TW200538574A - Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film - Google Patents

Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film Download PDF

Info

Publication number
TW200538574A
TW200538574A TW93114864A TW93114864A TW200538574A TW 200538574 A TW200538574 A TW 200538574A TW 93114864 A TW93114864 A TW 93114864A TW 93114864 A TW93114864 A TW 93114864A TW 200538574 A TW200538574 A TW 200538574A
Authority
TW
Taiwan
Prior art keywords
electrode
diamond film
substrate
nanocrystalline diamond
film
Prior art date
Application number
TW93114864A
Other languages
Chinese (zh)
Inventor
Hidenori Gamo
Toshihiro Ando
Original Assignee
Toppan Printing Co Ltd
Nat Inst For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Nat Inst For Materials Science filed Critical Toppan Printing Co Ltd
Publication of TW200538574A publication Critical patent/TW200538574A/en

Links

Abstract

A nanocrystal diamond film characterized in that it comprises, on a substrate, as main component a synthetic nanocrystal diamond having a crystal particle diameter of ≥ 1 nm and < 1000 nm. The nanocrystal diamond film is a film formed on a substrate and out of a plasma region by a plasma CVD process using a raw material gas containing a hydrocarbon and hydrogen. Moreover, the nanocrystal diamond film is applicable to an electrochemical element, an electrochemical electrode, a DNA chip, an organic electroluminescent element, an organic electronic light-receiving element, an organic film transistor, a cold electronic emission element, a fuel cell, and a catalyst.

