JP2004508033A - 反復モジュールを含む反復タンパク質の集合体 - Google Patents

反復モジュールを含む反復タンパク質の集合体 Download PDF

Info

Publication number
JP2004508033A
JP2004508033A JP2002525184A JP2002525184A JP2004508033A JP 2004508033 A JP2004508033 A JP 2004508033A JP 2002525184 A JP2002525184 A JP 2002525184A JP 2002525184 A JP2002525184 A JP 2002525184A JP 2004508033 A JP2004508033 A JP 2004508033A
Authority
JP
Japan
Prior art keywords
repeat
amino acid
assembly
nucleic acid
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002525184A
Other languages
English (en)
Other versions
JP5291279B2 (ja
Inventor
スタンプ マイケル トビアス
フォーラー パトリック
ビンツ ハンス カスパー
プリュック−トゥーン アンドレアス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Zuerich
Original Assignee
Universitaet Zuerich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Zuerich filed Critical Universitaet Zuerich
Publication of JP2004508033A publication Critical patent/JP2004508033A/ja
Application granted granted Critical
Publication of JP5291279B2 publication Critical patent/JP5291279B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1044Preparation or screening of libraries displayed on scaffold proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、天然反復タンパク質ファミリーの一つまたは複数の反復単位に由来する反復モジュールを含む反復タンパク質の集合体、上記の反復タンパク質をコードする核酸分子の集合体、そのような集合体の構築および適用方法、ならびにそのような集合体の個々のメンバーに関する。

