する電気伝導性超ナノ結晶体ダイヤモンドフィルムを製造する方法であって、上記原料ガス中の炭素の原子パーセントは約2%未満であり、窒素は約2体積%から約25体積%の範囲の予め選択した濃度で存在し、約0.01以上の既定の伝導性を有する総量で約1019原子/cm以上の窒素が存在する超ナノ結晶体ダイヤモンド材料を製造する方法。Produces an electrically conductive ultra-nanocrystalline diamond film with a predetermined conductivity consisting of depositing a nitrogen-incorporated ultra-nanocrystalline diamond film by exposing a mixed gas of nitrogen and carbon containing gas and noble gas to an energy source Wherein the atomic percent of carbon in the source gas is less than about 2% and the nitrogen is present at a preselected concentration ranging from about 2% to about 25% by volume and greater than about 0.01 A method for producing a ultra-nanocrystalline diamond material in which a total amount of nitrogen of about 10 19 atoms / cm 3 or more is present with a predetermined conductivity of
JP2002535177A 2000-10-09 2001-10-09 Electron emission applications for electrodes and N-type nanocrystalline materials Pending JP2004511885A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23917300P 2000-10-09 2000-10-09
US31414201P 2001-08-22 2001-08-22
PCT/US2001/031388 WO2002031891A1 (en) 2000-10-09 2001-10-09 Electrode and electron emission applications for n-type doped nanocrystalline materials

Publications (2)

Publication Number Publication Date
JP2004511885A JP2004511885A (en) 2004-04-15
JP2004511885A5 true JP2004511885A5 (en) 2005-04-14

Family

ID=26932345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002535177A Pending JP2004511885A (en) 2000-10-09 2001-10-09 Electron emission applications for electrodes and N-type nanocrystalline materials

Country Status (4)

Country Link
EP (1) EP1330846A4 (en)
JP (1) JP2004511885A (en)
AU (2) AU2002211555A1 (en)
WO (2) WO2002031891A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259174B4 (en) * 2002-12-18 2006-10-12 Robert Bosch Gmbh Use of a tribologically stressed component
EP2431503A1 (en) 2004-05-27 2012-03-21 Toppan Printing Co., Ltd. Method of manufacturing an organic electroluminescent device or an organic photoelectric receiving device using a nano-crystalline diamond film
KR100924287B1 (en) * 2007-05-10 2009-10-30 한국과학기술연구원 Dc plasma assisted chemical vapour deposition apparatus without a positive column, method for depositing material in the absence of a positive column and a diamond thin layer thereby
KR20120011050A (en) 2009-05-18 2012-02-06 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Method for coating micromechanical parts with high tribological performances for application in mechanical systems
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
AU2012262665B2 (en) * 2011-06-03 2017-02-02 The University Of Melbourne An electrode and a feedthrough for medical device applications
JP6452334B2 (en) * 2014-07-16 2019-01-16 キヤノン株式会社 Target, X-ray generator tube having the target, X-ray generator, X-ray imaging system
CN108054473B (en) * 2017-12-26 2024-04-09 深圳先进技术研究院 Metal-air battery and preparation method thereof
CN110453176A (en) * 2019-07-23 2019-11-15 北京科技大学 A kind of preparation method of long-life super Nano diamond periodic multilayer coated cutting tool
CN113257974B (en) * 2021-04-30 2023-04-21 武汉大学 Light-emitting diode chip with super-nanocrystalline diamond conducting layer and preparation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599668A (en) * 1977-06-02 1981-10-07 Nat Res Dev Semiconductors
US5713775A (en) * 1995-05-02 1998-02-03 Massachusetts Institute Of Technology Field emitters of wide-bandgap materials and methods for their fabrication
US5973451A (en) * 1997-02-04 1999-10-26 Massachusetts Institute Of Technology Surface-emission cathodes
JP4294140B2 (en) * 1999-01-27 2009-07-08 有限会社アプライドダイヤモンド Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method
US6303225B1 (en) * 2000-05-24 2001-10-16 Guardian Industries Corporation Hydrophilic coating including DLC on substrate

Similar Documents

Publication Publication Date Title
JP3971090B2 (en) Method for producing diamond having needle-like surface and method for producing carbon-based material having cilia-like surface
JP4855758B2 (en) Method for producing diamond having acicular protrusion arrangement structure on surface
EP2431504B1 (en) Method for manufacturing an organic thin fim transistor using a nano-crystalline diamond film
WO1996033507A1 (en) Diamond thin film electron emitter
Kaushik et al. Improved electron field emission from metal grafted graphene composites
Yang et al. Field emission from zinc oxide nanoneedles on plastic substrates
TW201347282A (en) Carbon electrode devices for use with liquids and associated methods
JP2004511885A5 (en)
JP3737688B2 (en) Electron emitting device and manufacturing method thereof
TW200538574A (en) Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film
JP2007099601A (en) Substrate for laminating nanocarbon material and its production method
JP2008189997A (en) Method for producing conductive diamond-like carbon
JP2004006205A (en) Electrode and device using same
JP2004511885A (en) Electron emission applications for electrodes and N-type nanocrystalline materials
JP4170507B2 (en) Method for producing transparent conductive film
US20060213774A1 (en) Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
JP2007073715A (en) Electronic element using carbon nano wall
JP2002352694A (en) Electrode, electron emission element and device using it
WO2003060942A1 (en) Electron emission device
JP4312331B2 (en) Electron emission device
JP2004139747A (en) Transparent conductive film and its manufacturing method
WO1998059355A3 (en) Cold cathode and methods for producing the same
JP4312326B2 (en) Electron emission device
KR100543959B1 (en) Method for conducting field emission using shell-shaped carbon nano particle
JP4428610B2 (en) Discharge tube and apparatus having the same