Description

200538574 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種由奈米數量級之微細鑽石結晶而成 的奈米結晶鑽石膜、其製造方法及使用奈米結晶鑽石膜之各 種裝置。 【先前技術】 習知藉由碳原子之sp3混成軌域形成共價鍵所進行鍵結 的鑽石,歸因於其局的鍵結能量,具有其他材料所無法得到 的特異物性。近年來,利用化學蒸氣沈積法(CVD法),便可 能於低壓下,合成高品質之膜狀鑽石(鑽石膜)而進行成膜。 成膜法,一般使用熱纖維CVD或微波CVD。 若利用如此之鑽石膜的成膜法,能夠於鑽石基板(天然 或高壓合成鑽石)上,形成單晶鑽石膜作爲均質磊晶膜。另 一方面,能夠於矽、金屬或石英基板上,形成多晶鑽石膜。 然而,的確可以於鑽石基板上合成高品質之單晶鑽石膜 ,但是此情形下,必須將天然石或高溫高壓合成鑽石作爲基 板使用,如此之基板大小,現階段最大極限約爲1 〇mm長之 方形。 另一方面,多晶鑽石膜能夠於矽等之較大面積的基板上 進行成膜,由於爲多晶的,表面之凹凸明顯較大。亦即,由 於構成多晶鑽石膜之結晶粒子的粒徑大至1 ~ 1 〇 # πι ’膜表面 之凹凸也較大。 再者,對於均質磊晶膜與多晶鑽石膜的合成,由於均必 須要有800°C以上高溫之基板溫度,故必須爲高價之鑽石、 200538574 單晶矽與石英等之高耐熱性基板。因而,使用例如顯示器用 _ 等之玻璃基板或高分子基板等之既便宜且因應大面積的基 · 板爲不可能的。 如上所述,習知之鑽石膜,無論就基板材料等之成本或 大面積化等方面而言,實用化爲困難的。 基於如此之情形,期望於各種材質之大面積的基板上, 於低溫下進行成膜,並由奈米數量級之微細結晶粒子而成的 表面平滑之奈米結晶鑽石膜,但是如此之薄膜及其成膜法, 仍尙未被發現。 · 還有,雖然已發現於1 600°C以上、lOGPa以上之高溫 高壓下,將碳奈米管作成粒徑20〜5 Onm尺寸之鑽石的技術, 但是此並非薄膜,而是粒子(例如,參照日本公開專利第 2002-6 6 302 號公報)。 本發明之目的在於提供一種奈米結晶鑽石膜及其製造 方法,可以於各種材質之基板上,適合個別基體之溫度下進 行成膜,並由奈米數量級之微細結晶粒子而成的表面爲平滑 的。 籲 【發明內容】 Μ之揭示 根據本發明之第1態樣,提供一種奈米結晶鑽石膜,爲 於基體上,含有以所合成的結晶粒徑爲lnm以上、小於 lGG(3nm之奈米結晶鑽石爲主成分。 根據本發明之第2態樣,提供一種電化學元件,其具有 一對以上電極,利用電極表面之氧化還原反應,用以進行被 200538574 測定物質種類之檢測,並量測其濃度;及其至少一個電極具 備:基體,與於其表面所形成的該奈米結晶鑽石膜。 根據本發明之第3態樣,提供一種電化學電極,係利用 電化學反應,爲了進行液體或氣體之電分解而使用的陽極與 陰極之至少一者的電極;該電化學電極具備:基體,與形成 於此基體表面的該奈米結晶鑽石膜。 根據本發明之第4態樣,提供一種DNA晶片,其具備 :基體;該奈米結晶鑽石膜,其形成於基體上,具有爲了將 DNA載持於表面的官能基;及DNA探針,載持於該奈米結 晶鑽石膜。 根據本發明之第5態樣,提供一種有機電致發光元件, 爲於基體上,依序層疊第1電極、電洞輸送層、有機發光層 、電子輸送層與第2電極層而成的,該有機電致發光元件含 有該奈米結晶鑽石膜,於該第1電極與第2電極之至少一者 ,連接於該電洞輸送層或電子輸送層。 根據本發明之第6態樣,提供一種有機電致受光元件’ 爲於基體上,依序層疊第1電極、第1導電型有機半導體層 、第2導電型有機半導體層與第2電極而成的,該有機電致 受光元件含有該奈米結晶鑽石膜,於該第1電極與第2電極 之至少一者,連接於該第1導電型有機半導體層或第2導電 型有機半導體層而形成該奈米結晶鑽石膜。 根據本發明之第7態樣,提供一種有機薄膜電晶體,其 具備:基板;閘極,形成於此基體上;閘絕緣膜,覆蓋此閛 極;源極與汲極,於此閘絕緣膜上,隔著間隙而形成的;有 200538574 機半導體層,覆蓋此等源極與汲極之間隔;及其特徵爲:於 該源極與汲極之至少一者的表面,形成該奈米結晶鑽石膜。 根據本發明之第8態樣,提供一種冷電子釋出元件,其 具備:基體;導電層,形成於此基體上;絕緣層與閘極,形 成於此導電層上且具有開口部;射極,形成於該開口部內所 露出的該導電層上;及其特徵爲:於該射極之表面,形成該 奈米結晶鑽石膜。 根據本發明之第9態樣,提供一種燃料電池,其具備: 第1電極、第2電極與被此等第1電極與第2電極所夾住的 電解質層;及其特徵爲:於連接該第〗電極與第2電極之至 少一者的該電解質之側面,形成載持觸媒之該奈米結晶鑽石 膜。 根據本發明之第1 0態樣,提供一種載持金屬之奈米結 晶鑽石觸媒,其具備:載體,由該奈米結晶鑽石膜而成的; 及觸媒金屬粒子,載持於此載體的nm數量級粒徑的觸媒金 屬粒子。 根據本發明之第1 1態樣,提供一種奈米結晶鑽石膜的 製造方法,爲於基體上,利用含有碳氫化合物與氫氣之原料 氣體的電漿CVD法,於電漿域外進行成膜。 【實施方式】 【發明之實施態樣】 本發明之奈米結晶鑽石膜的結晶粒徑爲奈米數量級,由 於母個奈米粒子爲鑽石結晶’單晶或多晶鑽石膜顯示相同的 物性。亦即,本發明之奈米結晶鑽石膜雖然爲奈米尺寸之結 200538574 晶,具有鑽石膜特有的各種物性。 另外,不純物元素之摻雜爲可能的,藉由摻雜之種類與 量,可以控制半導體。再者,表面處理爲有效的,藉由各種 官能基之賦予而導致表面物性之變性也爲可能的。 本發明之奈米結晶鑽石膜能進行不純物之摻雜。不純物 較宜使用由硫、硼、氧、磷、氮與矽而成的群中所選出的一 種。 能夠藉由被摻雜之不純物的種類,顯示η型或p型之不 純物傳導性而可以得到半導體特性,同時也能夠得到高的電 傳導性。 形成本發明之奈米結晶鑽石膜的基體,可以爲由矽基板 、石英基板、陶瓷基板、金屬基板、玻璃基板與高分子基板 而成的群中所選出的至少一種。亦即,本發明之奈米結晶鑽 石膜係於鑽石膜基板以外之實用性基板上,可以進行具有相 同於鑽石膜物性之薄膜的成膜。例如,作爲用於500〜90(TC 高溫製程的實用性基板,可以使用矽基板、石英基板、金屬 基板、陶瓷基板;另一方面,作爲用於300〜500 °C低溫製程 的實用性基板,可以使用玻璃基板;再者,作爲用於100〜3 00 °C的實用性基板,可以使用高分子基板。 本發明之奈米結晶鑽石膜,能夠以供電子基終止膜之表 面末端。如此方式,藉由於奈米結晶鑽石膜之表面形成供電 子基末端構造,能夠將導電性賦予膜之表面。另外,由於本 發明之奈米結晶鑽石膜表面具有低的工作函數,尤其對於各 種電極之應用,可以得到高的電子釋出特性或電子注入特性 200538574 等之實用特性。 · 另外,本發明之奈米結晶鑽石膜,能夠以拉電子基終止 ^ 膜之表面末端。如此方式,藉由於奈米結晶鑽石膜之表面形 成拉電子基末端構造,由於奈米結晶鑽石膜之膜表面具有高 的工作函數,尤其對於各種電極之應用,便可能得到高的電 洞注入特性等之實用特性。 再者,以氟或氯等鹵素原子終止本發明之奈米結晶鑽石 膜末端的情形,由於奈米結晶鑽石膜表面具有低的摩擦係數 ,可適用於微機電等機械構件的應用,或是使表面成爲疏水 · 性、撥水性。 本發明提供一種奈米結晶鑽石膜之製造方法,其特徵爲 :於基體上,藉由利用含有碳氫化合物與氫之原料氣體的電 漿CVD法,於電漿域外進行成膜。 本發明之奈米結晶鑽石膜之製造方法,藉由控制用於 CVD法之原料氣體的碳氫化合物與氫之比例,可以得到結晶 性等構造、導電性或半導體特性等不同的奈米結晶鑽石膜。 因而,因應於用途便可以容易控制物性。 ® 另外,由於成膜係於電漿域外進行的,能夠將成膜溫度 保持於更低溫,粒徑之控制便成爲可能。 根據本發明之方法,基體溫度較宜於20°C以上、900 °C 以下之條件進行成膜。通常,單晶與多晶鑽石膜之成膜溫度 爲80(TC以上,但是利用本發明之方法,可以使成膜溫度大 幅降低。藉由基體溫度,可以控制構成奈米結晶鑽石膜之結 晶粒子的粒徑,便可能控制各種構造與物性。 -10 - 200538574 根據本發明之方法,奈米結晶鑽石膜較宜利用微波電漿 CVD法進行成膜,藉由利用高密度電漿源之微波電漿,可以 更有效地進行原料氣體之碳氫化合物的分解,能夠改善膜質 與提高成膜之良率。 根據本發明之方法,奈米結晶鑽石膜較宜於CVD腔內 之反應氣流的下游設置基板而進行成膜。藉由將基板置於反 應氣流之下游,便容易對基體表面進行離子之入射,能夠得 到良好的膜質。 根據本發明之方法,可以於原料氣體中,添加由硫化氫 或二氧化硫、乙硼烷、氧、二氧化碳、膦、氨或氮與矽甲烷 而成的群中所選出的至少一.種添加氣體。藉由控制如此之添 加氣體的種類與添加量,便可能得到結晶性等構造與導電性 等物性不同的奈米結晶鑽石膜,便容易進行物性提升之控制 〇 根據本發明之方法,由於奈米結晶鑽石膜於20〜900°C 廣範圍之基體溫度進行製作,能夠使用各種實用基板。亦即 ’用於本發明之方法的基體可以設爲矽基板、石英基板、金 屬基板、陶瓷基板、玻璃基板與高分子基板而成的群中所選 出的至少一種。若藉由本發明之方法,於鑽石基板以外之實 用性基板上,能夠進行具有相同於鑽石之物性的奈米結晶鑽 石膜之成膜。例如,作爲用於500〜900°C高溫製程的實用性 基板,可以使用矽基板、石英基板、陶瓷基板、金屬基板; 另一方面,作爲用於300〜500 °C低溫製程的實用性基板,可 以使用玻璃基板;再者,作爲用於20〜300 °C的實用性基板 200538574 ’可以使用局分子基板。 根據本發明之方法,能夠藉由電漿CVD而進行奈米結 晶鑽石膜之成膜後,利用微波或高頻,再於奈米結晶鑽石膜 表面進行氫電漿處理。藉由此氫電漿處理,能夠以供電子基 之氫終止奈米結晶鑽石膜之表面末端,其結果,可以得到化 性非常安定的表面狀態,再者,藉由表面傳導現象,可以顯 示高電傳導率,同時也顯示負的電子親和力,另外,可以得 到低的工作函數表面。 根據本發明之方法,能夠藉由電漿CVD而進行奈米結 晶鑽石膜之成膜後,利用微波或高頻,使用氟系或氯系氣體 而於奈米結晶鑽石膜表面進行電漿處理。藉由此鹵素化電漿 處理,能夠以拉電子基之鹵素原子終止奈米結晶鑽石膜之表 面末端,其結果,可以得到化性非常安定的表面狀態,再者 ,可以顯示低的摩擦係數,另外,可以得到高的工作函數表 面。 根據本發明之方法,能夠於廣範圍之基體溫度,於實用 基板上進行高品質鑽石之成膜。另外,由於結晶粒子具有奈 米數量級之粒徑,表面形狀也爲平坦的,能夠進行適合實際 用途之薄膜的製作。再者,可以進行不純物控制與表面之控 制,能夠容易且高控制性地,將適合實用性的各種機能性賦 予奈米結晶鑽石膜表面。 另外,藉由不純物控制,可以得到半導體特性,具有高 電子移動度與高電洞移動度的鑽石膜而能夠適用於廣泛之 用途。例如,可以適用於帶電粒子線電漿、微影用硬質光罩 -12- 200538574 、微機電、工具與磁頭之被覆材料、冷陰極電子源、電致發 光元件及液晶顯示器等之薄膜顯示器元件用與太陽能電池 用電極膜、表面彈性波元件、生物晶片、電化學反應用電極 、二次電池以及燃料電池用電極等之碳系材料的應用領域。 以下,茲將參照附隨的圖示,以說明有關本發明之一實 施態樣的奈米結晶鑽石膜。 第1圖係顯示有關本發明之一實施態樣的奈米結晶鑽 石膜的剖面圖。 可以使用矽基板、石英基板、陶瓷基板、金屬基板、玻 璃基板或高分子基板等作爲支撐基板(基體)1使用。 雖然此處顯示平面基板,但是也可以爲立體的基體,例 如,圓筒狀體、球體。 成膜於支撐基板1上之奈米結晶鑽石膜2含有結晶粒徑 至少爲1 n m以上、小於1 0 0 0 n m之鑽石結晶粒子。此時,奈 米結晶鑽石膜之結晶粒徑小於1 nm的話,爲微晶質且晶界多 或是非晶質成分多,無法得到具有鑽石之固有特性。另外, 粒徑爲lOOOnm以話,表面之凹凸變大,不適於形成圖案等 之加工步驟等,另外,難以製作與其他材料之層疊構造等, 便不適於實際用途。結晶粒徑較宜的範圍爲1〜l〇〇nm。 還有,本發明之奈米結晶鑽石膜並非刻意地完全排除小 於1 n m或超過1 0 0 0 n m之結晶粒徑的結晶粒子。即使僅存在 微量之小於lnm或超過lOOOnm之結晶粒徑的結晶粒子’可 以充分達成本發明之效果。亦即’只要奈米結晶鑽石膜中之 8 0%以上爲結晶粒徑lnm以上、小於lOOOnm之結晶粒子即 200538574 可 ° 另外’本發明之奈米結晶鑽石膜可以摻雜不純物,尤其 其硫、硼、氧、氮與矽之任一種以上的奈米結晶鑽石膜。藉 由摻雜此等不純物,例如,發揮授體機能之硫、氮,發揮受 體機能之硼,均能夠藉由不純物傳導而使膜本身之傳導性提 高,進而可以得到半導體特性。 於奈米結晶鑽石膜中所摻雜的不純物之濃度,只要不損 及奈米結晶鑽石膜特性之範圍即可,例如1016〜l〇21/cm3。 奈米結晶鑽石膜之膜厚,並無特別之限定,可以因應於 用途而進行適當之選擇。 再者,奈米結晶鑽石膜之表面能夠以供電子基終止末端 。供電子基可列舉:Η基、OR(R爲Η或烷基)基。藉由採取 如此表面化學吸附構造,可以得到表面導電層所形成的高導 電性,同時,也可以得到具有負的電子親和力與低的工作函 數表面之奈米結晶鑽石膜。 以Η基作爲終止奈米結晶鑽石膜之表面末端的方法,可 列舉:於利用電漿CVD進行成膜之後,於奈米結晶鑽石膜 之表面進行氫電漿處理的方法。另外,利用OR基終止奈米 結晶鑽石膜之表面末端的方法,可列舉:於利用電漿CVD 進行成膜之後,利用威廉生(Williamson)法,進行奈米結晶 鑽石膜之表面處理的方法。 接著,另一方面,能夠以拉電子基終止奈米結晶鑽石膜 之表面末端。拉電子基可列舉:F基、C1基。藉由採取如此 之表面化學吸附構造,可以得到具有低的摩擦特性與高的工 200538574 作函數表面之奈米結晶鑽石膜。 以F基、C1基終止奈米結晶鑽石膜之表面末端的方法 ,可列舉:於利用電漿CVD進行成膜之後,於奈米結晶鑽 石膜之表面進行氟系或氯系氣體之電漿處理的方法。氟系氣 體可以使用CF4、SF6 ;氯系氣體可以使用Cl2、CC14。 有關如此方式構成之本實施態樣的奈米結晶鑽石膜,藉 由控制粒徑或添加不純物,可以控制薄膜之特性。粒徑之控 制能夠藉由控制成膜之際的基板溫度而進行。可以藉由控制 不純物之種類、摻雜量,進行因不純物之添加而造成膜特性 之控制。 有關本實施態樣之奈米結晶鑽石膜,由於結晶性高,具 有相同於鑽石之各種物性。另外,由於表面非常平坦,可以 容易地進行微細加工與層疊元件之形成。例如,具有可作成 適用於高硬度、高楊氏率、高耐化學性、高耐熱性、高傳導 性、寬的能帶間隙、高電阻率等之各種用途的優異特性。 接著’針對有關以上說明之本實施態樣之奈米結晶鑽石 膜的製造方法進行說明。 有關本實施態樣之奈米結晶鑽石膜,能夠使用含碳氫化 合物與氫之原料氣,利用C V D法而進行成膜。此情形下, 認爲氫擔負作爲爲了碳氫化合物之稀釋氣體的功能與爲了 促進結晶化的功能之雙重功能。碳氫化合物與氫氣之比例, 雖然端視碳氫化合物之種類而定,通常爲1:99〜50: 50, 尤以5 : 95〜20 : 80更爲理想。若原料氣體中之氫的比例過 少的情形’將成爲非晶質碳,若過多的情形,粒徑1 0 0 〇 n m 200538574 以上的粒子多,將成爲鑽石膜。 還有,可以使用甲烷、乙烷、丙烷、乙烯、乙炔等作爲 碳氫化合物,此等之中,尤以甲烷更爲理想。 另外,於含有碳氫化合物與氫之原料氣體中,也可以添 加硫化氫或二氧化硫、乙硼烷、氧、二氧化碳、膦、氨或氮 與矽甲烷而成的群中所選出的至少一種。藉由控制如此之添 加氣體的比例,可以得到結晶性等構造與導電性等物性不同 的鑽石膜,便容易進行改善物性之控制。 本發明之奈米結晶鑽石膜較宜於2(TC以上、900t以下 ,更佳爲30°C以上、600°C以下範圍之基板溫度進行成膜。 此結晶粒徑可以藉由基板溫度而進行控制。 另外,本發明之奈米結晶鑽石膜能夠使用高密度電漿源 之微波電漿CVD法、或是ECR電漿法而進行成膜。若根據 此等之方法,便可能更有效地進行原料之碳氫化合物的分解 ,因而可能改善膜質與提高產率。 再者,本發明之奈米結晶鑽石膜,利用電漿CVD法之 情形,必須於電漿域外進行成膜。於電漿域外,因爲能夠使 成膜溫度維持更低溫,並且能夠有效使用自由基,可以得到 1 n m以上、小於1 0 0 0 n m粒徑之奈米結晶鑽石膜。 另外,本發明之奈米結晶鑽石膜較宜於CVD腔內之反 應氣流的下游設置基板而進行製作。藉由設置於反應氣體的 下游,能夠使自由基之入射變得容易而得到良好之膜質。 本發明之奈米結晶鑽石膜,於500〜900 °C之基體溫度, 可以使用矽基板、石英基板、陶瓷基板、金屬基板。另外, -16 - 200538574 於300〜500°C之基體溫度,可以使用該基板之外的其他玻塙 -基板,於300〜5 00°C之基體溫度,可以使用高分子基板。 _ 例如,若使用矽基板作爲基體,可以得到適合於帶電粒 子線光罩或微影用硬質光罩、微機電等應用之奈米結晶鑽石 膜。 另外,使用玻璃基板或高分子基板作爲基體之情形,可 以得到適合於冷陰極電子源、電致發光元件與液晶顯示器等 之薄型顯示器元件用以及太陽能電池用電極膜等應用之奈 米結晶鑽石膜。 Φ 再者,使用金屬(並不限於基板,立體形狀也可以)作爲 基體之情形,可以得到適合於作爲電化學電極或工具、磁頭 之被覆膜應用的奈米結晶鑽石膜。 接著,針對有關以上說明之一實施態樣的奈米結晶鑽石 膜之各式各樣應用例進行說明。 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於電化學元件、電化學電極、DNA晶片、有機電致發光元件 、有機電致受光元件、有機薄膜電晶體、冷電子釋出元件、 β 燃料電池與觸媒。以下,依序針對此等之應用例進行說明。 1 .電化學元件 有關本發明之一實施態樣的奈米結晶鑽石膜可以適用 於電化學元件,其具有包含檢測電極的一對以上電極,檢測 電極係用於爲了測定溶液之組成與濃度,利用電極表面之氧 化還原反應,進行被測定物質之鑑定與濃度之檢測。 亦即,提供一種電化學元件,藉由將有關本發明之一實 -17- 200538574 施態樣的奈米結晶鑽石膜,用於至少一個電極表面,具有一 對以上電極,利用電極表面之氧化還原反應,用以量測被測 定物質之種類與其濃度之檢測與量測。 有關本應用例之電化學元件,相較於其他的電極材料, 藉由使用鑽石膜作爲電極,具有歸因於堅固鑽石鍵之無與倫 比之化性與物性之安定性,顯示非常高的信賴信。再者,由 於具有鑽石特有之電化學特性之寬的電位窗與小的基底電 流,期望可測定更廣範圍之非測定物質,同時顯示高S/Ν比 之高感度化。 有關本應用例之電化學元件,期望鑽石膜爲lnm以上、 小於lOOOnm之奈米結晶鑽石膜。 另外,有關本應用例之電化學元件,期望該奈米結晶鑽 石膜之表面平坦度(均方表面粗糙度)爲l〇nm以下。 再者,有關本應用例之電化學元件,期望該鑽石膜或奈 米結晶鑽石膜形成任意圖案於相同的基板上,構成微米或奈 米尺度之數個微小電極。 尤其,奈米結晶鑽石膜之結晶粒徑爲奈米數量級,由於 每個奈米粒子爲鑽石結晶,單晶或多晶鑽石顯示同樣的物性 。亦即,雖然爲奈米尺度之結晶,但是具有鑽石之特有的各 種物性。另外,奈米結晶鑽石膜具有非常平坦的表面構造。 藉此,便可以應用半導體微影技術,達到奈米尺度之圖案製 作,進行極微小電極之製作,能夠實現高感度化。 有關本應用例之電化學元件,尤其形成奈米結晶鑽石膜 之基體,可以設爲由矽基板、石英基板、陶瓷基板、金屬基 -18- 200538574 板、玻璃基板與高分子基板而成的群中所選出的至少一種。 亦即,本發明之奈米結晶鑽石膜係於鑽石基板以外之實用性 基板上,能夠進行具有相同於鑽石物性之薄膜的成長。例如 ,用於500〜900 °C之高溫製程的實用性基板,可以使用矽基 板、石英基板、金屬基板、陶瓷基板,另一方面,用於3 00〜5 00 °C之低溫製程的實用性基板,可以使用玻璃基板,再者,用 於20〜300°C之低溫製程的實用性基板,可以使用高分子基 板。 於本發明,尤其使用玻璃基板或高分子基板之情形,由 於爲低價的且爲絕緣基板、導電性基板的話,並不需要進行 原本必要之絕緣層的***等,亦即,對於元件之微小化或元 件終端部之微細化,容易進行元件分離。 另外,有關本應用例之電化學元件,對於鑽石膜或奈米 結晶鑽石膜,不純物之摻雜爲可能的,藉由摻雜之種類與量 ,半導體控制爲可能的。 再者,有關本應用例之電化學元件,鑽石膜或奈米結晶 鑽石膜較宜摻雜不純物。不純物較宜使用由硫、硼、氧、磷 、氮與矽而成的群中所選出的至少一種。 視所摻雜之不純物的種類而定,顯示η型或p型之不純 物傳導性,可以得到半導體特性,同時也可以得到高的電傳 導性。 有關本應用例之電化學元件,爲於基體上,利用至少包 含進行鑽石膜或奈米結晶鑽石膜之成膜步驟的方法而進行 製造。 -19- 200538574 若根據此方法,該基體爲一種玻璃基板或高分子基板, 鑽石膜或奈米結晶鑽石膜之成膜溫度較宜爲500 °C以下。 如此方式,尤其是奈米結晶鑽石膜可以於500 °C以下之 低溫下進行成膜,習知之鑽石膜則是不可能的。因而,成膜 於熔點低的玻璃基板或高分子基板便爲可能的。亦即,由於 能夠形成於低成本且絕緣性之基板上,元件分離變得容易, 也能夠使元件構造簡化與步驟減少。 再者,有關本應用例之電化學元件,可以於基體上,至 少進行鑽石膜或奈米結晶鑽石膜之成膜的步驟,接著利用微 影法或利用含有將鑽石或奈米結晶鑽石膜形成任意形狀圖 案之步驟的方法而進行製造。 如此方式,尤其是奈米結晶鑽石膜,由於具有非常平坦 之表面構造,半導體微細加工技術之應用將變得容易,亦即 ,利用光、雷射、電子線等微影技術之應用將變得可能。藉 此,便能夠實現元件或終端部之超微細加工,期望元件之高 感度化。 有關本應用例之電化學元件,由於元件電極表面上使用 物性與化性安定性非常高的鑽石膜,可以期望各種耐性優異 、元件信賴性之提高與長壽命化。另外,尤其於元件電極表 面應用奈米結晶鑽石膜之情形,由於具有低於奈米數量級之 結晶粒徑,具有非常平坦的表面構造,半導體微影技術便可 能利用,次微米數量級之超微細加工便爲可能的。其結果’ 元件之微小化與終端部之微細化便可能實現,元件感測部表 面積之增加便爲可能,可期望元件之高感度化。 -20- 200538574 再者,如此之奈米結晶鑽石膜,由於能夠於5 〇〇 °C以下 之低溫進行成膜,能夠利用低價之玻璃基板或高分子基板作 爲基體,可期望低成本化,同時於終端部微細化之際’由於 能夠利用該絕緣基板,便不需要進行元件分離,藉由元件構 造之簡化與步驟之減少,能夠更進一步實現低成本化。 第2A圖係顯示有關本發明之一實施態樣的電化學元件 之電極終端主要部分的斜視圖。 基材1 1可以使用矽基板、石英基板、陶瓷基板、金屬 基板、玻璃基板或高分子基板等。 另外,雖然此圖顯示平面基板,也可以爲立體的基體, 例如,圓筒狀體、球狀體。 成膜於支撐基板1上之鑽石膜12,更佳爲奈米結晶鑽 石膜,含有結晶粒徑至少爲lnm以上、小於lOOOnm之鑽石 結晶粒子。此時,奈米結晶鑽石膜之結晶粒徑若小於1 nm的 話,爲微晶質且晶界多或是非晶質成分多,無法得到具有鑽 石之固有特性。另外,粒徑爲lOOOnm以上的話,表面之凹 凸變大,不適合圖案等之加工步驟等,另外,難以進行與其 他材料之層疊構造的製造等,便不適合於實際用途。較佳之 結晶粒徑的範圍爲1〜l〇〇nm。 還有,本發明之奈米結晶鑽石膜,並非刻意完全排除小 於1 n m、超過1 0 〇 〇 n m之結晶粒徑的結晶,即使小於1 n m、 超過lOOOnm之結晶粒徑的結晶僅少量存在,也可以充分達 到本發明之效果。亦即,只要奈米結晶鑽石膜中之80 %以上 爲結晶粒徑lnm以上、小於lOOOnm的鑽石結晶即可。 200538574 另外,本發明之奈米結晶鑽石膜,較佳爲摻雜不純物, 尤其摻雜硫、硼、氧、磷、氮與砂之至少一種以上的奈米結 晶鑽石膜。藉由進行此等不純物之摻雜,例如,發揮授體機 能之硫、氮,發揮受體機能之硼,均能夠藉由不純物傳導而 使膜本身之傳導性提高。 奈米結晶鑽石膜之膜厚,並無特別之限定,可以因應於 用途而進行適宜的選擇。 再者,由於奈米結晶鑽石膜的結晶性高,具有相同於鑽 石的各種物性。另外,由於表面非常平坦,可以適用於半導 體微影技術,容易進行次微米數量級超微細構造的形成。 能夠藉由該微細加工,進行該鑽石膜12’之圖案化,例 如,作成梳子形電極,能夠增加元件電極面積而實現元件之 高感度化(第2B圖)。 接著,茲將參照附隨的圖面,以說明有關本實施態樣之 電化學元件的製造方法。 第3A〜3E圖係顯示有關本發明之一實施態樣的電化學 元件之電極終端主要部分之各步驟的剖面圖。 首先,於基材21上,利用CVD法,使用含有碳氫化合 物與氫之原料氣體,進行奈米結晶鑽石膜22之成膜(第3 A 圖)。 接著,長成硬質遮罩層23薄膜之後,將光阻膜塗布於 奈米結晶鑽石膜22上,藉由光微影或電子線微影,進行光 阻膜之圖案形成,形成光阻圖案24(第3B圖)。 接著,藉由RIE而將該光阻圖案24轉印至硬質遮罩層 200538574 23,形成硬質遮罩圖案23’(第3C圖)。 將該硬質遮罩圖案23’作爲蝕刻遮罩使用,藉由以氧氣 爲主成分的RIE,進行奈米結晶鑽石膜22之加工,得到電 化學元件檢測部圖案22’(第3D圖)。200538574 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a nanocrystalline diamond film crystallized from fine diamonds of the order of nanometer, a manufacturing method thereof, and various devices using the nanocrystalline diamond film. [Prior art] It is known that diamonds that are bonded by sp3 mixed orbitals of carbon atoms to form covalent bonds, due to their local bonding energy, have special physical properties that cannot be obtained by other materials. In recent years, chemical vapor deposition (CVD) has been used to synthesize high-quality film-like diamonds (diamond films) under low pressure for film formation. For the film formation method, thermal fiber CVD or microwave CVD is generally used. If such a diamond film formation method is used, a single crystal diamond film can be formed on a diamond substrate (natural or high-pressure synthetic diamond) as a homogeneous epitaxial film. On the other hand, polycrystalline diamond films can be formed on silicon, metal or quartz substrates. However, it is possible to synthesize a high-quality single crystal diamond film on a diamond substrate. However, in this case, natural stone or high-temperature and high-pressure synthetic diamond must be used as the substrate. The maximum size of the substrate at this stage is about 10 mm long. Square. On the other hand, a polycrystalline diamond film can be formed on a large-area substrate such as silicon. Since the polycrystalline diamond film is polycrystalline, the surface unevenness is significantly larger. That is, since the particle diameter of the crystal particles constituting the polycrystalline diamond film is as large as 1 to 10 # π ', the unevenness on the film surface is also large. Furthermore, for the synthesis of homogeneous epitaxial films and polycrystalline diamond films, substrate temperatures of 800 ° C or higher are required, so high-temperature diamond, 200538574 single crystal silicon and quartz substrates must be used. Therefore, it is impossible to use a glass substrate or a polymer substrate, such as a display substrate, which is inexpensive and can cope with a large area. As described above, it is difficult to put the conventional diamond film into practical use in terms of the cost of a substrate material and the like, and an increase in area. Based on this situation, it is desirable to form a film on a large-area substrate of various materials at a low temperature, and a nanocrystalline diamond film with a smooth surface made of fine crystal particles on the order of nanometers. Membrane method is still undiscovered. · Also, although it has been found that carbon nanotubes can be made into diamonds with a particle size of 20 ~ 5 Onm at high temperatures and pressures above 1 600 ° C and above 10 GPa, this is not a thin film, but particles (for example, (Refer to Japanese Patent Publication No. 2002-6 6 302). The object of the present invention is to provide a nanocrystalline diamond film and a manufacturing method thereof, which can be formed on substrates of various materials at a temperature suitable for individual substrates, and the surface made of fine crystal particles on the order of nanometers is smooth. . [Explanation of Content of the Invention] According to the first aspect of the present invention, a nanocrystalline diamond film is provided on a substrate, and the synthesized crystal contains a nanocrystal with a particle size of 1nm or more and less than 1GG (3nm nanocrystals). Diamond is the main component. According to the second aspect of the present invention, there is provided an electrochemical device having more than one pair of electrodes, and using a redox reaction on the surface of the electrodes to detect the type of substance to be measured by 200538574 and measure the And its at least one electrode includes: a substrate, and the nanocrystalline diamond film formed on a surface thereof. According to a third aspect of the present invention, there is provided an electrochemical electrode which uses an electrochemical reaction to perform a liquid or An electrode of at least one of an anode and a cathode used for the electrolysis of a gas; the electrochemical electrode includes a substrate and the nanocrystalline diamond film formed on a surface of the substrate. According to a fourth aspect of the present invention, there is provided an electrode A DNA wafer comprising: a substrate; the nanocrystalline diamond film formed on the substrate and having a functional group for supporting DNA on a surface; and a DNA probe, including According to a fifth aspect of the present invention, an organic electroluminescence element is provided, in which a first electrode, a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially stacked on a substrate. Formed with a second electrode layer, the organic electroluminescent element includes the nanocrystalline diamond film, and is connected to the hole transport layer or the electron transport layer to at least one of the first electrode and the second electrode. According to a sixth aspect of the present invention, there is provided an organic electro-optical light-receiving element formed by sequentially stacking a first electrode, a first conductive organic semiconductor layer, a second conductive organic semiconductor layer, and a second electrode on a substrate. The organic electro-optical light receiving element includes the nanocrystalline diamond film, and is formed by connecting at least one of the first electrode and the second electrode to the first conductive organic semiconductor layer or the second conductive organic semiconductor layer Nanocrystalline diamond film. According to a seventh aspect of the present invention, an organic thin film transistor is provided, which includes: a substrate; a gate electrode formed on the substrate; a gate insulating film covering the pseudo electrode; a source electrode and a drain electrode At this gate Formed on the limbus with a gap; 200538574 organic semiconductor layer covering the gap between the source and the drain; and its characteristics are: the surface is formed on at least one of the source and the drain Rice crystal diamond film. According to an eighth aspect of the present invention, a cold electron release element is provided, which includes: a substrate; a conductive layer formed on the substrate; an insulating layer and a gate formed on the conductive layer and having An opening; an emitter formed on the conductive layer exposed in the opening; and characterized in that the nanocrystalline diamond film is formed on a surface of the emitter. According to a ninth aspect of the present invention, there is provided an A fuel cell including: a first electrode, a second electrode, and an electrolyte layer sandwiched between the first electrode and the second electrode; and a feature of connecting at least one of the first electrode and the second electrode A side surface of the electrolyte forms a nanocrystalline diamond film carrying a catalyst. According to the tenth aspect of the present invention, a metal-supported nanocrystalline diamond catalyst is provided, which includes: a carrier formed of the nanocrystalline diamond film; and catalytic metal particles supported on the carrier. Catalyst metal particles with a particle size of the order of nm. According to the eleventh aspect of the present invention, a method for manufacturing a nanocrystalline diamond film is provided, which uses a plasma CVD method including a raw material gas containing hydrocarbons and hydrogen on a substrate to form a film outside the plasma domain. [Embodiment] [Embodiments of the invention] The crystal particle diameter of the nanocrystalline diamond film of the present invention is on the order of nanometers. Since the mother nanoparticle is diamond crystal, a single crystal or polycrystalline diamond film exhibits the same physical properties. That is, although the nanocrystalline diamond film of the present invention has a nano-size knot 200538574 crystal, it has various physical properties unique to the diamond film. In addition, doping of impurities is possible, and the semiconductor can be controlled by the type and amount of doping. In addition, the surface treatment is effective, and it is also possible to cause the surface physical properties to be denatured by various functional groups. The nanocrystalline diamond film of the present invention can dope impurities. Impurities It is preferable to use one selected from the group consisting of sulfur, boron, oxygen, phosphorus, nitrogen, and silicon. It is possible to obtain semiconductor characteristics by exhibiting conductivity of an n-type or p-type impurity by the type of impurity to be doped, and also to obtain high electrical conductivity. The substrate forming the nanocrystalline diamond film of the present invention may be at least one selected from the group consisting of a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a glass substrate, and a polymer substrate. That is, the nanocrystalline diamond film of the present invention is formed on a practical substrate other than a diamond film substrate, and a thin film having the same physical properties as a diamond film can be formed. For example, as a practical substrate for a high temperature process of 500 to 90 ° C, a silicon substrate, a quartz substrate, a metal substrate, and a ceramic substrate can be used. On the other hand, as a practical substrate for a low temperature process of 300 to 500 ° C, A glass substrate can be used; moreover, a polymer substrate can be used as a practical substrate for 100 ~ 300 ° C. The nanocrystalline diamond film of the present invention can terminate the surface end of the film with an electron-donor base. In this way Because the surface of the nanocrystalline diamond film forms an electron-donor-based terminal structure, it is possible to impart conductivity to the surface of the film. In addition, the nanocrystalline diamond film surface of the present invention has a low work function, especially for the application of various electrodes Practical characteristics such as high electron emission characteristics or electron injection characteristics 200538574 etc. can be obtained. In addition, the nanocrystalline diamond film of the present invention can terminate the surface end of the film by pulling the electron group. In this way, due to the nanometer The surface of the crystalline diamond film forms a pull-electron-based terminal structure. Because the surface of the nanocrystalline diamond film has a high work function, For its application to various electrodes, it is possible to obtain practical characteristics such as high hole injection characteristics. Furthermore, the termination of the nanocrystalline diamond film of the present invention with halogen atoms such as fluorine or chlorine, due to the nanocrystalline diamond film The surface has a low coefficient of friction, which can be applied to the application of mechanical components such as micro-electromechanics, or to make the surface hydrophobic, water-repellent and water-repellent. The invention provides a method for manufacturing a nanocrystalline diamond film, which is characterized in that it is on a substrate The plasma CVD method using a raw material gas containing hydrocarbons and hydrogen is used to form a film outside the plasma domain. The manufacturing method of the nanocrystalline diamond film of the present invention controls the raw material gas used in the CVD method. The ratio of hydrocarbons to hydrogen makes it possible to obtain nanocrystalline diamond films with different structures such as crystallinity, conductivity, and semiconductor characteristics. Therefore, physical properties can be easily controlled depending on the application. ® In addition, since the film formation is based on plasma When carried out outside the field, the film-forming temperature can be kept at a lower temperature, and particle size control becomes possible. According to the method of the present invention, the substrate temperature is more suitable. Film formation is performed at a temperature above 20 ° C and below 900 ° C. Generally, the film formation temperature of single crystal and polycrystalline diamond films is 80 ° C or more, but the method of the present invention can greatly reduce the film formation temperature. Based on the substrate temperature, the particle size of the crystalline particles that make up the nanocrystalline diamond film can be controlled, and various structures and physical properties can be controlled. -10-200538574 According to the method of the present invention, it is more suitable to use a microwave plasma CVD method for nanocrystalline diamond films. For the film formation, by using a microwave plasma of a high-density plasma source, the hydrocarbon decomposition of the raw material gas can be more effectively performed, and the film quality and the yield of the film can be improved. According to the method of the present invention, nanometer The crystalline diamond film is more suitable for forming a substrate downstream of the reaction gas stream in the CVD chamber for film formation. By placing the substrate downstream of the reaction gas stream, it is easy to make ions incident on the surface of the substrate, and good film quality can be obtained. According to the method of the present invention, at least one selected additive gas selected from the group consisting of hydrogen sulfide or sulfur dioxide, diborane, oxygen, carbon dioxide, phosphine, ammonia, or nitrogen and silicon methane can be added to the raw gas. By controlling the type and amount of such an additive gas, it is possible to obtain a nanocrystalline diamond film having different structures such as crystallinity and physical properties such as conductivity, and it is easy to control physical properties. According to the method of the present invention, since the nanometer The crystalline diamond film is produced at a wide range of substrate temperatures from 20 to 900 ° C. Various practical substrates can be used. That is, the substrate used in the method of the present invention may be at least one selected from the group consisting of a silicon substrate, a quartz substrate, a metal substrate, a ceramic substrate, a glass substrate, and a polymer substrate. According to the method of the present invention, it is possible to form a nanocrystalline diamond film having the same physical properties as a diamond on a practical substrate other than a diamond substrate. For example, as a practical substrate for a high temperature process of 500 to 900 ° C, a silicon substrate, a quartz substrate, a ceramic substrate, and a metal substrate can be used. On the other hand, as a practical substrate for a low temperature process of 300 to 500 ° C, A glass substrate can be used; furthermore, as a practical substrate for 20 to 300 ° C, 200538574 ', a local molecular substrate can be used. According to the method of the present invention, after the formation of the nanocrystalline diamond film by plasma CVD, a hydrogen plasma treatment can be performed on the surface of the nanocrystalline diamond film by using microwave or high frequency. With this hydrogen plasma treatment, the surface ends of the nanocrystalline diamond film can be terminated with the electron-based hydrogen. As a result, a surface state with very stable chemical properties can be obtained. Furthermore, the surface conduction phenomenon can show high The electrical conductivity also shows negative electron affinity, and in addition, a low work function surface can be obtained. According to the method of the present invention, after the formation of the nanocrystalline diamond film by plasma CVD, it is possible to perform a plasma treatment on the surface of the nanocrystalline diamond film by using microwave or high frequency using a fluorine-based or chlorine-based gas. With this halogenated plasma treatment, the surface ends of the nanocrystalline diamond film can be terminated with halogen atoms that pull electrons. As a result, a surface state with very stable chemical properties can be obtained. Furthermore, a low coefficient of friction can be displayed. In addition, a high work function surface can be obtained. According to the method of the present invention, it is possible to form a high-quality diamond film on a practical substrate at a wide range of substrate temperatures. In addition, since the crystal particles have a particle size on the order of nanometers and the surface shape is flat, it is possible to produce a film suitable for practical use. Furthermore, it is possible to perform control of impurities and surface control, and it is possible to easily and highly control various functionalities suitable for practical use to the surface of the nanocrystalline diamond film. In addition, by controlling impurities, semiconductor characteristics can be obtained, and diamond films with high electron mobility and high hole mobility can be applied to a wide range of applications. For example, it can be applied to thin-film display elements such as charged particle beam plasma, lithography hard mask-12-200538574, micro-electromechanical, coating materials for tools and magnetic heads, cold cathode electron sources, electroluminescent elements, and liquid crystal displays. Application fields of carbon-based materials such as electrode films for solar cells, surface acoustic wave devices, biochips, electrodes for electrochemical reactions, secondary batteries, and electrodes for fuel cells. Hereinafter, a nanocrystalline diamond film according to an embodiment of the present invention will be described with reference to the accompanying drawings. Fig. 1 is a sectional view showing a nanocrystalline diamond film according to an embodiment of the present invention. As the supporting substrate (substrate) 1, a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a glass substrate, or a polymer substrate can be used. Although a flat substrate is shown here, it may be a three-dimensional substrate, such as a cylindrical body or a sphere. The nanocrystalline diamond film 2 formed on the supporting substrate 1 contains diamond crystal particles having a crystal grain size of at least 1 nm or more and less than 100 nm. At this time, if the crystal grain size of the nanocrystalline diamond film is less than 1 nm, it is microcrystalline and has a large number of grain boundaries or many amorphous components, and the inherent characteristics of diamond cannot be obtained. In addition, if the particle size is 100 nm, unevenness on the surface becomes large, and it is not suitable for processing steps such as forming a pattern. In addition, it is difficult to produce a laminated structure with other materials, etc., and it is not suitable for practical use. The crystal grain size is preferably in the range of 1 to 100 nm. Furthermore, the nanocrystalline diamond film of the present invention does not intentionally completely exclude crystalline particles having a crystalline particle size of less than 1 nm or more than 100 nm. The effect of the present invention can be sufficiently achieved even if only a small amount of crystal particles' having a crystal grain size smaller than 1 nm or exceeding 100 nm is present. That is, 'as long as 80% or more of the nanocrystalline diamond film is a crystalline particle with a crystal diameter of 1nm or more and less than 100nm, that is, 200538574. In addition,' the nanocrystalline diamond film of the present invention may be doped with impurities, especially sulfur, Nanocrystalline diamond film of any one of boron, oxygen, nitrogen and silicon. By impregnating such impurities, for example, sulfur and nitrogen exhibiting donor functions and boron exhibiting acceptor functions, the conductivity of the film can be improved by conducting the impurities, and semiconductor characteristics can be obtained. The concentration of impurities to be doped in the nanocrystalline diamond film is not limited as long as it does not impair the characteristics of the nanocrystalline diamond film, for example, 1016 to 1021 / cm3. The film thickness of the nanocrystalline diamond film is not particularly limited, and can be appropriately selected depending on the application. Furthermore, the surface of the nanocrystalline diamond film can be terminated with an electron-donor group. Examples of the electron-donating group include a fluorenyl group and an OR (R is fluorenyl or alkyl) group. By adopting such a surface chemisorption structure, a high conductivity formed by a surface conductive layer can be obtained, and at the same time, a nanocrystalline diamond film having a negative electron affinity and a low work function surface can be obtained. The method of using a fluorene group as a termination of the surface of the nanocrystalline diamond film includes a method of performing plasma treatment on the surface of the nanocrystalline diamond film after plasma deposition by plasma CVD. In addition, a method of terminating the surface end of the nanocrystalline diamond film by using an OR group includes a method of performing a surface treatment of the nanocrystalline diamond film by a Williamson method after film formation by plasma CVD. Then, on the other hand, the surface end of the nanocrystalline diamond film can be terminated with an electron-drawing group. Examples of the electron-drawing group include an F group and a C1 group. By adopting such a surface chemisorption structure, a nanocrystalline diamond film with low friction characteristics and high work surface can be obtained. A method for terminating the surface end of a nanocrystalline diamond film by F-based or C1-based methods includes the following: after plasma deposition by plasma CVD, a plasma treatment of a fluorine-based or chlorine-based gas is performed on the surface of the nanocrystalline diamond film. Methods. CF4 and SF6 can be used for fluorine-based gas; Cl2 and CC14 can be used for chlorine-based gas. With regard to the nanocrystalline diamond film of this embodiment constructed in this manner, the characteristics of the film can be controlled by controlling the particle diameter or adding impurities. The particle size can be controlled by controlling the substrate temperature during film formation. The characteristics of the film caused by the addition of impurities can be controlled by controlling the type and amount of impurities. The nanocrystalline diamond film according to this embodiment has high crystallinity, and has various physical properties similar to diamond. In addition, since the surface is very flat, it is easy to perform microfabrication and formation of laminated components. For example, it has excellent characteristics suitable for various applications such as high hardness, high Young's rate, high chemical resistance, high heat resistance, high conductivity, wide band gap, and high resistivity. Next, a method for manufacturing the nanocrystalline diamond film according to the embodiment described above will be described. The nanocrystalline diamond film according to this embodiment can be formed by using a C V D method using a raw material gas containing a hydrocarbon and hydrogen. In this case, it is considered that hydrogen has a dual function of a function as a diluent gas for hydrocarbons and a function for promoting crystallization. Although the ratio of hydrocarbons to hydrogen depends on the type of hydrocarbons, it is usually 1: 99 ~ 50: 50, especially 5: 95 ~ 20: 80. If the proportion of hydrogen in the source gas is too small, it will become amorphous carbon, and if it is too large, there will be a large number of particles with a particle size of 100 000 m 200538574 or more, and it will become a diamond film. Further, methane, ethane, propane, ethylene, acetylene, and the like can be used as the hydrocarbon, and among these, methane is more preferable. In addition, at least one selected from the group consisting of hydrogen sulfide or sulfur dioxide, diborane, oxygen, carbon dioxide, phosphine, ammonia, nitrogen, and silicon methane may be added to the source gas containing hydrocarbons and hydrogen. By controlling the proportion of such added gas, a diamond film having a different structure such as crystallinity and physical properties such as conductivity can be obtained, and it is easy to control the improvement of physical properties. The nanocrystalline diamond film of the present invention is preferably formed at a substrate temperature of 2 ° C or higher and 900t or lower, more preferably 30 ° C or higher and 600 ° C or lower. The crystal grain size can be determined by the substrate temperature. In addition, the nanocrystalline diamond film of the present invention can be formed using a microwave plasma CVD method or an ECR plasma method of a high-density plasma source. If these methods are used, it may be performed more efficiently. The decomposition of the hydrocarbons of the raw materials may improve the film quality and increase the yield. Furthermore, in the case of the plasma CVD method of the nanocrystalline diamond film of the present invention, the film must be formed outside the plasma domain. Outside the plasma domain Because the film-forming temperature can be maintained at a lower temperature and free radicals can be effectively used, nanocrystalline diamond films having a particle diameter of more than 1 nm and less than 1000 nm can be obtained. In addition, the nanocrystalline diamond film of the present invention is It is suitable to fabricate the substrate downstream of the reaction gas flow in the CVD chamber. By placing the substrate downstream of the reaction gas, it is possible to make the incidence of free radicals easier and obtain good film quality. The nano junction of the present invention Crystal diamond film, silicon substrate, quartz substrate, ceramic substrate, metal substrate can be used at a substrate temperature of 500 ~ 900 ° C. In addition, -16-200538574 at a substrate temperature of 300 ~ 500 ° C, other than this substrate can be used For other glass-substrate-substrates, polymer substrates can be used at a substrate temperature of 300 ~ 500 ° C. _ For example, if a silicon substrate is used as the substrate, a hardened photomask suitable for a charged particle ray mask or lithography can be obtained Nanocrystalline diamond film for microelectronics, micro-electromechanical and other applications. In addition, when a glass substrate or a polymer substrate is used as a substrate, thin display elements suitable for cold cathode electron sources, electroluminescence elements, liquid crystal displays, and solar energy can be obtained. Nanocrystalline diamond film used in battery electrode films, etc. Φ In addition, when metal (not limited to substrate, three-dimensional shape is acceptable) is used as the substrate, a coating suitable for electrochemical electrodes, tools, and magnetic heads can be obtained. Nanocrystalline diamond film for film application. Next, various types of nanocrystalline diamond film according to one embodiment described above are described. An application example is described. The nanocrystalline diamond film according to one embodiment of the present invention can be applied to electrochemical elements, electrochemical electrodes, DNA wafers, organic electroluminescent elements, organic electroluminescent elements, and organic thin film transistors. , Cold-electron release element, β fuel cell and catalyst. Hereinafter, these application examples will be described in order. 1. Electrochemical element The nanocrystalline diamond film according to one embodiment of the present invention can be applied to electrochemical applications. A chemical element has a pair of electrodes including a detection electrode, and the detection electrode is used for determining the composition and concentration of a solution, and using a redox reaction on the surface of the electrode to identify and measure the substance to be measured. That is, provide An electrochemical device is provided by applying a nanocrystalline diamond film of one aspect of the present invention to the surface of at least one electrode, having at least one pair of electrodes, and utilizing a redox reaction on the surface of the electrode. Detection and measurement by measuring the type of substance to be measured and its concentration. Compared with other electrode materials, the electrochemical element of this application example uses diamond film as an electrode, and has unrivalled chemical properties and physical stability due to a solid diamond key, showing a very high letter of trust. Furthermore, due to the wide potential window and the small substrate current that are unique to diamond's electrochemical characteristics, it is expected that a wider range of non-measurement substances can be measured, and at the same time, a high sensitivity of a high S / N ratio will be exhibited. Regarding the electrochemical device of this application example, it is desirable that the diamond film is a nanocrystalline diamond film having a size of 1 nm or more and less than 100 nm. In addition, regarding the electrochemical device of this application example, it is desirable that the surface flatness (mean-square surface roughness) of the nanocrystalline diamond film is 10 nm or less. Furthermore, regarding the electrochemical device of this application example, it is desirable that the diamond film or the nanocrystalline diamond film is formed in an arbitrary pattern on the same substrate to form a plurality of micro electrodes on the micrometer or nanometer scale. In particular, the crystal grain size of nanocrystalline diamond films is on the order of nanometers. Since each nanoparticle is diamond crystal, single crystal or polycrystalline diamond shows the same physical properties. That is, although it is a nano-scale crystal, it has various physical properties peculiar to diamond. In addition, the nanocrystalline diamond film has a very flat surface structure. In this way, semiconductor lithography technology can be applied to achieve nano-scale pattern production, and extremely small electrodes can be produced, which can achieve high sensitivity. Regarding the electrochemical element of this application example, in particular, the substrate forming the nanocrystalline diamond film can be a group consisting of a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a -18-200538574 plate, a glass substrate, and a polymer substrate. At least one selected. That is, the nanocrystalline diamond film of the present invention can be grown on a practical substrate other than a diamond substrate, and a thin film having the same physical properties as a diamond can be grown. For example, silicon substrates, quartz substrates, metal substrates, and ceramic substrates can be used as practical substrates for high-temperature processes at 500 to 900 ° C. On the other hand, practicalities for low-temperature processes at 300 to 500 ° C can be used. As the substrate, a glass substrate can be used, and as a practical substrate for a low-temperature process at 20 to 300 ° C, a polymer substrate can be used. In the present invention, in particular, when a glass substrate or a polymer substrate is used, since it is a low-cost, insulating substrate or a conductive substrate, it is not necessary to insert an insulating layer that is originally necessary, that is, for a small component. It is easy to separate components by miniaturizing or miniaturizing the terminal portions of the components. In addition, regarding the electrochemical element of this application example, for a diamond film or a nanocrystalline diamond film, doping of impurities is possible, and semiconductor control is possible by the type and amount of doping. Furthermore, for the electrochemical device of this application example, the diamond film or nanocrystalline diamond film is preferably doped with impurities. Impurities are preferably at least one selected from the group consisting of sulfur, boron, oxygen, phosphorus, nitrogen, and silicon. Depending on the type of impurity to be doped, the conductivity of the n-type or p-type impurity is exhibited, semiconductor characteristics can be obtained, and high electrical conductivity can also be obtained. The electrochemical device according to this application example is manufactured on a substrate by a method including at least a film forming step for performing a diamond film or a nanocrystalline diamond film. -19- 200538574 If the substrate is a glass substrate or a polymer substrate according to this method, the film formation temperature of the diamond film or nanocrystalline diamond film is preferably below 500 ° C. In this way, especially the nanocrystalline diamond film can be formed at a low temperature below 500 ° C, but the conventional diamond film is impossible. Therefore, it is possible to form a film on a glass substrate or a polymer substrate having a low melting point. That is, since it can be formed on a low-cost and insulating substrate, element separation becomes easy, and the element structure can be simplified and the number of steps can be reduced. Furthermore, the electrochemical element of this application example can be formed on the substrate at least with the step of forming a diamond film or a nanocrystalline diamond film, and then using a lithography method or using It can be manufactured by a method of a step of an arbitrary shape pattern. In this way, especially the nanocrystalline diamond film, because of its very flat surface structure, the application of semiconductor microfabrication technology will become easy, that is, the application of lithography technology such as light, laser, and electron beam will become may. This enables ultra-fine processing of components or terminations, and high sensitivity of components is expected. Regarding the electrochemical device of this application example, since a diamond film having very high physical properties and chemical stability is used on the surface of the electrode of the device, it is expected that various types of resistance are excellent, the reliability of the device is improved, and the life is increased. In addition, especially in the case of applying nanocrystalline diamond film on the surface of the element electrode, the semiconductor lithography technology may use ultra-fine processing on the order of sub-microns because of its crystal grain size below the order of nanometers and a very flat surface structure. It is possible. As a result, the miniaturization of the device and the miniaturization of the terminal portion can be realized, and an increase in the surface area of the device sensing portion is possible, and a higher sensitivity of the device can be expected. -20- 200538574 Furthermore, since such a nanocrystalline diamond film can be formed at a low temperature of less than 500 ° C, a low-cost glass substrate or a polymer substrate can be used as a substrate, and low cost can be expected. At the same time when the terminal portion is miniaturized, since the insulating substrate can be used, there is no need to separate the components. The simplification of the component structure and the reduction of steps can further reduce the cost. Fig. 2A is a perspective view showing a main part of an electrode terminal of an electrochemical device according to an embodiment of the present invention. The substrate 11 can be a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a glass substrate, or a polymer substrate. In addition, although this figure shows a planar substrate, it may be a three-dimensional substrate, such as a cylindrical body or a spherical body. The diamond film 12 formed on the supporting substrate 1 is more preferably a nanocrystalline diamond film, which contains diamond crystal particles having a crystal grain size of at least 1 nm and less than 100 nm. At this time, if the crystal grain size of the nanocrystalline diamond film is less than 1 nm, it is microcrystalline and has a large number of grain boundaries or many amorphous components, and the inherent characteristics of diamond cannot be obtained. In addition, if the particle diameter is 100 nm or more, the surface unevenness becomes large, making it unsuitable for processing steps such as patterns, and it is difficult to manufacture a laminated structure with other materials. A preferred range of the crystal grain size is 1 to 100 nm. In addition, the nanocrystalline diamond film of the present invention does not intentionally completely exclude crystals with a crystal grain size smaller than 1 nm and more than 1000 nm, and even if there are only a few crystals with crystal grain sizes smaller than 1 nm and more than 100 nm, The effects of the present invention can be fully achieved. That is, as long as 80% or more of the nanocrystalline diamond film is a diamond crystal having a crystal grain size of 1 nm or more and less than 100 nm. 200538574 In addition, the nanocrystalline diamond film of the present invention is preferably doped with impurities, especially doped with at least one type of sulfur, boron, oxygen, phosphorus, nitrogen, and sand. By doping such impurities, for example, sulfur and nitrogen exhibiting donor functions and boron exhibiting acceptor functions, the conductivity of the membrane can be improved by conducting the impurities. The film thickness of the nanocrystalline diamond film is not particularly limited, and can be appropriately selected depending on the application. Furthermore, since the nanocrystalline diamond film has high crystallinity, it has various physical properties similar to those of diamond. In addition, because the surface is very flat, it can be applied to semiconductor lithography, and it is easy to form ultra-fine structures on the order of sub-microns. The diamond film 12 'can be patterned by the microfabrication. For example, by forming a comb-shaped electrode, the area of the element electrode can be increased to realize high sensitivity of the element (Figure 2B). Next, a method for manufacturing an electrochemical device according to this embodiment will be described with reference to the accompanying drawings. Figures 3A to 3E are cross-sectional views showing steps of a main part of an electrode terminal of an electrochemical element according to an embodiment of the present invention. First, a nanocrystalline diamond film 22 is formed on a substrate 21 by a CVD method using a source gas containing a hydrocarbon and hydrogen (Fig. 3A). Next, after forming a hard mask layer 23 film, a photoresist film is coated on the nanocrystalline diamond film 22, and the photoresist film is patterned by photolithography or electron lithography to form a photoresist pattern 24. (Figure 3B). Next, the photoresist pattern 24 is transferred to a hard mask layer 200538574 23 by RIE to form a hard mask pattern 23 '(Fig. 3C). This hard mask pattern 23 'was used as an etching mask, and the nanocrystalline diamond film 22 was processed by RIE containing oxygen as a main component to obtain an electrochemical element detection portion pattern 22' (Fig. 3D).