Description

【0001】
本発明は、天然反復タンパク質の一つのファミリーの一つまたは複数の反復単位に由来する反復モジュールを含む反復タンパク質の集合体、上記の反復タンパク質をコードする核酸分子の集合体、そのような集合体の構築および適用方法、ならびにそのような集合体の個々のメンバーに関する。
【0002】
本明細書において多くの文献を引用する。これらの文献の開示内容は、参照として本明細書に組み入れられる。
【0003】
タンパク質−タンパク質相互作用、またはより一般的に、タンパク質−リガンド相互作用は、全ての生物において重要な役割を果たしており、認識および結合の重要な特徴を理解することは、現在の生化学研究の一つの焦点となっている。現在まで、作製された任意の抗体および誘導体が、この研究領域において主に用いられている。しかし、抗体技術は周知の欠点を有する。例えば、抗体は細胞質が還元的環境であるために細胞内にほとんど適用できない。このように、抗体の制限を克服する特徴を有する高親和性結合分子が必要である。そのような分子は、医学、バイオテクノロジー、および研究において新しい解決策となる可能性が最も高く、細胞内結合剤も同様に、ゲノム学においてますます重要になりつつある。
【0004】
新規結合タンパク質を構築するための様々な活動が報告されている(NygrenおよびUhlen、1997)。最も有望な戦略は、限定されたライブラリ作製と、所望の特性のスクリーニングまたは選択との組み合わせであるように思われる。通常、結晶構造の分析後いくつかの露出したアミノ酸残基を無作為化するために、既存の足場構造が加えられた。しかし、安定性および発現性に関する進歩にもかかわらず、これまで報告されている親和性は抗体の親和性よりかなり低い(KuおよびSchultz、1995)。拘束は、それに対する結晶構造が既知である(Kirkhamら、1999)標的、または当初の標的分子と相同である標的に対する制限である可能性があるため、結合のための普遍的な足場はこれまで同定されていない。スクリーニング後に結合物質の見かけの親和性を増加させるために、いくつかのアプローチは、結合活性効果を利用するために単一の結合剤の多量体化を用いた。
【0005】
したがって、本発明の基礎となる技術的問題は、結合タンパク質の集合体を構築するための新規アプローチを同定することである。この技術的問題の解決は、請求の範囲に特徴を示す態様を提供することによって得られる。したがって、本発明によって、反復モジュールを含む反復タンパク質の集合体を構築することができる。本発明の技術的アプローチ、すなわち、天然反復タンパク質の反復単位から上記のモジュールを誘導することは、先行技術において提供されておらず、示唆もされていない。
【0006】
したがって、本発明は、それぞれの反復タンパク質が連続した反復モジュールの組を含む反復ドメインを含み、反復モジュールのそれぞれが天然反復タンパク質の一つのファミリーの一つまたは複数の反復単位に由来し、上記の反復単位が骨格残基および標的相互作用残基を含み、上記の反復タンパク質が、上記の標的相互作用残基の一つに対応する少なくとも一つの位置で異なる、反復タンパク質の集合体をコードする核酸分子の集合体に関する。
【0007】
本発明の意味において、「集合体」という用語は、少なくとも二つの異なる実体またはメンバーを含む集団を意味する。好ましくは、そのような集合体は、少なくとも10個、より好ましくは10個、および最も好ましくは10個以上の異なるメンバーを含む。「集合体」は、「ライブラリ」または「複数(plurarity)」と呼んでもよい。
【0008】
「核酸分子」という用語は、一本鎖または二本鎖のいずれかであるリボ核酸(RNA)、またはデオキシリボ核酸(DNA)分子であるポリヌクレオチド分子を意味する。核酸分子は、単離型で存在してもよく、または組み換え型核酸分子もしくはベクターに含まれてもよい。
【0009】
「反復タンパク質」という用語は、一つまたは複数の反復ドメインを含む(ポリ)ペプチド/タンパク質を意味する(図1)。好ましくは、上記の反復タンパク質のそれぞれは、最大4個の反復ドメインを含む。より好ましくは、上記の反復タンパク質のそれぞれは、最大2個の反復ドメインを含む。しかし、最も好ましくは、反復タンパク質のそれぞれは、一つの反復ドメインを含む。さらに、上記の反復タンパク質は、さらに非反復タンパク質ドメイン(図2aおよび図2b)、(ポリ)ペプチドタグおよび/または(ポリ)ペプチドリンカー配列(図1)を含んでもよい。「(ポリ)ペプチドタグ」という用語は、上記アミノ酸配列が、上記の(ポリ)ペプチド/タンパク質の精製、検出、もしくはターゲティングのために利用できる、または上記のアミノ酸配列が上記の(ポリ)ペプチド/タンパク質の物理化学的挙動を改善する、または上記のアミノ酸配列がエフェクター機能を有する、(ポリ)ペプチド/タンパク質に結合したアミノ酸配列を意味する。そのような(ポリ)ペプチドタグは、小さいポリペプチド配列、例えばHis(Hochuliら、1988;Lindnerら、1992)、myc、FLAG(Hoppら、1988;KnappikおよびPluckthun、1994)、またはストレップ(Strep)タグ(SchmidtおよびSkerra、1993;SchmidtおよびSkerra、1994;Schmidtら、1996)であってもよい。これらの(ポリ)ペプチドタグは全て、当技術分野で周知であり、当業者に十分に利用可能である。さらなる非反復ドメインはさらに、上記の反復タンパク質の検出を可能にする酵素(例えば、アルカリホスファターゼのような酵素)のような部分、またはターゲティングのためおよび/またはエフェクター分子として用いることができる(免疫グロブリンまたはその断片)部分であってもよい。反復タンパク質の個々のポリペプチドタグ、部分および/またはドメインは、互いに直接または(ポリ)ペプチドリンカーを通して結合してもよい。「(ポリ)ペプチドリンカー」という用語は、例えば、二つのタンパク質ドメイン、(ポリ)ペプチドタグとタンパク質ドメインまたは二つの配列タグを結合することができるアミノ酸配列を意味する。そのようなリンカー、例えば多様な長さのグリシン−セリンリンカー(例えば、ForrerおよびJaussi、1998)は、関連する技術分野の当業者に既知である。
【0010】
本発明の意味において、「(ポリ)ペプチド」という用語は、多数、すなわちペプチド結合によって結合した二つまたはそれ以上のアミノ酸の一つまたは複数の鎖からなる分子を意味する。
【0011】
「タンパク質」という用語は、(ポリ)ペプチドの少なくとも一部がその(ポリ)ペプチド鎖(複数)の内部、および/またはあいだで二次構造、三次構造、または四次構造を形成することによって既定の三次元配置を有する、または獲得することができる(ポリ)ペプチドを意味する。タンパク質が二つまたはそれ以上の(ポリ)ペプチドを含む場合、個々の(ポリ)ペプチド鎖は、非共有結合または共有結合によって、例えば二つの(ポリ)ペプチド間のジスルフィド結合によって結合してもよい。二次または三次構造を形成することによって、既定の三次元配置を個々に有するまたは獲得することができるタンパク質の一部は、「タンパク質ドメイン」と呼ばれる。そのようなタンパク質ドメインは、関連技術分野の当業者に周知である。
【0012】
「天然反復タンパク質ファミリー」という用語は、上記の群のメンバーが類似の反復単位を含む、天然タンパク質の群を意味する。タンパク質ファミリーは、当業者に周知である。
【0013】
「反復ドメイン」という用語は、上記の構造単位が同じ折り畳みを有し、きちんと積み重ねられてジョイント疎水性コアを有する高次らせん構造を作製する、構造単位として二つまたはそれ以上の連続した反復単位(モジュール)を含むタンパク質ドメインを意味する(概説として、KobeおよびKajava、2000を参照のこと)(図1)。「構造単位」という用語は、(ポリ)ペプチド鎖に沿って互いに近位である二次構造の二つまたはそれ以上のセグメント間の三次元相互作用によって形成された(ポリ)ペプチドの局所的に構築された部分を意味する。そのような構造単位は構造モチーフを含む。「構造モチーフ」という用語は、少なくとも一つの構造単位に存在する二次構造エレメントの三次元配置を意味する。例えば、LRRタンパク質に繰り返し存在する構造モチーフは、β鎖と、ループによって結合した反対の逆平行らせんセグメントとで構成される(図4a)。構造モチーフは、関連技術分野の当業者に周知である。上記の構造単位のみでは、既定の三次元配置を獲得できないが、反復ドメインにおいて反復モジュールとしてそれらが連続して配置されると、隣接単位の相互安定化が起こり、上記の高次らせん構造が得られる。
【0014】
「反復モジュール」という用語は、天然タンパク質の反復単位(図3)に由来する、本発明の集合体の核酸分子によってコードされる反復タンパク質の反復アミノ酸配列を意味する。反復ドメインに含まれるそれぞれの反復モジュールは、天然反復タンパク質の一つのファミリーの一つまたは複数の反復単位に由来する。
【0015】
そのような「反復モジュール」は、アミノ酸残基が反復モジュールの全てのコピーに存在する位置(「固定位置」)、およびアミノ酸残基が異なるまたは「無作為化された」位置(無作為位置)を含んでもよい。
【0016】
「反復モジュールの組」という用語は、反復ドメインに存在する反復モジュールの総数を意味する。反復ドメインに存在するそのような「反復モジュールの組」は、二つまたはそれ以上の連続した反復モジュールを含み、二つもしくはそれ以上のコピーにおいて反復モジュールの一種類のみ、またはそれぞれが一つもしくはそれ以上のコピーに存在する二つもしくはそれ以上の異なる種類のモジュールを含んでもよい。本発明による反復タンパク質の集合体は、対応する反復ドメイン1個あたり同数の反復モジュールを有する反復ドメインを含んでもよく(すなわち、反復モジュールの固定数を有する一つのセット)、または対応する反復ドメイン1個あたりの反復モジュールの数が異なる(すなわち、反復モジュールの異なる数を含む二つまたはそれ以上の組)反復ドメインを含んでもよい。
【0017】
好ましくは、組に含まれる反復モジュールは、相同な反復モジュールである。本発明の意味において、「相同な反復モジュール」という用語は、70%を上回る上記の反復モジュールの骨格残基が相同である反復モジュールを意味する。好ましくは、80%を上回る上記の反復モジュールの骨格残基が相同である。最も好ましくは、90%を上回る上記の反復モジュールの骨格残基が相同である。Fasta、BlastまたはGapのようなポリペプチド間の相同性の百分率を決定するためのコンピュータープログラムは、関連技術分野の当業者に既知である。
【0018】
好ましくは、本発明の反復モジュールは一つの反復単位に由来する。これは、それぞれの分子が本発明の反復ドメインをコードする核酸分子の集合体が、天然反復ドメインをコードする核酸分子のランダム変異誘発によって得られる状況を意味してもよい。このように、本発明の上記の反復ドメインは、上記のモジュールのそれぞれが上記の天然反復ドメインの対応する反復単位に由来する、反復モジュールの組を含む。エラープローン(error−prone)PCR(WilsonおよびKeefe、2000)またはDNAシャッフリング(VolkovおよびArnold、2000)のような核酸分子のランダム変異誘発のための方法は、関連技術分野の当業者に周知である。もう一つの状況において、単一の天然反復単位を用いて、本発明の反復配列モチーフを誘導してもよい。
【0019】
より好ましくは、本発明の反復モジュールは、一つまたは複数の反復単位に由来する。これは、それぞれが天然反復ドメインをコードする二つまたはそれ以上の相同な核酸分子に、DNA組み換えまたはランダムキメラ誘発を行う状況を意味してもよい(VolkovおよびArnold、2000)。このように、本発明の上記の反復ドメインは、上記のモジュールのそれぞれが上記の相同な天然反復ドメインの一つまたは複数の対応する反復単位に由来する、反復モジュールの組を含む。好ましくは、上記の相同な核酸分子は、少なくとも75%のDNA配列同一性を有する。より好ましくは、上記の配列同一性は少なくとも85%である。
【0020】
最も好ましくは、本発明の反復モジュールは、二つまたはそれ以上の反復単位を用いて本発明の反復配列モチーフを誘導する、二つまたはそれ以上の反復単位に由来する。そのような誘導プロセスを実施例に示す。
【0021】
「一つまたは複数の反復単位に由来する反復モジュール」という用語は、以下を意味する:
(i)ランダム変異誘発、例えば、反復単位をコードする核酸分子のエラープローンPCRによって、反復モジュールをコードする核酸分子を作製する段階を含むプロセス;
または
(ii)それぞれが反復単位をコードする二つもしくはそれ以上の相同な核酸分子のランダムキメラ誘発によって、反復モジュールをコードする核酸分子を作製する段階を含むプロセス;
または
(iii)天然反復タンパク質の一つもしくは複数の反復単位の分析と、反復モジュールの推定とを含むプロセス。このプロセスは以下の段階を含んでもよい:
(a)天然反復単位を同定する段階;
(b)配列アラインメントによって最初の反復配列モチーフを決定する段階;
(c)上記の反復単位の配列分析および構造分析によって、反復配列モチーフを精密化する段階;
(d)(c)の反復配列モチーフに従って反復モジュールを構築する段階;
または
(iv)(i)、(ii)、もしくは(iii)のプロセスの後にランダム変異誘発もしくはランダムキメラ誘発によって反復モジュールのさらなる考案を含むプロセス。
【0022】
「反復単位」という用語は、上記の「反復単位」が多数のコピーで存在し、タンパク質の折り畳みを決定する上記のモチーフ全てに対して共通の既定の折り畳み位相学を示す、一つまたは複数の天然タンパク質の配列モチーフを含むアミノ酸配列を意味する。そのような反復単位は、骨格残基(図4d)と相互作用残基(図4e)とを含む。そのような反復単位の例には、ロイシンリッチ反復単位、アンキリン反復単位、アルマジロ反復単位、テトラトリコペプチド反復単位、HEAT反復単位、およびロイシンリッチ変種反復単位(KobeおよびDeisenhofer、1994;GrovesおよびBarford、1999;Marinoら、2000;Kobe、1996に論評されている)が含まれる。二つまたはそれ以上のそのような反復単位を含む天然タンパク質は、「天然反復タンパク質」と呼ばれる。反復タンパク質の個々の反復単位のアミノ酸配列は、互いに比較した場合に有意な数の変異、置換、付加、および/または欠失を有してもよいが、反復単位の一般的パターン、またはモチーフをなおも実質的に保持している。
【0023】
好ましくは、反復配列モチーフを推定するために用いられる反復単位は、反復単位が同じ構造モチーフを含み、70%を上回る上記の反復単位の骨格残基が相同である、相同的反復単位である。好ましくは、80%を上回る上記の反復単位の骨格残基が相同である。最も好ましくは、90%を上回る上記の反復単位の骨格残基が相同である。
【0024】
「反復配列モチーフ」という用語は、一つまたは複数の反復配列から推定されたアミノ酸配列を意味する。そのような反復配列は骨格残基の位置および標的相互作用残基の位置を含む。上記の骨格残基は、上記の反復単位の骨格残基の位置に対応する。上記の標的相互作用残基の位置は、上記の反復配列の標的相互作用残基の位置に対応する。そのような反復配列モチーフは、固定位置と無作為化位置とを含む。「固定位置」という用語は、上記の位置が特定のアミノ酸に設定される、反復配列モチーフにおけるアミノ酸の位置を意味する。そのような固定位置は、骨格残基の位置に対応することが最も多い。「無作為化位置」という用語は、二つまたはそれ以上のアミノ酸が上記のアミノ酸位置で容認される反復配列モチーフにおけるアミノ酸位置を意味する。そのような無作為化位置は、標的相互作用残基の位置に対応することが最も多い。しかし、骨格残基のいくつかの位置も同様に無作為化してもよい。アミノ酸配列モチーフは関連技術分野の当業者に周知である。
【0025】
「折り畳み位相学」という用語は、上記の反復単位の三次元構造を意味する。折り畳み位相学は、αヘリックスもしくはβシートの少なくとも一部を形成するアミノ酸の枝、直鎖ポリペプチドもしくはループを形成するアミノ酸の枝、またはαヘリックス、βシート、および/もしくは直鎖状のポリペプチド/ループの任意の組み合わせによって決定されうる。
【0026】
「連続」という用語は、上記のモジュールが縦列に配置される配置を意味する。
【0027】
反復タンパク質において、少なくとも2個、通常は約2個〜6個、より通常は少なくとも約6個、しばしば20個またはそれ以上の反復単位が存在する。たいていの場合、反復タンパク質は、原核細胞ならびに脊椎動物および無脊椎動物を含む真核細胞に存在する構造タンパク質および/または接着タンパク質である。アンキリンタンパク質が抗体に類似していることが示唆されている(JacobsおよびHarrison、1998)。
【0028】
ほとんどの場合、上記の反復単位は、高度の配列同一性(対応する位置に同じアミノ酸残基)または配列類似性(アミノ酸残基が異なるが類似の物理化学特性を有する)を示し、アミノ酸残基のいくつかは、天然タンパク質に認められる異なる反復単位において強く保存されている重要な残基である可能性がある。
【0029】
しかし、天然タンパク質に認められる異なる反復配列単位におけるアミノ酸の挿入および/または欠失、および/または置換による高度の配列多様性は、共通の折り畳み位相学が維持される限り可能であると考えられる。
【0030】
X線結晶学、NMR、CD分光法のような物理化学的手段によって反復タンパク質の折り畳み位相学を直接決定する方法は、関連技術分野の当業者に周知である。反復単位もしくは反復配列モチーフを同定して決定する方法、または相同性検索(BLAST等)のような、そのような反復単位もしくはモチーフを含む関連タンパク質のファミリーを同定する方法は、生体情報学の分野において十分に確立されており、そのような技術分野の当業者に周知である。最初の反復配列モチーフを精密化する段階は、反復プロセスを含んでもよい。
【0031】
アンキリン型反復(Bork、1993;Huxfordら、1998、図2gおよび図2hを参照のこと)の結晶構造、ロイシンリッチ反復配列(LRR)スーパーファミリー(KobeおよびDeisenhofer、1993、図2cを参照のこと)および他のLRRタンパク質(図2d〜図2fを参照のこと)のリボヌクレアーゼ阻害剤(RI)の結晶構造が報告されている。これらの構造を詳しく調べたところ、アンキリン反復の場合には伸張した形状、またはロイシンリッチ反復の場合には馬蹄形であり、極めて大きい表面を生じることが判明した。
【0032】
「骨格残基」という用語は、折り畳み位相学に関与する、すなわち上記の反復単位(もしくはモジュール)の折り畳みに関与する、または隣接する単位(もしくはモジュール)の相互作用に関与する、反復単位のアミノ酸残基または対応する反復モジュールの対応するアミノ酸残基を意味する。そのような関与は、反復単位(モジュール)における他の残基との相互作用(4d)であってもよく、またはαヘリックスもしくはβシート、または直鎖状のポリペプチドもしくはループを形成するアミノ酸の枝に認められるポリペプチド骨格配座に及ぼす影響であってもよい。「標的相互作用残基」という用語は、標的物質との相互作用に関与する反復単位のアミノ酸残基または反復モジュールの対応するアミノ酸残基を意味する。そのような関与は、標的物質との直接相互作用であってもよく(図4e)、または例えば、上記の直接相互作用残基と上記の標的との相互作用を可能にするまたは増強するために、上記の反復単位(モジュール)の(ポリ)ペプチドの配座を安定化させることによる他の直接相互作用残基に対する影響であってもよい。そのような骨格および標的相互作用残基は、先に述べた物理化学的方法によって得られる構造データの分析によって、または構造生物学および/または生体情報学における当業者に周知の既知の関連構造情報と比較することによって同定してもよい。
【0033】
「上記の標的物質との相互作用」という用語は、標的に対する結合、上記の標的の構造変化もしくは化学反応への関与、または上記の標的の活性化であってもよいがこれらに限定されない。
【0034】
「標的」は、核酸分子、(ポリ)ペプチドタンパク質、糖質、または他の天然分子の任意の一部、またはそのような分子の二つもしくはそれ以上の複合体を含む、そのような個々の分子であってよい。標的は、細胞全体もしくは組織試料であってもよく、または天然に存在しない分子もしくは部分であってもよい。
【0035】
「少なくとも一つの位置で異なる」という用語は、一つ以上のアミノ酸が認められる少なくとも一つの位置を有する反復タンパク質の集合体を意味する。好ましくは、そのような位置は無作為化される。「無作為化」という用語は、集合体内で可変であり、集合体において一つ以上のアミノ酸残基によって占有される反復モジュールの位置を意味する。好ましくは、無作為化位置は、一つの反復ドメイン内の反復モジュール間でさらに変化する。好ましくは、そのような位置は完全に無作為化してもよい、すなわち天然タンパク質を形成するアミノ酸残基の完全な組によって占有されてもよい。より好ましくは、そのような位置は部分的に無作為化してもよく、すなわち天然タンパク質を形成するアミノ酸残基の完全な組のサブセットによって占有されてもよい。アミノ酸残基のサブセットは、疎水性、親水性、酸性、塩基性、芳香族、もしくは脂肪族アミノ酸の組のような共通の物理化学的特性を有するアミノ酸残基の組、システインもしくはプロリンを含まない組のような特定の望ましくないアミノ酸残基を除き全てを含むサブセット、または天然反復タンパク質における対応する位置で認められる全てのアミノ酸残基を含むサブセットであってもよい。無作為化は、標的相互作用残基のいくつか、好ましくは全てに適用してもよい。上記の反復タンパク質をコードする核酸配列のオリゴヌクレオチド特異的変異誘発を用いることによる(例えば、モノヌクレオチドまたはトリヌクレオチドの混合物を用いることによって)(Virnekasら、1994)ような、または上記の核酸配列の合成の際のエラープローンPCRを用いることによるような、「無作為化」反復タンパク質を作製する方法は当業者に周知である。
【0036】
好ましい態様において、上記の反復モジュールのそれぞれがアミノ酸配列を有し、少なくとも70%のアミノ酸残基が
(i)少なくとも二つの天然反復単位の対応する位置に見出されるアミノ酸残基から推定されるコンセンサスアミノ酸残基;
または
(ii)天然反復単位内の対応する位置に見出されるアミノ酸残基
のいずれかに対応する。
【0037】
「コンセンサスアミノ酸残基」は、先に定義したように決定された構造および/または配列相同性に基づいて、二つまたはそれ以上の反復単位を整列化することによって、および上記の単位におけるそれぞれの位置に関して最も頻繁なアミノ酸残基の一つを同定することによって(例を図5aおよび図5bに示す)発見してもよい。上記の二つもしくはそれ以上の反復単位は、単一の反復タンパク質に含まれる反復単位から得てもよく、または二つもしくはそれ以上の反復タンパク質から得られうる。二つまたはそれ以上のアミノ酸残基が上記の二つまたはそれ以上の反復単位において類似の確率で認められれば、コンセンサスアミノ酸は、最も頻繁に認められるアミノ酸の一つ、または上記の二つもしくはそれ以上のアミノ酸残基の組み合わせであるかも知れない。
【0038】
上記の組が2個〜約30個の反復モジュールからなる集合体が、さらに好ましい。
【0039】
6個〜約15個の反復モジュールからなる組が、より好ましい。
【0040】
本発明のさらにより好ましい態様において、上記の反復モジュールは直接結合している。
【0041】
本発明の意味において、「直接結合する」という用語は、介在アミノ酸が存在しない反復タンパク質における直接の反復として配置される反復モジュールを意味する。
【0042】
さらにより好ましい態様において、上記の反復モジュールは(ポリ)ペプチドリンカーによって結合される。
【0043】
したがって、反復モジュールは、個々のモジュールを分離する介在配列としての(ポリ)ペプチドリンカーによって間接的に結合してもよい。「介在配列」は、折り畳み位相学またはモジュールの積み重ねを妨害しない個々のモジュールに結合させる任意のアミノ酸配列であってよい。選択的に、上記の介在配列は、アミノ酸残基10個未満、さらにより好ましくは5個未満の短い(ポリ)ペプチドリンカーである。
【0044】
本発明の集合体のさらにより好ましい態様において、各反復タンパク質のそれぞれは、上記の反復モジュールのいずれか一つと異なるアミノ酸配列を有するN末端および/またはC末端キャッピングモジュール(図1)をさらに含む。
【0045】
「キャッピングモジュール」という用語は、上記のキャッピングモジュールが上記の反復モジュールと堅固な三次相互作用を形成して、それによって連続する反復モジュールに接していない側の上記の反復モジュールの疎水性コアを溶媒から保護するキャップを提供する、反復ドメインのN末端またはC末端反復モジュールに融合したポリペプチドを意味する(図1)。
【0046】
上記のN末端および/またはC末端キャッピングモジュールは、キャッピング単位(図3)、または天然反復タンパク質において反復単位に隣接して認められる他のドメインであってもよく、またはそれらに由来してもよい。「キャッピング単位」という用語は、上記の(ポリ)ペプチドが反復単位にN末端またはC末端で融合する特定の構造単位を定義する、上記の(ポリ)ペプチドが上記の反復単位と堅固な三次相互作用を形成して、それによって、上記の反復単位の一つの側の疎水性コアを溶媒から保護するキャップを提供する、天然の折り畳まれた(ポリ)ペプチドを意味する。そのようなキャッピング単位は、上記の反復配列モチーフに対して配列類似性を有してもよい。
【0047】
好ましい態様において、本発明は、上記の反復単位がアンキリン反復単位である、核酸分子の集合体に関する。
【0048】
アンキリン反復タンパク質の特徴は論評されており(SedgwickおよびSmerdon、1999)、一つの最小の折り畳み単位が調べられている(ZhangおよびPeng、2000)。アンキリン反復タンパク質は、ある程度詳細に調べられており、このデータを用いて本発明による反復タンパク質の構築を例示することができる。
【0049】
アンキリン反復タンパク質は、酵母菌(Saccharomyces cerevisiae)、ショウジョウバエ(Drosophila melanogaster)、および線虫(Caenorhabditis elegans)におけるそのような四つのタンパク質のあいだの配列比較によって1987年に同定された。ブリーデン(Breeden)およびナスミス(Nasmyth)は、swi6p、cdc10p、notchおよびlin−12の配列においておよそ33残基の反復単位の多数のコピーを報告した(BreedenおよびNasmyth、1987)。アンキリンタンパク質におけるこの反復単位の24コピーがその後発見されたことによって、この反復単位の名称はアンキリン反復となった(Luxら、1990)。後に、この反復単位は、異なる生物およびウイルスの数百ものタンパク質において同定された(Bork、1993;SMARTデータベース、Schultzら、2000)。これらのタンパク質は核、細胞質、または細胞外間隙に存在する。このことは、これらのタンパク質のアンキリン反復ドメインがジスルフィド架橋とは無関係であること、そしてこのように環境の酸化状態とは無関係であるという事実と一致する。タンパク質当たりの反復単位の数は、2個〜20個を上回る(SMARTデータベース、Schultzら、2000)。安定な折り畳まれたドメインを形成するために、最小数の反復単位が必要であるように思われる(ZhangおよびPeng、2000)。一方、一つの折り畳まれたドメインに存在する6個の反復単位の上限に関しても何らかの証拠がある(MichaelyおよびBennet、1993)。
【0050】
これまでに決定されたアンキリン反復単位の三次構造は、二つの逆平行αヘリックスが続き、反復単位を次の反復単位に結合するループで終わるβ−ヘアピンからなる共通の折り畳み構造(SedgwickおよびSmerdon、1999)を共有する(図4c)。アンキリン反復単位で構築されるドメインは、反復単位を積み重ねて、より伸張した湾曲した構造を形成することによって形成される。これは、図2hにおけるマウスGA結合タンパク質β1サブユニットの構造によって説明される。
【0051】
アンキリン反復ドメインを含むタンパク質は、しばしばさらなるドメインを含む(SMARTデータベース、Schultzら、2000)。後者のドメインは、多様な機能を有するが、アンキリン反復タンパク質ドメインの機能は、いくつかの例が示すように最もしばしば他のタンパク質との結合である(Batchelorら、1998;GorinaおよびPavletich、1996;Huxfordら、1999;JacobsおよびHarrison、1999;Jeffreyら、2000)。これらのタンパク質の反復単位を分析する場合、標的相互作用残基は主にβヘアピンおよび第一のαヘリックスの露出した一部において認められる(図4c)。したがって、これらの標的相互作用残基は、アンキリン反復ドメイン上で大きい接触表面を形成する。この接触表面は、αヘリックス1、αヘリックス2およびループの積み重ね単位の骨格構築上で露出している(図4c)。反復単位5個からなるアンキリン反復タンパク質に関して、他のタンパク質に接触するこの相互作用表面は、約1200Åである。そのような大きい相互作用表面は、標的分子に対する高親和性を得るために都合がよい。例えば、IkBa(アンキリン反復単位6個のドメインを含む)のNF−κBヘテロダイマーに対する親和性は、K=3nM(Malekら、1998)であるのに対し、ヒトGA結合タンパク質β1の、そのα単位に対する解離定数はK=0.78 nMである(Suzukiら、1998)。広く用いられている抗体と比較して、本発明によるアンキリン反復タンパク質を用いる長所は、それらが可溶性の、単量体で安定な分子として大量に組み換え型で発現できるという点である(実施例2)。
【0052】
上記の反復モジュールのそれぞれが、以下のアンキリン反復コンセンサス配列を含む集合体がさらに好ましい:
Figure 2004508033
式中、「x」は、任意のアミノ酸を意味し、「±」は任意のアミノ酸または欠失を意味し、「a」は、無極性側鎖を有するアミノ酸を意味し、および「p」は、極性側鎖を有する残基を意味する。「x」で示される一つまたは複数の位置が無作為化されている集合体が最も好ましい。
【0053】
上記の反復モジュールのそれぞれが以下のアンキリン反復コンセンサス配列を含む集合体が特に好ましい:
Figure 2004508033
式中、「x」は任意のアミノ酸を意味する。
【0054】
上記の反復モジュールのそれぞれが以下のアンキリン反復配列モチーフを含む多様な集合体がさらにより好ましい:
Figure 2004508033
式中、「x」は任意のアミノ酸を意味する。
【0055】
上記の反復モジュールのそれぞれが以下のアンキリン反復配列モチーフを含む、多様な集合体がさらにより好ましい:
Figure 2004508033
式中、1は、A、D、E、F、H、I、K、L、M、N、Q、R、S、T、V、WおよびYからなる群より選択されるアミノ酸残基を表し;
式中、2は、H、NおよびYからなる群より選択されるアミノ酸残基を表す。
【0056】
さらに好ましい態様において、本発明は、上記の反復単位がロイシンリッチ反復(LRR)である核酸分子の集合体に関する。
【0057】
LRR反復の特徴および特性は論評されている(KobeおよびDeisenhofer、1994)。LRRタンパク質はある程度詳細に研究されており、そのデータを用いて反復タンパク質の挙動を例示することができる。
【0058】
LRRタンパク質は、2位、5位、7位または12位でロイシンまたは他の疎水性残基の高度に保存されたコンセンサスによって同定されている(図4b)。しかし、このアミノ酸分布パターンの重要性は、LRRの最初の構造であるリボヌクレアーゼ阻害剤タンパク質が溶解している場合に限って理解されていた(図2c)。最近、さらなるLRR結晶構造が解明されている(図2d〜図2f)。典型的なアンキリン反復ドメインタンパク質の構造を比較のために示す(図2g)。単一のLRRは常に、ロイシンまたは他の脂肪族残基のみからなるコアを取り巻く(Kajava、1998)β鎖および逆平行αヘリックス(独自のα/β襞、図4a)に対応すると仮定されている。リボヌクレアーゼ阻害剤(RI)であるLRRタンパク質の全体的な形状は、A型(アミノ酸29個)とB型(アミノ酸28個)が厳密に交互する縦列の相同な反復15個によって形成された馬蹄形である(図2c)と記述されうる。タンパク質の交互の特性は、配列が分析された時期に既に認識されていた(図5a(Leeら、1988))。
【0059】
興味深いことに、哺乳類のRIはその標的タンパク質に対する極端な親和性を特徴とする。ヒトRIに対するRNaseAの結合に関して、K=5.9×10−14 M(KobeおよびDeisenhofer、1996)が報告されているが、アンジオゲニンは、ブタRIによってK=7.1×10−16 Mで阻害され、このように、これはタンパク質間で既知の最も強力な相互作用の一つとなることが判明した。最もよく結合する抗体でさえも、親和性の特徴は1.5×10−11 Mまでである(Yangら、1995)。顕著な親和性をよりよく理解するために、二つのRIをその標的タンパク質と共に同時結晶した。結晶構造のその後の分析によって、相互作用が主に静電気的であり(KobeおよびDeisenhofer、1996)、関係するアミノ酸は主に内側のβシートおよび各単位をそのαヘリックスに結合させるループから出ていることが主に認められた(図4b、KobeおよびDeisenhofer、1995)。その上、馬蹄形の襞の幅は、標的タンパク質に適応するようにわずかに変化することができる(KobeおよびDeisenhofer、1994)。標的と阻害剤との界面は、相互作用の「パッチワーク」からなり、堅固な会合は、標的タンパク質が馬蹄形内部に結合している場合、形状の相補性よりむしろ埋もれた大きい表面積(約2550A)に由来する(KobeおよびDeisenhofer、1996)。
【0060】
RIに対するRNaseAとアンジオゲニン(わずか30%の配列同一性を有する二つの分子)の詳細な結合を比較すると、有意な差が明らかとなった(ChenおよびShapiro、1997)。RIの側ではほぼ同じ残基が関係しているが、標的タンパク質の残基は、相同ではないか、または異なる種類の結合を用いた(Papageorgiouら、1997)。言い換えれば、RIは、残基の最適な相補性よりむしろ正しい幾何学的方向に提示される多数の接触に基づいて、異なる標的分子にそれを結合させて、それを阻害させるように進化した。これは、新しい結合特異性を有する新しい結合分子を設計するための基礎である。形状は大きい表面を認識するように予め運命が決まっているように思われ、それによって抗体の比較的小さい「可変の」ドメインと比較して、はるかに多様なランダムアミノ酸にライブラリを作製させることができる。しかし、抗体のループは、小さいハプテンまたは深い溝を認識しなければならない場合には、優れているように思われる。さらに、反復そのものを変化させることができるのみならず、その数も標的分子に依存しうる。
【0061】
上記のモジュールのそれぞれが以下のLRRコンセンサス配列を含む集合体が、さらに好ましい:
Figure 2004508033
式中、「x」は、任意のアミノ酸を意味し、「a」は脂肪族アミノ酸、および「±」
は任意のアミノ酸または欠失を意味する。
【0062】
「脂肪族アミノ酸」という用語は、アラニン、グリシン、イソロイシン、ロイシン、およびバリンの一覧から得られるアミノ酸を意味する。
【0063】
上記のモジュールの少なくとも一つが以下のLRRコンセンサス配列を含む集合体が、特に好ましい:
Figure 2004508033
式中、「x」は、任意のアミノ酸を意味し、「a」は脂肪族アミノ酸(A型LRR)を意味する。
【0064】
さらに、上記のモジュールの少なくとも一つがLRRコンセンサス配列を含む集合体が特に好ましい:
Figure 2004508033
式中、「x」は、任意のアミノ酸を意味し、「a」は脂肪族アミノ酸(B型LRR)を意味する。
【0065】
「x」および/または「±」で示される一つまたは複数の位置が無作為化されている集合体が最も好ましい。
【0066】
A型LRRコンセンサス配列における10位のシステイン残基が親水性のアミノ酸残基に置換され、17位のシステイン残基が疎水性アミノ酸残基に置換されている集合体がさらに好ましい。
【0067】
親水性アミノ酸残基は、セリン、トレオニン、チロシン、グルタミン、およびアスパラギンのリストから得られうる。
【0068】
疎水性アミノ酸残基は、アラニン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、トリプトファンおよびバリンのリストから得られうる。
【0069】
一本鎖Fvまたは従来の抗体と比較すると、いくつかの長所を列挙することができる。ジスルフィド架橋は、ほとんどの抗体の安定性のために必須であるが(Probaら、1997)、LRRタンパク質ではジスルフィド結合は必要でなく、このため細胞内への適用が可能となる。
【0070】
したがって、還元環境において適用するために新しい結合分子を作製することができる。これは、サイトゾルにおける直接阻害によって、ゲノムシークエンシングプロジェクトによって同定された多数のタンパク質の機能を解明するための極めて強力なツールとなりうる。バイオテクノロジーでは多くの適用に関して、発現されたおよび正確に折り畳まれたタンパク質の大量が必要であり、大腸菌における産生は好ましいが、酸化的細胞外環境において放出された抗体にとって非常に難しい。対照的に、RI変種の折り畳みまたはひだの再形成は、それらが本来サイトゾルにおいて認められるためにより効率的である(実施例1を参照のこと)。
【0071】
本発明による集合体のさらに好ましい態様において、上記のアンキリンまたはLRR反復モジュールにおけるアミノ酸残基の一つまたは複数が、対応する天然反復単位の対応する位置に見出されるアミノ酸残基に置換されている。
【0072】
好ましくは、30%までのアミノ酸残基、より好ましくは20%まで、および最も好ましくは10%までのアミノ酸残基が置換される。
【0073】
上記の組が反復モジュールの一種類からなる集合体が特に好ましい。
【0074】
「反復モジュールの種類」という用語は、モジュールの長さ、その「固定位置」のみならずその「無作為化位置」の数および組成によって決定されたモジュールの特徴を意味する。「異なる種類のモジュール」は、上記の特徴の一つまたは複数が異なっていてもよい。
【0075】
上記の組が二つの異なる種類の反復モジュールからなる集合体が、さらに好ましい。
【0076】
さらにより好ましい態様において、本発明は、上記の組が上記の反復タンパク質における対として連続した反復モジュールの二つの異なる型を含む集合体に関する。
【0077】
上記の二つの異なる種類のモジュールが上記のA型LRRおよびB型LRRに基づく集合体が最も好ましい。
【0078】
上記の組に含まれる反復モジュールのアミノ酸配列が無作為化残基を除いてそれぞれの上記の種類に関して同一である集合体がさらに好ましい。
【0079】
それぞれの上記の種類のコピーをコードする核酸配列が、無作為化された位置におけるアミノ酸残基をコードするコドンを除いて同一である集合体がさらにより好ましい。
【0080】
上記の反復タンパク質をコードする核酸分子が上記の反復モジュールのあいだに少なくとも9ヌクレオチドの同一の核酸配列を含む集合体が特に好ましい。
【0081】
上記の「少なくとも9ヌクレオチドの同一の核酸配列」は、一つのみの反復モジュールの末端の一部であってもよく、隣接する二つの反復モジュールの両端によって形成されてもよく、または二つの反復モジュールを結合する(ポリ)ペプチドリンカーの一部であってもよい。
【0082】
本発明によるさらに好ましい集合体において、上記の反復タンパク質をコードする核酸分子は、対のあいだに少なくとも9ヌクレオチドの同一の核酸配列を含む。
【0083】
上記の「少なくとも9ヌクレオチドの同一の核酸配列」は、反復モジュールの唯一の対の末端の一部であってもよく、反復モジュールの二つの隣接する対の両端によって形成されてもよく、または反復モジュールの二つの対を結合する(ポリ)ペプチドリンカーの一部であってもよい。
【0084】
上記のモジュールまたは上記の対のあいだの核酸配列のそれぞれが制限酵素認識配列を含む集合体が最も好ましい。
【0085】
「制限酵素認識配列」という用語は、制限エンドヌクレアーゼによって認識されて切断される核酸配列を意味する。上記の制限酵素認識配列は、3’末端および5’末端のあいだで対称的に分割されてもよく(例えば、両末端に6塩基対認識配列の3ヌクレオチド)、または非対称的であってもよい(一方の末端に2ヌクレオチド、もう一方の末端に4ヌクレオチド)。
【0086】
上記のモジュールまたは上記の対のあいだの核酸配列のそれぞれが、二つの互換的制限酵素によって作製された付着末端から形成される核酸配列を含む集合体が特に好ましい。
【0087】
「互換的制限酵素」という用語は、異なる認識配列を有するが、二本鎖DNAを切断する場合に互換的付着末端を形成する制限酵素を意味する。二つの互換的制限酵素から生じた付着末端二本鎖DNA断片の再ライゲーション後、産物DNAは、もはや双方の制限酵素の認識配列を示さない。
【0088】
本発明の集合体のさらに最も好ましい態様において、上記の同一の核酸配列によって、上記の反復タンパク質をコードする核酸分子のPCRに基づく構築が可能となる。
【0089】
本発明による集合体の最も好ましい態様において、上記の反復タンパク質は、上記の対のそれぞれが以下の配列を有する、上記のA型LRRおよびB型LRRに基づく一つまたは複数のモジュール対を含む:
Figure 2004508033
式中、は、群
D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基を表し;
式中、2は群
N、SおよびTから選択されるアミノ酸残基を表し;
式中、3は、群
G、S、D、N、HおよびTから選択されるアミノ酸残基を表し;かつ
式中、は、群
L、VおよびMから選択されるアミノ酸残基を表す。
【0090】
最も好ましくは、上記のモジュール対のそれぞれは、以下の核酸分子によってコードされる:
Figure 2004508033
式中、111は群
D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基をコードするコドンを表し;
式中、222は群
N、SおよびTから選択されるアミノ酸残基をコードするコドンを表し;
式中、333は群
G、S、D、N、HおよびTから選択されるアミノ酸残基をコードするコドンを表し
;かつ
式中、444は群
L、VおよびMから選択されるアミノ酸残基をコードするコドンを表す。
【0091】
もう一つの好ましい態様において、上記の少なくとも一つのモジュール対におけるアミノ酸残基の一つまたは複数は、天然LRR内の対応する位置に見出されるアミノ酸残基によって置換されている。
【0092】
さらにもう一つの好ましい態様において、上記の少なくとも一つのモジュール対におけるアミノ酸コドンの一つまたは複数は、天然LRR内の対応する位置に見出されるアミノ酸残基をコードするコドンによって置換されている。好ましくは、アミノ酸残基またはアミノ酸コドンがそれぞれ30%まで、より好ましくは20%まで、および最も好ましくは10%まで置換されている。
【0093】
さらにもう一つの好ましい態様において、上記の少なくとも一つのモジュール対におけるアミノ酸コドンの一つまたは複数は、天然LRR内の対応する位置において認められるアミノ酸残基をコードするコドンによって置換されている。
【0094】
さらに好ましい態様において、本発明は、本発明による核酸分子の集合体を含む組み換え型核酸分子の集合体に関する。
【0095】
本発明の意味において、「組み換え型核酸分子」という用語は、上記の反復タンパク質をコードする核酸配列およびさらに核酸配列、例えば非コード配列を含むRNA分子またはDNA分子を意味する。
【0096】
さらにより好ましい態様において、本発明は、本発明による核酸分子の集合体、または本発明による組み換え型核酸分子の集合体を含むベクターの集合体に関する。
【0097】
本発明によるベクターは、プラスミド、ファージミド、コスミド、またはウイルスもしくはバクテリオファージに基づくベクターであってもよく、およびクローニングまたはシークエンシングベクターであってもよく、または好ましくは原核もしくは真核細胞発現系のいずれかにおいて上記のベクターから核酸分子の発現にとって必要な全ての要素を含む発現ベクターであってもよい。核酸分子をクローニング、シークエンシング、および発現するためのベクターは、当業者に周知である。本発明の核酸分子を含むベクターは、細胞宿主の種類に応じて変化する周知の方法によって宿主細胞に移入することができる。例えば、塩化カルシウムトランスフェクションは、原核細胞に一般的に用いられるが、例えばリン酸カルシウムもしくはDEAEデキストラン媒介トランスフェクションまたはエレクトロポレーションは、他の細胞宿主のために用いてもよい;例えば、サムブルックら(Sambrook、1989)を参照のこと。
【0098】
そのようなベクターは、適した宿主細胞および適した条件下において上記のベクターの選択を可能にするマーカー遺伝子のようなさらなる遺伝子を含んでもよい。好ましくは、本発明の核酸分子は、原核または真核細胞における発現を可能にする発現制御配列に機能的に結合する。上記の核酸分子の発現は、翻訳可能なmRNAへのポリヌクレオチドの転写を含む。真核細胞、好ましくは哺乳類細胞における発現を確実にする調節エレメントは、当業者に周知である。それらは通常、転写の開始を確実にする調節配列、ならびに選択的に転写の終了および転写物の安定化を確実にするポリAシグナル、および/または上記の核酸分子の発現をさらに増強するイントロンを含む。さらなる調節エレメントには、転写と共に翻訳エンハンサー、および/または天然に会合するまたは異種プロモーター領域が含まれてもよい。原核宿主細胞における発現を可能にする可能性がある調節エレメントは、例えば、大腸菌におけるpL、lac、trp、またはtacプロモーターを含み、真核宿主細胞における発現を可能にする調節エレメントの例は、AOX1または酵母のGAL1プロモーター、またはCMVプロモーター、SV40プロモーター、RSVプロモーター(ラウス肉腫ウイルス)、CMVエンハンサー、SV40エンハンサー、または哺乳類および他の動物細胞におけるグロビンイントロンである。転写の開始に関与するエレメントの他に、そのような調節エレメントはまた、SV40−ポリA部位またはtk−ポリA部位のような転写終了シグナルを、核酸分子の下流に含んでもよい。さらに、用いられる発現系に応じて、(ポリ)ペプチドを細胞区画に向けて、それを培地に分泌させることができるリーダー配列を、本発明の核酸分子のコード配列に加えてもよく、それらは当技術分野で周知である。リーダー配列(複数)は、翻訳、開始および終了配列、ならびに好ましくは翻訳されたタンパク質またはその一部のペリプラスム間隙または細胞外培地への分泌を指示することができるリーダー配列と共に適当な相で構築される。選択的に、異種配列は、所望の特徴、例えば発現された組み換え産物の安定化または精製の単純化を付与するC末端またはN末端同定ペプチドを含む融合タンパク質をコードすることができる。この意味において、オカヤマ−ベルグcDNA発現ベクターpcDV1(ファルマシア社)、pCDM8、pRc/CMV、pDNA1、pcDNA3(インビトロジェン社)、pSPORT1(ギブコBRL社)、もしくはpCI(プロメガ社)、またはより好ましくはpTFT74(Geら、1995)もしくはpQEシリーズ(キアゲン社)のメンバーのような適した発現ベクターは、当技術分野において既知である。さらに、本発明は、本発明のポリヌクレオチドを含む遺伝子操作において従来用いられているベクター、特にプラスミド、コスミド、ウイルス、およびバクテリオファージに関する。好ましくは、上記のベクターは発現ベクターである。当業者に周知の方法を用いて、組み換え型ウイルスベクターを構築することができる;例えばサムブルック(Sambrook)ら(「分子クローニング:実験マニュアル(Molecular Cloning:A Laboratory Manual)」第二版、Cold Spring Harbor Laboratory(1989)、N.Y.)、およびアウスユベール(Ausubel)ら(「分子生物学の現行プロトコール(Current Protocols in Molecular Biology)」、Green Publishing Associates and Wiley Interscience、N.Y.(1989))に記載される技術を参照のこと。
【0099】
さらに、本発明は、本発明による核酸分子の集合体を含む宿主細胞の集合体、本発明による組み換え型核酸分子の集合体、または本発明によるベクターの集合体に関する。
【0100】
本発明の意味において、「宿主細胞」という用語は、大腸菌(Geら、1995)または枯草菌(Bacillus subtilis)(Wuら、1993a)のような細菌、酵母のような真菌(Horwitzら、1988;Ridderら、1995)、または糸状菌(Nyyssonenら、1993)、植物細胞(Hiatt、1990;HiattおよびMa、1993;Whitelamら、1994)、昆虫細胞(Potterら、1993;Wardら、1995)、または哺乳類細胞(Trillら、1995)を含むがこれらに限定されない、異種タンパク質を産生するために一般的に用いられる任意のものであってもよい。
【0101】
もう一つの態様において、本発明は、本発明による核酸分子の集合体、本発明によるベクターの集合体によってコードされる、または本発明による宿主細胞の集合体によって産生された反復タンパク質の集合体に関する。
【0102】
さらに、本発明は、本発明による核酸分子の集合体の構築方法であり、以下の段階を含む方法に関する:
(a)反復タンパク質ファミリー由来の反復単位を同定する段階;
(b)上記の反復単位において骨格残基および標的相互作用残基を同定する段階;
(c)上記の反復タンパク質ファミリーの少なくとも一つのメンバーからの骨格残基および無作為化標的相互作用残基を含む少なくとも一種類の反復モジュールを推定する段階;ならびに
(d)それぞれが、段階(c)において推定された反復モジュールの上記の少なくとも一種類の二つまたはそれ以上のコピーを含む反復タンパク質をコードする核酸分子を構築する段階。
【0103】
本発明の方法を行う様式を、本発明の核酸分子の集合体の態様に関連して上記に説明する。そのような二つの様式の説明を実施例において説明する。
【0104】
本発明の方法の好ましい態様において、段階(c)において推定された上記の少なくとも一つの反復モジュールがアミノ酸配列を有し、少なくとも70%のアミノ酸残基が、
(i)少なくとも二つの天然反復単位の対応する位置に見出されるアミノ酸残基から推定したコンセンサスアミノ酸残基、または
(ii)天然反復単位内の対応する位置に見出されるアミノ酸残基
のいずれかに対応する。
【0105】
本発明による(ポリ)ペプチド/タンパク質の集合体の産生方法であり、以下の段階を含む方法がさらに好ましい:
(a)本発明による宿主細胞の集合体を提供する段階;および
(b)上記の宿主細胞に含まれる核酸分子の集合体を発現させる段階。
【0106】
以下の段階を含む既定の特性を有する反復タンパク質を得る方法が特に好ましい:
(a)本発明による反復タンパク質の集合体を提供する段階、および
(b)上記の既定の特性を有する少なくとも一つの反復タンパク質を得るために、上記の集合体をスクリーニングする段階および/または上記の集合体から選択する段階。
【0107】
反復タンパク質の多様な集合体は、用いられるスクリーニングおよび/または選択系に従っていくつかの方法によって提供してもよく、バクテリオファージ(国際公開公報第90/02809号;Smith、1985;Kayら、1996;Dunn、1996)、または細菌細胞(国際公開公報第93/10214号)の表面上でのディスプレイ、リボソームディスプレイ(国際公開公報第91/05058号;国際公開公報第98/48008号;Hanesら、1998)、プラスミド上のディスプレイ(国際公開公報第93/08278号)などの方法を用いること、または共有結合RNA−反復タンパク質ハイブリッド構築物を用いることによって(国際公開公報第00/32823号)、タンパク質相補性アッセイ(国際公開公報第98/341120号;Pelletierら、1998)によるような細胞内発現および選択/スクリーニングのような方法を用いることを含んでもよい。これらの全ての方法において、反復タンパク質は、核酸分子の対応する集合体の発現の後に反復タンパク質のスクリーニングを行い、その後反復タンパク質に関連した遺伝情報によって所望の特性を有する一つまたは複数の反復タンパク質を同定することによって提供される。
【0108】