最後,剝離硬質遮罩圖案23’,完成電化學元件(第3E 圖)。 2.電化學電極 有關本發明之一實施態樣的奈米結晶鑽石膜可適用於 電化學電極,用於爲了將含有不純物、環境污染物質等之液 體或氣體,利用電化學反應而進行高純度化或無害化,尤其 可使戴奧辛等之難以被電分解的物質得以分解。 近年來,鑽石作爲電極材料備受囑目。由於鑽石藉由碳 原子彼此間堅固的四配位之sp3混成軌域所形成之共價鍵而 構成結晶,顯示無與倫比之物性與化性的安定性。尤其化學 安定性,亦即,耐藥品性、耐腐蝕性更是作爲高性能、高信 賴性電極材料所不可或缺的特性。 爲了應用鑽石作爲如此之電極材料,進而必須要有導電 性。鑽石具有能帶間隙5.5eV,爲一種良好的絕緣體。然而 ,相同於矽,藉由摻雜不純物,能夠賦予因不純物傳導而造 成的導電性。現今最爲一般所習知者爲摻雜硼之鑽石,可以 製作具有數Ω cm以下之比電阻。 由有關本發明之一實施態樣之奈米結晶鑽石膜而成的 電極,具有如下之特徵: a)將奈米結晶鑽石膜用於電極之情形,奈米結晶鑽石 -23- 200538574 膜可以增大電極表面積。另外,由於可以於500t以下進行 · 低溫成膜,便可以於容易形狀加工與變形之玻璃基板或高分 ^ 子基板上進行成膜。再者,由於能夠利用CVD法進行成膜 ,便可能於凹凸面或彎曲部等進行均勻塗布。另外,由於表 面爲平坦的,微影爲可能的,因此,電極之微細加工爲可能 的,可以使反應面積增大。 b)奈米結晶鑽石膜由於能夠無關於表面之凹凸而進行 均勻之成膜,便可以利用微細加工技術,將矽基板之表面作 成凹凸形狀(角錐形狀)而使表面層增大。 馨 第4A〜4C圖係顯示表面被覆奈米結晶鑽石膜的電化學 電極剖面之圖形,均具有使表面積增大的形狀。亦即,第4 A 圖係顯示於曲折形之基材3 1的兩面,進行奈米結晶鑽石膜 3 2成膜之電極;第4B圖係顯示於蛇形之基材4 1的兩面, 進行奈米結晶鑽石膜42成膜之電極;第4C圖係顯示於鋸齒 形基材51的兩面,進行奈米結晶鑽石膜52成膜之電極。 此等電化學電極係將其一對相向配置而予以使用。還有 ,雖然顯示於第4A〜4C圖之例,均於基板之兩面進行奈米結 ® 晶鑽石膜之成膜,也可以僅於單面進行成膜。 3 . D N A晶片 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於DNA晶片。 習知之鑽石DNA晶片,由於鑽石膜之凹凸大,必須要 有硏磨步驟’除了成本高之外,於表面形成結晶缺陷,載持 特性變差。另外,基板限於耐熱性之矽等,成本高、大面積 -24- 200538574 化爲困難的。 另外,習知DLC之DNA晶片,由於鑽石成分即使高仍 低於30%,除了無法得到足夠的安定性之外,碳以外之污染 物容易附著於表面,無法得到足夠之載持特性。 針對於此,有關本應用例之DNA晶片,低溫下之成膜 由於使用可能之奈米結晶鑽石膜,於玻璃或高分子材料上也 可以進行成膜,低成本化爲可能的。另外,由於奈米結晶鑽 石膜原本既爲平坦的,並無進行硏磨之必要,另外,藉由加 水分解,DN A並不會脫離,具有非常高的DNA保持性能之 優點。 第5圖係顯示有關本應用例的DNA晶片的剖面圖。於 第5圖,奈米結晶鑽石膜62成膜於基板6 1上,奈米結晶鑽 石膜62之表面已被胺化與羧化,藉由胺基與羧基而將DN A 予以固定。 4.有機電致發光元件 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於有機電致發光元件。 亦即,使用奈米結晶鑽石膜作爲有機電致發光元件之陽 極或陰極,或是陽極表面層或陰極表面層,並且藉由以拉電 子基或供電子基終止其表面之末端,能夠實現從2.8〜5.6eV 之低的工作函數與高的工作函數之二者,藉此,便能夠實現 高效率之有機電致發光元件。 此情形下,藉由使用含有碳氫化合物與氫氣之原料氣體 的電漿CVD法,進行奈米結晶鑽石膜之成膜,接著,於此 200538574 奈米結晶鑽石膜之表面,藉由進行使用含有拉電子性原子之 · 氣體或是含有推電子性原子之氣體的電漿處理,可以利用相 &gt; 同材料進行工作函數之控制,可以得到高的工作函數與低的 工作函數。因而,藉由使用由如此之奈米結晶鑽石膜構成的 電極薄膜,可以得到高效率之有機電致受光元件。 以上方法均利用低溫電漿,適用於顯示器等之大面積元 件,大面積且低溫下之成膜爲可能的,爲一種實用化而有效 方法。 第6圖係顯示有關本應用例之有機電致發光元件的剖 鲁 面圖。第6圖中,於基板71上,依序層疊陽極72、陽極表 面層73、電洞輸送層74、有機發光層7 5、電子輸送層76 與陰極77而構成有機電致發光元件。於此例,藉由奈米結 晶鑽石膜形成陽極表面層7 3。亦即,例如於由IΤ Ο而成的 陽極72表面,利用使用含有碳氫化合物與氫之原料氣體的 電漿CVD法,進行奈米結晶鑽石膜之成膜,接著,於此奈 米結晶鑽石膜之表面,藉由進行使用含有拉電子性原子之電 漿處理,得到高的表面工作函數。 · 5 ·有機太陽能電池 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於有機太陽能電池。 亦即,使用奈米結晶鑽石膜作爲有機太陽能電池之陽極 或陰極,或是陽極表面層或陰極表面層,並且藉由以拉電子 基或供電子基終止其表面之末端,能夠實現從2.8〜6.5eV之 低的工作函數與高的工作函數之二者,藉此,便能夠實現高 -26- 200538574 效率之有機太陽能電池。 此情形下,藉由使用含有碳氫化合物與氫氣之原料氣體 的電漿CVD法,進行奈米結晶鑽石膜之成膜,接著,於此 奈米結晶鑽石膜之表面,藉由進行使用含有拉電子性原子之 氣體或是含有推電子性原子之氣體的電漿處理而得到高的 工作函數與低的工作函數。因而,藉由使用由如此之奈米結 晶鑽石膜構成的電極薄膜,可以得到高效率之有機太陽能電 池。 以上方法,由於均利用低溫電漿,大面積且低溫下之成 膜爲可能的,適用於太陽能電池等之大面積元件,爲一種實 用化而有效方法。 第7圖係顯示有關本應用例之太陽能電池的剖面圖。於 第7圖,於絕緣基板81上,依序層疊陽極82、陽極表面層 83、p型有機半導體層84、η型有機半導體層85與陰極86 而構成有機太陽能電池。於此例,藉由奈米結晶鑽石膜而形 成陽極表面層83。亦即,例如於由ΙΤΟ構成的陽極82之表 面,藉由使用含有碳氫化合物與氫氣之原料氣體的電漿CVD 法,進行奈米結晶鑽石膜之成膜,接著,於此奈米結晶鑽石 膜之表面,藉由進行使用含有拉電子性原子之氣體的電漿處 理而得到高的表面工作函數。 6.有機薄膜電晶體 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於有機薄膜電晶體。 亦即,使用奈米結晶鑽石膜作爲有機薄膜電晶體之源極 -27- 200538574 或汲極,或是源極表面層或汲極表面層,並且藉由以拉電子 基或供電子基終止其表面之末端,能夠實現從2.8〜6.5eV之 低的工作函數與高的工作函數之二者,藉此,便能夠實現高 效率之有機薄膜電晶體。 此情形下,藉由利用含有碳氫化合物與氫氣之原料氣體 的電漿CVD法,進行奈米結晶鑽石膜之成膜,接著,於此 奈米結晶鑽石膜之表面,藉由進行使用含有拉電子性原子之 氣體或是含有推電子性原子之氣體的電漿處理而得到高的 工作函數與低的工作函數。因而,藉由使用由如此之奈米結 晶鑽石膜構成的電極薄膜,可以得到具有高切換特性之有機 薄膜電晶體。 以上方法,由於均利用.低溫電漿,大面積且低溫下之成 膜爲可能的,適用於顯示器等之大面積元件,爲一種實用化 而有效方法。 第8圖係顯示有關本應用例之有機薄膜電晶體的剖面 圖。於第8圖,於絕緣基板91上,形成閘極92與閘絕緣膜 93,於閘絕緣膜93上,相向地形成源極94與汲極95,於此 等源極94與汲極95之表面形成源極表面層96與汲極表面 層97,於此等源極表面層96、汲極表面層97與閘絕緣膜93 上’形成p型有機半導體層98,而構成有機薄膜電晶體。 於此例,藉由奈米結晶鑽石膜而形成源極表面層96與 汲極電極表面。亦即,例如,於由A1構成的源極94與汲極 95之表面,藉由使用含有碳氫化合物與氫氣之原料氣體的電 漿CVD法,進行奈米結晶鑽石膜之成膜,接著,於此奈米 200538574 結晶鑽石膜之表面,藉由進行使用含有拉電子性原子之氣體 的電漿處理而得到高的表面工作函數。 7.冷電子釋出元件 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於冷電子釋出元件。 冷電子釋出元件(FED)作爲下一世代之高性能平板顯示 器之電子源特別受到矚目。FED係取代習知CRT之熱電子 釋出元件,應用半導體微細加工技術,藉由每個像素設置微 小電場放射型之電子釋出元件(冷電子釋出元件),除了利用 相同於高亮度、高速顯示非常優異的CRT之陽極發光原理 ,也實現了顯示器之薄型化。 冷電子釋出元件係一種藉由電場發射而將電子從固體 表面向真空中進行釋出,其特性受釋出材料表面之構造與工 作函數(電子親和力)所決定。 另一方面,鑽石膜之氫末端表面具有負的電子親和力 (ΝΕΑ),亦即,一旦放置於真空中,即使不外力□電場,電子 將被大量釋出,具有其他材料所沒有的特異性質。 因而,原理上,鑽石(氫終止表面末端)作爲電子釋出元 件材料爲有用的,迄今,尤其可作爲顯示器基板使用之大面 積、低成本的玻璃基板上,由於必須達局溫(8 0 0 °C )而無法 適用。另外,習知鑽石的結晶粒子大,難以於微細構造表面 進行薄膜狀之均勻被覆。 由於本發明之奈米結晶鑽石膜能夠於低溫且微細構造 表面形成均勻的薄膜狀,便可以將理想材料之鑽石膜適用於 -29- 200538574 冷電子釋出元件。 亦即,使用奈米結晶鑽石膜作爲冷電子釋出元件之射* ® 表面層,並且藉由供電子基終止其表面之末端,能夠實現負 的電子親和力(低的工作函數2· 8eV),藉此,便能夠實現高 效率、低電壓驅動之冷電子釋出元件。此情形下,藉由使用 含有碳氫化合物與氫氣之原料氣體的電漿CVD法,進行奈 米結晶鑽石膜之成膜,接著,於此奈米結晶鑽石膜之表面’ 藉由進行使用含有推電子性原子之氣體的電漿處理’能夠利 用相同材料而進行工作函數之控制,可以得到低的工作函數 (負的電子親和力)。因而,藉由使用由如此之奈米結晶鑽石 膜作爲射極表面層使用,可以得到具有高效率、低電壓驅動 之冷電子釋出元件。. 以上方法,由於均利用低溫電漿,大面積且低溫下之成 膜爲可能的,適用於顯示器等之大面積元件,爲一種實用化 而有效方法。 第9圖係顯示有關本應用例之冷電子釋出元件的剖面 圖。於第9圖,於形成射極佈線102之絕緣基板1 0 1上,形 成絕緣層103與具有開孔之閘極104 ;於此開孔內所露出的 射極佈線102上,形成錐形之射極106 ;於此射極106上, 進行奈米結晶鑽石膜1 07之成膜而構成冷電子釋出元件。於 此例,於由金屬構成的射極106之表面,藉由微波電漿CVD ,進行奈米結晶鑽石膜之成膜,接著,藉由於此奈米結晶鑽 石膜之表面進行氫電漿處理,可以得到高的表面工作函數。 8.燃料電池用電極觸媒 •30- 200538574 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於燃料電池用電極觸媒。 奈米結晶鑽石爲極微小的,並且,除了藉由控制其二次 構造,爲一種極薄之薄膜,亦爲高強度的,再者,具有能夠 將作爲燃料電池用電極最重要之表面積極力增大的優點,也 具有氣體或液體容易滲透至內部的優點。目前所用之由活性 碳或碳黑所構成的電極方面,爲了形成電極構造,由於採用 與高分子系結合劑相混合而成型的方法,雖然使用高表面積 之材料作爲一次粒子,其結果,所用之部分大多過於浪費, 因此,必須要有大量觸媒Pt等之貴重金屬。 另外,活性碳或碳黑,由於石墨構造爲主體,外觀表面 積之比例,石墨平面(稱爲白塞(Bethell)平面)之比例多,於 高分散狀態下能夠吸附觸媒金屬之位置點不多。此也成爲必 須大量使用觸媒的原因。 針對於此,由於奈米結晶鑽石膜之表面的所有原子維持 SP3構造,成爲活性表面,能夠於高分散之狀態下進行觸媒 金屬之吸附。 第1 〇圖係顯示有關本應用例之燃料電池一個單元的剖 面圖。第10圖中,於陰極110與陽極111之表面,分別進 行載持觸媒之奈米結晶鑽石膜1 1 2與1 1 3之成膜,於此等陰 極1 1 〇與陽極1 1 1之間,藉由使奈米結晶鑽石膜1 1 2與1 1 3 相向,夾住電解質1 1 4而予以一體化,構成燃料電池之一個 as . 單兀。 9·觸媒 •31- 200538574 有關本發明之一實施態樣的奈米結晶鑽石膜,可以適用 於爲了各種反應之觸媒。 亦即,藉由奈米結晶鑽石膜構成的載體與載持於此載體 之n m數量級尺寸的觸媒金屬粒子,構成載持金屬之奈米結 晶鑽石觸媒。 有關本應用例之觸媒,由於構成載體之奈米結晶鑽石膜 的結晶之粒徑微細至n m數量級,能夠載持n m數量級之觸 媒金屬,因此,能夠達成觸媒反應速度之提高。 實施例 以下,茲將參照附隨的圖示,針對本發明之具體實施例 ’以詳細說明本發明。 實施例1 如第1 1A圖所示,於厚度525nm之單晶矽基板121上 ’利用微波電漿CVD裝置,進行奈米結晶鑽石膜122之成 臆。 微波電漿CVD之條件如下: 原料氣體··甲院(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲〇·〇1〜5體積%) 基板溫度:500°C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚500nm之奈 米結晶鑽石膜1 22的成膜。於成膜結束時,於奈米結晶鑽石 膜122之表面進行5分鐘之氫電漿處理。 200538574 將如上所製作的奈米結晶鑽石膜1 2 2,利用穿透式電子 * 顯微鏡(TEM)進行觀察,能夠確認奈米數量級之結晶粒徑。 . 另外,同時利用電子線能量損失分光法(EELS ),能夠確認 sp3(鑽石鍵)之存在。 另外’利用X線光電子分光法(XPS),鑑定表面之吸附 種類的結果,僅碳被檢測出,確認氧並不存在。進一步利用 紫外線光電子分光法(UPS)進行測定,確認負的電子親和力 (ΝΕΑ)。測定表面之電傳導性的結果,可得到數k Ω之片材 電阻。 籲 實施例2 如第1 1 B圖所示,於厚度1. 1 mm之玻璃基板1 3 1上,利 用微波電獎CVD裝置,進行奈米結晶鑽石膜132之成膜。 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2sccm)、氫(流量18Sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲〇·〇1〜5體積%)Finally, the hard mask pattern 23 'is peeled off to complete the electrochemical device (Fig. 3E). 2. Electrochemical electrode The nanocrystalline diamond film according to one embodiment of the present invention can be applied to an electrochemical electrode, and is used to perform high-purity liquids or gases containing impurities or environmental pollutants by electrochemical reactions. Or detoxification, in particular, can decompose substances such as dioxin which are difficult to be electrolyzed. In recent years, diamonds have received much attention as electrode materials. Diamonds form crystals by covalent bonds formed by the strong four-coordinated sp3 carbon atoms mixed with each other into orbital domains, showing unparalleled physical and chemical stability. In particular, chemical stability, that is, chemical resistance and corrosion resistance are indispensable characteristics as high-performance, high-reliability electrode materials. In order to use diamond as such an electrode material, it must further have conductivity. Diamond has a band gap of 5.5eV and is a good insulator. However, it is the same as silicon, and by doping impurities, it is possible to impart conductivity caused by the impurities to conduct. Today, the most commonly known diamond is boron-doped diamond, which can be made with a specific resistance below several Ω cm. An electrode formed from a nanocrystalline diamond film according to one embodiment of the present invention has the following characteristics: a) When a nanocrystalline diamond film is used for an electrode, the nanocrystalline diamond-23-200538574 film can be increased. Large electrode surface area. In addition, since it can be formed at a temperature of less than 500t, it can be formed on a glass substrate or a high-molecule substrate that can be easily processed and deformed. Furthermore, since the film can be formed by the CVD method, it is possible to perform uniform coating on uneven surfaces, curved portions, and the like. In addition, since the surface is flat and lithography is possible, microfabrication of the electrode is possible and the reaction area can be increased. b) Since the nanocrystalline diamond film can be uniformly formed without any unevenness on the surface, the surface layer of the silicon substrate can be formed into an uneven shape (pyramid shape) using microfabrication technology to increase the surface layer. Xin Figures 4A to 4C are graphs showing the cross-section of an electrochemical electrode whose surface is coated with a nanocrystalline diamond film, all of which have a shape that increases the surface area. That is, Fig. 4A is shown on both sides of the zigzag-shaped substrate 31, and the electrode for forming a nanocrystalline diamond film 32 is formed; Fig. 4B is shown on both sides of the serpentine-shaped substrate 41, The electrode for forming the nanocrystalline diamond film 42; FIG. 4C shows the electrode for forming the nanocrystalline diamond film 52 on both sides of the zigzag substrate 51. These electrochemical electrodes are used by arranging a pair of them facing each other. In addition, although the examples shown in FIGS. 4A to 4C show that the nano-junction ® crystal diamond film is formed on both sides of the substrate, the film may be formed on only one side. 3. D N A wafer A nanocrystalline diamond film according to one embodiment of the present invention can be applied to a DNA wafer. The conventional diamond DNA wafer requires a honing step due to the large unevenness of the diamond film. In addition to the high cost, crystal defects are formed on the surface and the supporting characteristics are deteriorated. In addition, the substrate is limited to heat-resistant silicon and the like, which is costly and has a large area of -24-200538574. In addition, the DNA chip of the conventional DLC, because the diamond content is still less than 30%, in addition to failing to obtain sufficient stability, pollutants other than carbon are liable to adhere to the surface, and sufficient supporting characteristics cannot be obtained. In view of this, the film formation of the DNA wafer of this application example at a low temperature is possible because the use of a nanocrystalline diamond film can be formed on glass or a polymer material, and cost reduction is possible. In addition, since the nanocrystalline diamond stone film is originally flat, it is not necessary to perform honing. In addition, DNA does not detach by hydrolytic decomposition, which has the advantage of very high DNA retention performance. Fig. 5 is a sectional view showing a DNA wafer according to this application example. In Fig. 5, a nanocrystalline diamond film 62 is formed on the substrate 61, and the surface of the nanocrystalline diamond film 62 has been aminated and carboxylated, and DNA is fixed by an amine group and a carboxyl group. 4. Organic electroluminescence element The nanocrystalline diamond film according to one embodiment of the present invention can be applied to an organic electroluminescence element. That is, using a nanocrystalline diamond film as the anode or cathode of the organic electroluminescence element, or the anode surface layer or the cathode surface layer, and by terminating the end of its surface with a pull-electron group or an electron-donor group, Both a low work function and a high work function of 2.8 to 5.6 eV can achieve a high-efficiency organic electroluminescent device. In this case, the formation of a nanocrystalline diamond film is performed by a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen. Then, the surface of the nanocrystalline diamond film 200538574 is used by Plasma processing of a gas that pulls electrons or a gas that contains electrons that push electrons can use the phase &gt; same material to control the work function, and a high work function and a low work function can be obtained. Therefore, by using an electrode thin film composed of such a nanocrystalline diamond film, it is possible to obtain a highly efficient organic electroluminescent element. All the above methods use low-temperature plasma, which is suitable for large-area components such as displays. Film formation at large areas and at low temperatures is possible, which is a practical and effective method. Fig. 6 is a cross-sectional view showing an organic electroluminescence element according to this application example. In Fig. 6, an anode 72, an anode surface layer 73, a hole transport layer 74, an organic light emitting layer 75, an electron transport layer 76, and a cathode 77 are sequentially stacked on a substrate 71 to form an organic electroluminescent element. In this example, an anode surface layer 73 is formed by a nanocrystalline diamond film. That is, for example, on the surface of the anode 72 made of ITO, a nanocrystalline diamond film is formed by a plasma CVD method using a source gas containing hydrocarbons and hydrogen, and then the nanocrystalline diamond film is formed here. A high surface work function is obtained by performing a plasma treatment on the surface with electron-drawing atoms. · 5 · Organic solar cell The nanocrystalline diamond film according to one embodiment of the present invention can be applied to an organic solar cell. That is, using a nanocrystalline diamond film as the anode or cathode of an organic solar cell, or the anode surface layer or the cathode surface layer, and by terminating the end of its surface with a pull-electron-based or electron-donor-based, it is possible to achieve from 2.8 to Both a low work function of 6.5 eV and a high work function can achieve an organic solar cell with a high efficiency of -26- 200538574. In this case, a nanocrystalline diamond film is formed by a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen, and then the surface of the nanocrystalline diamond film is subjected to the use of a pull electron. Plasma treatment of a gas with a sex atom or a gas containing electron-promoting atoms results in a high work function and a low work function. Therefore, by using an electrode film composed of such a nanocrystalline diamond film, an organic solar cell with high efficiency can be obtained. Since the above methods all use low-temperature plasma, film formation at a large area and at a low temperature is possible, and it is applicable to large-area elements such as solar cells, which is a practical and effective method. Fig. 7 is a sectional view showing a solar cell according to this application example. In FIG. 7, an anode 82, an anode surface layer 83, a p-type organic semiconductor layer 84, an n-type organic semiconductor layer 85, and a cathode 86 are sequentially stacked on an insulating substrate 81 to constitute an organic solar cell. In this example, an anode surface layer 83 is formed by a nanocrystalline diamond film. That is, for example, on the surface of the anode 82 made of ITO, a nanocrystalline diamond film is formed by a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen, and then the nanocrystalline diamond film is formed here. On the surface, a high surface work function is obtained by performing a plasma treatment using a gas containing electron-drawing atoms. 6. Organic thin film transistor The nanocrystalline diamond film according to one embodiment of the present invention can be applied to an organic thin film transistor. That is, the nanocrystalline diamond film is used as the source of the organic thin film transistor-27- 200538574 or the drain, or the source surface layer or the drain surface layer, and it is terminated by pulling the electron or electron donor base At the end of the surface, both a low work function and a high work function from 2.8 to 6.5 eV can be realized, thereby realizing a highly efficient organic thin film transistor. In this case, a nanocrystalline diamond film is formed by a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen, and then the surface of the nanocrystalline diamond film is subjected to the use of pull electrons. Plasma treatment of a gas with a sex atom or a gas containing electron-promoting atoms results in a high work function and a low work function. Therefore, by using an electrode thin film composed of such a nanocrystalline diamond film, an organic thin film transistor having high switching characteristics can be obtained. Since the above methods all use low-temperature plasma, large-area and low-temperature film formation is possible. It is suitable for large-area components such as displays, and is a practical and effective method. Fig. 8 is a cross-sectional view showing an organic thin film transistor according to this application example. In FIG. 8, a gate electrode 92 and a gate insulating film 93 are formed on an insulating substrate 91, and a source electrode 94 and a drain electrode 95 are formed opposite to each other on the gate insulating film 93. A source surface layer 96 and a drain surface layer 97 are formed on the surface. A p-type organic semiconductor layer 98 is formed on the source surface layer 96, the drain surface layer 97, and the gate insulating film 93 to form an organic thin film transistor. In this example, the source surface layer 96 and the surface of the drain electrode are formed by a nanocrystalline diamond film. That is, for example, on the surfaces of the source electrode 94 and the drain electrode 95 made of A1, a nanocrystalline diamond film is formed by a plasma CVD method using a source gas containing a hydrocarbon and hydrogen, and then, Here, the surface of the nanocrystalline 200538574 crystalline diamond film is subjected to a plasma treatment using a gas containing electron-drawing atoms to obtain a high surface work function. 7. Cold electron emission element The nanocrystalline diamond film according to one embodiment of the present invention can be applied to a cold electron emission element. The cold electron emission element (FED) has attracted particular attention as an electron source for the next generation of high-performance flat panel displays. FED replaces the conventional CRT's hot-electron release element, applies semiconductor microfabrication technology, and sets a micro-field emission type electron release element (cold electron release element) in each pixel. The CRT's anodic light emission principle, which is very excellent in display, also realizes a thinner display. The cold electron release element is a type of electron released from a solid surface into a vacuum by the emission of an electric field. Its characteristics are determined by the structure and working function (electron affinity) of the surface of the released material. On the other hand, the surface of the hydrogen end of the diamond film has negative electron affinity (NEA), that is, once placed in a vacuum, even if no external force or electric field is applied, electrons will be released in large quantities, with specific properties not found in other materials. Therefore, in principle, diamond (the end of the hydrogen-terminated surface) is useful as a material for an electron release element. So far, it has been used as a display substrate, especially for large-area, low-cost glass substrates. ° C). In addition, the conventional diamond has large crystal particles, and it is difficult to uniformly coat the surface of a fine structure in a thin film form. Since the nanocrystalline diamond film of the present invention can form a uniform thin film at a low temperature and a fine structure surface, the diamond film of an ideal material can be applied to a -29-200538574 cold electron release element. That is, using a nanocrystalline diamond film as the surface layer of the cold electron emission element * ® and terminating the end of the surface by the electron donor group, a negative electron affinity can be achieved (low work function 2.8 eV), Thereby, a high-efficiency, low-voltage-driven cold-electron release device can be realized. In this case, the formation of a nanocrystalline diamond film is performed by a plasma CVD method using a source gas containing a hydrocarbon and a hydrogen gas, and then the surface of the nanocrystalline diamond film is charged with electrons. Plasma treatment of the gas of the sex atom can control the work function by using the same material, and can obtain a low work function (negative electron affinity). Therefore, by using such a nanocrystalline diamond film as an emitter surface layer, a cold electron emission device having high efficiency and low voltage driving can be obtained. Since the above methods all use low-temperature plasma, film formation in large area and at low temperature is possible. It is applicable to large-area components such as displays. It is a practical and effective method. Fig. 9 is a cross-sectional view showing a cold electron emitting element according to this application example. In FIG. 9, an insulating layer 103 and a gate electrode 104 having an opening are formed on an insulating substrate 101 forming the emitter wiring 102. A tapered shape is formed on the emitter wiring 102 exposed in the opening. Emitter 106; On this emitter 106, a nanocrystalline diamond film 107 is formed to form a cold electron emission element. In this example, a nanocrystalline diamond film is formed on the surface of the emitter 106 made of metal by microwave plasma CVD. Then, by performing a hydrogen plasma treatment on the surface of this nanocrystalline diamond film, Get high surface work function. 8. Electrode catalyst for fuel cell • 30-200538574 The nanocrystalline diamond film according to one embodiment of the present invention can be applied to an electrode catalyst for fuel cell. Nanocrystalline diamond is extremely small, and in addition to controlling its secondary structure, it is an extremely thin film and also has high strength. Furthermore, it has the ability to actively increase the most important surface as an electrode for fuel cells. Great advantage, also has the advantage that gas or liquid easily penetrates into the interior. For the electrodes currently made of activated carbon or carbon black, in order to form the electrode structure, a method of mixing with a polymer-based binder and molding is used. Although a material with a high surface area is used as the primary particle, as a result, it is used. Most of them are too wasteful, so it is necessary to have a large amount of precious metals such as catalyst Pt. In addition, since activated carbon or carbon black has a graphite structure as the main body, the proportion of the external surface area is large, and the proportion of the graphite plane (called the Bethell plane) is large, and there are not many sites capable of adsorbing the catalyst metal in a highly dispersed state. . This is why it is necessary to use catalysts in large quantities. In view of this, since all the atoms on the surface of the nanocrystalline diamond film maintain the SP3 structure and become an active surface, the catalyst metal can be adsorbed in a highly dispersed state. Fig. 10 is a sectional view showing a unit of a fuel cell according to this application example. In FIG. 10, catalyst-bearing nanocrystalline diamond films 1 1 2 and 1 1 3 are formed on the surfaces of the cathode 110 and the anode 111, respectively. In these cathodes 1 1 0 and anode 1 1 1 At this time, the nanocrystalline diamond film 1 1 2 and 1 1 3 are opposed to each other, and the electrolyte 1 1 4 is sandwiched and integrated to form an as. Unit of the fuel cell. 9. Catalyst • 31-200538574 The nanocrystalline diamond film according to one embodiment of the present invention can be used as a catalyst for various reactions. That is, a carrier composed of a nanocrystalline diamond film and a catalyst metal particle having a size of the order of n m carried on the carrier constitute a nanocrystalline diamond catalyst carrying a metal. With regard to the catalyst of this application example, since the particle size of the crystals of the nanocrystalline diamond film constituting the carrier is as small as the order of n m, and the catalyst metal of the order of n m can be supported, the catalyst reaction speed can be improved. Examples Hereinafter, the present invention will be described in detail with reference to the accompanying drawings for specific examples of the present invention. Example 1 As shown in FIG. 11A, a nanocrystalline diamond film 122 was formed on a single crystal silicon substrate 121 having a thickness of 525 nm by using a microwave plasma CVD apparatus. The conditions for microwave plasma CVD are as follows: Source gas ·· Ayuan (flow rate 2sccm), hydrogen (flow rate 18sccm) Doping gas: hydrogen sulfide (0.01 ~ 5% by volume relative to the source gas) Substrate temperature: 500 ° C reaction pressure: 5Torr MW power: 500W. By the microwave plasma CVD under the above conditions, a nanocrystalline diamond film 12 with a thickness of 500 nm was formed. At the end of film formation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 122 for 5 minutes. 200538574 The nanocrystalline diamond film 1 2 2 produced as described above can be observed with a transmission electron * microscope (TEM) to confirm the crystal grain size on the order of nanometers. In addition, the presence of sp3 (diamond key) can be confirmed by using electron beam energy loss spectroscopy (EELS). In addition, as a result of using X-ray photoelectron spectroscopy (XPS) to identify the type of adsorption on the surface, only carbon was detected, and it was confirmed that oxygen was not present. Further measurement was performed by ultraviolet photoelectron spectroscopy (UPS) to confirm negative electron affinity (ΝΕΑ). As a result of measuring the electrical conductivity on the surface, a sheet resistance of several k Ω can be obtained. Example 2 As shown in FIG. 11B, a nanocrystalline diamond film 132 was formed on a glass substrate 1 31 having a thickness of 1.1 mm by using a microwave electric CVD apparatus. The conditions for microwave plasma CVD are as follows: Source gas: methane (flow rate 2 sccm), hydrogen (flow rate 18 sccm) Doping gas: hydrogen sulfide (relative to the source gas, 0.001 to 5% by volume)

基板溫度:300°C 反應壓力:5Torr · MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚500nm之奈 米結晶鑽石膜1 3 2的成膜。於成膜結束時,於奈米結晶鑽石 膜132之表面進行5分鐘之氫電漿處理。 其結果,於本實施例,可以得到相同於實施例1所得到 之奈米結晶鑽石膜132。 實施例3 -33- 200538574 如第lie圖所示,於厚度1 mm之高分子基板Ml上, 利用微波電漿CVD裝置,進行奈米結晶鑽石膜142之成膜 〇 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2SCCm)、氫(流量ISseem) 摻雜氣體:硫化氫(相對於原料氣體,爲〇·〇1〜5體積%) 基板溫度:l〇〇°C 反應壓力:5Torr MW 功率:200W。 藉由以上條件之微波電漿CVD,進行膜厚300nm之奈 米結晶鑽石膜1 42的成膜。於成膜結束時,於奈米結晶鑽石 膜142之表面進行5分鐘之氫電漿處理。 其結果,於本實施例,可以得到相同於實施例1所得到 之奈米結晶鑽石膜142。 以下,茲將針對本發明之奈米結晶鑽石膜各種應用例的 實施例,進行說明。 實施例4 茲將參照第3A〜3E圖,以說明適用於電化學元件的實 施例。 如第3 A圖所示,於厚度1 mm之玻璃基板2 1上,利用 微波電漿CVD裝置,進行奈米結晶鑽石膜22之成膜。 微波電漿CVD之條件如下: 原料氣體:甲院(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積 •34- 200538574 基板溫度· 4 0 0 C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚1/zm之奈米 結晶鑽石膜22的成膜。於成膜結束時,於奈米結晶鑽石膜 22之表面進行5分鐘之氫電漿處理。 接著,如第3B圖所示,硬質遮罩層23係使用矽甲烷、 氨與氫之混合氣體,利用高頻電漿CVD裝置,進行氮化矽 膜之成膜。 高頻電漿CVD之條件如下: 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積%) 基板溫度:200°C 反應壓力:1 Tori· MW 功率:1 80W。 藉由以上條件之高頻電漿CVD,進行膜厚0.2 // m之氮 化矽的成膜。 接著,將光阻(日本東京應化工業製OFPR)塗布成膜厚 1.2 // m之後,利用g線進行曝光、顯影而得到光阻圖案24 ( 線寬5 // m)。 其次,如第3C圖所示,將光阻圖案24作爲遮罩,將形 成硬質遮罩層23之氮化矽膜,利用C2F6與氫氣之RIE進行 加工,得到硬質遮罩層2 3 ’。 RIE之條件如下: 原料氣體·· C2F6(流量32sccm)、氫(流量3sccm) 200538574 基板溫度:室溫 * 反應壓力:〇.〇3Torr , RF 功率:300W。 接著,如第3D圖所示,將由氮化矽而成的硬質遮罩層 23’作爲遮罩,藉由以氧氣爲主成分的RIE,進行奈米結晶鑽 石膜22之加工,得到電化學元件終端部22’。 RIE之條件如下: 原料氣體·· 〇2(流量lOOsccm) 基板溫度:室溫 φ 反應壓力:〇.〇3Torr RF 功率:300W。 最後,如第3E圖所示,進行硬質遮罩層22’之鈾刻剝離 ,得到電化學元件。 實施例5 茲將參照第4A圖,以說明適用於電化學電極的實施例 〇 如第4A圖所示,於已進行厚度1mm之玻璃基板加工的 ® 曲折形基材3 1之兩面,利用微波電漿CVD裝置,進行奈米 結晶鑽石膜32之成膜。 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2sccm)、氫(流量ISsccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0·01〜5體積%) 基板溫度:300°C 反應壓力:5Torr -36- 200538574 MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚5//m之奈米 結晶鑽石膜3 2的成膜。於成膜結束時,於奈米結晶鑽石膜 3 2之表面進行5分鐘之氫電漿處理,得到如第4 A圖所示之 形狀的感測器電極。 實施例6 茲將參照第4B圖,以說明適用於電化學電極的實施例 〇 如第4B圖所示,於已進行厚度100//m之高分子基板 加工的蛇形基材4 1之兩面,利用微波電漿CVD裝置,進行 奈米結晶鑽石膜42之成膜。 微波電漿C VD之條件如下: 原料氣體:甲烷(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲〇·〇1〜5體積%) 基板溫度:200°C 反應壓力·· 5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚3//m之奈米 糸吉晶鑽石膜42的成膜。於成膜結束時,於奈米結晶鑽石膜 42之表面進行5分鐘之氫電漿處理,得到如第4B圖所示之 形狀的感測器電極。 實施例7 茲將參照第4C圖,以說明適用於電化學電極的實施例 -37- 200538574 如第4C圖所示,於已進行厚度525 // m之矽基板加工 的鋸齒形基材5 1之兩面,利用微波電漿CVD裝置,進行奈 米結晶鑽石膜5 2之成膜。 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2Sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲〇·〇1〜5體積%) 基板溫度:50(TC 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚5/zm之奈米 結晶鑽石膜52的成膜。於成膜結束時,於奈米結晶鑽石膜 52之表面進行5分鐘之氫電漿處理,得到如第4C圖所示之 形狀的感測器電極。 實施例8 茲將參照第5圖,以說明適用於DNA晶片的實施例。 於厚度1mm之玻璃基板61上,利用微波電漿CVD裝 ®,進行奈米結晶鑽石膜62之成膜。 微波電漿CVD之條件如下: 原料氣體:甲院(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積%) 基板溫度:400°C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚l^m之奈米 200538574 結晶鑽石膜6 2的成膜。於成膜結束時,於奈米結晶鑽石膜6 2之表面進行5分鐘之氫電漿處理 然後,於氯氣中,進行奈米結晶鑽石膜6 2之U V照射 ,將氫化表面予以氯化。 接著,於氨氣中,進行奈米結晶鑽石膜6 2之U V照射 ,將氫化表面予以胺化。 最後,使用琥珀酸,進行奈米結晶鑽石表面之羧化之後 ,進行活化處理而將DNA予以固定。 實施例9 茲將參照第6圖,以說明適用於有機電致發光元件的實 施例。 如第6圖所示,於作爲絕緣基板7 1之1 mm厚的玻璃基 板上,利用直流反應性濺鍍法進行IT Ο膜之成膜,將含有5 重量%錫之ITO作爲革巴使用’藉由導入99%氨(2〇sccm)與1% 氧(0.2 s c c m)之混合氣體的直流反應性濺鍍法,於室溫下,進 ί了陽極72之成膜。此時,膜厚作成200nm。 接著,陽極表面層7 3係於陽極7 2上,利用微波電漿 CVD而進行陽極表面層73之成膜。 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2sccm)、氫(流量1 8 s c c m) 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積%)Substrate temperature: 300 ° C Reaction pressure: 5Torr · MW Power: 500W. The microwave plasma CVD under the above conditions was used to form a nanocrystalline diamond film 1 2 2 with a thickness of 500 nm. At the end of film formation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 132 for 5 minutes. As a result, in this example, a nanocrystalline diamond film 132 similar to that obtained in Example 1 can be obtained. Example 3 -33- 200538574 As shown in FIG. Lie, the formation of a nanocrystalline diamond film 142 was performed on a polymer substrate M1 having a thickness of 1 mm using a microwave plasma CVD apparatus. The conditions of microwave plasma CVD are as follows: : Source gas: Methane (flow 2SCCm), Hydrogen (flow ISseem) Doping gas: Hydrogen sulfide (0.01 ~ 5% by volume relative to the source gas) Substrate temperature: 100 ° C Reaction pressure: 5Torr MW Power: 200W. By the microwave plasma CVD under the above conditions, a nanocrystalline diamond film 142 having a thickness of 300 nm was formed. At the end of film formation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 142 for 5 minutes. As a result, in this embodiment, a nanocrystalline diamond film 142 similar to that obtained in Example 1 can be obtained. Hereinafter, examples of various application examples of the nanocrystalline diamond film of the present invention will be described. Example 4 An example suitable for an electrochemical device will be described with reference to FIGS. 3A to 3E. As shown in FIG. 3A, a nanocrystalline diamond film 22 was formed on a glass substrate 21 having a thickness of 1 mm by using a microwave plasma CVD apparatus. The conditions of microwave plasma CVD are as follows: Source gas: A-Yuan (flow rate 2 sccm), hydrogen (flow rate 18 sccm) Doping gas: hydrogen sulfide (0.01 to 5 volumes relative to the source gas • 34- 200538574 substrate temperature · 4 0 0 C Reaction pressure: 5Torr MW Power: 500W. Film formation of a nanocrystalline diamond film 22 with a thickness of 1 / zm was performed by microwave plasma CVD under the above conditions. At the end of film formation, the nanocrystalline diamond film 22 was formed. The surface is subjected to a hydrogen plasma treatment for 5 minutes. Next, as shown in FIG. 3B, the hard mask layer 23 is a silicon nitride film using a high-frequency plasma CVD apparatus using a mixed gas of silicon methane, ammonia, and hydrogen. The conditions for high-frequency plasma CVD are as follows: Doping gas: hydrogen sulfide (0.01 to 5% by volume relative to the source gas) Substrate temperature: 200 ° C Reaction pressure: 1 Tori · MW Power: 1 80W. Film formation of silicon nitride with a film thickness of 0.2 // m was performed by high-frequency plasma CVD under the above conditions. Next, a photoresist (OFPR, manufactured by Tokyo Chemical Industry Co., Ltd.) was coated to a film thickness of 1.2 // m. Exposure and development with g-line to obtain photoresist pattern 24 (line width 5 // m Next, as shown in FIG. 3C, the photoresist pattern 24 is used as a mask, and the silicon nitride film forming the hard mask layer 23 is processed by RIE of C2F6 and hydrogen to obtain a hard mask layer 2 3 ′ The conditions of RIE are as follows: raw material gas: C2F6 (flow rate 32sccm), hydrogen (flow rate 3sccm) 200538574 substrate temperature: room temperature * reaction pressure: 0.03Torr, RF power: 300W. Next, as shown in FIG. 3D, Using a hard mask layer 23 'made of silicon nitride as a mask, the nanocrystalline diamond film 22 was processed by RIE containing oxygen as a main component to obtain an electrochemical element terminal portion 22'. The conditions of RIE are as follows : Raw material gas 〇2 (flow rate 100sccm) substrate temperature: room temperature φ reaction pressure: 0.03Torr RF power: 300W. Finally, as shown in FIG. 3E, the hard mask layer 22 ′ is etched and peeled, An electrochemical device was obtained. Example 5 An example suitable for an electrochemical electrode will be described with reference to FIG. 4A. As shown in FIG. 4A, a zigzag substrate 3 processed on a glass substrate having a thickness of 1 mm is shown in FIG. 4A. On both sides, using a microwave plasma CVD device, Film formation of nanocrystalline diamond film 32. The conditions of microwave plasma CVD are as follows: Source gas: methane (flow 2sccm), hydrogen (flow ISsccm) Doping gas: hydrogen sulfide (relative to the raw gas, 0 · 01 ~ 5 vol%) Substrate temperature: 300 ° C Reaction pressure: 5Torr -36- 200538574 MW Power: 500W. By the microwave plasma CVD under the above conditions, a nanocrystalline diamond film 32 with a film thickness of 5 // m was formed. At the end of film formation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 32 for 5 minutes to obtain a sensor electrode having a shape as shown in FIG. 4A. Example 6 An example suitable for an electrochemical electrode will be described with reference to FIG. 4B. As shown in FIG. 4B, both sides of a serpentine substrate 41, which has been processed on a polymer substrate having a thickness of 100 // m, as shown in FIG. Using a microwave plasma CVD apparatus, the nanocrystalline diamond film 42 was formed. The conditions of the microwave plasma C VD are as follows: Raw material gas: methane (flow rate 2 sccm), hydrogen (flow rate 18 sccm) Doping gas: hydrogen sulfide (relative to the raw material gas, 0.001 to 5% by volume) Substrate temperature: 200 ° C Reaction pressure · 5Torr MW Power: 500W. By the microwave plasma CVD under the above conditions, the formation of a nano-diamond diamond film 42 with a film thickness of 3 // m was performed. At the end of film formation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 42 for 5 minutes to obtain a sensor electrode having a shape as shown in FIG. 4B. Example 7 Reference will be made to FIG. 4C to illustrate an example of an electrode suitable for use in electrochemical electrodes.-37- 200538574 As shown in FIG. 4C, a zigzag substrate 5 having a thickness of 525 // m on a silicon substrate is processed. 1 On both sides, a nanocrystalline diamond film 52 was formed using a microwave plasma CVD apparatus. The conditions for microwave plasma CVD are as follows: Source gas: methane (flow 2Sccm), hydrogen (flow 18sccm) Doping gas: hydrogen sulfide (0.01 to 5 vol% relative to the source gas) Substrate temperature: 50 (TC Reaction pressure: 5Torr MW Power: 500W. The formation of a nanocrystalline diamond film 52 with a thickness of 5 / zm was performed by microwave plasma CVD under the above conditions. At the end of the film formation, the nanocrystalline diamond film 52 was formed. The surface was subjected to a hydrogen plasma treatment for 5 minutes to obtain a sensor electrode having a shape as shown in FIG. 4C. Example 8 Referring to FIG. 5, an example suitable for a DNA wafer will be described. For a glass having a thickness of 1 mm On the substrate 61, the nanocrystalline diamond film 62 was formed by using a microwave plasma CVD device. The conditions of the microwave plasma CVD are as follows: Source gas: A hospital (flow 2sccm), hydrogen (flow 18sccm) doping gas: Hydrogen sulfide (0.01 to 5% by volume relative to the source gas) Substrate temperature: 400 ° C Reaction pressure: 5Torr MW Power: 500W. Microwave plasma CVD under the above conditions was performed to produce nanometers with a film thickness of 1 ^ m 200538574 Film formation of crystalline diamond film 6 2 At the time of the irradiation, a hydrogen plasma treatment was performed on the surface of the nanocrystalline diamond film 62 for 5 minutes, and then, the hydrogenated surface of the nanocrystalline diamond film 62 was irradiated with chlorine in chlorine gas. Then, the hydrogenated surface was chlorinated. In the air, UV irradiation of the nanocrystalline diamond film 62 was performed to aminate the hydrogenated surface. Finally, the surface of the nanocrystalline diamond was carboxylated using succinic acid, and then activated to fix the DNA. Example 9 will be described with reference to FIG. 6 to explain an embodiment suitable for an organic electroluminescent device. As shown in FIG. 6, on a 1 mm thick glass substrate as an insulating substrate 71, a DC reactive sputtering method is used. The IT Ο film was formed, and ITO containing 5% by weight of tin was used as a leather. It was a direct current reactive sputtering method by introducing a mixed gas of 99% ammonia (20 sccm) and 1% oxygen (0.2 sccm). At room temperature, the anode 72 was formed. At this time, the film thickness was 200 nm. Next, the anode surface layer 7 3 was formed on the anode 72, and the formation of the anode surface layer 73 was performed by microwave plasma CVD. The conditions of microwave plasma CVD are as follows: : Methane (flow rate 2 sccm), hydrogen (flow rate 1 8 s c c m) Doping gas: hydrogen sulfide (0.01 to 5% by volume relative to the source gas)