本発明の意味において、「既定の特性」という用語は、反復タンパク質の集合体からの反復タンパク質の一つが有する特性、および集合体のスクリーニングおよび/または選択のための基礎を形成する特性を意味する。そのような特性は、標的に対する結合、標的の阻害、標的媒介反応の活性化、酵素活性のような特性、および当業者に既知のさらなる特性を含む。所望の特性の種類に応じて、当業者は、フォーマット、およびスクリーニングおよび/または選択を行うための必要な段階を同定することができると考えられる。
【0109】
最も好ましくは、本発明は、上記の既定の特性が標的に対する結合である方法に関する。
【0110】
もう一つの態様において、本発明は、本発明による集合体からの反復タンパク質に関する。
【0111】
好ましくは上記の反復タンパク質は、上記の方法によって得られ、既定の特性の一つを有する。
【0112】
さらに、本発明は、本発明による反復タンパク質をコードする核酸分子に関する。
【0113】
さらにもう一つの態様において、本発明は、本発明による核酸分子を含むベクターに関する。
【0114】
本発明は、本発明の集合体からの反復タンパク質、または上記の反復タンパク質をコードする核酸分子、および選択的に薬学的に許容される担体および/または希釈剤を含む薬学的組成物にも関する。
【0115】
適した薬学的担体の例は、当技術分野で周知であり、リン酸緩衝生理食塩液、水、油/水乳剤のような乳剤、様々な種類の湿潤剤、滅菌溶液等が含まれる。そのような担体を含む組成物は、周知の従来の方法によって調製することができる。これらの薬学的組成物は、適した用量で被験者に投与することができる。適した組成物の投与は、異なる方法で、例えば静脈内、腹腔内、皮下、筋肉内、局所、皮内、鼻腔内、または気管支内投与によって行ってもよい。投与レジメは主治医および臨床要因によって決定されると考えられる。医学の技術分野において周知であるように、患者への任意の用量は、患者の体格、体表面積、年齢、投与すべき特定の化合物、性別、投与時間および投与経路、全身健康状態、および同時投与される他の薬剤を含む多くの要因に依存する。典型的な用量は例えば、0.001〜1000μg(またはこの範囲の発現または発現の阻害に関して核酸の)となりうるが、特に上記の要因を考慮してこの例となる範囲より下または上の用量が想定される。一般的に、薬学的組成物の定期的な投与としての療法は、1μg〜10 mg単位/日の範囲でありうる。療法が持続的注入の場合、同様に1μg〜10 mg単位/kg体重/分の範囲でありうる。定期的な評価によって進行をモニターすることができる。用量は変更するが、DNAの静脈内投与の好ましい用量は、DNA分子約10コピー〜1012コピーである。本発明の組成物は、局所または全身投与してもよい。投与は、一般的に非経口投与、例えば静脈内投与でありうる。DNAはまた、例えば内部もしくは外部標的に対するバイオリスティック輸送によって、または動脈内の部位にカテーテルによって、標的部位に直接投与してもよい。非経口投与のための調製物には、滅菌水溶液または非水溶液、懸濁液、および乳液が含まれる。非水性溶媒の例は、プロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、およびオレイン酸エチルのような注射可能な有機エステルである。水性担体には、生理食塩液および緩衝培地を含む、水、アルコール/水性溶液、乳液、または懸濁液が含まれる。非経口媒体には、塩化ナトリウム溶液、リンゲルデキストロース、デキストロースおよび塩化ナトリウム、乳酸リンゲル、または固定油が含まれる。静脈内媒体には、液体および栄養補給剤、電解質補給剤(リンゲルデキストロースに基づく補給剤のような)等が含まれる。例えば、抗菌剤、抗酸化剤、キレート剤、および不活性ガス等のような保存剤および他の添加剤も同様に存在してもよい。さらに、本発明の薬学的組成物は、薬学的組成物の意図する用途に応じて、インターロイキン、またはインターフェロンのような物質をさらに含んでもよい。
【0116】
本発明の薬学的組成物に含まれる反復タンパク質は、共有または非共有結合によって結合されるさらなるドメインを含みうる。結合は、当技術分野で既知の方法および上記の方法に従って、遺伝的融合に基づくことができ、例えば、国際公開公報第94/04686号に記載されるような例えば化学的クロスリンクによって行うことができる。本発明に従って用いられるペプチド、ポリペプチド、または抗体を含む融合タンパク質に存在するさらなるドメインを、好ましくは、ポリペプチドリンカーが上記のさらなるドメインのC末端と反復タンパク質のN末端とのあいだ、またはその逆の距離に及ぶほど十分な長さの複数の疎水性のペプチド結合アミノ酸を含む、柔軟なリンカー、都合がよいのはポリペプチドリンカーによって結合してもよい。上記の融合タンパク質はさらに、切断可能なリンカーまたはプロテナーゼの切断部位を含んでもよい。
【0117】
さらに、上記のさらなるドメインは、既定の特異性または機能を有するドメインであってもよい。この意味において、本発明による薬学的組成物に存在する反復タンパク質は、当技術分野で既知の従来の方法によってさらに改変してもよい。これによって、本発明の反復タンパク質と、他の機能的アミノ酸配列、例えば異種タンパク質に由来してもよい核局在シグナル、トランス活性化ドメイン、DNA結合ドメイン、ホルモン結合ドメイン、タンパク質タグ(GST、GFP、h−mycペプチド、FLAG、HAペプチド)とを含む融合タンパク質を構築することができる。このように、本発明の組成物の投与は、標識のみならず非標識(ポリ)ペプチドまたは抗体を利用することができる。
【0118】
上記の核酸分子が
Figure 2004508033
である、本発明による集合体を構築するために反復モジュール対をコードする核酸分子がさらに好ましい:
式中、111は群
D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基をコードするコドンを表し;
式中、222は群
N、SおよびTから選択されるアミノ酸残基をコードするコドンを表し;
式中、333は群
G、S、D、N、HおよびTから選択されるアミノ酸残基をコードするコドンを表し
;かつ
式中、444は群
L、VおよびMから選択されるアミノ酸残基をコードするコドンを表す。
【0119】
これらおよび他の態様は、本発明の説明および実施例によって開示され、含まれる。本発明に従って用いられる任意の方法、用途、および化合物に関するさらなる文献を、例えば電子装置を用いて公共のライブラリから検索してもよい。例えば、インターネット上で利用できるデータベース「PubMed」(Sequeiraら、2001)を利用してもよい。
【0120】
バイオテクノロジーにおける特許情報の概要、ならびにレトロスペクティブ検索にとっておよび現在の認識にとって有用な特許情報の調査または関連起源は、バークス(Berks、1994)に示される。
【0121】
実施例は本発明を例示するものである。
【0122】
実施例
実施例において特記しない限り、全ての組み換えDNA技術を、記載のプロトコールに従って行う(Sambrookら、1989、またはAusubelら、1994)。用いたデータベースは以下の通りであった:
GenBank
国立バイオテクノロジー情報センター、国立医学図書館、ベセスダ(Bethesda)、アメリカ(USA);
Swiss−Prot
スイス生体情報学研究所、ジュネーブ(Geneva)、スイス(Switzerland);タンパク質データベース(Protein Data Base)
ラトガーズ大学分子生物物理および生物物理化学センター、ニュージャージー州(New Jersey)、アメリカ(USA);ならびに
単純モジュール構築研究ツール(SMART)
EMBL、ハイデルベルグ(Heidelberg)、ドイツ(Germany)。
【0123】
1.哺乳類リボヌクレアーゼ阻害剤の反復単位に由来する反復モジュールを含む反復タンパク質の集合体
本実施例は、哺乳類のリボヌクレアーゼ阻害剤(RI)に由来するロイシンリッチ反復タンパク質の集合体の構築を説明する。この足場構造は、RI(Leeら、1989)によるアンジオゲニンおよびRIによるRNaseA(KobeおよびDeisenhofer、1996)の結合に関して、フェントモル範囲での極めて堅固な相互作用が報告されていることから選択した。
【0124】
RIアミノ酸配列は、A型およびB型LRR反復単位(KobeおよびDeisenhofer、1994)と呼ばれる、二つの交互の異なるが相同な反復単位の特徴的なパターンを示したことから、2つの反復モチーフを誘導してこれを用いて反復ドメインを構築した。A型のLRR反復モチーフとB型のLRR反復モチーフとの構築物を、本明細書においてRI反復モチーフ対と呼ぶ。RI反復モチーフ対を含む反復モジュール対のモデルを示す(図4f)。本実施例は、反復ドメインを構築するために一つ以上の反復モチーフを用いることを示し、これは一つのみのモチーフを用いる実施例2とは対照的である。
【0125】
)哺乳類 RI の予備的な反復配列モチーフの誘導
ヒトRI(アクセッション番号P13489、Leeら、1988)およびブタRI(P10775、Hofsteengeら、1988)のタンパク質配列を用いて相同配列を検索した。ラットRI(P29315、Kawanomotoら、1992)およびマウスRIタンパク質の完全なタンパク質配列が判明した(AAK68859、非公表)。
【0126】
得られたRIタンパク質配列の反復単位は、GCG(商標)Wisconsin Package(登録商標)において実行される「FastA」(アクセルリス、アメリカ)を用いて整列化した。ヒトRIのタンパク質配列を示し(図5a)、2位、5位、7位、12位、20位、および24位でのロイシンまたは他の脂肪族残基を特徴とするLRRパターン(KobeおよびDeisenhofer、1994)を強調して示す。それぞれの位置に関して最も豊富なアミノ酸をヒト、マウス、ブタ、およびラットRI配列に関して計算した(図5cおよび図5d)。最初のRI反復モチーフ対は、所定の位置での場合の50%(図5cおよび図5dを参照のこと)またはそれ以上に存在するアミノ酸によって定義された。
Figure 2004508033
【0127】
所定の位置での同一アミノ酸の閾値が40%またはそれ以上である場合、RI反復モチーフ対は、以下のアミノ酸配列によって定義された。
Figure 2004508033
【0128】
同様に、所定の位置での同一アミノ酸の閾値が30%またはそれ以上である場合、RI反復モチーフ対は、以下のアミノ酸配列によって定義された。
Figure 2004508033
【0129】
最後に、所定の位置での同一アミノ酸の閾値が25%またはそれ以上である場合、RI反復モチーフ対は、位置一つあたりアミノ酸一つのみによってほぼ完全に定義された。
Figure 2004508033
【0130】
これは、配列モチーフを配列情報およびアラインメントのみからどのようにして誘導できるかを説明するためのものである。しかし、好ましくは、構造情報を考慮に入れるべきである。
【0131】
)骨格と標的相互作用残基の位置を決定する
A型とB型LRR単位双方の分析によって、2位、5位、7位、10位、12位、17位、20位、および24位でのアミノ酸の側鎖が常に疎水性コアに向いていること(KobeおよびDeisenhofer、1994、ならびに図4bおよび図4d)、そしてこれらのアミノ酸が骨格残基のサブセットを構成することが判明した。他の骨格残基は、それらがそれぞれのLRR単位のαヘリックスを開始させて終了させることから、16位のグリシンならびにA型残基では28位(A28と省略)およびB型LRR単位では27位(B27位と省略)のプロリンである。さらに、位置A1、A3、A13、A18、A19、A22、A25、A27、ならびにB1、B3、B11、B14、B18、B22、およびB26は、周辺溶媒の方向を向いた親水性アミノ酸残基を有することが最も多く、骨格位置として処理された。同様に、位置A14、A15、A21、A23、A26、ならびにB15、B19、B21、B25、およびB29は通常、反復モジュールの界面を安定化させる疎水性アミノ酸残基によって占有され、このように、同様に骨格位置として処理される。さらに、位置A11、B13、B23およびB28は、他のアミノ酸残基より柔軟性を可能にするグリシンを特徴とし、したがって骨格にとって同様に重要である。対照的に位置4、6、8および9は、RI反復モチーフ対における標的相互作用の位置であると定義された。
【0132】
)不都合なアミノ酸の置換
RIコンセンサスはまた、位置A10およびA17ならびにB21およびB29において極めてよく保存されたシステインを特徴とする。しかし、遊離のシステインは酸化されて、合併症を引き起こす可能性があるため、システインを含まないモジュールを設計することが望ましい。したがって、適当な置換を調べた。三次元構造(MTS#1)を調べると、A10位のシステインは水素結合を形成することが判明した。さらに、より遠位のLRR分子とのアラインメントにより、ほとんどの場合アスパラギン、セリン、またはトレオニンのいずれかが存在することが判明した。したがって、LRRモジュールにおける位置A10は、これらの三つのアミノ酸が存在するように設計された。同様に、位置A17は疎水性コアの一部であることが判明し、これがLRRモジュールにおいてメチオニン、ロイシン、またはバリンを用いる理由である。同時に、これらの二つの位置A10およびA17は、骨格位置が無作為化される場合を構成する。位置B21において、分析された全てのRI配列における最初と最後の反復のシステインは、常にロイシンによって置換され(バリンを一つの例外として)、このように、最終的なLRRモジュールにおいてロイシンであると定義された。位置B29の場合、したがって、選択はセリンとトレオニンのあいだであり、この場合、BssHIIとMluIの制限エンドヌクレアーゼ部位との構築を可能にするように、トレオニンを選択した(詳しい説明に関しては、図6を参照のこと)。
【0133】
分析された位置A21の36%に生じる最後まで残っているシステイン(図5c)は、これが所定の位置での次に最も頻繁なアミノ酸であり、同様に疎水性環境に一致するように思われることからアラニンと設定した。B21位でロイシンが認められたほとんどの場合において、A21位にアラニンが存在することが認められたために、この決定が促進された。言い換えれば、B21位でのロイシンは、A21位でのアラニンを好むように思われる。このように、積み重ねは、LRRモジュールにおけるこの選択によって最もよく支持されると考えられた。
【0134】
A1位に関しては、もう一つの決定が必要であった。二つの可能性がある陽性荷電アミノ酸であるリジンとアルギニンのうち、上記の制限エンドヌクレアーゼ部位に一致するように後者が選択された。
【0135】
このように、精密化された反復配列モチーフは、以下の配列によって記述することができる。
Figure 2004508033
【0136】
)標的相互作用残基の定義
標的相互作用位置の定義に関して、ヒトRI−アンジオゲニン(Papageorgiouら、1997)およびブタRI−RNaseA(KobeおよびDeisenhofer、1995)複合体の双方を分析した。N末端およびC末端キャッピング単位の双方における広い相互作用を別にして、反復単位の相互作用は、A型LRR単位の6位、8位、および9位を含むことが最も多く、一方B型LRR単位では、4位、6位および9位を用いることが最も多かった。これらの位置は全てLRR単位のβ鎖から生じた側鎖を特徴とし(図4e)、したがって、標的相互作用に適している。しかし、B型LRR単位の4位のグルタメートは例外なく存在し、さらなる構造上の重要性を無視することができないため、本発明者らはこの位置を無作為化しなかった。このように、この位置は、標的相互作用の位置が無作為化されていない場合を構成する。対照的に、位置A4は、30%未満の保存を示したために、無作為化されていると定義した。したがって、LRRモジュールにおいてA4、A6、A8、およびA9ならびにB6およびB9を無作為化した。無作為化位置でのアミノ酸の選択されたサブセットは、天然アミノ酸の物理化学特性を大きく反映し、したがって、多くの場合において結合を支持することが知られている全ての荷電アミノ酸、いくつかの水素結合形成アミノ酸、および芳香族アミノ酸を選択した。同時に、A型LRR単位の位置に限ってより大きいアミノ酸が許容されるように、そしてB型LRR単位の位置では交互の状態において立体妨害を最小限にするより小さいアミノ酸のみが許容されるように決定した。このように、この段階で得られた反復配列モチーフは、以下のように記述することができる。
Figure 2004508033
【0137】
このように、8個の位置での無作為化によって、2.8×10個の独立したRI反復モジュール対が得られた。言い換えれば、上記の反復配列モチーフを満足する分子の合成は、約300,000個のしかし非常に相同なメンバーを作製すると考えられる。
【0138】
詳細に分析したもう一つの位置は、双方のLRR反復単位の上部のループ領域、すなわち11位である。A型およびB型LRR単位の双方におけるコンセンサスはそれぞれ、36%および25%であったため、アミノ酸の対の発生をチェックした。B型LRR単位において、荷電アミノ酸が11位ではわずかに好ましく、リジンはA型LRR単位においてアスパラギン酸塩と共にしばしば生じた。この推定の塩架橋は、設計されたLRRモジュールの安定性および溶解度を増加させると考えられ、したがってこれらを選択した。もう一つの可能性(A11でのグリシンおよびB11でのグルタミン酸)は柔軟性が高すぎるために却下した。
【0139】
A14位での選択は、アラニンとグルタミン酸のいずれかであり、この場合も溶解度および疎水性の外皮の正しい方向を増強するために後者を選択した。同様に、B22位は、グルタミン酸またはグルタミンのいずれかを示唆し、この場合後者は、先に定義したA22でセリンによりよく一致するように思われたため、後者を選択した。
【0140】
最後に、26位を精査に供した。この場合、選択はB26位でのグルタミンと共にA26位のアラニン、およびB26位でのアスパラギン酸塩と共にA26位でのセリンのいずれかであった。LRRモジュールの溶解度を増強するために、この場合も後者の変種を用いた。
【0141】
したがって、RI反復モチーフ対は以下と考えられる(変更を太字で印刷する)。
Figure 2004508033
【0142】
)哺乳類 RI LRR に由来する反復ドメインの設計
多数の反復モジュールをドメインに構築することは簡単である。ここに、本発明者らは、互換的オーバーハングを作製する2つの異なる制限酵素を含むアプローチを行った(図6を参照のこと)。このように、ライゲーションの方向は、ライゲーション産物を再度消化することによって単純に制御することができ、この場合、正しくライゲーションした分子は切断されない。
【0143】
さらに、本発明者らは、反復ドメインの推定の結合疎水性コアを周辺の溶媒から保護するように設計されたN末端およびC末端キャッピングモジュールによって、構築されたLRRモジュールを補則することを選択した。哺乳類RIタンパク質の分析から、最初と最後のLRR単位が上記のコンセンサスとは有意に異なることが判明した(図5cおよび図5d)。単純にするために、ヒトRIの対応するキャッピング単位をわずかに改変してクローニングし、以降これをキャッピングモジュールと呼ぶ。このように、N末端キャッピングモジュールに関してアミノ酸1位〜28位およびC末端モジュールに関してヒトRIのアミノ酸427位〜460位を用いて、アミノ酸残基PYARをコードする短いリンカーをN末端キャッピングモジュールとRI反復モジュール対とのあいだに導入して、長さの必要条件を一致させた。
【0144】
改訂したアミノ酸コンセンサスをDNA配列に逆翻訳する場合、以下のパラメータを考慮した。望ましくない制限酵素認識配列は、反復モジュール対内に容認されず、コドンの使用は大腸菌での発現に関して最適化された。
【0145】
)発現プラスミドの調製
適当な制限消化部位が隣接するN末端モジュールを得るために、pTRP−PRI(LeeおよびVallee、1989)をオリゴヌクレオチドMTS2およびMTS4によって増幅して(表1)、PCR断片Nを得た。このように、5’末端において、NcoIおよびBamHIを導入し、3’末端はBssHIIおよびHindIII部位を特徴とした。得られたDNA断片は、正確なフレームで翻訳されたアミノ酸を示す(図8における四角で囲まれた部分の上)。
【0146】
PCR断片Nを、pTFT74のNcoIおよびHindIII部位にライゲーションして(Geら、1995)、プラスミドpTFT_N(図9a)を得た。同時に、N末端のFlagタグおよび6×Hisタグを導入した。上記の反復モジュールを挿入するために、いくつかのベクターをpTFT_Nから誘導した。pTFT_NのNcoI−HindIII挿入物を同じ制限消化酵素によって調製したpQE60(キアゲン社、ヒルデン、ドイツ)にクローニングした(プラスミドpQE_Nを生じる)。pTFT_NのBamHI−HindIII挿入物(N末端Flagタグおよび6×Hisタグを含まない)を、λファージタンパク質D遺伝子挿入物の下流のpQE60誘導体にインフレームでクローニングしてC末端融合反復ドメインを得た(プラスミドpQE−pD_Nを生じる)。
【0147】
pTFT誘導体は、lacオペレータの下でT7ポリメラーゼプロモーターを特徴とするのに対し、pQE誘導体は、同じ制御系においてT5ポリメラーゼプロモーターを提供する。溶解度および発現を増加させるためにN末端融合パートナーとしてλファージタンパク質Dを選択した(ForrerおよびJaussi、1998)。
【0148】
)反復モジュールライブラリの合成
オリゴヌクレオチドMTS7およびMTS9を、トリヌクレオチドから部分的に構築して(Virnekasら、1994)、他の全てのオリゴヌクレオチドを標準的な技術によって合成した。
【0149】
下記に示す戦略により、パリンドローム制限酵素およびライゲーションを用いて、既定の方向にDNA断片のポリマーを得る方法を説明する。そのような一つの可能性は、互換的オーバーハングを生じる制限酵素BssHIIおよびMluI(図6)を用いることである。同じオーバーハングを有するが当初の認識部位が異なるDNA断片を再度ライゲーションすると、当初の酵素のいずれによっても消化できない新しい複合部位(図6および図7a〜図7cにおいて*で示される)が形成されうる(図6)。しかし、同一の末端がライゲーションされると、当初の認識部位が形成され、したがってこれらの分子は、制限消化によって区別することができない。互換的オーバーハングを有する制限酵素の他の対は、当業者に周知である。
【0150】
以下の段階の番号は、図7a〜図7cにおいて用いた番号を意味する。
【0151】
(段階I)
反復モジュールの第一のライブラリを作製するために、部分的無作為化オリゴヌクレオチドMTS7、MTS8、MTS9、およびMTS10をPCRによって構築して、MTS11bおよびMTS14bの10倍モル過剰量によって一段階で増幅した(95℃で2分間;次に95℃で15秒間、55℃で15秒間、および72℃で20秒間を20サイクル行った後に、72℃で1分間)。本明細書に記載するLRRライブラリの場合、最初のPCRは上記のA/B対を一つのモジュールに構築する。得られたDNA断片は正しいフレームで翻訳されたアミノ酸を示す(図8における四角で囲った部分、オリゴヌクレオチドを矢印として示す)。
【0152】
(段階II)
BamHIおよびMluIまたはBssHIIのいずれかによる個々の広範囲の制限消化の後に、T4リガーゼによるライゲーションを行った(室温で1時間および酵素の熱不活化)。得られたライゲーション産物は、低融点アガロースゲル電気泳動によって精製した。二量体反復モジュールに対応するバンドを単離して、エタノール沈殿によるβアガロース消化後にDNAを回収した。
【0153】
(段階III)
反復モジュールの二量体を増幅するために、プライマーT7proおよびsrpTFT1(95℃で2分間;次に95℃で15秒間、50℃で15秒間、72℃で40秒間を15サイクル行った後に、72℃で1分間)による第二のPCR反応を行った。LRRライブラリの場合、この段階は四つのロイシンリッチ反復である二つのA/B対を生じた。分子約1012個に対応する鋳型1μgをLRRライブラリのために用いると、全体の理論的多様性はなおこの段階で含まれた。
【0154】
(段階IV)
四量体に関して、得られたDNAを再度BamHIおよびMluIまたはBssHIIによって消化した。より長いポリマーに関して、単消化および二重消化DNA断片の混合物を調製した。
【0155】
(段階V)
ライゲーション、制限消化、および精製は反復モジュールの所望の数が得られるまで繰り返すことができる。
【0156】
(段階VI)
定方向のおよび効率的なプラスミドへのクローニングのために両末端で二つの異なる非互換的制限消化部位を有するDNA断片を得るために、以下の「キャッピング」戦略を改訂した。ヒトRIのC末端反復単位も同様に、PCRによってプラスミドpTRP−PRIから増幅し、それによって、BssHII制限部位を5’末端に、そしてHindIII制限部位を3’末端に導入した。得られたDNA断片は正しい枠内に翻訳されたアミノ酸を示す(図8における四角で囲まれた部分の下)。
【0157】
プライマーMTS5aおよびMTS3を、このPCR反応(95℃で2分、次に、95℃で15秒間、45℃で15秒間、および72℃で10秒間を20サイクル行った後に72℃で1分間)において用い、産物をQIAquickによって精製してBssHIIによって制限消化した。
【0158】
(段階VII)
BssHII消化C末端反復モジュールを、T4リガーゼによってMluI消化ポリマーにライゲーションした(室温で1時間および酵素の熱不活化)。BssHII、MluIおよびHindIIIによるその後の十分な制限消化によって、モジュールの方向が正しいことを確認した。混合物は、低融点アガロースゲル電気泳動によって分離して、所望のバンドを上記のように回収した。最後に、回収された断片をBssHII−HindIII消化プラスミドpTFT_N、pTFT−pD_N、pQE_N、またはpQE−pD_Nのいずれかにライゲーションした。得られたライゲーション混合物をQIAquickによって精製して、シンデュら(Sindhu、2000)に従って調製したXL10Gold細胞のエレクトロポレーションに用いた。
【0159】
上記のプロトコールによって、異なるプラスミドライブラリが得られ、そのようなプラスミドの二つの代表的なダイヤグラムを示す(図9bおよび図9c)。
【0160】
)反復モジュールタンパク質ライブラリの特徴付け
標準的なDNAシークエンシング技術を用いて、発現プラスミドのDNA配列を決定した。例として、クローンD17(図11c、図11d、および図12dにおける発現と比較)のDNA配列を示す(図10aおよび図10b)。C末端モジュールと共にN末端モジュールおよび四つの反復モジュールを示す。発現は本質的に記述通りに行って(キアゲン社、「QIAexpressionist」)、超音波処理後の単一のクローンおよび/またはクローンのプールの可溶性および不溶性タンパク質をSDS−PAGE分析によって分離して、クーマシーブルー染色を施した(図11a〜図d)。ウェスタンブロット分析は、製造元が提供したプロトコールに従って実施した。抗Flag M2抗体(シグマ社)を、N末端タンパク質Dを含まない構築物のために用い、抗RGS−His(キアゲン社)を、N末端タンパク質Dを有する構築物のために用いた(図12a〜図d)。
【0161】
精製(図13および図14)、CD分光法(図15)、およびサイズ排除クロマトグラフィー(図16)を、実施例2に記載のように実施した。
【0162】
)細菌毒素を阻害する ポリ ペプチド タンパク質の選択
中等度のレベルの毒素でも単独では細菌において認容できないため、様々な細菌毒素が対応する抗毒素と共に存在することが知られている。したがって、CcdBの遺伝子(Jensenら、1995)を、DH5□Z1(LutzおよびBujard、1997)、XL10Gold、またはXL1Blueのようなテトラサイクリン抑制株において堅固に抑制されたテトラサイクリンプロモーターと共にpZシリーズの低コピープラスミドにクローニングした。これと同時に、0.1%活性を有する野生型バーナーゼ(barnase)(Hartley、1988)およびH102K変異体(JucovicおよびHartley、1996)をクローニングした。これらの毒素プラスミドの一つを有する化学的コンピテント細胞を記述のように調製して(Inoueら、1990)、これらの毒素プラスミドの一つを有するエレクトロポレーションコンピテント細胞を記述のように調製した(Sindhuら、2000)。毒素阻害剤をコードするプラスミドを選択するために、細胞をLRRに基づくライブラリによって形質転換して、選択プレート(50 mg/Lアンピシリン、20 mg/Lカナマイシン、40 μM IPTG、および30 μg/Lアンヒドロテトラサイクリンを添加したLB培地)上に播種して、25℃または37℃のいずれかで増殖させた。阻害特性がプラスミドに連鎖していることを確認するために、pQE誘導体を再度単離して、再度形質転換した。
【0163】
効率よく折り畳まれた構築物のスクリーニング
GFPは、標的タンパク質のC末端に融合させた場合に折り畳みレポーターとして首尾よく用いられてきた(Waldoら、1999)。急速に凝集する標的は、C末端融合GFPを折り畳ませず、コロニーをUV光においてスクリーニングすることができる。GFPの蛍光は、正しく折り畳まれたタンパク質の量に相関した。本発明者らの戦略において、GFPを、MTS5aおよびMTS6、ならびに再度pTRP−PRIを鋳型として用いて、PCR増幅によって得られたC末端に設計されたNheI部位およびEcoRI部位にクローニングした。それによって、アミノ酸12個のリンカー、GSAGSAAGSGEFを導入した。得られたDNA断片は、正しいフレームに翻訳されたアミノ酸を有することが示された(図8の底部)。
【0164】
停止コドンを含まない構築物の選択
ライブラリの構築後のフレームシフトおよび停止コドンの数を減少させるために、構築物を、クロラムフェニコール耐性遺伝子に結合するリンカーの上流でクローニングして、プレート上で生存クローンを選択した。
【0165】
ディスプレイ技術を用いた結合標的の選択
インビトロでの結合パートナーを同定するために、リボソームディスプレイ(Hanesら、1998)およびファージディスプレイ(Dunn、1996)の双方を用いた。結合パートナーは、RNaseスーパーファミリーのRNaseAおよびオンコナーゼ(Wuら、1993b)ならびに無関係な小さいポリペプチドであるタンパク質D(ForrerおよびJaussi、1998)であった。
【0166】
タンパク質相補性アッセイを用いる結合標的の選択
結合パートナーを同定するために、大腸菌ゲノムライブラリをDHFR1断片(Pelletierら、1998)に融合したが、LRRに基づくライブラリは、DHFR2の隣に融合した。トリメトプリムを含むM9プレート上での選択によって、相互作用分子が得られた。
【0167】
得られた構築物を改善するための DNA モジュールシャッフリング
さらなる発展的改善のために、得られた構築物にDNAシャッフリング(Stemmer、1994)および戻し交配を行った。これにより、改善を高めることができ、作用を有しない変異は失われた。
【0168】
実施例2
アンキリン反復単位に由来する反復モジュールを含む(ポリ)ペプチド/タンパク質の集合体
本発明に従って設計されたアンキリン反復タンパク質を作製する方法を記述する。この方法によって、N末端アンキリンキャッピングモジュール、二つまたはいくつかのアンキリン反復モジュールおよびC末端アンキリンキャッピングモジュールを用いて様々な長さのアンキリン反復タンパク質を構築することが可能である。
【0169】
実施例1におけるアンキリン反復モジュールの集合体を作製するための基礎であったアンキリン反復モチーフの定義を下記に説明する。アンキリン反復モチーフに至った分析には、既知の三次元構造を有するアンキリン反復タンパク質の構造分析に関すると共に天然アンキリン反復タンパク質に関する公共のデータベースの検索が含まれた。この分析のために、アンキリン反復モジュールの配列モチーフを誘導してアンキリンキャッピングモジュールを誘導した。さらに、アンキリン反復モチーフに関して骨格と標的相互作用残基の位置を決定した。アンキリン反復モジュールのライブラリを作製するために、天然のアミノ酸20個中17個が、アンキリン反復モチーフにおける標的相互作用残基の位置で許容された。骨格残基の位置は、それぞれ特定のアミノ酸に指定された。得られたペプチド配列を、コドンの使用が大腸菌において最適であるが望ましくない制限部位を作製しないように逆翻訳した。オリゴヌクレオチドは、アンキリン反復モジュールのアセンブリPCRを行うことができるように設計した。従来のオリゴヌクレオチドと共にトリヌクレオチドオリゴヌクレオチド(Virnekasら、1994)を用いた(表2および表3)。同様に、N末端およびC末端アンキリンキャッピングモジュールは、従来のオリゴヌクレオチドを用いてアセンブリPCRによって作製した(表2)。得られたPCR産物は全て、それらの末端でIIs型制限酵素認識部位(図17)を含み、その末端でその後次の/前の反復(またはキャッピング)モジュールのDNAに結合されると考えられる(図18)。それぞれの制限酵素によって切断すると、得られた互換的モジュール末端は、いずれの方向にもインフレームでライゲーションすることができると考えられる。したがって、N末端アンキリンキャッピングモジュールは一つまたはいくつかのアンキリン反復モジュールにライゲーションすることができ、ライゲーション産物は、C末端アンキリンキャッピングモジュールにライゲーションすることができる。DNAが既定の位置で異なるために、この方法によって、アンキリン反復タンパク質の集合体をコードするDNA分子の多様な組を同時に構築することが可能であった。アンキリン反復タンパク質の得られた集合体の特徴は、結晶化と共に、発現、精製、円偏光二色性分光法、変性実験、サイズ排除クロマトグラフィーによって調べた。実験によって、このアンキリン反復タンパク質ライブラリの非選択メンバーを、可溶性および折り畳まれた配座で、細胞質の還元的環境において高レベルで発現させることができることが示された。
【0170】
アンキリン反復モチーフ配列の定義
技法および結果:
本発明の実施例として用いたアンキリン反復モチーフは、既知の三次元構造を有するアンキリン反復タンパク質の構造分析と共にアンキリン反復タンパク質配列分析に由来した(日時:2000年8月)。
【0171】
アンキリン反復単位のアミノ酸配列に関してまず、SMARTデータベース(Schultzら、2000)を検索した。229アンキリン反復単位のClustal−W(Thompsonら、1994)アラインメントを、アンキリン反復単位のコンセンサス「A」を決定するための鋳型として用いた(図19)。コンセンサス「A」は、アンキリン反復単位のアラインメントのそれぞれの位置に関する残基頻度発生率を計算することによって決定した。考慮した229アンキリン反復単位は、これまでに述べた一般的なアンキリン反復単位コンセンサス配列と比較して、挿入または欠失を含まなかった(SedgwickおよびSmerdon、1999)。しかし、コンセンサス「A」には、セドウィック(Sedgwick)およびスマードン(Smerdon)(1999)の長さアミノ酸33個のコンセンサス配列の残基3個〜32個のみが含まれた(図19)。コンセンサスをさらに精密化して、欠損する位置を定義するために、GenBank(Bensonら、2000)に対するBLAST(Altschulら、1990)検索をデフォルトパラメータを用いて行った。この検索に関して、コンセンサス「A」は、最初のアミノ酸として20位で環状入れ替え型として提出された(図19)。欠失または曖昧な位置に、既知の三次元構造を有するアンキリン反復タンパク質のアンキリン反復単位のコンセンサスにおいて最高の頻度を有する残基を当てはめた(手動で整列化、上記の統計学)。得られたBLASTヒットの最初の200個を手動で配列させて、アンキリン反復単位コンセンサス「A」を上記のように残基頻度分析によって精密化して、コンセンサス「B」を得た(図19)。「コンセンサス「B」は、pfamデータベースの同一の分析によって確認した(Batemanら、1999;データは示していない)。
【0172】
最後のアンキリン反復単位コンセンサス「C」(図19)を、この段落において言及した方法を組み入れることによって得た。アンキリン反復タンパク質の公表された三次元構造を肉眼で検分して、どのアミノ酸が特定の位置で最適であるかをさらに決定した。アンキリン反復単位コンセンサス「B」に対して最高の相同性を示す三次元構造である、マウスGA結合タンパク質β1サブユニット(AC:2981726、pdb);1AWC;Batchelorら、1998)は、ほとんどの場合の指標基準であったが、ヒトp18(AC:4139830,pdb;1IHB;Venkatamaraniら、1998)のような他の構造も同様に検討した。天然アンキリン反復単位配列におけるアミノ酸の対、三重項および四重項の相互依存性も同様に、コンセンサス「B」をさらに開発または確認するために用いた。さらに、相同性モデリングおよびエネルギー最小化を含むモデリングアプローチ(インサイトIIパッケージ;インフォマックスインク、アメリカ)を行って、最適な空洞回避および充填最適化に向けてコンセンサス配列を作製した。コンセンサスのそれぞれの残基の二次構造傾向(O’NeilおよびDeGrado、1990;ChouおよびFasman、1978)は、天然のアンキリン反復単位内の対応する位置で二次構造に一致することをさらに確認した。さらに、PhD−予測を用いて(Rost B.、1996)二次構造を分析して確認した。タンパク質の安定性およびコンセンサスのプロテアーゼ抵抗性は、PEST(Rogersら、1986;スイス生物情報研究所、スイス)およびGCGのペプチドソート(アクセルリス社、アメリカ;Womble, D.D.、2000)を用いて分析して、コンセンサスは十分に安定であると予想された。
【0173】
コンセンサス「C」(図19)に対するアンキリン反復単位コンセンサス「B」(図19)の定義の際の重要な残基は16位、17位、18位、19位、21位、22位、25位、および26位であった。16位は、その位置から前の反復と隠れた水素結合を作製することから、最終的にヒスチジンであると決定された。17位のロイシンは、最終的にこれが二つの反復モジュールの界面を安定化させることから他のアミノ酸より好ましかった。18位のグルタミン酸は、ヒトp18においてこの位置でグルタミン酸とアスパラギン酸塩の反復を生じるために選択した。同様に、21位のグルタミン酸は、マウスGA結合タンパク質における多数の連続コピーに存在する。25位のリジンは、マウスGA結合タンパク質において塩基性残基であるアルギニンとリジンが繰り返し存在することから、他のアミノ酸より好ましかった。26位に関して、三つのアミノ酸、ヒスチジン、チロシン、またはアスパラギンは全てこの位置の要件を満たすために、これらのアミノ酸のいずれも用いる折衷案を選択した。したがって、19位および22位には、これらの残基が等しく十分に適合することから、イソロイシンまたはバリン、およびバリンまたはロイシンをそれぞれ当てはめた。
【0174】
最終的に決定されたアンキリン反復単位コンセンサス「C」(図19)は、アンキリン反復モジュールの基礎として役立った。アンキリン反復モチーフの配列を図20に示す。クローニングの理由から、モチーフは、環状入れ替え型コンセンサス「C」に基づく。図19において用いたコンセンサス番号付けスキームを一致させるために、そしてセドウィック(Sedgwick)およびスマードン(Smerdon)(1999)によって用いられるように、アンキリン反復モチーフにおける位置の数字はアミノ酸配列に平行して環状に入れ替えた。アンキリン反復モチーフはアミノ酸33個の長さであり、そのうち27個の位置は骨格残基であると定義され、位置6個は標的相互作用残基であると定義された。骨格残基の位置は、アンキリン反復単位コンセンサス「C」を用いて定義した。三次元構造の分によっては、アンキリン反復単位の2位、3位、5位、13位、14位、および33位がタンパク質−タンパク質相互作用に関係し、したがって、標的相互作用残基を構成することが示された。これはまた、アンキリン反復単位コンセンサスの定義の際に示されたこれらの位置の高い多様性によっても示唆された。アンキリン反復モジュールに関して、これらの残基は、17個のアミノ酸A、D、E、F、H、I、K、L、M、N、Q、R、S、T、V、WおよびYのいかなるものであると定義された。
【0175】
したがって、アンキリン反復モジュールの集合体の独立したメンバーの数は、3・17=72’412’707個であると計算することができる。
【0176】
アンキリンキャッピングモジュールの定義
技法および結果:
誘導したアンキリン反復モチーフはマウスGA結合タンパク質のβ1サブユニット(GABPβ1;AC:2981726;Batchelorら、1998)と高い相同性を示したために、後者のタンパク質のN末端およびC末端アンキリン反復キャッピング単位(Batchelorら、1998)に従う反復1および反復5)を、N末端およびC末端キャッピングモジュールの基礎として選択した。N末端およびC末端アンキリンキャッピングモジュールはいずれもマウスGA結合タンパク質β1キャッピング単位と比較して変更しなければならなかった。N末端GA結合タンパク質β1キャッピング単位は、アンキリン反復モチーフの設計に立体的に適合するようにそのループを改変した。C末端GA結合タンパク質β1キャッピング単位を、いくつかの位置で改変した。GA結合タンパク質β1の反復4のループの一部ならびに反復4および5と結合するβヘアピン(Batchelorら、1998)は、クローニングの理由のためにC末端キャッピングモジュールに含めなければならなかった。それによって、ループおよびβヘアピンは、アンキリン反復モチーフの設計に立体的に適合するように改変された。改変は、GABPβ1を、本発明によるタンパク質ライブラリのメンバーであるE3−5と整列化させた図21において示すことができる(下記参照)。
【0177】
実験技法
実施例Aにおける全ての章に関して、サムブルック(Sambrook), J.、フリッチュ(Fritsch), E.F.およびマニアティス(Maniatis), T.、(1989;「分子クローニング:実験マニュアル(Molecular cloning:a laboratory manual)」、Cold Spring Laboratory Press、New York)、またはアウスユベール(Ausubel), F.M.、ブレント(Brent), R.、キングストン(Kingston), R.E.、ムーア(Moore), D.D.、セイドマン(Seidman), J.G.、スミス(Smith), J.A.およびストルール(Struhl), K.、(1994;「分子生物学の現行プロトコール(Current protocols in molecular biology)」、John Wiley and Sons, Inc.、New York)の第1〜4巻、またはコリガン(Coligan, J.E.)、ダン(Dunn, B.M.)、プロー(Ploegh, H.L.)、スペイチャー(Speicher, D.W.)およびウィングフィールド(Wingfield, P.T.、(1995;「タンパク質科学の現行プロトコール(Current protocols in protein science)」、John Wiley and Sons, Inc.、New York)の第1巻および第2巻に記載されるプロトコールに従って実施した。
【0178】
本発明によるアンキリン反復タンパク質をコードするDNAの合成
技法および結果:
オリゴヌクレオチドINT1およびINT2はトリヌクレオチドから部分的に構築して(Virnekasら、1994)、モルフォシス(MorphoSys)(ドイツ)から得た。他のオリゴヌクレオチドは全て、標準的な技術によって合成して、マイクロシンスから得た(スイス、表2および表3を参照のこと)。DNAを増幅するためのオリゴヌクレオチドは、100 μM保存液濃度で用い、鋳型として用いるオリゴヌクレオチドは、10 μM保存液として用いた。酵素および緩衝液はニューイングランドバイオラブス(アメリカ)またはファーメンタス(リトアニア)社から得た。クローニング株は大腸菌XL1−Blue(ストラタジーン社)であった。
【0179】
アンキリン反復モジュールは、3.5 mM MgSOを追加的に添加した標準的な緩衝液中で、オリゴヌクレオチド(それぞれ1μl)INT1、INT2、INT3、INT4、INT5、およびINT6a[95℃5分間、20×(95℃30秒間、50℃1分間、72℃30秒間)、72℃5分間]ならびにVent DNAポリメラーゼを用いるアセンブリPCRによって、最終容積50 μlで作製した。
【0180】
N末端アンキリンキャッピングモジュールは、オリゴヌクレオチド(それぞれ1μl)EWT1、EWT2、TEN3、およびINT6[95℃5分間、30×(95℃30秒間、40℃1分間、72℃30秒間)、72℃5分間]ならびにVent DNAポリメラーゼを用いるアセンブリPCRによって反応容積50 μlで調製した。得られたDNAはBamHI/HindIIIによってpQE30(キアゲン社、ドイツ)にクローニングした。DNA配列は標準的な技術を用いて確認した、C末端アンキリン反復モジュールはそれに従って、しかし、オリゴヌクレオチドWTC1、WTC2、WTC3およびINT5を用いて調製した。
【0181】
単一のアンキリン反復モジュールからのアンキリン反復タンパク質をコードするDNAと、アンキリン反復キャッピングモジュールとのライゲーションを図18に略図で示す。アンキリン反復タンパク質を構築するために、クローニングしたN末端アンキリンキャッピングモジュールをオリゴヌクレオチドTEN3およびINT6aを用いてPCR増幅した(N末端アンキリンキャッピングモジュールに関して上記の通り)。DNAは、QIAquickDNA精製キット(キアゲン社、ドイツ)を用いて精製して、BsaIによって切断して、同じキットを用いて再度精製した。次に、N末端アンキリンキャッピングモジュールをBpiI切断物および精製アンキリン反復モジュールにライゲーションした。この定方向クローニングは、切断配列とは異なるDNA配列を認識する(図17)二つの種類のIIs制限酵素であるBpiIおよびBsaIの切断配列を、非対称性であるが互いに互換的であるように選択したために可能であった。N1と呼ばれるライゲーション産物をゲル精製して(LMP−アガロース、β−アガラーゼ、酢酸ナトリウム/エタノール沈殿)、オリゴヌクレオチド(それぞれ1μl)EWT3およびINT6b[95℃5分間、20×(95℃30秒間、50℃30秒間、72℃30秒間)、72℃5分間]ならびにVent DNAポリメラーゼを用いるアセンブリPCRによって反応容積50 μlの標準的な緩衝液においてPCR増幅した。増幅産物を、QIAquickを用いて精製し、BsaIを用いて切断して再度精製した。次に、BpiI切断アンキリン反復モジュールにライゲーションすると、新しいサイクルの伸張を開始し、これを所望の数のアンキリン反復モジュールがN末端アンキリンキャッピングモジュール(N2、N3、N4などと呼ばれる)に付加されるまで繰り返した。PCR増幅N2、N3、およびN4に対応するDNA種をBsaIによって切断して、これを、クローニングしたC末端アンキリンキャッピングモジュールの予めBpiIによって切断したPCR産物にライゲーションした。これによって、N2C、N3C、およびN4Cアンキリン反復タンパク質ライブラリをコードするDNA分子が得られた。最終産物を、EWT3およびWTC3それぞれ1μl[95℃5分間、25×(95℃30秒間、50℃30秒間、72℃1分間)、72℃5分間]を用いてPCR増幅して、BamHI/HindIIIによってpQE30(キアゲン社)にクローニングした。
【0182】
タンパク質発現と精製
技法:
大腸菌XL1−Blue(ストラタジーン社)を、異なる長さのアンキリン反復タンパク質を発現させるための株として用いた。N2Cに対応する二つのクローン(E2−5およびE2−17と呼ぶ)、N3Cに対応する二つのクローン(E3−5およびE3−19)、ならびにN4Cに対応する二つのクローン(E4−2およびE4−8)を無作為に選択してさらに分析した。これらのクローンの静止期一晩培養物(LB、1%グルコース、100 mg/Lアンピシリン;37℃)25 mlを、培養物1リットルに接種した(前培養と同じ培地)。OD600=0.7になった時に、培養物を300 μM IPTGによって誘導して4時間インキュベートした。様々な時点で試料を採取して、SDS−PAGEで分析した(図22を参照のこと)。培養物を遠心分離して、得られた沈降物をTBS500 40 mlに溶解して(50 mMトリス塩酸、pH 8.0、500 mM NaCl)、超音波処理した。次に、溶解物に10%グリセロールおよび20 mMイミダゾールを加えて、再度遠心分離した。得られた上清を、製造元に従って(キアゲン社、ドイツ)Hisタグカラム(カラム容積2.5 cl)上での精製のために用いた。
【0183】
結果:
細胞分画実験から、全てのアンキリン反復タンパク質が、200 mg/L培養物の収率で可溶性型で発現されることが示された(図22)。Hisタグ精製によって、1回の精製段階で純粋なタンパク質が得られた(図23)。タンパク質の完全性はさらに、質量分析によって確認した(示していない)。可溶性型での発現は、設計された反復タンパク質の適切な折り畳みを示している。
【0184】
サイズ排除クロマトグラフィー
技法:
上記の精製試料6個を、ファルマシアSMARTシステムを用いて流速60 μl/分で、TBS 150(50 mMトリス塩酸、pH 7.5;150 mM NaCl)を実施緩衝液としてSuperdex75カラム(アマシャムファルマシアバイオテク、USA)上で分析した。標準物質は、□−アミラーゼ(シグマ社)およびファージタンパク質pDおよびSHPであった(Yangら、2000)。例として、N3C−ライブラリメンバーであるE3−5の溶出プロフィールを図24に示す。
【0185】
結果:
溶出プロフィールから、調べたタンパク質がほとんどの場合単量体のみであることが示されたが、タンパク質試料の少量(E2−17およびE4−8)は、単量体の他に多量体であったが可溶性である種を示した。ゲル濾過によって測定した保持から、調べたタンパク質が折り畳まれておりランダムコイルではないことが示された。
【0186】
CD分光法
技法:
本発明に従って作製した無作為に選択したアンキリン反復タンパク質(E3−5、N3C分子)の円偏光二色性スペクトルは、pH 6.5の10 mMリン酸ナトリウム緩衝液(天然)またはpH 6.5の20 mMリン酸緩衝液および6M塩酸グアニジニウム(変性)のいずれかにおいて、Jasco J−715機器[ジャスコ、日本;10 nm/s、8秒反応、0.2 nmデータピッチ、2nmバンド幅、195 nm〜250 nm(天然)、または212 nm〜250 nm(変性)、3回蓄積、1試料あたり3回測定、1mmキュベット]を用いて記録した。CDシグナルは、変性条件で280 nmで分光測光法によって決定した試料の濃度を用いて平均残基楕円率に変換した。
【0187】
結果:
E3−5は最小で208 nmおよび222 nmにおいて天然条件下でαヘリックススペクトルを示した。二次構造は6M塩酸グアニジニウム中で失われる(図25)。このことは、E3−5における二次構造要素が適切に形成されていることを示している。
【0188】
変性挙動
技法:
本発明に従って作製した無作為に選択したアンキリン反復タンパク質(E2−5、E3−5、およびE4−8、図22)の変性挙動を、基本的に図25に示す円偏光二色性によってしかし異なる緩衝液を用いて測定した。塩酸グアニジニウム変性曲線は、20 mM NaPO、pH 6.5、100 mM NaCl中で塩酸グアニジニウムの異なる濃度でインキュベートした異なるタンパク質を用いて220 nmでCD分光測光法によって、室温で一晩測定した。220 nmでの円偏光二色性シグナルは、各試料において1試料あたり3本ずつ測定した。
【0189】
結果:
塩酸グアニジニウムの異なる濃度に対するE2−5、E3−5、およびE4−8の変性曲線を図26に示す。変性の中央点は、2.5 M〜3.8 M塩酸グアニジニウムの範囲内である。したがって、二次構造は、変性剤の高濃度に限って失われ、このことは調べた分子の安定性が比較的高いことを示す。
【0190】
結晶化
技法および結果:
本発明によるN3Cライブラリメンバーであるアンキリン反復タンパク質E3−5を、20%PEG 6000、100 mM MES/NaOH、pH 6.0中で9mgタンパク質/mlのTBS 50(50 mMトリス塩酸、pH 8.0、50 mM NaCl、図27を参照のこと)溶液から懸滴(2μlタンパク質および2μl緩衝液を混合;500μl緩衝液を貯蔵)によって20℃で5日間結晶化した。結晶は、予備的なX線実験において3Åに屈折した(示していない)。
【0191】