基板溫度:300°C 反應壓力:5Torr MW 功率:500W。 200538574 藉由以上條件之微波電漿CVD,進行膜厚50nm之奈米 ♦ 結晶鑽石膜7 3的成膜。 - 接著,導入CF4氣體,利用具有平行平板型之電極的 RIE裝置,進行高頻電漿處理。此時之電漿處理條件設爲: CF4氣體35sccm、反應壓力〇.〇3Torr、高頻功率300W、處 理時間3分鐘。 藉此,於陽極表面層之奈米結晶鑽石膜7 3的表面,能 夠製作以氟終止末端的表面構造。此氟末端構造係利用X線 光電子分光法進行解析,能夠確認C-F構造。另外,得知利 β 用克耳文探針顯微鏡(KFM),量測氟末端表面之表面電位, 再經換算,可以得到6.5eV之高的表面工作函數。 接著,於奈米結晶鑽石膜7 3上,連續真空蒸鍍電洞輸 送層74、有機發光層75、電子輸送層76之後,最後,陰極 77係利用電子束蒸鍍法,進行A1薄膜之200nm厚度的成膜 ,完成如第6圖所示之有機電致發光元件。 實施例1 〇 茲將參照第7圖,以說明適用於爲有機電致受光元件之 ® 有機太陽能電池的實施例。 如第7圖所示,於作爲絕緣基板8 1之1 mm厚的玻璃基 板上,利用直流反應性濺鍍法進行IT Ο膜之成膜,將含有5 重量%錫之ITO作爲鞭使用,藉由導入99%氬(20sccm)與1% 氧(0.2SCCm)之混合氣體的直流反應性濺鍍法,進行陽極82 之成膜。此時,膜厚作成200nm。 接著,陽極表面層83係於陽極82上,利用微波電漿 -40- 200538574 CVD而進行奈米結晶鑽石膜83之成膜。 · 微波電漿CVD之條件如下: 、 原料氣體:甲院(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積%) 基板溫度:300°C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚50nm之奈米 結晶鑽石膜83的成膜。· 接著,導入CF4氣體,利用具有平行平板型之電極的 RIE裝置,進行高頻電漿處理。此時之電漿處理條件設爲: CF4氣體35SCCm、反應壓力0.03Torr、高頻功率300W、處 理時間3分鐘。 藉此,於陽極表面層之奈米結晶鑽石膜83的表面,會g 夠製作以氟終止末端的表面構造。此氟末端構造係利用X線 光電子分光法進行解析,能夠確認C-F構造。另外,得知利 用克耳文探針顯微鏡(KFM),量測氟末端表面之表面電位, © 再經換算,可以得到6.5eV之高的表面工作函數。 接著,於奈米結晶鑽石膜83上,連續真空蒸鍍p型有 機半導體層84、η型有機半導體層85之後,最後,陰極87 係利用電子束蒸鑛法,進行Α1薄膜之200nm厚度的成膜, 完成如第7圖所示之有機太陽能電池。 實施例1 1 茲將參照第8圖,以說明適用於有機薄膜電晶體的實施 •41- 200538574 例。 如第8圖所示,於作爲絕緣基板9 1之1 mm厚的玻璃基 板上,閘極92係利用濺鍍法進行厚度200nm之Ta薄膜的成 膜。 接著,利用光微影,將Ta薄膜形成圖案之後’利用以 矽甲烷與一氧化二氮作爲原料氣體之RF電漿CVD法,於基 板溫度300°C、反應壓力lTorr、RF功率180W之條件下, 進行3102膜93之成膜。膜厚作成l//m。 接著,源極94與汲極95係利用電子束蒸鍍法,於進行 A1薄膜之200nm厚度的成膜後,利用光微影法而形成圖案 〇 接著,源極表面層96與汲極表面層97係利用微波電漿 CVD裝置,進行奈米結晶鑽石膜96、97之成膜。 微波電漿CVD之條件如下: 原料氣體:甲烷(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0.01〜5體積%) 基板溫度:300°C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚50nm之奈米 結晶鑽石膜96、97的成膜。 接著,導入CF4氣體,利用具有平行平板型之電極的 RIE裝置,進行高頻電漿處理。此時之電漿處理條件設爲: CF4氣體35sccm、反應壓力〇.〇3Torr、高頻功率300W、處 200538574 理時間3分鐘。 藉此,於源極表面層及汲極表面層之奈米結晶鑽石膜 96、97的表面,能夠製作以氟終止末端的表面構造。此氟末 端構造係利用X線光電子分光法進行解析,能夠確認C-F 構造。另外,得知利用克耳文探針顯微鏡(KFM),量測氟末 端表面之表面電位,再經換算,可以得到6.5eV之高的表面 工作函數。 接著,將奈米結晶鑽石膜96、97之不要的部分予以去 除之後,利用印刷法,將P型有機半導體層98形成既定形 狀,完成如第8圖所示之有機薄膜電晶體。 實施例1 2 茲將參照第12A~12E圖,以說明適用於冷電子釋出元 件的實施例。 首先,如第1 2A圖所示,於預先形成射極佈線1 52之玻 璃基板1 5 1上,利用濺鍍法或真空蒸鍍法等,依序進行絕緣 層153與閘極154之成膜。接著,利用光微影法與反應性離 子蝕刻法(RIE),進行絕緣層153與閘極154之一部分的蝕 亥!1,直到露出射極佈線152爲止,進行圓形孔(閘孔)之開口 〇 接著,如第12B圖所示,利用斜方蒸鍍,僅於閘極154 上進行光阻剝離材155之形成。使用Al、MgO等作爲光阻 剝離材155之材料。 接著,如第1 2C圖所示,於基板1 5 1上,從其垂直之方 向,藉由一般之各向異性蒸鍍,進行射極156用之金屬材料 -43- 200538574 的蒸鍍。此時,隨著蒸鍍之進行,一旦閘孔之開口徑變窄, · 同時於射極佈線1 5 2上,錐形之射極1 5 6將自我整合地形成 -。蒸鍍進行直到最後閘孔關閉爲止。使用Mo、Ni等作爲射 極之材料。 接著,如第12D圖所示,藉由蝕刻,將光阻剝離材1 5 5 予以剝離,必要的話,進行閘極1 54之圖案形成。 最後,利用微波電漿CVD裝置,進行奈米結晶鑽石膜 157之成膜。 微波電漿CVD之條件如下: Φ 原料氣體:甲烷(流量2sccm)、氫(流量18sccm) 摻雜氣體:硫化氫(相對於原料氣體,爲0.0 1〜5體積%)Substrate temperature: 300 ° C Reaction pressure: 5Torr MW Power: 500W. 200538574 Microwave plasma CVD under the above conditions was performed to form a nanometer film with a thickness of 50 nm ♦ Crystal diamond film 73 was formed. -Next, the CF4 gas was introduced, and a high-frequency plasma treatment was performed using an RIE device having a parallel plate-type electrode. The plasma treatment conditions at this time were: CF4 gas 35 sccm, reaction pressure 0.03 Torr, high-frequency power 300 W, and processing time 3 minutes. With this, on the surface of the nanocrystalline diamond film 73 of the anode surface layer, a surface structure with fluorine-terminated ends can be produced. This fluorine terminal structure was analyzed by X-ray photoelectron spectroscopy, and the C-F structure was confirmed. In addition, it was learned that the beta of the surface of the fluorine terminal was measured with a Kerman probe microscope (KFM), and then converted to obtain a surface working function as high as 6.5 eV. Next, on the nanocrystalline diamond film 73, the hole transporting layer 74, the organic light emitting layer 75, and the electron transporting layer 76 were continuously vacuum-evaporated. Finally, the cathode 77 was 200 nm of the A1 thin film by the electron beam evaporation method. A thin film is formed to complete the organic electroluminescence device as shown in FIG. 6. Example 10 An example suitable for an organic solar cell that is an organic electroluminescent element will be described with reference to FIG. 7. As shown in FIG. 7, an IT 0 film was formed on a 1 mm thick glass substrate as an insulating substrate 81 by a DC reactive sputtering method, and ITO containing 5% by weight of tin was used as a whip. The anode 82 was formed by a direct current reactive sputtering method in which a mixed gas of 99% argon (20 sccm) and 1% oxygen (0.2 SCCm) was introduced. At this time, the film thickness was made 200 nm. Next, the anode surface layer 83 was formed on the anode 82, and the nanocrystalline diamond film 83 was formed by microwave plasma -40-200538574 CVD. · The conditions of microwave plasma CVD are as follows: 1. Raw material gas: Jiayuan (flow 2sccm), hydrogen (flow 18sccm) Doping gas: hydrogen sulfide (0.01 ~ 5% by volume relative to the raw gas) Substrate temperature: 300 ° C Reaction pressure: 5Torr MW Power: 500W. By the microwave plasma CVD under the above conditions, a nanocrystalline diamond film 83 with a thickness of 50 nm was formed. · Next, a CF4 gas was introduced, and a high-frequency plasma treatment was performed using an RIE device having a parallel plate-type electrode. The plasma treatment conditions at this time are: CF4 gas 35 SCCm, reaction pressure 0.03 Torr, high-frequency power 300W, and processing time 3 minutes. Thereby, on the surface of the nanocrystalline diamond film 83 on the anode surface layer, a surface structure with fluorine-terminated ends can be produced. This fluorine terminal structure was analyzed by X-ray photoelectron spectroscopy, and the C-F structure was confirmed. In addition, it was learned that the surface potential of the surface of the fluorine end was measured using a Kerman probe microscope (KFM). © After conversion, a surface working function as high as 6.5 eV can be obtained. Next, on the nanocrystalline diamond film 83, the p-type organic semiconductor layer 84 and the n-type organic semiconductor layer 85 were continuously vacuum-evaporated. Finally, the cathode 87 was formed into a 200-nm-thick A1 film by the electron beam evaporation method. Film to complete the organic solar cell as shown in FIG. Example 11 11 Reference will be made to FIG. 8 to explain the implementation of an organic thin film transistor. 41-200538574 examples. As shown in FIG. 8, on a glass substrate 1 mm thick as the insulating substrate 91, the gate electrode 92 is a Ta thin film having a thickness of 200 nm by a sputtering method. Next, using photolithography to pattern the Ta thin film, the RF plasma CVD method using silicon methane and nitrous oxide as raw material gases was performed at a substrate temperature of 300 ° C, a reaction pressure of 1 Torr, and an RF power of 180W. The film formation of the 3102 film 93 was performed. The film thickness was made 1 // m. Next, the source 94 and the drain 95 are formed by using an electron beam evaporation method to form a 200-nm-thick A1 thin film, and then a photolithography method is used to form a pattern. Next, the source surface layer 96 and the drain surface layer The 97 series uses a microwave plasma CVD apparatus to form nanocrystalline diamond films 96 and 97. The conditions for microwave plasma CVD are as follows: Source gas: methane (flow 2sccm), hydrogen (flow 18sccm) Doping gas: hydrogen sulfide (0.01 to 5 vol% relative to the source gas) Substrate temperature: 300 ° C Reaction pressure: 5Torr MW Power: 500W. By the microwave plasma CVD under the above conditions, nanocrystalline diamond films 96 and 97 with a film thickness of 50 nm were formed. Next, a CF4 gas was introduced, and a high-frequency plasma treatment was performed using an RIE device having a parallel plate-type electrode. The plasma treatment conditions at this time were set as follows: CF4 gas 35 sccm, reaction pressure 0.03 Torr, high-frequency power 300W, and processing time 200538574 for 3 minutes. Thereby, on the surfaces of the nanocrystalline diamond films 96 and 97 of the source surface layer and the drain surface layer, a surface structure terminated with fluorine can be produced. This fluorine terminal structure was analyzed by X-ray photoelectron spectroscopy to confirm the C-F structure. In addition, it was learned that the surface potential of the fluorine end surface was measured using a Kerman probe microscope (KFM), and after conversion, a surface work function as high as 6.5 eV was obtained. Next, the unnecessary portions of the nanocrystalline diamond films 96 and 97 are removed, and then the P-type organic semiconductor layer 98 is formed into a predetermined shape by a printing method to complete an organic thin film transistor as shown in FIG. Embodiment 1 2 An embodiment suitable for a cold electron release element will be described with reference to FIGS. 12A to 12E. First, as shown in FIG. 12A, the insulating layer 153 and the gate electrode 154 are sequentially formed on the glass substrate 151 in which the emitter wiring 152 is formed in advance by a sputtering method or a vacuum evaporation method. . Next, a part of the insulating layer 153 and the gate electrode 154 is etched by the photolithography method and the reactive ion etching method (RIE) until the emitter wiring 152 is exposed, and a circular hole (gate hole) is formed. Opening 〇 Next, as shown in FIG. 12B, the photoresist peeling material 155 is formed only on the gate electrode 154 by oblique vapor deposition. As the material of the photoresist release material 155, Al, MgO, or the like is used. Next, as shown in FIG. 12C, a metal material -43-200538574 for the emitter 156 is vapor-deposited on the substrate 151 by a normal anisotropic vapor deposition from the vertical direction. At this time, as the vapor deposition proceeds, once the opening diameter of the gate hole becomes narrower, at the same time on the emitter wiring 1 5 2, the tapered emitter 1 5 6 will form a self-integrated-. The evaporation is performed until the last gate hole is closed. Mo, Ni, etc. are used as the material of the emitter. Next, as shown in FIG. 12D, the photoresist peeling material 1 5 5 is peeled by etching, and if necessary, the gate electrode 154 is patterned. Finally, the formation of the nanocrystalline diamond film 157 was performed using a microwave plasma CVD apparatus. The conditions for microwave plasma CVD are as follows: Φ Raw material gas: methane (flow 2sccm), hydrogen (flow 18sccm) Doping gas: hydrogen sulfide (0.01 to 5% by volume relative to the raw gas)

基板溫度:300°C 反應壓力:5Torr MW 功率:500W。 藉由以上條件之微波電漿CVD,進行膜厚30ηπι之奈米 結晶鑽石膜1 5 7的成膜。於成膜結束後,進行5分鐘氫電漿 處理。 春 藉此,於射極表面之奈米結晶鑽石表面,能夠製作以氫 終止末端的表面構造。此氫末端構造係利用FT - IR法進行解 析,能夠確認C -H構造。另外,得知利用克耳文探針顯微鏡 (KFM ),量測氫末端表面之表面電位,再經換算,可以得到 2.8eV之高的表面工作函數。 接著,將奈米結晶鑽石膜之不要的部分予以去除之後, 完成如第12E圖所示之冷電子釋出元件。 -44- 200538574 實施例1 3 * 茲將參照第1 0圖,以說明適用於燃料電池用電極觸媒 -的實施例。 例如,陰極1 1 0係於例如纖維絲1 0 // m、厚度1 00 // m 之碳紙表面,根據本發明方法而進行奈米結晶鑽石膜1 1 2之 成膜。此時之奈米結晶鑽石粒子之結晶粒子的粒徑平均約爲 1〜2nm,最大爲形成5nm以下之粒子。 利用浸漬法,將鉑微粒載持於表面已析出此奈米結晶鑽 石之電極材料上。具體而言,藉由以碳酸氫鈉調整後的鹼水 肇 溶液慢慢滴入氯鉑酸(H2PtCl6)水溶液中,於奈米結晶鑽石膜 1 12之表面析出鉑之氫氧化物(Pt(OH)4)微粒。將此電極材料 置於氫氣流中、100〜7 0(TC下進行還原之後,作爲陰極11〇 使用。 同樣地,於纖維絲1 0 // m、厚度1 00 # m之碳紙表面, 陽極111也使用使奈米結晶鑽石膜113生成的電極材料。利 用浸漬法,將30wt%Pt-Rh合金所構成的微粒載持於奈米結 晶鑽石膜1 1 3之表面,作成陽極1 1 1。 Φ 電解質膜1 I4係使用具有磺酸之氟系樹脂,例如,Dupont 公司製之Nafion 117等(例如,膜厚150〜200// m),利用具 有該奈米結晶鑽石膜112與113之陰極110與陽極ill夾住 電解質膜1 14,於100 °C、100氣壓之壓力下予以一體化,作 成如第1 0圖所示之燃料電池單元。 將甲醇與水之混合溶液燃料供應至所得到的燃料電池( 例如,電極面積1 0cm2之情形)之陽極1 1 1,並將乾燥空氣供 •45- 200538574 應至陰極1 1 0,作爲燃料電池而進行發電。發電溫度設爲60 · C ’其結果,可以得到70mW/ cm2之輸出功率。發電溫度 _ 7 0°C之情形,可以得到1 〇〇mw/ cm2之輸出功率。 實施例1 4 說明適用於觸媒的實施例。 首先,進行溶液之調製,其含有作爲觸媒之金屬的金屬 鹽與金屬鹽的溶劑。接著,於此溶液中,將利用相同於上述 方法所得到的奈米結晶鑽石膜進行浸漬。浸漬適當時間之後 ,於溶液中浸漬奈米結晶鑽石膜之狀態下,使溶劑蒸發。藉 鲁 此,可以得到於奈米結晶鑽石膜表面上,觸媒金屬原子已高 分散度附著之觸媒先驅物。 接著,於氮氣等不活性氣體中,或大氣中,進行觸媒先. 驅物之煅燒。例如,於大氣中之情形,最好於400〜800 °C, 煅燒3〜5小時之條件。煅燒溫度若較400t爲低,將無法完 全去除所殘留的硝酸等不純物,觸媒活性未被發現或降低。 也能夠使煅燒溫度上升至800°C左右。然而,不宜超過800 °c之溫度,因爲奈米結晶鑽石膜與觸媒金屬進行反應,形成 ® 由觸媒金屬與碳而成的石墨,將有喪失觸媒活性之疑慮。 接著,爲了賦予觸媒活性而進行還原處理。還原處理係 於還原氣體中進行的’例如’可以於氫等還原氣體之氣流中 進行。還原溫度較宜爲300〜500°C,若低於300°C,將無法 充分還原金屬,另外’也不宜於800 °c以上之高的還原溫度 ,因爲奈米結晶鑽石膜之一部分將與觸媒金屬進行反應’形 成由觸媒金屬與碳而成的石墨’將有喪失觸媒活性之疑慮。 -46- 200538574 可以使用鎳、鈷、鐵、釕、铑、鈀、銥、鈾之任一種,· 或此等之組合作爲觸媒。 . 具體而言,使用約8nm結晶粒徑之奈米結晶鑽石膜作爲 載體,使用鎳作爲觸媒金屬,進行如下方式而製作載持金屬 之奈米結晶鑽石觸媒。 於硝酸鎳之飽和水溶液中,添加既定量之奈米結晶鑽石 膜,於放置一夜之後,使水蒸發而進行乾燥。於乾燥後,於 400〜5 00°C之氮氣中,進行觸媒先驅物之煅燒,去除硝酸與 所殘留的硝酸鎳,得到載持金屬之奈米結晶鑽石觸媒。 馨 【圖式簡單說明】 第1圖係顯示有關本發明之一實施態樣的奈米結晶鑽 石膜的剖面圖。 第2A圖係顯示有關本發明之一實施態樣的電化學元件 之電極終端主要部分的斜視圖。第2B圖係顯示有關本發明 之一實施態樣的電化學元件之電極圖案的斜視圖。 第3A~3E圖係顯示有關本發明之一實施態樣的電化學 元件之電極終端主要部分之步驟的剖面圖。 β 第4A~4C圖係顯示表面被覆奈米結晶鑽石膜的電化學 電極剖面之圖形。 第5圖係顯示有關本發明之一應用例之DNA晶片的剖 面圖。 第6圖係顯示有關本發明之一應用例之有_電致發光 元件的剖面圖。 第7圖係顯示有關本發明之一應用例之太陽能電池的 -47- 200538574 剖面圖。 第8圖係顯示有關本發明之一應用例之有機薄膜電晶 體的剖面圖。 第9圖係顯示有關本發明之一應用例之冷電子釋出元 件的剖面圖。 第1 0圖係顯示有關本發明之一應用例之燃料電池單元 的剖面圖。Substrate temperature: 300 ° C Reaction pressure: 5Torr MW Power: 500W. By the microwave plasma CVD under the above conditions, a nanocrystalline diamond film 1 57 having a thickness of 30 nm was formed. After the film formation was completed, a hydrogen plasma treatment was performed for 5 minutes. In this way, on the surface of the nanocrystalline diamond on the surface of the emitter, a surface structure terminated with hydrogen can be produced. This hydrogen terminal structure was analyzed by the FT-IR method, and the C-H structure was confirmed. In addition, it was learned that the surface potential of the hydrogen terminal surface was measured using a Kerman probe microscope (KFM), and then converted to obtain a surface working function as high as 2.8 eV. Next, the unnecessary part of the nanocrystalline diamond film is removed, and the cold electron emission element shown in FIG. 12E is completed. -44- 200538574 Embodiment 1 3 * An embodiment suitable for an electrode catalyst for a fuel cell will be described with reference to FIG. 10. For example, the cathode 1 10 is formed on the surface of a carbon paper such as a fiber filament 10 / m and a thickness 100 / m, and the nanocrystalline diamond film 1 1 2 is formed according to the method of the present invention. At this time, the average size of the crystalline particles of the nanocrystalline diamond particles is about 1 to 2 nm, and the maximum size is 5 nm or less. The platinum particles are supported on the electrode material on which nanocrystalline diamond has been deposited on the surface by the dipping method. Specifically, the alkaline hydroxide solution adjusted with sodium bicarbonate was slowly dropped into an aqueous solution of chloroplatinic acid (H2PtCl6) to precipitate platinum hydroxide (Pt (OH) on the surface of the nanocrystalline diamond film 112. 4) Particles. This electrode material was placed in a stream of hydrogen at 100 to 70 ° C, and then used as the cathode 11 after reduction. Similarly, on the surface of a carbon paper with a thickness of 10 // m and a thickness of 100 #m, the anode 111 also uses an electrode material formed from the nanocrystalline diamond film 113. By the dipping method, fine particles composed of 30 wt% Pt-Rh alloy are carried on the surface of the nanocrystalline diamond film 1 1 3 to form an anode 1 1 1. Φ Electrolyte membrane 1 I4 is a fluorinated resin with sulfonic acid, for example, Nafion 117 made by Dupont (for example, film thickness 150 ~ 200 // m), and cathodes with the nanocrystalline diamond films 112 and 113 are used. 110 and the anode ill sandwich the electrolyte membrane 114 and integrated at a pressure of 100 ° C and 100 atmospheres to form a fuel cell unit as shown in Fig. 10. A mixed solution of methanol and water was supplied to the obtained fuel. Fuel cell (for example, in the case of an electrode area of 10 cm2), the anode 1 1 1 and dry air supply • 45- 200538574 to the cathode 1 1 0 to generate electricity as a fuel cell. The power generation temperature is set to 60 · C ' As a result, an output power of 70mW / cm2 can be obtained In the case of a power generation temperature of _70 ° C, an output power of 1000 mw / cm2 can be obtained. Example 1 4 An example suitable for a catalyst will be described. First, a solution is prepared, which contains a metal as a catalyst. A metal salt and a solvent for the metal salt. Next, in this solution, the nanocrystalline diamond film obtained by the same method as above is impregnated. After being immersed for a proper time, the nanocrystalline diamond film is immersed in the solution. The solvent is evaporated. By doing so, it is possible to obtain a catalyst precursor on the surface of the nanocrystalline diamond film where the catalyst metal atoms have been highly dispersed. Next, the catalyst is exposed to an inert gas such as nitrogen or the atmosphere. The calcination of the precursor. For example, in the atmosphere, it is best to calcine at 400 ~ 800 ° C for 3 to 5 hours. If the calcination temperature is lower than 400t, the residual nitric acid and the like will not be completely removed. Impurities, catalyst activity is not found or reduced. It can also increase the calcination temperature to about 800 ° C. However, it should not exceed 800 ° c, because the nanocrystalline diamond film and catalyst metal Reaction to form ® graphite made of catalyst metal and carbon may cause loss of catalyst activity. Next, reduction treatment is performed to give catalyst activity. Reduction treatment is performed in a reducing gas, for example, ' It is carried out in a gas stream of reducing gas such as hydrogen. The reduction temperature is preferably 300 ~ 500 ° C. If it is lower than 300 ° C, the metal cannot be fully reduced. In addition, it is not suitable for a reduction temperature higher than 800 ° c because Nai A part of the rice crystalline diamond film will react with the catalyst metal to 'form graphite formed from the catalyst metal and carbon', and there is a concern that the catalyst activity will be lost. -46- 200538574 Any of nickel, cobalt, iron, ruthenium, rhodium, palladium, iridium, uranium, or a combination of these can be used as a catalyst. Specifically, using a nanocrystalline diamond film having a crystal grain size of about 8 nm as a carrier and nickel as a catalyst metal, a metal-supported nanocrystalline diamond catalyst was produced as follows. To a saturated aqueous solution of nickel nitrate, a predetermined amount of nanocrystalline diamond film was added, and after standing overnight, the water was evaporated to dry. After drying, the catalyst precursors were calcined in nitrogen at 400 ~ 500 ° C to remove nitric acid and the residual nickel nitrate to obtain metal-supported nanocrystalline diamond catalysts. Xin [Brief Description of the Drawings] Fig. 1 is a sectional view showing a nanocrystalline diamond film according to an embodiment of the present invention. Fig. 2A is a perspective view showing a main part of an electrode terminal of an electrochemical device according to an embodiment of the present invention. Fig. 2B is a perspective view showing an electrode pattern of an electrochemical device according to an embodiment of the present invention. Figures 3A to 3E are cross-sectional views showing the steps of a main part of an electrode terminal of an electrochemical element according to an embodiment of the present invention. β Figures 4A ~ 4C are graphs showing the cross section of an electrochemical electrode whose surface is covered with a nanocrystalline diamond film. Fig. 5 is a sectional view showing a DNA wafer according to an application example of the present invention. Fig. 6 is a cross-sectional view showing an electroluminescent device according to an application example of the present invention. Fig. 7 is a -47-200538574 cross-sectional view showing a solar cell according to an application example of the present invention. Fig. 8 is a cross-sectional view showing an organic thin film transistor according to an application example of the present invention. Fig. 9 is a cross-sectional view showing a cold electron emission element according to an application example of the present invention. Fig. 10 is a sectional view showing a fuel cell unit according to an application example of the present invention.