表1:ヒトRIに由来するライブラリのクローニングのために用いられるオリゴヌクレオチド;
表2:実施例2によるアンキリン反復モジュールの作製のために用いられるオリゴヌクレオチド;
表3:本発明による一つ以上のアンキリン反復モジュールを含むアンキリン反復タンパク質をクローニングするためと共にN末端およびC末端アンキリンキャッピングモジュールを作製するために用いられるオリゴヌクレオチド。
【0192】
【表1】ヒトRIに由来するライブラリのクローニングのために用いられるオリゴヌクレオチド
Figure 2004508033
Figure 2004508033
小文字はアニーリングのための領域を示す。
略語:fwd−フォワード;rev−リバース。
NNNはトリヌクレオチドの混合物を意味する。
【0193】
【表2】実施例2によるアンキリン反復モジュールを作製するために用いられるオリゴヌクレオチド
Figure 2004508033
NNNは、アミノ酸A、D、E、F、H、I、K、L、M、N、Q、R、S、T、V、WおよびY(Virnekasら、1994)をコードするトリヌクレオチドの混合物を意味する。
Dは、A、T、またはGを表す。
【0194】
【表3】一つ以上のアンキリン反復モジュールを含むアンキリン反復タンパク質をクローニングするためと共にN末端およびC末端アンキリンキャッピングモジュールを作製するために用いられるオリゴヌクレオチド
Figure 2004508033
Figure 2004508033
【0195】
参照
Figure 2004508033
Figure 2004508033
Figure 2004508033
Figure 2004508033
Figure 2004508033
Figure 2004508033
Figure 2004508033
Figure 2004508033