第1 1 A〜1 1C圖係顯示有關本發明之一實施態樣之奈米 結晶鑽石膜之步驟的剖面圖。 第12A〜12E圖係顯示有關本發明之一應用例之冷電子 釋出元件之步驟的剖面圖。Figures 1 1 A to 1C are cross-sectional views showing the steps of a nanocrystalline diamond film according to an embodiment of the present invention. Figures 12A to 12E are cross-sectional views showing the steps of a cold-electron emitting element according to an application example of the present invention.

7C 件符號 說 明 1 支 撐 基 板 2 奈 米 結 晶 鑽 石 膜 11 基 材 12 鑽 石 膜 2 1 基 材 22 奈 米 結 晶 鑽 石 膜 23 硬 質 遮 罩 層 24 光 阻 圖 案 3 1 基 材 32 奈 米 結 晶 鑽 石 膜 41 基 材 42 奈 米 結 晶 鑽 石 膜 -48 - 200538574 5 1 基材 52 奈米結晶鑽石膜 6 1 基板 62 奈米結晶鑽石膜 7 1 基板 72 陽極 7 3 陽極表面層 74 電洞輸送層 75 有機發光層 76 電子輸送層 77 陰極 8 1 絕緣基板 82 陽極 83 陽極表面層 84 P型有機半導體層 85 η型有機半導體層 86 陰極 9 1 絕緣基板 92 閘極 93 閘絕緣膜 94 源極 95 汲極 96 源極表面層 97 汲極表面層 98 Ρ型有機半導體層 -49- 200538574 101 絕 緣 基 板 102 射 極 佈 線 103 絕 緣 層 104 閘 極 106 射 極 107 奈 米 結 晶 鑽 石 膜 1 10 陰 極 111 陽 極 1 12 奈 米 結 晶 鑽 石 膜 1 13 奈 米 結 晶 鑽 石 膜 1 14 電 解 質 膜 1 17 N2 ifi on 121 單 晶 矽 基 板 122 奈 米 結 晶 鑽 石 膜 13 1 玻 璃 基 板 132 奈 米 結 晶 鑽 石 膜 14 1 局 分 子 基 板 142 奈 米 結 晶 鑽 石 膜 151 玻 璃 基 板 152 射 極 佈 線 153 絕 緣 層 154 閘 極 155 光 阻 剝 離 材 156 射 極 157 奈 米 結 晶 鑽 石 膜Description of 7C symbols 1 Support substrate 2 Nano crystal diamond film 11 Substrate 12 Diamond film 2 1 Substrate 22 Nano crystal diamond film 23 Hard mask layer 24 Photoresist pattern 3 1 Substrate 32 Nano crystal diamond film 41 base Material 42 Nanocrystalline diamond film -48-200538574 5 1 Substrate 52 Nanocrystalline diamond film 6 1 Substrate 62 Nanocrystalline diamond film 7 1 Substrate 72 Anode 7 3 Anode surface layer 74 Hole transport layer 75 Organic light emitting layer 76 Electron transport layer 77 Cathode 8 1 Insulating substrate 82 Anode 83 Anode surface layer 84 P-type organic semiconductor layer 85 η-type organic semiconductor layer 86 Cathode 9 1 Insulating substrate 92 Gate 93 Gate insulating film 94 Source 95 Drain 96 Source surface Layer 97 Drain surface layer 98 P-type organic semiconductor layer-49- 200538574 101 Insulating substrate 102 Emitter wiring 103 Insulating layer 104 Gate 106 Emitter 107 Nanocrystalline diamond film 1 10 Cathode 111 Anode 1 12 Nanocrystalline diamond film 1 13 Crystal diamond film 1 14 Electrolyte film 1 17 N2 ifi on 121 Monocrystalline silicon substrate 122 Nano crystal diamond film 13 1 Glass substrate 132 Nano crystal diamond film 14 1 Molecular molecular substrate 142 Nano crystal diamond film 151 Glass substrate 152 Shot Electrode wiring 153 Insulation layer 154 Gate 155 Photoresistance peeling material 156 Emitter 157 Nanocrystalline diamond film

-50--50-

Claims (1)