【図面の簡単な説明】
【図1】「反復タンパク質」、「反復ドメイン」、「非反復ドメイン」、「反復モジュール」、「キャッピングモジュール」、および「リンカー」という用語の略図。
【図2a】反復ドメイン(1A4Y)のみ、または反復ドメインおよび非反復ドメイン(1D0B)の双方を特徴とするロイシンリッチ反復タンパク質の例。
【図2b】反復ドメイン(1AWC)のみ、または反復ドメインおよび非反復ドメイン(1DCQ)の双方を特徴とするアンキリン反復タンパク質の例。
【図2c】ブタ肝臓リボヌクレアーゼ阻害剤の結晶構造(KobeおよびDeisenhofer、1993)。
【図2d】酵母のrna1p GTPase活性化タンパク質の結晶構造(Hilligら、1999)。
【図2e】リステリアInIBタンパク質の結晶構造(Marinoら、1999)。
【図2f】ヒトスプライセオソームタンパク質U2A’の結晶構造(Priceら、1998)。
【図2g】ヒト転写因子阻害剤IκBαの結晶構造(Huxfordら、1998)。
【図2h】マウスGA結合タンパク質β1サブユニットのアンキリン反復ドメインのX線構造[pdbエントリー1AWC(Batchelorら、1998)]。ドメインのN末端およびC末端を標識する。この像はMOLMOLを用いて作製した(Koradiら、1996)。
【図3】天然反復単位およびキャッピング単位の例。ロイシンリッチ反復タンパク質(1A4Y)およびアンキリン反復タンパク質(1AWC)を示す。
【図4a】ブタリボヌクレアーゼ阻害剤(残基423位〜450位)由来のLRR単位のβ/α折り畳み。
【図4b】ブタリボヌクレアーゼ阻害剤(残基86位〜112位)由来のLRR単位のβ鎖から生じたロイシンおよびアミノ酸の位置。
【図4c】アンキリン反復単位の構造の説明。A:側面図。B:上面図。相互作用残基は、「球と棒」として示す。これらの図は、MOLMOL(Koradiら、1996)によって示されたGA結合タンパク質(pdbエントリー1AWC(Batchelorら、1998))の第三の反復を用いて作製した。
【図4d】LRR単位の骨格残基のサブセットを「球と棒」として示す。番号は、LRR単位内の位置を示す。
【図4e】LRR単位の標的相互作用残基のサブセットを「球と棒」として示す。番号は、LRR単位内の位置を示す。
【図4f】LRR反復モジュール対のモデルを示す。番号は、由来するLRR反復モチーフ対内の位置を示す。
【図5a】ヒト胎盤リボヌクレアーゼ阻害剤の内部アミノ酸アラインメント。
【図5b】全てのリボヌクレアーゼ阻害剤配列に基づいて定義されたコンセンサス。
【図5c】哺乳類RIのA型反復単位における一つの位置で最も頻繁なアミノ酸の統計分析。
【図5d】哺乳類RIのB型反復単位における一つの位置で最も頻繁なアミノ酸の統計分析。
【図6】制限酵素認識部位およびコードされるアミノ酸。BssHIIによって認識されるDNAは、第一の読みとり枠においてアラニンおよびアルギニン(AおよびR)をコードする。したがって、MluIは、第一の読みとり枠においてトレオニンおよびアルギニン(TおよびR)をコードする。BssHIIおよびMluIによって切断されるDNA分子を組み合わせると、いずれかの制限酵素によっても認識されず、アラニンおよびアルギニン(AおよびR)をコードする、新しい複合部位が得られる。
【図7aから図7c】反復モジュールのライブラリのクローニング。
【図8】プラスミドpTFT_N1CLにおけるNcoI−HindIII挿入物のDNA配列および翻訳アミノ酸。pTFTという略語は、pTFT74に由来する全てのプラスミドを意味する(Geら、1995)。N1CLという略語は、N末端モジュール、1反復モジュール、C末端モジュール、およびリンカー配列を含む挿入物を意味する。
【図9aから図9c】プラスミドpTFT_N、pQE_N1C、およびpQE−pD_N2Cの図。命名法は、図8の説明に記載した。pQE30(キアゲン社)に由来するプラスミドの名称は常にpQEで始まる。pDという略語はλファージタンパク質Dを意味する(ForrerおよびJaussi、1998)。
【図10aおよび図10b】プラスミドpQE_N4CクローンD17のNcoI−HindIII挿入物のDNA配列。
【図11a】pD_N2Cライブラリ(A2、A10、...)の無作為に選択したメンバーの高レベル発現。ライブラリ発現プラスミドpQE−pD_N2Cの一つを含むXL1−Blue細胞を、37℃でOD600=1となるまで増殖させて、1mM IPTGによって1時間誘導した。回収した細胞をTBS500に再懸濁し、超音波処理して遠心分離した。細胞培養物40マイクロリットルの上清(S)または沈降物(P)試料に対応する試料を15%SDS−PAGE上で分離して、クーマシーブルーによって染色した。クローンをA2、A10等と命名する。Ap1およびAp2は、10個の別々のクローンのプールである;Y:切断型pD_N2C(26 kDa)、X:pD_N2C(33 kDa)。
【図11b】図11aに記載したN2C(C1、C2、...)およびpD_N4C(B9、B21)ライブラリの無作為に選択したメンバーの高レベル発現;:N2C(22 kDa)、#:pD_N4C(45 kDa)。
【図11c】図11aに記載したN4C(D11、D15、...)ライブラリの無作為に選択したメンバーの高レベル発現;Z:N4C(34 kDa)。
【図11d】図11aに記載した通りであるが、25℃で増殖させたN4C(D11、D15、...)ライブラリの無作為に選択したメンバーの高レベル発現;Z:N4C(34 kDa)。
【図12a】25℃または30℃のいずれかで発現させた後のpD_N2Cライブラリメンバー(A2、A10、A15)の高レベル発現のウェスタンブロット分析。タンパク質を、図11aに記載したように調製した。抗RGS−His抗体は、製造元(キアゲン社)のプロトコールに従って5000倍希釈で用いた;Y:切断型pD_N2C(26 kDa)、X:pD_N2C(33 kDa)。
【図12b】37℃または25℃のいずれかで発現させた後のpD_N4Cライブラリの無作為に選択したメンバー(B9、B21、プールであるBP)の高レベル発現のウェスタンブロット分析;#:pD_N4C(45 kDa)。
【図12c】37℃または25℃のいずれかで発現させた後のN2Cライブラリメンバーのいくつか(C1、C3、C7)の高レベル発現のウェスタンブロット分析。タンパク質を図11aに記載したように調製した。抗Flag M2抗体は、製造元(シグマ社)のプロトコールに従って1000倍希釈で用いた;:N2C(22 kDa)。
【図12d】37℃または25℃のいずれかで発現させた後のN4Cライブラリメンバーのいくつか(D17、D19、D22)の高レベル発現のウェスタンブロット分析;Z:N4C(34 kDa)。
【図13】本発明による無作為に選択したロイシンリッチ反復タンパク質の天然条件でのHisタグ精製。レーンMは分子量マーカー(kDa)を示し、レーンFTは、未結合画分を示し、かつレーン0〜6は、異なる溶出画分を示す。矢印は予想されるタンパク質の位置を示す。
【図14】精製カラムにおける反復タンパク質の再折り畳みを含む変性条件でのHisタグ精製。レーン1〜6は、本発明による6個のロイシンリッチ反復タンパク質の未結合画分を示す。レーン7〜12は、同じ6個のタンパク質のピーク溶出画分を示す。矢印は予想されるタンパク質の位置を示す。
【図15】本発明による無作為に選択したロイシンリッチ反復タンパク質の円偏光二色性分光法。
【図16】本発明による無作為に選択したロイシンリッチ反復タンパク質のサイズ排除クロマトグラフィー。試料をSuperose12カラム上で分析した。
【図17】本発明によるアンキリン反復タンパク質のクローニングに用いられる制限酵素のDNA認識配列。II型制限酵素は、パリンドローム認識部位内でDNAを切断するが、IIs型制限酵素は、非パリンドローム認識部位の外側を切断する。2つのIIs型制限酵素(BpiIおよびBsaI)を用いて、アンキリン反復モジュールを、その互換的突出末端の利点を利用した定方向的様式で互いにライゲーションして(図18、表2、および表3を参照のこと)、アンキリン反復モジュールと次のモジュールとの継ぎ目のない結合を作製した。これらのIIs型制限酵素を用いて、N末端およびC末端アンキリンキャッピングモジュールを、それらを分離させているアンキリン反復モジュールに結合させることも可能である。BamHIおよびHindIIIを、本発明に従って構築されたアンキリン反復タンパク質(N末端アンキリンキャッピングモジュール、二つまたはそれ以上のアンキリン反復モジュール、およびC末端アンキリンキャッピングモジュールを含む)をプラスミドpQE30(キアゲン社、ドイツ)にクローニングするために用いた。それぞれの酵素に関する制限酵素パターンを実線で示す。
【図18】DNAレベルでのアンキリン反復モジュールによるN末端アンキリンキャッピングモジュールの段階的伸張の概略図。N末端アンキリンキャッピングモジュールを、アンキリン反復モジュールによって必要な長さまで伸張させ、その後C末端アンキリンキャッピングモジュールの付加によって終結させる。
【図19】コンセンサス「A」(SMART分析後に得られた)、BLAST検索のために用いられるコンセンサス(欠失残基が既知の三次元構造を有するアンキリン反復タンパク質のアンキリン反復単位のコンセンサスから得られる、環状入れ替え型コンセンサス「A」)、コンセンサス「B」(BLAST検索後に誘導)と共に、コンセンサス「C」(実施例2において言及した様々なパラメータを考慮して最終的に得られる)を、アンキリン反復単位コンセンサスの段階的定義を説明するために列挙する。コンセンサス「A」および「B」では、所定の位置での頻度が20%に達する残基を示す。コンセンサス「C」では、後者のアミノ酸が等しく十分に適合する位置においていくつかのアミノ酸を示す。
【図20】アンキリン反復モチーフの配列(すなわち、実施例2の全てのアンキリン反復モジュールの基礎)、およびアミノ酸のそれぞれの位置の数を示す。さらに、予想される二次構造(αはαヘリックス、βはβシートを意味する)を示す。「x」で示される6個の位置は、任意のアミノ酸A、D、E、F、H、I、K、L、M、N、Q、R、S、T、V、WおよびYが容認される標的相互作用残基として定義された。残りの位置は、コンセンサス「C」によって定義された骨格残基であると定義された(図19を参照のこと)。26位では、ヒスチジン、チロシン、またはアスパラギンの3つのアミノ酸のいずれも容認されなかった。クローニングの理屈から、アンキリン反復モチーフは環状入れ替え型コンセンサス「C」に基づく(図19を参照のこと)。図19において用いられ、かつセドウィック(Sedgwick)およびスマードン(Smerdon)(1999)によって用いられるコンセンサス番号付けスキームに一致させるために、番号をコンセンサス配列と平行して環状に入れ替えた。
【図21】本発明に従って構築した無作為に選択したクローン「E3−5」のアラインメント。N末端およびC末端アンキリンキャッピングモジュールのあいだに3個のアンキリン反復モジュール(図20)を有するタンパク質である、E3−5のアミノ酸配列を、マウスGA結合タンパク質β1と整列化する。後者は、既知のアンキリン反復タンパク質の中でE3−5に対して最高の相同性を示すタンパク質である。配列を、GCGのコマンド「ギャップ(gap)」(Womble, D.D.、2000)を用いて、デフォルト値と配列比較行列Blosum62により整列化させた。全体として、二つの分子が67%残基同一性および71%残基相同性を示した。反復モチーフ(図20を参照のこと)における無作為化位置に対応する位置に、上記の星印をつける。N末端およびC末端アンキリンキャッピングモジュールをオーバーラインで示し、3つのアンキリン反復モジュールを下線で示す。
【図22】本発明に従って作製された異なる大きさのアンキリン反復タンパク質の高レベル発現[BamHI/HindIIIをプラスミドpQE30(キアゲン社)にクローニングし、大腸菌XL1−Blue(ストラタジーン社)中で発現させた]。N2C、N3C、およびN4Cのそれぞれのライブラリの中で、二つの無作為に選択したクローンを調べた。N2Cという略語は、図17および図18に示すクローニング戦略を用いて結合した、N末端のアンキリンキャッピングモジュール、二つのアンキリン反復モジュールおよびC末端アンキリンキャッピングモジュールを意味する。N3CおよびN4Cは、そのN末端とC末端アンキリンキャッピングモジュールとのあいだの3個または4個のアンキリン反復モジュールの含量に従って命名される。発現は実施例2に記載するように実施した。培養物30 μlに対応する試料を様々な時点で採取して、15%SDS−PAGE上で分離した(クーマシー染色)。レーン1:分子量マーカー(大きさはkDaで示す);レーン2〜7:誘導直前の2個のN2C、2個のN3Cおよび2個のN4Cクローン;レーン8〜13:レーン2〜7と同じであるが、2.5時間の誘導後;レーン14〜19:レーン2〜7と同じであるが、4時間の誘導後。
【図23】本発明に従って作製された無作為に選択したアンキリン反復タンパク質のHisタグ精製。精製技法の異なる画分を示す15%SDS−PAGEを図示する。N3CクローンであるE3−5を、実施例2に記載するように発現および精製した。レーン1は、Ni−NTAカラムに結合していない回収した細胞溶解物流出物0.6 μlを示す。レーン2は、カラム洗浄分画の最初の800 μlの0.6 μlを表す。レーン3は、最後の800 □l洗浄分画の0.6 μlを表す。レーン4、5、6、7、8、および9は、アンキリン反復タンパク質のその後の溶出段階(それぞれ800 μl)の0.6 μlを表す。レーン10は、分子量マーカーを示す(大きさはkDaで表す)。
【図24】本発明に従って作製した無作為に選択したアンキリン反復タンパク質(E3−5、N3C分子;図22を参照のこと)のサイズ排除クロマトグラフィー。試料を、流速60 μl/分のファルマシアSMARTシステムおよびTBS 150(50 mMトリス塩酸、pH 7.5;150 mM NaCl)を用いてSuperdex75カラム(アマシャムファルマシアバイオテック社、アメリカ)上で分析した。標準物質は□−アミラーゼおよびファージ21のファージタンパク質SHP、ならびに□のpDであった。標準物質の見かけの分子量を図に示す。タンパク質が空隙容積に溶出されたため、□−アミラーゼに関する見かけの分子量200 kDaは示されない。
【図25】本発明に従って作製された無作為に選択したアンキリン反復タンパク質(E3−5、N3C分子)の円偏光二色性。スペクトルを、JascoJ−715機器[Jasco、日本;10 nm/s、8秒の反応、0.2 nmデータピッチ、2nmバンド幅、195 nm〜250 nm(天然)、または212 nm〜250 nm(変性)、3回蓄積、1試料あたり3回測定、1mmキュベット]を用いて、10 mMリン酸ナトリウム緩衝液、pH 6.5(天然)または20 mMリン酸ナトリウム緩衝液pH 6.5、および6M塩酸グアニジニウム(変性)のいずれかにおいて記録した。CDシグナルを、変性条件で280 nmで分光光度法によって測定した試料濃度を用いて平均残基楕円率に変換した。E3−5は、最小で208 nmおよび222 nmにおいて天然条件下でαヘリックススペクトルを示す。二次構造は、6M塩酸グアニジニウムにおいて失われる。
【図26】本発明に従って作製した無作為に選択したアンキリン反復タンパク質の変性挙動(図22を参照のこと)。220 nmでのCD値を、異なるタンパク質に関する塩酸グアニジニウム濃度に対して示す。異なるタンパク質を、20 mM NaPO、pH 6.5、100 mM NaCl中の異なる濃度の塩酸グアニジニウムにおいて室温で一晩インキュベートした。220 nmでの円偏光二色性シグナルは、それぞれの試料に関して3本ずつ測定した(実施例2において示された条件)。二次構造は、変性剤が高濃度である場合に限って失われ、調べたタンパク質安定性の高さを示している。
【図27】本発明に従って作製された無作為に選択したアンキリン反復タンパク質の結晶(E3−5、図22のN3Cライブラリメンバー)。結晶を、20%PEG 6000、100 mM MES/NaOH、pH6.0において、9mgタンパク質/mlのTBS 50(50 mMトリス塩酸、pH 8.0、50 mM NaCl)溶液から懸滴(タンパク質2μl、および緩衝液2μlを混合する;500 μl緩衝液リザーバー)によって20℃で5日間成長させた。

Claims (48)

  1. 各反復(repeat)タンパク質が、連続した反復モジュールの組(set)を含む反復ドメインを含み、各反復モジュールのそれぞれが、天然反復タンパク質ファミリーの一つまたは複数の反復単位に由来し、反復単位が骨格残基および標的相互作用残基を含み、反復タンパク質が少なくとも一つの位置で異なる、反復タンパク質の集合体(collection)をコードする核酸分子の集合体。
  2. 反復モジュールのそれぞれがアミノ酸配列を有し、少なくとも70%のアミノ酸残基が、
    (i)少なくとも二つの天然反復単位の対応する位置に見出されるアミノ酸残基から推定されるコンセンサスアミノ酸残基;または
    (ii)天然反復単位内の対応する位置に見出されるアミノ酸残基
    のいずれかに対応する、請求項1記載の集合体。
  3. 組が2個〜約30個の反復モジュールからなる、請求項1または2記載の集合体。
  4. 反復モジュールが直接結合している、請求項1から3のいずれか一項記載の集合体。
  5. 反復モジュールが(ポリ)ペプチドリンカーによって結合している、請求項1から3のいずれか一項記載の集合体。
  6. 反復ドメインが、反復モジュールのいずれか一つと異なるアミノ酸配列を有するN末端および/またはC末端キャッピングモジュールをさらに含む、請求項1から5のいずれか一項記載の集合体。
  7. 反復単位がアンキリン反復である、請求項1から6のいずれか一項記載の集合体。
  8. 反復モジュールのそれぞれが以下のアンキリン反復配列モチーフを含む、請求項7記載の集合体:
    Figure 2004508033
    式中、「x」は任意のアミノ酸を意味し、「±」は任意のアミノ酸または欠失を意味し、「a」は無極性の側鎖を有するアミノ酸を意味し、および「p」は極性側鎖を有する残基を意味する。
  9. 反復モジュールのそれぞれが以下のアンキリン反復配列モチーフを含む、請求項7記載の集合体:
    Figure 2004508033
    式中、「x」は、任意のアミノ酸を意味する。
  10. 反復モジュールのそれぞれが以下のアンキリン反復配列モチーフを含む、請求項7記載の多様な集合体:
    Figure 2004508033
    式中、「x」は任意のアミノ酸を意味する。
  11. 「x」で示される一つまたは複数の位置が無作為化されている(randomized)、請求項8から10のいずれか一項記載の集合体。
  12. 反復モジュールのそれぞれがアンキリン反復配列モチーフを含む、請求項7記載の多様な集合体:
    Figure 2004508033
    式中、はA、D、E、F、H、I、K、L、M、N、Q、R、S、T、V、WおよびYからなる群より選択されるアミノ酸残基を表し;
    はH、NおよびYからなる群より選択されるアミノ酸残基を表す。
  13. 反復単位がロイシンリッチ反復(LRR)である、請求項1から6のいずれか一項記載の集合体。
  14. モジュールのそれぞれが以下のLRR配列モチーフを含む、請求項13記載の集合体:
    Figure 2004508033
    式中、「x」は任意のアミノ酸を意味し、「a」は脂肪族アミノ酸を意味し、かつ「±」は任意のアミノ酸または欠失を意味する。
  15. モジュールの少なくとも一つが以下のLRR配列モチーフを含む、請求項13記載の集合体:
    Figure 2004508033
    式中、「x」は任意のアミノ酸を意味し、「a」は脂肪族アミノ酸(A型LRR)を意味する。
  16. モジュールの少なくとも一つが以下のLRR配列モチーフを含む、請求項13記載の集合体:
    Figure 2004508033
    式中、「x」は任意のアミノ酸を意味し、「a」は脂肪族アミノ酸(B型LRR)を意味する。
  17. 「x」および/または「±」によって示される一つまたは複数の位置が無作為化されている、請求項14から16のいずれか一項記載の集合体。
  18. A型LRRコンセンサス配列における10位のシステイン残基が親水性アミノ酸残基に置換され、かつ17位のシステイン残基が疎水性アミノ酸残基に置換されている、請求項15記載の集合体。
  19. コンセンサス配列における一つまたは複数のアミノ酸残基が、対応する天然反復単位内の対応する位置に見出されるアミノ酸残基に置換されている、請求項8から12、または14から18のいずれか一項記載の集合体。
  20. 組が一種類の反復モジュールからなる、請求項1から19のいずれか一項記載の集合体。
  21. 組が二つの異なる種類の反復モジュールからなる、請求項1から19のいずれか一項記載の集合体。
  22. 組が、反復ドメインにおける対として二つの異なる種類の連続した反復モジュールを含む、請求項20記載の集合体。
  23. 二つの異なる種類のモジュールがA型LRRおよびB型LRRに基づく、請求項21または22記載の集合体。
  24. 組に含まれる反復モジュールのアミノ酸配列が、無作為化残基を除く各種類に関して同一である、請求項20から23のいずれか一項記載の集合体。
  25. それぞれの種類のコピーをコードする核酸配列が、無作為化された位置におけるアミノ酸残基をコードするコドンを除いて同一である、請求項24記載の集合体。
  26. 核酸分子が、反復モジュールのあいだに少なくとも9ヌクレオチドの同一の核酸配列を含む、請求項1から25のいずれか一項記載の集合体。
  27. 核酸分子が、対のあいだに少なくとも9ヌクレオチドの同一核酸配列を含む、請求項22または23記載の集合体。
  28. モジュールまたは対のあいだの核酸配列のそれぞれが制限酵素認識配列を含む、請求項1から26のいずれか一項記載の集合体。
  29. モジュールまたは対のあいだの核酸配列のそれぞれが、二つの互換的制限酵素によって作製された付着末端から形成された核酸配列を含む、請求項1から27のいずれか一項記載の集合体。
  30. 同一の核酸配列によって、PCRに基づく核酸分子の構築(assembly)を行うことができる、請求項26または27記載の集合体。
  31. 反復ドメインが、A型LRRまたはB型LRRに基づく一つまたは複数のモジュール対を含み、対のそれぞれが以下の配列を有する、請求項24記載の集合体:
    Figure 2004508033
    式中、は、群
    D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基を表し;
    式中、2は、群
    N、SおよびTから選択されるアミノ酸残基を表し;
    式中、3は、群
    G、S、D、N、HおよびTから選択されるアミノ酸残基を表し;かつ
    式中、は、群
    L、VおよびMから選択されるアミノ酸残基を表す。
  32. モジュール対のそれぞれが以下の核酸分子によってコードされる、請求項31記載の集合体:
    Figure 2004508033
    式中、111は、群
    D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基をコードするコドンを表し;
    式中、222は、群
    N、SおよびTから選択されるアミノ酸残基をコードするコドンを表し;
    式中、333は群
    G、S、D、N、HおよびTから選択されるアミノ酸残基をコードするコドンを表し;かつ
    式中、444は群
    L、VおよびMから選択されるアミノ酸残基をコードするコドンを表す。
  33. 少なくとも一つのモジュール対における一つまたは複数のアミノ酸残基が、天然LRR内の対応する位置に見出されるアミノ酸残基に置換されている、請求項31記載の集合体。
  34. 少なくとも一つのモジュール対における一つまたは複数のアミノ酸コドンが、天然LRR内の対応する位置に見出されるアミノ酸残基をコードするコドンに置換されている、請求項32記載の集合体。
  35. 請求項1から34のいずれか一項記載の核酸分子の集合体を含む組み換え型核酸分子の集合体。
  36. 請求項1から34のいずれか一項記載の核酸分子の集合体、または請求項35記載の組み換え型核酸分子の集合体を含むベクターの集合体。
  37. 請求項1から34のいずれか一項記載の核酸分子の集合体、請求項35記載の組み換え型核酸分子の集合体、または請求項36記載のベクターの集合体を含む、宿主細胞の集合体。
  38. 請求項1から34のいずれか一項記載の核酸分子の集合体、請求項35記載の組み換え型核酸分子の集合体、請求項36記載のベクターの集合体によってコードされる、または請求項37記載の宿主細胞の集合体によって産生される、反復タンパク質の集合体。
  39. 請求項1から34のいずれか一項記載の核酸分子の集合体を構築する方法であり、以下の段階を含む方法:
    (a) 反復タンパク質ファミリー由来の反復単位を同定する段階;
    (b) 反復単位において骨格残基および標的相互作用残基を同定する段階;
    (c) 反復タンパク質ファミリーの少なくとも一つのメンバーからの骨格残基および無作為化標的相互作用残基を含む、少なくとも一種類の反復モジュールを推定する段階;ならびに
    (d) 段階(c)において推定された少なくとも一種類の反復モジュールの二つまたはそれ以上のコピーを含む反復タンパク質をそれぞれがコードする核酸分子を構築する段階。
  40. 段階(c)において推定された少なくとも一つの反復モジュールがアミノ酸配列を有し、少なくとも70%のアミノ酸残基が、
    (i)少なくとも二つの天然反復単位の対応する位置に見出されるアミノ酸残基から推定されるコンセンサスアミノ酸残基;または
    (ii)天然反復単位内の対応する位置に見出されるアミノ酸残基
    のいずれかに対応する、請求項38記載の方法。
  41. 請求項38記載の反復タンパク質の集合体を作製する方法であり、以下の段階を含む方法:
    (a)請求項37記載の宿主細胞の集合体を提供する段階;および
    (b)宿主細胞に含まれる核酸分子の集合体を発現させる段階。
  42. 既定の特性を有する反復タンパク質を得る方法であり、以下の段階を含む方法:
    (a) 請求項38もしくは39記載の、または請求項41に従って産生された、反復タンパク質の集合体を提供する段階;ならびに
    (b) 既定の特性を有する少なくとも一つの反復タンパク質を得るために、集合体をスクリーニングする段階および/または集合体から選択する段階。
  43. 既定の特性が、標的に対する結合である、請求項42記載の方法。
  44. 請求項24から34のいずれか一項記載の集合体からの反復タンパク質。
  45. 請求項44記載の反復タンパク質をコードする核酸分子。
  46. 請求項45記載の核酸分子を含むベクター。
  47. 請求項44記載の反復タンパク質または請求項45記載の核酸分子、ならびに選択的に、薬学的に許容される担体および/もしくは希釈剤を含む、薬学的組成物。
  48. 核酸分子が
    Figure 2004508033
    である、請求項31または32記載の集合体を構築するための反復モジュール対をコードする核酸分子:
    式中、111は群
    D、E、N、Q、S、R、K、WおよびYから選択されるアミノ酸残基をコードするコドンを表し;
    式中、222は群
    N、SおよびTから選択されるアミノ酸残基をコードするコドンを表し;
    式中、333は群
    G、S、D、N、HおよびTから選択されるアミノ酸残基をコードするコドンを表し;かつ
    式中、444は群
    L、VおよびMから選択されるアミノ酸残基をコードするコドンを表す。
JP2002525184A 2000-09-08 2001-09-10 反復モジュールを含む反復タンパク質の集合体 Expired - Lifetime JP5291279B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00119670 2000-09-08
EP00119670.8 2000-09-08
PCT/EP2001/010454 WO2002020565A2 (en) 2000-09-08 2001-09-10 Collections of repeat proteins comprising repeat modules

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013082386A Division JP2013179942A (ja) 2000-09-08 2013-04-10 反復モジュールを含む反復タンパク質の集合体

Publications (2)

Publication Number Publication Date
JP2004508033A true JP2004508033A (ja) 2004-03-18
JP5291279B2 JP5291279B2 (ja) 2013-09-18

Family

ID=8169793

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2002525184A Expired - Lifetime JP5291279B2 (ja) 2000-09-08 2001-09-10 反復モジュールを含む反復タンパク質の集合体
JP2013082386A Pending JP2013179942A (ja) 2000-09-08 2013-04-10 反復モジュールを含む反復タンパク質の集合体
JP2015195840A Pending JP2016053031A (ja) 2000-09-08 2015-10-01 反復モジュールを含む反復タンパク質の集合体

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013082386A Pending JP2013179942A (ja) 2000-09-08 2013-04-10 反復モジュールを含む反復タンパク質の集合体
JP2015195840A Pending JP2016053031A (ja) 2000-09-08 2015-10-01 反復モジュールを含む反復タンパク質の集合体

Country Status (10)