200538574 十、申請專利範圍: 1. 一種奈米結晶鑽石膜’其特徵爲於基體上’含有合成的結 晶粒徑爲1 nm以上 '小於1 000nm之奈米結晶鑽石爲主成 分。 2. 如申請專利範圍第1項之奈米結晶鑽石膜,其具有1 〇nm 以下之表面平坦度。 3 ·如申請專利範圍第1項之奈米結晶鑽石膜,其中於膜中摻 雜不純物。 4.如申請專利範圍第1項之奈米結晶鑽石膜,其中該不純物 係由硫、硼、氧、憐、氦與砂而成的群中所選出的至少一 種。 5 .如申請專利範圍第1項之奈米結晶鑽石膜,其中該基體係 由矽基板、石英基板、陶瓷基板、金屬基板、玻璃基板與 高分子基板而成的群中所選出的至少一種。 6 .如申請專利範圍第1項之奈米結晶鑽石膜,其中膜之表面 係以供電子基終止末端。 7 .如申請專利範圍第1項之奈米結晶鑽石膜,其中膜之表面 係以拉電子基終止末端。 8 · —種電化學元件,其具有一對以上電極,利用電極表面之 氧化還原k應,用以進行被測定物質種類之檢測,並量測 其濃度’其中至少一個電極具備:基體,與於其表面上形 成的如申請專利範圍第1至7項中任一項之奈米結晶鑽石 膜。 9 ·如申請專利範圍第8項之電化學元件,其中該奈米結晶鑽 -51 - 200538574 石膜於基體上構成已形成圖案狀之數個微小電極。 · 1 0 .如申請專利範圍第9項之電化學元件,其中該數個微小電 -極爲据齒形。 1 1 . 一種電化學電極,係利用電化學反應,爲了進行液體或氣 體之電分解,而使用的陽極與陰極之至少一者的電極’其 中該電化學電極具備:基體,與形成於此基體表面的如申 請專利範圍第1至7項中任一項之奈米結晶鑽石膜。 1 2 ·如申請專利範圍第1 1項之電化學電極,其中該基體係一 種於表面具有凹凸形狀的矽基板。 0 1 3 ·如申請專利範圍第1 1項之電化學電極,其中該基體具有 矩形、楔形或彎曲的表面形狀。 14.如申請專利範圍第11項之電化學電極,其中該奈米結晶 鑽石膜係於基體上,構成已形成圖案狀之數個微小電極。 1 5 .如申請專利範圍第1 i項之電化學電極,其中該數個微小 電極爲鋸齒形的。 16· —種DNA晶片,其具備: 基體; ® 如申請專利範圍第1至7項中任一項之奈米結晶鑽石 膜,其形成於基體上,具有爲了將DNA載持於表面的官 能基;及 DNA探針,載持於該奈米結晶鑽石膜。 1 7 ·如申請專利範圍第1 6項之D N A晶片,其中該官能基係由 羥基、胺基、羧基、氰基、硫酸基與硝基而成的群中所選 出之至少一種。 -52- 200538574 18· —種有機電致發光元件,其特徵爲於基體上,依序層疊第 《 1電極、電洞輸送層、有機發光層、電子輸送層與第2電 _ 極層而成的,其中該第1電極與第2電極之至少一者爲如 申請專利範圍第1至7項中任一項之奈米結晶鑽石膜。 19. 一種有機電致發光元件,其特徵爲於於基體上,依序層疊 第1電極、電洞輸送層、有機發光層、電子輸送層與第2 電極層而成的,其中該第1電極與第2電極之至少一者, 連接於該電洞輸送層或電子輸送層而如形成如申請專利 範圍第1至7項中任一項之奈米結晶鑽石膜。 鲁 20. 如申請專利範圍第1 9項之有機電致發光元件,其中連接 該電洞輸送層的該奈米結晶鑽石膜的表面,具有由〇、F 與Cl而成的群中所選出的拉電子基。 2 1 ·如申請專利範圍第1 9項之有機電致發光元件,其中連接 該電子輸送層的該奈米結晶鑽石膜的表面,具有由OH與 Η而成的群中所選出的供電子基。 22· —種有機電致受光元件,其特徵爲於基體上,依序層疊第 1電極、第1導電型有機半導體層、第2導電型有機半導 β 體層與第2電極而成的,其中該第1電極與第2電極之至 少一者爲如申請專利範圍第1至7項中任一項之奈米結晶 鑽石膜。 23· —種有機電致受光元件,其特徵爲於基體上,依序層疊第 1電極、第1導電型有機半導體層 '第2導電型有機半導 體層與第2電極而成的,其中該第1電極與第2電極之至 少一者,連接於該第1導電型有機半導體層或第2導電型 -53- 200538574 有機半導體層而形成如申請專利範圍第i至7項中任一項 -之奈米結晶鑽石膜。 . 24.如申請專利範圍第23項之有機電致受光元件,其中連接 於該第1導電型有機半導體層的該奈米結晶鑽石膜的表 面,具有由〇、F與C1而成的群中所選出的拉電子基。 25 ·如申請專利範圍第23項之有機電致受光元件,其中連接 該第2導電型有機半導體層的該奈米結晶鑽石膜的表面 ,具有由OH與Η而成的群中所選出的拉電子基。 26. —種有機薄膜電晶體,其具備: 鲁 基板; 閘極,形成於此基體上; 閘絕緣膜,覆蓋此閘極; 源極與汲極,於此閘絕緣膜上,隔著間隙而形成的; 及 有機半導體層,覆蓋此等源極與汲極之間隔; 其中於該源極與汲極之至少一者的表面,形成如申請 專利範圍第1至7項中任一項之奈米結晶鑽石膜。 ® 27. 如申請專利範圍第26項之有機薄膜電晶體,其中該奈米 結晶鑽石膜的表面係具有由0、F與C1而成的群中所選出 的拉電子基,或是由ΟΗ與Η而成的群中所選出的供電子 基。 28. —種冷電子釋出元件,其具備: 基體, 導電層,形成於此基體上; -54- 200538574 絕緣層與閘極,形成於此導電層上且具有開口部;及 * 射極,形成於該開口部內所露出的該導電層上; · 其中於該射極之表面’形成如申請專利範圍第1至7 項中任一項之奈米結晶鑽石膜。 29 ·如申請專利範圍第2 8項之冷電子釋出元件,其中該奈米 結晶鑽石膜之表面係由〇、F與C1而成的群中所選出的拉 電子基。 3〇· —種燃料電池,其具備:第1電極、第2電極與被此等第 1電極與第2電極所夾住的電解質層,其中於連接該第1 &lt;1 電極與第2電極之至少一者的該電解質之側面,形成載持 觸媒之如申請專利範圍第1至7項中任一項之奈米結晶鑽 石膜。 3 1 · —種載持金屬之奈米結晶鑽石觸媒,其具備: 載體,由如申請專利範圍第1至7項中任一項之奈米 結晶鑽石膜而成的;及 觸媒金屬粒子,載持於此載體的nm數量級粒徑的觸 媒金屬粒子。 鲁 32. —種奈米結晶鑽石膜之製造方法,其特徵爲於基體上,利 用含有碳氫化合物與氫氣之原料氣體的電漿CVD法,於 電漿域外進行成膜。 33· —種奈米結晶鑽石膜之製造方法,其特徵爲於基體上,利 用含有碳氫化合物與氫氣之原料氣體的電漿CVD法,於 電漿域外’並且於原料氣流之下游設置基板而進行成膜。 3 4.如申請專利範圍第32項之奈米結晶鑽石膜之製造方法, -55- 200538574 其中於該原料氣體中,添加由硫化氫、乙硼烷、二氧化碳 · 與氧而成的群中所選出的至少一種添加氣體。 . 3 5 .如申請專利範圍第3 2項之奈米結晶鑽石膜之製造方法, 其中於2 0 °C以上、9 0 0 °C以下之基體溫度進行成膜。 36.如申請專利範圍第32項之奈米結晶鑽石膜之製造方法, 其中藉由微波電漿CVD法進行成膜。 3 7 ·如申請專利範圍第3 2項之奈米結晶鑽石膜之製造方法, 其中該基體係矽基板、石英基板、陶瓷基板、金屬基板、 玻璃基板與高分子基板之至少一種。 參 3 8 ·如申請專利範圍第3 2項之奈米結晶鑽石膜之製造方法, 其中於已成膜的奈米結晶鑽石膜上’利用微波或高頻,進 行氫電漿處理。 3 9 ·如申請專利範圍第3 2項之奈米結晶鑽石膜之製造方法, 其中於已成膜的奈米結晶鑽石膜上,利用微波或高頻,使 用氟系或氯系氣體而進行氫電漿處理。 40· —種電化學元件之製造方法,該電化學元件係具有一對以 上電極,利用電極表面之氧化還原反應’用於檢測被測定 ® 物質之種類,並量測其濃度;至少一個電極具備基體與形 成於其表面之奈米結晶鑽石膜;及利用如申請專利範圍第 3 2至3 9項中任一項之方法而形成的。 4 1 .如申請專利範圍第40項之電化學元件之製造方法,其中 該基板爲玻璃基板或高分子基板,該奈米結晶鑽石膜之成 膜溫度爲500°C以下。 4 2 ·如申請專利範圍第4〇項之電化學元件之製造方法,其中 -56- 200538574 包含利用微影法而進行於該基體上所形成的奈米結晶鑽 〜 石膜之圖案形成的步驟。 . 4 3 . —種電化學電極之製造方法,係利用電化學反應,爲了進 行液體或固體之電分解而使用的陰極與陽極之至少一者 的電極,其具備:基體,與於此基體表面所形成的奈米結 晶鑽石膜;及該奈米結晶鑽石膜係利用如申請專利範圍第 3 2至3 9項中任一項之方法而形成的。 44·如申請專利範圍第43項之電化學電極之製造方法,其中 該基體爲一種玻璃基板或高分子基板,該奈米結晶鑽石膜 春 之成膜溫度爲500°C以下。 , 45·如申請專利範圍第43項之電化學電極之製造方法,其中 包含利用微影法,.進行已形成於該基體上的奈米結晶鑽石 膜之圖案形成的步驟。 46. —種DNA晶片的製造方法,其具備: 於基體上,利用如申請專利範圍第3 2至3 9項中任一 項之方法,形成奈米結晶鑽石膜的步驟; 處理該奈米結晶鑽石膜之表面而賦予爲了載持DNA # 探針之官能基的步驟;及 使DNA探針載持於該奈米結晶鑽石膜之表面的步驟 〇 47·如申請專利範圍第46項之DNA晶片的製造方法,其中該 基板爲一種玻璃基板或高分子基板,該奈米結晶鑽石膜之 成膜溫度爲500°C以下。 4 8 .如申請專利範圍第4 6項之D N A晶片的製造方法,其中包 -57- 200538574 含利用微影法,進行已形成於該基體上的奈米結晶鑽石膜 之圖案形成的步驟。 # 49· 一種有機薄膜電晶體的製造方法,其爲製造具備: 基體; 閘極,形成於此基體上; 閘極絕緣膜,覆蓋此閘極; 源極與汲極,於此閘極絕緣膜上,隔著間隙而形成的 ;及 有機半導體層,覆蓋此等之源極與汲極的間隔; 鲁 的有機薄膜電晶體之方法,其具有利用如申請專利範 圍第32至39項中任一項之方法,於該源極與汲極之至少 一者的表面形成奈米結晶鑽石膜的步驟。 50·—種冷電子釋出元件的製造方法,其爲製造具備: 基體; 導電層,形成於此基體上; 絕緣層與閘極,形成於此導電層上,並具有開口部; 及 · 射極,形成於該開口部內所露出的該導電層上; 的冷電子釋出元件之方法,其具有利用如申請專利範 圍第32至39項中任一項之方法,於該射極表面形成奈米 結晶鑽石膜的步驟。 5 1 · —種燃料電池的製造方法,其爲製造具備··第i電極、第 2電極與被此等第1電極與第2電極所夾住的電解質層的 燃料電池之方法,其具有利用如申請專利範圍第3 2至3 9 -58· 200538574 項中任一項之方法,於連接該第1電極與第2電極之至少 . 一者的該電解質之側面,形成奈米結晶鑽石膜的步驟;及 . 使觸媒載持於該奈米結晶鑽石膜的步驟。 5 2. —種載持金屬之奈米結晶鑽石觸媒的製造方法,其具有藉 由利用如申請專利範圍第32至39項中任一項之方法,於 基體上形成奈米結晶鑽石膜的步驟;及使nm數量級粒徑 之觸媒金屬粒子載持於此奈米結晶鑽石膜的步驟。 53·—種有機電致發光元件之製造方法,其具有於基體上依序 層疊第1電極、有機發光層與第2電極的步驟;而且形成 鲁 該第1電極與第2電極之至少一者的步驟係爲利用如申請 專利範圍第3 2至3 9項中任一項之方法而形成奈米結晶鑽 石膜的步驟。 54·—種有機電致發光元件之製造方法,其具有於基體上依序 層疊第1電極、有機發光層與第2電極的步驟;而且於該 第1電極與第2電極之至少一者,利用如申請專利範圍第 32至39項中任一項之方法,形成奈米結晶鑽石膜的步驟 55·—種有機電致受光元件之製造方法,其具有於基體上依序 層疊第1電極、第1導電型有機半導體層、第2導電型有 機半導體層與第2電極的步驟;而且形成該第1電極與第 2電極之至少一者的步驟爲利用如申請專利範圍第3 2至 3 9項中任一項之方法而形成奈米結晶鑽石膜的步驟。 56.—種有機電致受光元件之製造方法,其具有於基體上依序 層疊第1電極、第1導電型有機半導體層、第2導電型有 -59- 200538574 機半導體層與第2電極的步驟;而且於該第1電極與第2 電極之至少一者,利用如申請專利範圍第32至39項中任 一項之方法,形成奈米結晶鑽石膜的步驟。200538574 10. Scope of patent application: 1. A nanocrystalline diamond film 'is characterized in that it contains synthetic crystal grains with a particle size of 1 nm or more and a nanocrystalline diamond of less than 1 000nm as the main component on the substrate. 2. For example, the nanocrystalline diamond film of the scope of patent application has a surface flatness of less than 10nm. 3. The nanocrystalline diamond film according to item 1 of the patent application scope, wherein impurities are doped in the film. 4. The nanocrystalline diamond film according to item 1 of the patent application scope, wherein the impurity is at least one selected from the group consisting of sulfur, boron, oxygen, phosphorus, helium and sand. 5. The nanocrystalline diamond film according to item 1 of the patent application scope, wherein the base system is at least one selected from the group consisting of a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a glass substrate, and a polymer substrate. 6. The nanocrystalline diamond film according to item 1 of the patent application scope, wherein the surface of the film is terminated with an electron donor base. 7. The nanocrystalline diamond film according to item 1 of the patent application scope, wherein the surface of the film is terminated with a pull-electron-based termination. 8 · An electrochemical element, which has more than one pair of electrodes, and uses the redox k on the surface of the electrode to detect the type of the substance to be measured and measure its concentration. At least one of the electrodes includes: a matrix, and A nanocrystalline diamond film formed on the surface as in any one of claims 1 to 7 of the scope of patent application. 9 · The electrochemical device according to item 8 of the application, wherein the nanocrystalline diamond -51-200538574 stone film forms a number of micro-electrodes formed on the substrate. · 10. The electrochemical device according to item 9 of the patent application scope, wherein the plurality of minute electric electrodes are extremely tooth-shaped. 1 1. An electrochemical electrode is an electrode using at least one of an anode and a cathode for electrochemical decomposition of a liquid or a gas by using an electrochemical reaction, wherein the electrochemical electrode includes a substrate and a substrate formed on the substrate. Nanocrystalline diamond film on the surface as in any one of claims 1 to 7 of the scope of patent application. 1 2 · The electrochemical electrode according to item 11 of the scope of patent application, wherein the base system is a silicon substrate having an uneven surface on the surface. 0 1 3 · The electrochemical electrode according to item 11 of the application, wherein the substrate has a rectangular, wedge-shaped or curved surface shape. 14. The electrochemical electrode according to item 11 of the application, wherein the nanocrystalline diamond film is formed on a substrate to form a plurality of micro-electrodes that have been patterned. 15. The electrochemical electrode according to item 1 i of the scope of patent application, wherein the plurality of minute electrodes are sawtooth-shaped. 16. · A DNA wafer comprising: a substrate; ® a nanocrystalline diamond film according to any one of claims 1 to 7, which is formed on the substrate and has a functional group for supporting DNA on the surface And a DNA probe carried on the nanocrystalline diamond membrane. 17 · The DN A wafer according to item 16 of the application, wherein the functional group is at least one selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, a cyano group, a sulfate group, and a nitro group. -52- 200538574 18 · —A kind of organic electroluminescence element, which is characterized in that a first electrode, a hole transporting layer, an organic light emitting layer, an electron transporting layer, and a second electrode are formed on the substrate in this order. , Wherein at least one of the first electrode and the second electrode is a nanocrystalline diamond film as in any one of items 1 to 7 of the scope of patent application. 19. An organic electroluminescence element, characterized in that a first electrode, a hole transporting layer, an organic light emitting layer, an electron transporting layer, and a second electrode layer are sequentially stacked on a substrate, wherein the first electrode At least one of the second electrode and the second electrode is connected to the hole-transporting layer or the electron-transporting layer to form a nanocrystalline diamond film as described in any one of claims 1 to 7 of the patent application scope. Lu 20. The organic electroluminescence element according to item 19 of the scope of patent application, wherein the surface of the nanocrystalline diamond film connected to the hole transport layer has a selected one of the group consisting of 0, F and Cl. Pull electronic base. 2 1 · The organic electroluminescence element according to item 19 of the scope of patent application, wherein the surface of the nanocrystalline diamond film connected to the electron transport layer has an electron-donating group selected from the group consisting of OH and europium . 22 · —An organic electro-optical light-receiving element, characterized in that a first electrode, a first conductive organic semiconductor layer, a second conductive organic semiconductor β body layer, and a second electrode are sequentially stacked on a substrate, wherein At least one of the first electrode and the second electrode is a nano crystalline diamond film as in any one of claims 1 to 7 of the scope of patent application. 23 · —An organic electro-optical light-receiving element, characterized in that a first electrode, a first conductive organic semiconductor layer, a second conductive organic semiconductor layer, and a second electrode are sequentially stacked on a substrate, wherein the first At least one of the first electrode and the second electrode is connected to the first conductive type organic semiconductor layer or the second conductive type -53-200538574 organic semiconductor layer to form as in any one of the items i to 7 of the scope of the applied patent- Nano crystalline diamond film. 24. The organic electro-optical light-receiving element according to item 23 of the application, wherein the surface of the nanocrystalline diamond film connected to the first conductive organic semiconductor layer has a group of 0, F, and C1. Selected pull electron base. 25. The organic electro-optical light-receiving element according to item 23 of the application, wherein the surface of the nanocrystalline diamond film connected to the second conductive organic semiconductor layer has a selected pull-up of a group consisting of OH and rhenium. Electronic base. 26. An organic thin film transistor comprising: a Lu substrate; a gate formed on the substrate; a gate insulating film covering the gate; a source and a drain on the gate insulating film through a gap; Formed; and an organic semiconductor layer covering the gap between the source and the drain; wherein the surface of at least one of the source and the drain is formed as described in any one of claims 1 to 7 Rice crystal diamond film. ® 27. If the organic thin film transistor of item 26 of the patent application scope, wherein the surface of the nanocrystalline diamond film has a pull-electron group selected from the group consisting of 0, F, and C1, or The selected electron-donor base in the group. 28. A cold electron release element comprising: a base body, a conductive layer formed on the base body; -54- 200538574 an insulating layer and a gate electrode formed on the conductive layer and having openings; and an emitter, It is formed on the conductive layer exposed in the opening portion; wherein a nano-crystalline diamond film as in any one of claims 1 to 7 is formed on the surface of the emitter. 29. The cold-electron release element according to item 28 of the patent application, wherein the surface of the nanocrystalline diamond film is a pull-electron group selected from the group consisting of 0, F, and C1. 30. A fuel cell including a first electrode, a second electrode, and an electrolyte layer sandwiched between the first electrode and the second electrode, wherein the first &lt; 1 electrode and the second electrode are connected A side of the electrolyte of at least one of them forms a nanocrystalline diamond film carrying a catalyst as in any one of claims 1 to 7 of the scope of patent application. 3 1 · —A metal-carrying nano-crystalline diamond catalyst comprising: a carrier made of a nano-crystalline diamond film as claimed in any one of claims 1 to 7; and metal particles of the catalyst Catalyst metal particles with a particle size of the order of nm supported on this carrier. Lu 32. A method for manufacturing a nanocrystalline diamond film, characterized in that a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen is formed on the substrate outside the plasma domain. 33 · A method for manufacturing a nanocrystalline diamond film, characterized in that a plasma CVD method using a raw material gas containing hydrocarbons and hydrogen is used on the substrate, and a substrate is provided outside the plasma domain and a substrate is provided downstream of the raw material gas stream Film formation was performed. 3 4. According to the method for manufacturing nanocrystalline diamond film in the scope of application for patent No. 32, -55- 200538574 where the raw material gas is added with hydrogen sulfide, diborane, carbon dioxide, and oxygen. At least one selected additive gas. 35. The method for manufacturing a nanocrystalline diamond film according to item 32 of the scope of patent application, wherein the film is formed at a substrate temperature of 20 ° C to 900 ° C. 36. The method for manufacturing a nanocrystalline diamond film according to item 32 of the application, wherein the film is formed by a microwave plasma CVD method. 37. The method for manufacturing a nanocrystalline diamond film according to item 32 of the patent application scope, wherein the base system is at least one of a silicon substrate, a quartz substrate, a ceramic substrate, a metal substrate, a glass substrate, and a polymer substrate. Refer to 38. The method for manufacturing a nanocrystalline diamond film according to item 32 of the scope of the patent application, wherein hydrogen plasma treatment is performed on the formed nanocrystalline diamond film by using microwave or high frequency. 3 9 · The method for manufacturing a nanocrystalline diamond film according to item 32 of the scope of the patent application, wherein the nanocrystalline diamond film that has been formed is subjected to hydrogen or microwave using a fluorine-based or chlorine-based gas. Plasma treatment. 40 · —A method for manufacturing an electrochemical element, which has more than one pair of electrodes, and uses the redox reaction on the surface of the electrode to detect the type of substance to be measured and measure its concentration; at least one electrode has The substrate and the nanocrystalline diamond film formed on the surface thereof; and formed by using a method according to any one of claims 32 to 39 of the scope of patent application. 41. The method for manufacturing an electrochemical device according to item 40 of the application, wherein the substrate is a glass substrate or a polymer substrate, and the film formation temperature of the nanocrystalline diamond film is 500 ° C or lower. 4 2 · The method for manufacturing an electrochemical device according to item 40 of the patent application, wherein -56- 200538574 includes a step of forming a nanocrystalline diamond formed on the substrate by a photolithography method to a pattern of a stone film. . 4 3. — A method for manufacturing an electrochemical electrode, which is an electrode of at least one of a cathode and an anode used for the electrolytic decomposition of a liquid or a solid by using an electrochemical reaction, and comprises: a substrate; and a surface of the substrate The formed nano-crystalline diamond film; and the nano-crystalline diamond film is formed by a method such as any one of items 32 to 39 of the scope of patent application. 44. The method for manufacturing an electrochemical electrode according to item 43 of the application, wherein the substrate is a glass substrate or a polymer substrate, and the nanocrystalline diamond film has a film formation temperature of 500 ° C or less in spring. 45. The method for manufacturing an electrochemical electrode according to item 43 of the scope of patent application, which includes the step of patterning the nanocrystalline diamond film that has been formed on the substrate by using a lithography method. 46. A method for manufacturing a DNA wafer, comprising: a step of forming a nanocrystalline diamond film on a substrate by using a method such as any one of items 32 to 39 in a patent application range; and processing the nanocrystal A step of providing a functional group for supporting the DNA # probe on the surface of the diamond film; and a step of supporting the DNA probe on the surface of the nanocrystalline diamond film; , Wherein the substrate is a glass substrate or a polymer substrate, and a film-forming temperature of the nanocrystalline diamond film is 500 ° C or lower. 48. The method for manufacturing a D N A wafer according to item 46 of the patent application, wherein the package -57- 200538574 includes a step of patterning a nanocrystalline diamond film that has been formed on the substrate by a lithography method. # 49 · A method for manufacturing an organic thin film transistor, comprising: a base body; a gate electrode formed on the base body; a gate insulating film covering the gate electrode; a source electrode and a drain electrode on the gate insulating film And an organic semiconductor layer covering the gap between the source and the drain; and a method of organic thin film transistor having the use of any one of the items 32 to 39 of the scope of patent application In the method, a step of forming a nanocrystalline diamond film on a surface of at least one of the source and the drain. 50 · —A method for manufacturing a cold electron release element, comprising: a base body; a conductive layer formed on the base body; an insulating layer and a gate electrode formed on the conductive layer and having openings; and A method for forming a cold electron release element on the conductive layer exposed in the opening; and using a method such as any one of claims 32 to 39 in the scope of patent application, forming a nanometer on the surface of the emitter Steps of crystallized diamond film. 5 1 A method for manufacturing a fuel cell, which is a method for manufacturing a fuel cell provided with an i-th electrode, a second electrode, and an electrolyte layer sandwiched between the first electrode and the second electrode, and has a use For example, the method of applying any of the items Nos. 3 2 to 3 9 -58 · 200538574, the side of the electrolyte connecting at least one of the first electrode and the second electrode to form a nanocrystalline diamond film. Steps; and a step of supporting a catalyst on the nanocrystalline diamond film. 5 2. —A method for manufacturing a nanocrystalline diamond catalyst carrying a metal, which has a method for forming a nanocrystalline diamond film on a substrate by using a method such as any one of the patent application scope items 32 to 39. Steps; and a step of supporting catalyst metal particles with a nanometer-sized particle size on the nanocrystalline diamond film. 53 · —A method for manufacturing an organic electroluminescent device, comprising the steps of sequentially laminating a first electrode, an organic light emitting layer, and a second electrode on a substrate; and forming at least one of the first electrode and the second electrode The step is a step of forming a nanocrystalline diamond film by using a method such as any one of items 32 to 39 of the scope of patent application. 54 · A method for manufacturing an organic electroluminescent device, comprising the steps of sequentially laminating a first electrode, an organic light emitting layer, and a second electrode on a substrate; and at least one of the first electrode and the second electrode, The method of forming a nanocrystalline diamond film by using a method such as any one of claims 32 to 39, a method of manufacturing an organic electro-optical light-receiving element, comprising sequentially laminating a first electrode on a substrate, The steps of the first conductive type organic semiconductor layer, the second conductive type organic semiconductor layer, and the second electrode; and the step of forming at least one of the first electrode and the second electrode is to use a method as described in Patent Application Nos. 3 2 to 3 9 A step of forming a nanocrystalline diamond film by the method of any one of items. 56. A method for manufacturing an organic electro-optical light-receiving element, which comprises sequentially laminating a first electrode, a first conductive type organic semiconductor layer, and a second conductive type having a -59- 200538574 organic semiconductor layer and a second electrode on a substrate. Step; and at least one of the first electrode and the second electrode, a step of forming a nanocrystalline diamond film by a method such as any one of claims 32 to 39 of the scope of patent application. -60--60-
TW93114864A 2002-11-27 2004-05-26 Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film TW200538574A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344066A JP2004176132A (en) 2002-11-27 2002-11-27 Nanodiamond film, and production method therefor

Publications (1)

Publication Number Publication Date
TW200538574A true TW200538574A (en) 2005-12-01

Family

ID=32705687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93114864A TW200538574A (en) 2002-11-27 2004-05-26 Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film

Country Status (2)

Country Link
JP (1) JP2004176132A (en)
TW (1) TW200538574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586762A (en) * 2012-03-27 2012-07-18 上海交通大学 Method for preparing diamond film through multiple-doped hot filament chemical vapor deposition
CN104217928A (en) * 2013-05-30 2014-12-17 清华大学 Fabrication method of nano-scale micro structure

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013155B2 (en) * 2004-11-05 2012-08-29 独立行政法人物質・材料研究機構 Manufacturing method of diamond emitter array
JP2006151711A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Nanodiamond or nanodiamond film and method for treating surface of the same
JP5317088B2 (en) * 2005-07-04 2013-10-16 独立行政法人産業技術総合研究所 Carbon film
JP4853706B2 (en) * 2006-03-22 2012-01-11 凸版印刷株式会社 Imprint mold and manufacturing method thereof
JP4855983B2 (en) * 2007-03-20 2012-01-18 東海旅客鉄道株式会社 Method for producing diamond electrode
US20110014451A1 (en) * 2008-03-03 2011-01-20 Toshihiko Tanaka Nanodiamond film
CN101787521B (en) * 2010-03-24 2012-05-02 中国地质大学(北京) Method for preparing metal sulfide diamond-like carbon composite film
JP6040722B2 (en) * 2012-11-16 2016-12-07 ウシオ電機株式会社 Antifouling layer removing method and antifouling layer forming method
JP6232817B2 (en) * 2013-08-05 2017-11-22 住友電気工業株式会社 Nano-polycrystalline diamond and tool comprising the same
TWI670831B (en) * 2014-09-03 2019-09-01 美商應用材料股份有限公司 Nanocrystalline diamond carbon film for 3d nand hardmask application
CN109100381B (en) * 2018-05-31 2021-02-02 长安大学 Preparation method of tellurium-manganese-cadmium crystal transmission electron microscope cross-section sample
CA3134679A1 (en) 2019-03-26 2020-10-01 Daicel Corporation Explosive composition and method for manufacturing same, and method for manufacturing heteroatom-doped nanodiamond
EP3950109A4 (en) 2019-03-26 2023-06-07 Daicel Corporation Method for producing nanodiamonds doped with group 14 element, and method for purifying same
SG11202108007RA (en) 2019-03-26 2021-08-30 Daicel Corp Heteroatom-doped nanodiamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586762A (en) * 2012-03-27 2012-07-18 上海交通大学 Method for preparing diamond film through multiple-doped hot filament chemical vapor deposition
CN102586762B (en) * 2012-03-27 2015-08-19 上海交通大学 The method of preparing diamond film through multiple-doped hot filament chemical vapor deposition
CN104217928A (en) * 2013-05-30 2014-12-17 清华大学 Fabrication method of nano-scale micro structure
US9213241B2 (en) 2013-05-30 2015-12-15 Tsinghua University Method of making nanostructure
CN104217928B (en) * 2013-05-30 2017-02-22 清华大学 Fabrication method of nano-scale micro structure
TWI614209B (en) * 2013-05-30 2018-02-11 鴻海精密工業股份有限公司 Method of making nanostructure

Also Published As

Publication number Publication date
JP2004176132A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
KR101268272B1 (en) Nano-crystal diamond film manufacturing method thereof and device using nano-crystal diamond film
TW200538574A (en) Nanocrystalline diamond film, method for manufacturing the same, and apparatus using the nanocrystalline diamond film
JP5872557B2 (en) Large-scale graphene sheet, article incorporating the same, composition, method and apparatus
Park et al. Inorganic nanostructures grown on graphene layers
KR101063359B1 (en) Carbon materials, lamination product comprising the same and method for preparing the same
US7818993B2 (en) High-performance flexible hydrogen sensors
US9748581B2 (en) Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells
Huang et al. A facile synthesis of ZnO nanotubes and their hydrogen sensing properties
JP2016520032A (en) Graphene with very high charge carrier mobility and method for producing the same
WO2007046165A1 (en) Process for producing diamond having structure of acicular projection array disposed on surface thereof, diamond material, electrode and electronic device
WO2007047949A2 (en) Methods for growing carbon nanotubes on single crystal substrates
Alper et al. Semiconductor nanowires directly grown on graphene–towards wafer scale transferable nanowire arrays with improved electrical contact
US10023469B2 (en) Method for producing graphene with controlled number of layers, and method for manufacturing electronic device using same
KR20150017422A (en) Graphene/Silicon Nanowire Molecular Sensor and the Fabricating Method and Method of Identification Using thereof
Liu et al. Plasma-induced fabrication and straining of MoS2 films for the hydrogen evolution reaction
JP2007099601A (en) Substrate for laminating nanocarbon material and its production method
Oh et al. Large-scale, single-oriented ZnO nanostructure on h-BN films for flexible inorganic UV sensors
CN102502605A (en) Electrically-induced reduction method for degraded graphene oxide
JP4639334B2 (en) Diamond film, manufacturing method thereof, electrochemical device, and manufacturing method thereof
JP4911743B2 (en) Electrochemical element and manufacturing method thereof
Kathalingam et al. Water mediated electrochemical conversion of PMMA and other organic residues into graphene and carbon materials
CN109534315B (en) Amorphous carbon/nano-micron network film and preparation method thereof
Choudhary et al. Graphene Synthesis and Applications
Liu Synthesis, devices and applications of carbon nanotubes
Vasin et al. Nanoscale morphology tailoring in plasma deposited CN x layers