Country Link
US (4) US7417130B2 (ja)
EP (2) EP1332209B1 (ja)
JP (3) JP5291279B2 (ja)
AT (1) ATE448301T1 (ja)
AU (1) AU2002218166A1 (ja)
CA (1) CA2421447C (ja)
DE (1) DE60140474D1 (ja)
DK (1) DK1332209T3 (ja)
ES (1) ES2335861T3 (ja)
WO (1) WO2002020565A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125401A (ja) * 2006-11-17 2008-06-05 National Institute Of Agrobiological Sciences ロイシンリッチリピート(lrr)配列等反復配列を利用した新規タンパク質の作製方法、並びにそれにより得られる新規タンパク質及び新規タンパク質をコードする遺伝子
JP2010539915A (ja) * 2007-09-24 2010-12-24 ユニバーシティ・オブ・チューリッヒ 設計されたアルマジロリピートタンパク質
JP2014501510A (ja) * 2010-11-26 2014-01-23 モレキュラー・パートナーズ・アーゲー 設計アンキリンリピートタンパク質のための改善されたキャッピングモジュール
JP2015522576A (ja) * 2012-06-28 2015-08-06 モレキュラー・パートナーズ・アーゲーMolecular Partners Ag 血小板由来成長因子に結合する設計アンキリンリピートタンパク質

Families Citing this family (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
WO2006028480A1 (en) * 2004-09-07 2006-03-16 Clonex Development, Inc. Cell lines for use in increasing protein yield form a cell culture
US7875465B2 (en) 2005-05-31 2011-01-25 Canon Kabushiki Kaisha Target substance capturing molecule
EP2567973B1 (en) 2005-11-28 2014-05-14 Zymogenetics, Inc. IL-21 antagonists
AU2013201171B2 (en) * 2006-02-13 2016-01-21 Monsanto Technology Llc Plant chimeric binding polypeptides for universal molecular recognition
AR059448A1 (es) * 2006-02-13 2008-04-09 Divergence Inc Polipeptidos quimericos vegetales de union para el reconocimiento molecular universal
AU2015203464B2 (en) * 2006-02-13 2017-08-10 Monsanto Technology Llc Plant chimeric binding polypeptides for universal molecular recognition
US7897568B2 (en) 2006-03-03 2011-03-01 Vinay K. Singh Compositions for treatment of cancer
RU2460540C2 (ru) 2006-04-28 2012-09-10 Деленекс Терапьютикс Аг Антитела, связывающиеся с внеклеточным доменом тирозинкиназного рецептора (alk)
WO2008030611A2 (en) 2006-09-05 2008-03-13 Medarex, Inc. Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
PT2486941T (pt) 2006-10-02 2017-05-30 Squibb & Sons Llc Anticorpos humanos que ligam a cxcr4 e utilizações dos mesmos
CA2670471A1 (en) 2006-11-22 2008-06-05 Adnexus, A Bristol-Myers Squibb R&D Company (A Delaware Corporation) Targeted therapeutics based on engineered proteins for tyrosine kinases receptors, including igf-ir
JP5398538B2 (ja) 2006-12-01 2014-01-29 メダレックス・リミテッド・ライアビリティ・カンパニー Cd22に結合するヒト抗体およびその使用
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
MX2009006277A (es) 2006-12-14 2009-07-24 Medarex Inc Anticuerpos humanos que se enlazan a cd70 y usos de los mismos.
EP2118138A1 (en) 2007-03-12 2009-11-18 Esbatech AG Sequence based engineering and optimization of single chain antibodies
WO2008127680A2 (en) * 2007-04-11 2008-10-23 The Jackson Laboratory Diagnosis and treatment of diseases caused by misfolded proteins
CA2687395C (en) 2007-05-03 2017-07-11 Medizinische Universitat Innsbruck Complement factor h-derived short consensus repeat-antibody constructs
CN101801407B (zh) 2007-06-05 2013-12-18 耶鲁大学 受体酪氨酸激酶抑制剂及其使用方法
CN102838673B (zh) 2007-06-25 2016-05-11 艾斯巴技术-诺华有限责任公司 修饰抗体的方法和具有改善的功能性质的修饰抗体
WO2009000098A2 (en) 2007-06-25 2008-12-31 Esbatech Ag Sequence based engineering and optimization of single chain antibodies
KR101710472B1 (ko) 2007-11-30 2017-02-27 글락소 그룹 리미티드 항원-결합 작제물
DK2217268T3 (en) 2007-12-07 2016-08-15 Zymogenetics Inc MONOCLONAL ANTI-HUMAN IL-21 ANTIBODIES
EP2242846A1 (en) * 2008-02-13 2010-10-27 DSM IP Assets B.V. Process for the production of a peptide
JP2011517314A (ja) 2008-02-14 2011-06-02 ブリストル−マイヤーズ スクイブ カンパニー Egfrに結合する操作されたタンパク質に基づく標的化された治療薬
EP2263088A2 (en) * 2008-03-19 2010-12-22 Institut Pasteur Reagentless fluorescent biosensors comprising a designed ankyrin repeat protein module, rational design methods to create reagentless fluorescent biosensors and methods of their use
EP2103936A1 (en) * 2008-03-19 2009-09-23 Institut Pasteur Reagentless fluorescent biosensors comprising a designed ankyrin repeat module and methods of their design and use
TWI564021B (zh) 2008-04-11 2017-01-01 Chugai Pharmaceutical Co Ltd Repeated binding of antigen to antigen binding molecules
US20110064821A1 (en) 2008-05-06 2011-03-17 Catchpole Ian Richard Encapsulation of biologically active agents
EP2799448A1 (en) 2008-05-22 2014-11-05 Bristol-Myers Squibb Company Multivalent fibronectin based scaffold domain proteins
KR101650165B1 (ko) 2008-06-25 2016-08-22 에스바테크 - 어 노바티스 컴파니 엘엘씨 면역결합제의 용해도 최적화
EP3629022A1 (en) 2008-07-25 2020-04-01 Richard W. Wagner Protein screening methods
EP2323695B1 (en) 2008-08-19 2018-12-05 Nektar Therapeutics Complexes of small-interfering nucleic acids
JP5954990B2 (ja) * 2008-11-03 2016-07-20 モレキュラー・パートナーズ・アーゲーMolecular Partners Ag Vegf−aレセプター相互作用を阻害する結合タンパク質
UY32341A (es) 2008-12-19 2010-07-30 Glaxo Group Ltd Proteínas de unión antígeno novedosas
JP2012515544A (ja) 2009-01-21 2012-07-12 オックスフォード ビオトヘラペウトイクス エルティーディー. Pta089タンパク質
JP5764071B2 (ja) 2009-02-24 2015-08-12 エスバテック − ア ノバルティスカンパニー エルエルシー 細胞表面抗原のイムノバインダーを同定するための方法
WO2010097386A1 (en) 2009-02-24 2010-09-02 Glaxo Group Limited Antigen-binding constructs
JP2012518400A (ja) 2009-02-24 2012-08-16 グラクソ グループ リミテッド 多価および/または複数特異的rankl結合性構築物
CA2753287A1 (en) 2009-02-24 2010-09-02 Glaxo Group Limited Antigen-binding constructs
KR101769160B1 (ko) 2009-03-05 2017-08-17 옥스포드 바이오테라퓨틱스 리미티드 Cadm1에 특이적인 완전 인간 항체
CN106188295A (zh) 2009-04-20 2016-12-07 牛津生物疗法有限公司 特异于钙粘素‑17的抗体
IE20090514A1 (en) 2009-07-06 2011-02-16 Opsona Therapeutics Ltd Humanised antibodies and uses therof
WO2011012646A2 (en) 2009-07-28 2011-02-03 F. Hoffmann-La Roche Ag Non-invasive in vivo optical imaging method
US20120231004A1 (en) 2009-10-13 2012-09-13 Oxford Biotherapeutic Ltd. Antibodies
EP2496605A1 (en) 2009-11-02 2012-09-12 Oxford Biotherapeutics Ltd. Ror1 as therapeutic and diagnostic target
TW201120210A (en) * 2009-11-05 2011-06-16 Hoffmann La Roche Glycosylated repeat-motif-molecule conjugates
JP2013509869A (ja) 2009-11-05 2013-03-21 ノバルティス アーゲー 線維症の進行の予測用バイオマーカー
US20110150885A1 (en) 2009-12-11 2011-06-23 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating hematopoiesis
US8940303B2 (en) 2010-01-28 2015-01-27 Glaxo Group Limited CD127 binding proteins
CA2789125A1 (en) 2010-02-10 2011-08-18 Novartis Ag Methods and compounds for muscle growth
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
CN107098958B (zh) 2010-03-26 2021-11-05 达特茅斯大学理事会 Vista调节性t细胞介体蛋白、vista结合剂及其用途
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
TWI667257B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
CN103118692A (zh) 2010-04-26 2013-05-22 Atyr医药公司 与半胱氨酰-tRNA合成酶的蛋白片段相关的治疗、诊断和抗体组合物的创新发现
JP6294074B2 (ja) 2010-04-27 2018-03-14 エータイアー ファーマ, インコーポレイテッド イソロイシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見
US8993723B2 (en) 2010-04-28 2015-03-31 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl-tRNA synthetases
US8986680B2 (en) 2010-04-29 2015-03-24 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases
WO2011150279A2 (en) 2010-05-27 2011-12-01 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-trna synthetases
CN103118693B (zh) 2010-04-29 2017-05-03 Atyr 医药公司 与缬氨酰‑tRNA合成酶的蛋白片段相关的治疗、诊断和抗体组合物的创新发现
AR081361A1 (es) 2010-04-30 2012-08-29 Molecular Partners Ag Proteinas de union modificadas que inhiben la interaccion de receptor del factor de crecimiento endotelial vascular de glicoproteina a vegf-a
EP2566496B1 (en) 2010-05-03 2018-02-28 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases
AU2011248227B2 (en) 2010-05-03 2016-12-01 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-tRNA synthetases
US8961961B2 (en) 2010-05-03 2015-02-24 a Tyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related protein fragments of arginyl-tRNA synthetases
WO2011140267A2 (en) 2010-05-04 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex
RU2012148816A (ru) 2010-05-07 2014-06-20 Ф. Хоффманн-Ля Рош Аг Метод диагностики для определения клеток ex vivo
CA3090304A1 (en) 2010-05-13 2011-11-17 Sarepta Therapeutics, Inc. Antisense modulation of interleukins 17 and 23 signaling
CN103200953B (zh) 2010-05-14 2017-02-15 Atyr 医药公司 与苯丙氨酰‑β‑tRNA合成酶的蛋白片段相关的治疗、诊断和抗体组合物的创新发现
AR081556A1 (es) 2010-06-03 2012-10-03 Glaxo Group Ltd Proteinas de union al antigeno humanizadas
MX2013000301A (es) 2010-07-09 2013-05-09 Biogen Idec Hemophilia Inc Factores quimericos de coagulacion.
AU2011289831C1 (en) 2010-07-12 2017-06-15 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-tRNA synthetases
SG10201508118WA (en) 2010-09-30 2015-11-27 Agency Science Tech & Res Methods and reagents for detection and treatment of esophageal metaplasia
UY33679A (es) 2010-10-22 2012-03-30 Esbatech Anticuerpos estables y solubles
US20130273055A1 (en) 2010-11-16 2013-10-17 Eric Borges Agents and methods for treating diseases that correlate with bcma expression
MX355060B (es) 2010-11-17 2018-04-03 Chugai Pharmaceutical Co Ltd Molecula multiespecifica de union a antigeno que tiene funcion alternativa a la funcion del factor viii de coagulacion sanguinea.
JP6351973B2 (ja) 2010-11-23 2018-07-04 グラクソ グループ リミテッドGlaxo Group Limited 抗原結合タンパク質
BR112013013003A2 (pt) 2010-11-24 2016-08-09 Glaxo Group Ltd proteína de ligação de antígeno, e, composição farmacêutica
MX365235B (es) 2010-11-30 2019-05-28 Chugai Pharmaceutical Co Ltd Molécula de unión a antígeno capaz de unir repetidamente a la pluralidad de moléculas de antígeno.
EP3539991A1 (en) 2011-01-07 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Method for improving physical properties of antibody
US9499592B2 (en) * 2011-01-26 2016-11-22 President And Fellows Of Harvard College Transcription activator-like effectors
US9534000B2 (en) 2011-02-15 2017-01-03 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and methods of preparation
US20140093496A1 (en) 2011-02-25 2014-04-03 Chugai Seiyaku Kabushiki Kaisha Fc-gamma-RIIb-SPECIFIC Fc ANTIBODY
EP3825325A3 (en) 2011-03-30 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
CN103596974B (zh) 2011-04-15 2016-08-31 卡姆普根有限公司 多肽和多核苷酸及其用于治疗免疫相关失调和癌症的用途
EP2702069A4 (en) 2011-04-29 2015-04-29 Janssen Biotech Inc IL4 / IL13 BINDING REPEAT PROTEINS AND USES THEREOF
JP6181043B2 (ja) 2011-05-06 2017-08-16 ネックスヴェット オーストラリア プロプライエタリー リミテッド 抗神経成長因子抗体ならびにそれを調製および使用する方法
PT3498732T (pt) 2011-05-06 2022-02-02 Zoetis Services Llc Anticorpos anti-fator de crescimento do nervo e método para preparação e utilização dos mesmos
JP6258194B2 (ja) 2011-05-06 2018-01-10 ネックスヴェット オーストラリア プロプライエタリー リミテッド 抗神経成長因子抗体並びに前記の製造及び使用方法
GB201114858D0 (en) 2011-08-29 2011-10-12 Nvip Pty Ltd Anti-nerve growth factor antibodies and methods of using the same
DK3415531T3 (da) 2011-05-27 2023-09-18 Glaxo Group Ltd Bcma (cd269/tnfrsf17)-bindende proteiner
PL2717898T3 (pl) 2011-06-10 2019-06-28 Bioverativ Therapeutics Inc. Związki o działaniu prokoagulacyjnym i sposoby ich stosowania
CA2836927A1 (en) 2011-06-21 2012-12-27 Immunogen, Inc. Novel maytansinoid derivatives with peptide linker and conjugates thereof
EP2726508B1 (en) 2011-06-28 2017-08-09 Oxford BioTherapeutics Ltd Antibodies to adp-ribosyl cyclase 2
RS55716B1 (sr) 2011-06-28 2017-07-31 Oxford Biotherapeutics Ltd Terapeutski i dijagnostički cilj
DK2728002T3 (da) 2011-06-30 2022-04-04 Chugai Pharmaceutical Co Ltd Heterodimeriseret polypeptid
US20150050269A1 (en) 2011-09-30 2015-02-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
WO2013046722A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
CA2850322C (en) 2011-09-30 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
TW201817745A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
SG11201401101XA (en) 2011-09-30 2014-08-28 Chugai Pharmaceutical Co Ltd Antigen-binding molecule for promoting loss of antigens
EP2765192A4 (en) 2011-10-05 2015-04-15 Chugai Pharmaceutical Co Ltd ANTIGEN BINDING MOLECULE FOR PROMOTING THE PLASMA CLAIR OF AN ANTIGEN COMPRISING A SACCHARIDIC CHAIN TYPE RECEPTOR BINDING DOMAIN
CA2852709A1 (en) 2011-10-28 2013-05-02 Patrys Limited Pat-lm1 epitopes and methods for using same
US20130156766A1 (en) 2011-11-15 2013-06-20 Allergan, Inc. Treatment of dry age related macular degeneration
US20150056182A1 (en) 2011-11-30 2015-02-26 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
EP2612916A1 (en) 2012-01-09 2013-07-10 Universität Zürich Cellular high throughput encapsulation for screening or selection
HUE039033T2 (hu) 2012-01-10 2018-12-28 Biogen Ma Inc Terápiás molekulák transzportjának fokozása a vér-agy gáton keresztül
SG11201404751UA (en) 2012-02-09 2014-09-26 Chugai Pharmaceutical Co Ltd Modified fc region of antibody
ES2798110T3 (es) 2012-02-13 2020-12-09 Agency Science Tech & Res Anticuerpos monoclonales humanos neutralizantes de IL-beta
WO2013123432A2 (en) 2012-02-16 2013-08-22 Atyr Pharma, Inc. Histidyl-trna synthetases for treating autoimmune and inflammatory diseases
WO2013121038A1 (en) 2012-02-17 2013-08-22 Centro Nacional De Investigaciones Oncológicas Mammalian homologues of flower, their use in cancer diagnostics, prevention and treatment
TW202015731A (zh) 2012-02-24 2020-05-01 日商中外製藥股份有限公司 經FcγRIIB促進抗原消失之抗原結合分子
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
ES2753135T3 (es) 2012-05-07 2020-04-07 Allergan Inc Método de tratamiento de DMAE en pacientes resistentes a terapia anti-VEGF
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
DK2857419T3 (da) 2012-05-30 2021-03-29 Chugai Pharmaceutical Co Ltd Antigen-bindende molekyle til eliminering af aggregerede antigener
CA2874721A1 (en) 2012-05-30 2013-12-05 Tomoyuki Igawa Target tissue-specific antigen-binding molecule
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
AR091774A1 (es) * 2012-07-16 2015-02-25 Dow Agrosciences Llc Proceso para el diseño de las secuencias de adn repetidas, largas, divergentes de codones optimizados
EP2692731A1 (en) * 2012-07-31 2014-02-05 Paul-Ehrlich-Institut Bundesamt für Sera und Impfstoffe Recombinant Adeno-Associated virus (AAV) vector particles displaying high-affinity ligands for cell-type specific gene delivery
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
WO2014031566A1 (en) 2012-08-22 2014-02-27 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
EP3597747B1 (en) 2012-08-24 2023-03-15 Chugai Seiyaku Kabushiki Kaisha Mouse fcgammarii-specific fc antibody
MX371442B (es) 2012-08-24 2020-01-30 Chugai Pharmaceutical Co Ltd VARIANTE DE LA REGION FC ESPECIFICA PARA FCyRIIB.
CA2884704C (en) 2012-09-07 2023-04-04 Randolph J. Noelle Vista modulators for diagnosis and treatment of cancer
US11078518B2 (en) 2012-09-28 2021-08-03 Chugai Seiyaku Kabushiki Kaisha Method for evaluating blood coagulation reaction
EP2719706A1 (en) 2012-10-15 2014-04-16 Universität Zürich Bispecific HER2 ligands for cancer therapy
US10093740B2 (en) 2012-10-15 2018-10-09 Universitat Zurich Bispecific HER2 ligands for cancer therapy
WO2020074469A1 (en) 2018-10-08 2020-04-16 Universität Zürich Her2-binding tetrameric polypeptides
EP2917243B1 (en) 2012-11-08 2018-03-14 F.Hoffmann-La Roche Ag Her3 antigen binding proteins binding to the beta-hairpin of her3
EP2738180A1 (en) 2012-11-30 2014-06-04 Molecular Partners AG Binding proteins comprising at least two binding domains against HER2.
KR20150095684A (ko) 2012-12-18 2015-08-21 노파르티스 아게 히알루로난에 결합하는 펩티드 태그를 이용하는 조성물 및 방법
WO2014104165A1 (ja) 2012-12-27 2014-07-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
WO2014122144A1 (en) 2013-02-05 2014-08-14 Engmab Ag BISPECIFIC ANTIBODIES AGAINST CD3ε AND BCMA
EP2762496A1 (en) 2013-02-05 2014-08-06 EngMab AG Method for the selection of antibodies against BCMA
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
CN105143270B (zh) 2013-02-26 2019-11-12 罗切格利卡特公司 双特异性t细胞活化抗原结合分子
US9901647B2 (en) 2013-02-28 2018-02-27 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014133855A1 (en) 2013-02-28 2014-09-04 Caprion Proteomics Inc. Tuberculosis biomarkers and uses thereof
EP2961434A2 (en) 2013-02-28 2016-01-06 ImmunoGen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
AU2014228938B2 (en) 2013-03-15 2019-05-02 Bioverativ Therapeutics Inc. Factor IX polypeptide formulations
EP3783017A1 (en) 2013-04-02 2021-02-24 Chugai Seiyaku Kabushiki Kaisha Fc region variant
GB201308363D0 (en) 2013-05-09 2013-06-19 Bagshawe Kenneth D Tumour therapy
WO2014191574A1 (en) * 2013-05-31 2014-12-04 Molecular Partners Ag Designed ankyrin repeat proteins binding to hepatocyte growth factor
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
KR102236367B1 (ko) 2013-07-26 2021-04-05 삼성전자주식회사 DARPin을 포함하는 이중 특이 키메라 단백질
EP3038641B1 (en) 2013-10-06 2019-04-17 The United States of America, as represented by The Secretary, Department of Health and Human Services Modified pseudomonas exotoxin a
EP3065761B1 (en) 2013-11-05 2020-01-08 Allergan, Inc. Method of treating conditions of the eye with an anti-vegf darpin
EP3065769A4 (en) 2013-11-08 2017-05-31 Biogen MA Inc. Procoagulant fusion compound
SG11201604495PA (en) 2013-12-04 2016-07-28 Chugai Pharmaceutical Co Ltd Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
JP6553618B2 (ja) 2013-12-18 2019-07-31 シーエスエル リミティド 創傷を治療する方法
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
HRP20220748T1 (hr) 2013-12-24 2022-09-02 Janssen Pharmaceutica Nv Anti-vista antitijela i fragmenti
KR20150092637A (ko) 2014-02-05 2015-08-13 삼성전자주식회사 p16 단백질 변이체 및 이를 포함하는 암의 예방 또는 치료용 조성물
KR20150092638A (ko) 2014-02-05 2015-08-13 삼성전자주식회사 p15 단백질 변이체 및 이를 포함하는 암의 예방 또는 치료용 조성물
KR20150097304A (ko) 2014-02-18 2015-08-26 삼성전자주식회사 항 EGFR DARPin을 포함하는 EGFR/HER2 이중 특이 항체
CA2951885C (en) 2014-06-11 2023-07-04 Kathy A. Green Use of vista agonists and antagonists to suppress or enhance humoral immunity
TWI831106B (zh) 2014-06-20 2024-02-01 日商中外製藥股份有限公司 用於因第viii凝血因子及/或活化的第viii凝血因子的活性降低或欠缺而發病及/或進展的疾病之預防及/或治療之醫藥組成物
EP3160990A2 (en) 2014-06-25 2017-05-03 Novartis AG Compositions and methods for long acting proteins
WO2015198240A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
ES2750689T3 (es) 2014-08-15 2020-03-26 Adynxx Inc Señuelos oligonucleotídicos para el tratamiento del dolor
PL3189056T3 (pl) 2014-09-03 2020-11-02 Immunogen, Inc. Cytotoksyczne pochodne benzodiazepinowe
JP2017527562A (ja) 2014-09-03 2017-09-21 イミュノジェン・インコーポレーテッド 細胞毒性ベンゾジアゼピン誘導体
AU2015324924B2 (en) 2014-10-01 2021-07-01 Medimmune, Llc Method of conjugating a polypeptide
WO2016059602A2 (en) 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
HUE049982T2 (hu) 2014-11-14 2020-11-30 Hoffmann La Roche TNF-családba tartozó ligandum-trimert tartalmazó antigénkötõ molekulák
WO2016090347A1 (en) 2014-12-05 2016-06-09 Immunext, Inc. Identification of vsig8 as the putative vista receptor and its use thereof to produce vista/vsig8 modulators
EP3237003B1 (en) 2014-12-24 2021-08-11 NexImmune, Inc Nanoparticle compositions and methods for immunotherapy
EA201791754A1 (ru) 2015-02-05 2019-01-31 Чугаи Сейяку Кабусики Кайся АНТИТЕЛА, СОДЕРЖАЩИЕ ЗАВИСЯЩИЙ ОТ КОНЦЕНТРАЦИИ ИОНОВ АНТИГЕНСВЯЗЫВАЮЩИЙ ДОМЕН, ВАРИАНТЫ Fc-ОБЛАСТИ, IL-8-СВЯЗЫВАЮЩИЕ АНТИТЕЛА И ИХ ПРИМЕНЕНИЯ
ES2953482T3 (es) 2015-04-02 2023-11-13 Molecular Partners Ag Dominios de repetición de anquirina diseñados con especificidad de unión para la albúmina sérica
AU2016248817A1 (en) 2015-04-17 2017-08-17 F. Hoffmann-La Roche Ag Combination therapy with coagulation factors and multispecific antibodies
MX367312B (es) 2015-06-04 2019-08-14 Ospedale San Raffaele Srl Inhibidor del eje igrbp3/tmem219 y diabetes.
MX2017015700A (es) 2015-06-04 2018-11-09 Ospedale San Raffaele Srl Igfbp3 y sus usos.
KR101713944B1 (ko) * 2015-06-19 2017-03-09 한국과학기술원 신규한 혈관내피세포 성장인자와 결합할 수 있는 폴리펩타이드 및 이의 용도
DK3313882T3 (da) 2015-06-24 2020-05-11 Janssen Pharmaceutica Nv Anti-VISTA antistoffer og fragmenter
EA036975B1 (ru) 2015-08-03 2021-01-21 Энгмаб Сарл Моноклональные антитела против bcma
KR102538745B1 (ko) 2015-09-18 2023-06-01 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
MY192202A (en) 2015-10-02 2022-08-06 Hoffmann La Roche Bispecific antibodies specific for pd1 and tim3
MX2018003820A (es) 2015-10-02 2018-12-10 F Hoffmann ­La Roche Ag Anticuerpos biespecificos especificos para un receptor de tnf coestimulador.
JP7074665B2 (ja) 2015-10-07 2022-05-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 共刺激tnf受容体に対する四価の二重特異性抗体発明の分野
CA3003969A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
US20180339024A1 (en) 2015-11-19 2018-11-29 Asclepix Therapeutics, Llc Peptides with anti-angiogenic, anti-lymphangiogenic, and anti-edemic properties and nanoparticle formulations
EP3383422B1 (en) 2015-12-02 2021-08-11 Fred Hutchinson Cancer Research Center Circular tandem repeat proteins
EP4059957A1 (en) 2016-02-05 2022-09-21 Orionis Biosciences BV Bispecific signaling agents and uses thereof
US10899836B2 (en) 2016-02-12 2021-01-26 Janssen Pharmaceutica Nv Method of identifying anti-VISTA antibodies
WO2017153402A1 (en) 2016-03-07 2017-09-14 Vib Vzw Cd20 binding single domain antibodies
EP3231813A1 (en) 2016-03-29 2017-10-18 F. Hoffmann-La Roche AG Trimeric costimulatory tnf family ligand-containing antigen binding molecules
US20210017281A1 (en) 2016-04-15 2021-01-21 Immunext, Inc. Anti-human vista antibodies and use thereof
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
JP7285076B2 (ja) 2016-05-11 2023-06-01 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Tnfファミリーリガンドトリマーとテネイシン結合部分とを含む抗原結合分子
JP7105200B2 (ja) 2016-05-13 2022-07-22 オリオニス バイオサイエンシズ ビーブイ 標的突然変異体インターフェロン-ベータおよびその使用
EP3455245A2 (en) 2016-05-13 2019-03-20 Orionis Biosciences NV Therapeutic targeting of non-cellular structures
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
WO2018011405A1 (en) 2016-07-15 2018-01-18 Universität Zürich Il-13ralpha1 antibodies for use in treatment of atopic inflammation, sepsis and neutropenia
CN109661241A (zh) 2016-09-06 2019-04-19 中外制药株式会社 使用识别凝血因子ix和/或活化凝血因子ix以及凝血因子x和/或活化凝血因子x的双特异性抗体的方法
US11453726B2 (en) 2016-09-15 2022-09-27 Quadrucept Bio Limited Multimers, tetramers and octamers
MX2019003298A (es) 2016-09-22 2019-09-26 Molecular Partners Ag Proteinas de union recombinantes y sus usos.
AU2017331739A1 (en) 2016-09-23 2019-03-07 Csl Limited Coagulation factor binding proteins and uses thereof
CN110177563A (zh) 2016-10-04 2019-08-27 阿斯克雷佩西治疗公司 用于激活tie2信号传导的化合物和方法
US11084859B2 (en) 2016-10-24 2021-08-10 Orionis Biosciences BV Targeted mutant interferon-gamma and uses thereof
EP4295918A3 (en) 2016-11-02 2024-03-20 Bristol-Myers Squibb Company Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma
KR102221364B1 (ko) 2016-11-21 2021-03-04 쿠레아브 게엠베하 항-gp73 항체 및 면역접합체
TWI797097B (zh) 2016-11-28 2023-04-01 日商中外製藥股份有限公司 包含抗原結合域與運送部分的多胜肽
KR102533814B1 (ko) 2016-11-28 2023-05-19 추가이 세이야쿠 가부시키가이샤 리간드 결합 활성을 조정 가능한 리간드 결합 분자
JP7125400B2 (ja) 2016-12-19 2022-08-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 標的化4-1bb(cd137)アゴニストとの併用療法
PL3559034T3 (pl) 2016-12-20 2021-04-19 F. Hoffmann-La Roche Ag Terapia skojarzona dwuswoistymi przeciwciałami anty-CD20/anty-CD3 i agonistami 4-1BB (CD137)
MX2019007795A (es) 2017-01-03 2019-08-16 Hoffmann La Roche Moleculas de union a antigeno biespecificas que comprenden el clon 20h4.9 anti-4-1bb.
CA3052523A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences Nv Targeted chimeric proteins and uses thereof
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
EP3580230A1 (en) 2017-02-07 2019-12-18 VIB vzw Immune-cell targeted bispecific chimeric proteins and uses thereof
CN110366431B (zh) 2017-02-28 2023-07-18 伊缪诺金公司 具有自分解肽接头的类美登素衍生物和其缀合物
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018178074A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Trimeric antigen binding molecules specific for a costimulatory tnf receptor
CN110573528B (zh) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 针对共刺激性tnf受体的双特异性抗原结合分子
US20210107994A1 (en) 2017-03-31 2021-04-15 Public University Corporation Nara Medical University Medicinal composition usable for preventing and/or treating blood coagulation factor ix abnormality, comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii
CA3053358A1 (en) 2017-04-04 2018-10-11 F. Hoffmann-La Roche Ag Novel bispecific antigen binding molecules capable of specific binding to cd40 and to fap
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
TW201839001A (zh) 2017-04-20 2018-11-01 美商伊繆諾金公司 細胞毒性苯并二氮平衍生物及其綴合物
AR111963A1 (es) 2017-05-26 2019-09-04 Univ California Método y moléculas
US11674959B2 (en) 2017-08-03 2023-06-13 The Johns Hopkins University Methods for identifying and preparing pharmaceutical agents for activating Tie1 and/or Tie2 receptors
MX2020002710A (es) 2017-09-29 2020-07-20 Chugai Pharmaceutical Co Ltd Molecula de union al antigeno multiespecifica que tiene actividad de sustitucion de la funcion de cofactor del factor viii de coagulacion de sangre (fviii) y formulacion farmaceutica que contiene tal molecula como ingrediente activo.
CN111247165B (zh) 2017-10-18 2023-11-10 Csl有限公司 人血清白蛋白变体及其应用
JP2021500902A (ja) 2017-11-01 2021-01-14 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 新規tnfファミリーリガンド三量体含有抗原結合分子
BR112020007630A2 (pt) 2017-11-01 2020-11-17 F. Hoffmann-La Roche Ag anticorpo biespecífico ox40, produto farmacêutico, composição farmacêutica e anticorpos biespecíficos anti-fap/ anti-ox40
KR20200079492A (ko) 2017-11-01 2020-07-03 에프. 호프만-라 로슈 아게 이중특이성 2+1 컨터체
AU2018377783A1 (en) 2017-11-28 2020-06-11 Chugai Seiyaku Kabushiki Kaisha Polypeptide including antigen-binding domain and carrying section
BR112020010248A2 (pt) 2017-11-28 2020-11-10 Chugai Seiyaku Kabushiki Kaisha molécula de ligação do ligante tendo atividade de ligação do ligante ajustável
AU2018377856A1 (en) 2017-11-29 2020-05-21 Csl Limited Method of treating or preventing ischemia-reperfusion injury
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
TWI827575B (zh) 2017-12-28 2024-01-01 美商伊繆諾金公司 苯二氮平衍生物
AU2019205090A1 (en) 2018-01-05 2020-08-06 Ac Immune Sa Misfolded TDP-43 binding molecules
CN111630063A (zh) 2018-01-31 2020-09-04 豪夫迈·罗氏有限公司 稳定化的免疫球蛋白结构域
EP3746480A1 (en) 2018-01-31 2020-12-09 F. Hoffmann-La Roche AG Bispecific antibodies comprising an antigen-binding site binding to lag3
US11896643B2 (en) 2018-02-05 2024-02-13 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
WO2019158645A1 (en) 2018-02-14 2019-08-22 Abba Therapeutics Ag Anti-human pd-l2 antibodies
EP3623382A1 (en) 2018-09-14 2020-03-18 Universität Zürich Ligands to gm-csf or gm-csf-receptor for use in leukemia in a patient having undergone allo-hct
US11655293B2 (en) 2018-02-22 2023-05-23 Universitat Zurich Ligands to GM-CSF or GM-CSF-receptor for use in leukemia in a patient having undergone allo-HCT
CN111683961A (zh) 2018-03-13 2020-09-18 豪夫迈·罗氏有限公司 4-1bb激动剂与抗cd20抗体的治疗剂组合
EP3765501A1 (en) 2018-03-13 2021-01-20 F. Hoffmann-La Roche AG Combination therapy with targeted 4-1bb (cd137) agonists
GB201804092D0 (en) * 2018-03-14 2018-04-25 Imperial Innovations Ltd Methods and compositions
EP3768833A1 (en) 2018-03-22 2021-01-27 Charité - Universitätsmedizin Berlin Crispr associated protein reactive t cell immunity
TW202012440A (zh) 2018-04-13 2020-04-01 瑞士商赫孚孟拉羅股份公司 包含4-1bbl之靶向her2的抗原結合分子
AU2019256517A1 (en) * 2018-04-18 2020-11-12 Altius Institute For Biomedical Sciences Animal pathogen-derived polypeptides and uses thereof for genetic engineering
JP7398396B2 (ja) 2018-06-01 2023-12-14 ノバルティス アーゲー Bcmaに対する結合分子及びその使用
US20210253723A1 (en) 2018-06-15 2021-08-19 Universität Bern LIGANDS TO LIGHT OR ITS RECEPTOR LTßR FOR USE IN HAEMATOLOGIC MALIGNANCIES
US20210261669A1 (en) 2018-06-20 2021-08-26 Chugai Seiyaku Kabushiki Kaisha Method for activating immune response of target cell and composition therefor
TW202035447A (zh) 2018-07-04 2020-10-01 瑞士商赫孚孟拉羅股份公司 新穎雙特異性促效性4-1bb抗原結合分子
SG11202003531WA (en) 2018-08-10 2020-05-28 Chugai Pharmaceutical Co Ltd Anti-cd137 antigen-binding molecule and utilization thereof
KR20210069675A (ko) 2018-10-01 2021-06-11 에프. 호프만-라 로슈 아게 항-fap 클론 212를 포함하는 이중특이적 항원 결합 분자
EP3861025A1 (en) 2018-10-01 2021-08-11 F. Hoffmann-La Roche AG Bispecific antigen binding molecules with trivalent binding to cd40
EP3632929A1 (en) 2018-10-02 2020-04-08 Ospedale San Raffaele S.r.l. Antibodies and uses thereof
WO2020089437A1 (en) 2018-10-31 2020-05-07 Engmab Sàrl Combination therapy
WO2020104627A1 (en) 2018-11-21 2020-05-28 Universität Zürich Photochemically induced conjugation of radiometals to small molecules, peptides and nanoparticles in a simultaneous one-pot reaction
EP3898682A1 (en) 2018-12-21 2021-10-27 F. Hoffmann-La Roche AG Tumor-targeted agonistic cd28 antigen binding molecules
CN113286822A (zh) 2018-12-21 2021-08-20 豪夫迈·罗氏有限公司 靶向肿瘤的超激动性cd28抗原结合分子
EP3677911A3 (en) 2019-01-03 2020-07-29 Universität Basel Use of non-agonist ligands for suppression of metastasis
WO2020144378A1 (en) 2019-01-11 2020-07-16 Universitätsspital Basel Sglt-2 inhibitors or il-1r antagonists for reduction of hypoglycaemia after bariatric surgery
JP2022520632A (ja) 2019-02-15 2022-03-31 インテグラル・モレキュラー・インコーポレイテッド 共通軽鎖を含む抗体及びその使用
CN113767113A (zh) 2019-02-15 2021-12-07 因特格尔莫来库乐有限公司 密封蛋白6抗体及其用途
JPWO2020175502A1 (ja) 2019-02-27 2021-12-23 国立大学法人 東京医科歯科大学 抗原結合タンパク質と蛍光タンパク質または蛍光標識されるタグタンパク質との融合タンパク質
AU2020235455A1 (en) 2019-03-08 2021-10-28 Oxford Genetics Limited Method of selecting for antibodies
GB201903233D0 (en) 2019-03-08 2019-04-24 Oxford Genetics Ltd Method of selecting for antibodies
GB201903767D0 (en) 2019-03-19 2019-05-01 Quadrucept Bio Ltd Multimers, tetramers & octamers
US20220153875A1 (en) 2019-03-19 2022-05-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing antigen-binding domain of which binding activity to antigen is changed depending on mta, and library for obtaining said antigen-binding domain
KR20220022112A (ko) 2019-03-21 2022-02-24 이뮤노젠 아이엔씨 세포-결합 제제-약물 콘쥬게이트를 준비하는 방법
JP2022529583A (ja) 2019-03-29 2022-06-23 イミュノジェン・インコーポレーテッド 異常細胞増殖を阻害するまたは増殖性疾患を治療するための細胞毒性ビス-ベンゾジアゼピン誘導体及び細胞結合剤とのその複合体
MX2021011903A (es) 2019-04-02 2021-10-26 Chugai Pharmaceutical Co Ltd Método para introducir un gen extraño específico del objetivo.
EP3953712A1 (en) 2019-04-10 2022-02-16 Universität Zürich A method for determining the likelihood of a patient being responsive to cancer immunotherapy
JP7301155B2 (ja) 2019-04-12 2023-06-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト リポカリンムテインを含む二重特異性抗原結合分子
CA3133909A1 (en) 2019-04-18 2020-10-22 Elpida TSIKA Novel molecules for therapy and diagnosis
WO2020219287A1 (en) 2019-04-26 2020-10-29 Immunogen, Inc. Camptothecin derivatives
CN114173810A (zh) 2019-05-21 2022-03-11 诺华股份有限公司 针对bcma的三特异性结合分子及其用途
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
AU2020279974A1 (en) 2019-05-21 2021-11-18 Novartis Ag CD19 binding molecules and uses thereof
WO2020234473A1 (en) 2019-05-23 2020-11-26 Ac Immune Sa Anti-tdp-43 binding molecules and uses thereof
BR112021024231A2 (pt) 2019-06-04 2022-04-26 Molecular Partners Ag Proteínas de ligação fap recombinantes e uso da mesma
US20220298212A1 (en) 2019-06-04 2022-09-22 Molecular Partners Ag Recombinant 4-1bb binding proteins and their use
WO2020245171A1 (en) 2019-06-04 2020-12-10 Molecular Partners Ag Designed ankyrin repeat domain with improved stability
CA3139051A1 (en) 2019-06-04 2020-12-10 Christian REICHEN Multispecific proteins
EP4023230A4 (en) 2019-06-05 2023-11-15 Chugai Seiyaku Kabushiki Kaisha ANTIBODY CLEAVAGE SITE BINDING MOLECULE
CN114127277A (zh) 2019-06-05 2022-03-01 中外制药株式会社 蛋白酶底物和包含蛋白酶切割序列的多肽
EP3982369A4 (en) 2019-06-07 2023-06-14 Chugai Seiyaku Kabushiki Kaisha INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING PROCESS, PROGRAM AND METHOD FOR PRODUCTION OF AN ANTIGEN-BINDING MOLECULE OR PROTEIN
CN113993548A (zh) 2019-06-18 2022-01-28 ***—普朗克科学促进协会公司 标记物和/或载体与靶分子例如带His-标签的蛋白质通过金属配合物试剂的位点特异性动力学惰性缀合
BR112021026293A2 (pt) 2019-06-26 2022-03-03 Hoffmann La Roche Moléculas de ligação, anticorpos humanizados, ácido nucleico isolado, célula hospedeira, métodos para produzir a molécula de ligação ao antígeno, para tratar um indivíduo e suprarregular ou prolongar a atividade de células t citotóxicas, composição farmacêutica e uso da molécula
WO2020260326A1 (en) 2019-06-27 2020-12-30 F. Hoffmann-La Roche Ag Novel icos antibodies and tumor-targeted antigen binding molecules comprising them
WO2021044050A1 (en) 2019-09-05 2021-03-11 Genome Biologics Ug Inhibition of mthfd1l for use in hypertrophic heart disease and heart failure
BR112022008629A2 (pt) 2019-11-15 2022-07-19 Enthera S R L Anticorpo isolado ou fragmento de ligação de antígeno do mesmo, polinucleotídeo isolado, vetor, célula isolada, composição farmacêutica, uso dos mesmos e método para inibir a ligação de igfbp3 ao receptor tmem219
AU2020387034A1 (en) 2019-11-20 2022-06-02 Chugai Seiyaku Kabushiki Kaisha Antibody-containing preparation
AU2020385631A1 (en) 2019-11-20 2022-06-02 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Archaeal peptide recombinase – a novel peptide ligating enzyme
US20230039165A1 (en) 2019-11-21 2023-02-09 Enthera S.R.L. Igfbp3 antibodies and therapeutic uses thereof
US20230000918A1 (en) 2019-11-29 2023-01-05 Suzhou Nova Therapeutics Co. Ltd Chimeric antigen receptors, compositions and applications thereof
AU2020399230A1 (en) 2019-12-11 2022-06-23 Molecular Partners Ag Recombinant peptide-MHC complex binding proteins and their generation and use
US20230041822A1 (en) 2019-12-11 2023-02-09 Molecular Partners Ag Recombinant peptide-mhc complex binding proteins and their generation and use
WO2021122813A1 (en) 2019-12-16 2021-06-24 Universität Basel Angiogenesis promoting agents for prevention of metastatic cancer
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
EP3868396A1 (en) 2020-02-20 2021-08-25 Enthera S.R.L. Inhibitors and uses thereof
WO2021176008A1 (en) 2020-03-04 2021-09-10 Cornell University Agents targeting baf155 or brg1 for use in treatment of advanced prostate cancer
WO2021190980A1 (en) 2020-03-22 2021-09-30 Quadrucept Bio Limited Multimers for viral strain evolution
CN116249549A (zh) 2020-03-27 2023-06-09 诺华股份有限公司 用于治疗增殖性疾病和自身免疫病症的双特异性组合疗法
GB202004514D0 (en) 2020-03-27 2020-05-13 Inst De Medicina Molecular Joaeo Lobo Antunes Treatment of Immunosuppressive Cancer
AR121706A1 (es) 2020-04-01 2022-06-29 Hoffmann La Roche Moléculas de unión a antígeno biespecíficas dirigidas a ox40 y fap
WO2021204781A1 (en) 2020-04-06 2021-10-14 Universität Zürich Artc1 ligands for cancer treatment
CR20220618A (es) 2020-05-06 2023-01-19 Molecular Partners Ag Nuevas proteinas de unión a repeticiones de anquirina y sus usos
AU2021271131A1 (en) 2020-05-14 2022-12-15 Molecular Partners Ag Recombinant CD40 binding proteins and their use
BR112022023049A2 (pt) 2020-05-14 2022-12-20 Molecular Partners Ag Proteínas multiespecíficas
JP2023504675A (ja) 2020-05-19 2023-02-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ガンの処置のための結合分子
WO2021239844A1 (en) 2020-05-27 2021-12-02 Universitätsspital Basel Sglt-2 inhibitors or il-1r antagonists for reduction of hypoglycaemia in prediabetes
WO2021239999A1 (en) 2020-05-28 2021-12-02 Universität Zürich Il-12 pd-l1 ligand fusion protein
KR20230016206A (ko) 2020-06-23 2023-02-01 에프. 호프만-라 로슈 아게 Her2를 표적으로 하는 작용성 CD28 항원 결합 분자
WO2021260064A1 (en) 2020-06-25 2021-12-30 F. Hoffmann-La Roche Ag Anti-cd3/anti-cd28 bispecific antigen binding molecules
KR20230048059A (ko) 2020-07-31 2023-04-10 추가이 세이야쿠 가부시키가이샤 키메라 수용체를 발현하는 세포를 포함하는 의약 조성물
TW202221008A (zh) 2020-08-07 2022-06-01 瑞士商赫孚孟拉羅股份公司 製備蛋白質組成物之方法
US20230322908A1 (en) 2020-08-14 2023-10-12 Ac Immune Sa Humanized Anti-TDP-43 Binding Molecules and Uses Thereof
US20230303680A1 (en) 2020-08-18 2023-09-28 Universität Zürich A cd25-biased anti-il-2 antibody
EP3957649A1 (en) 2020-08-18 2022-02-23 Athebio AG Improved n-terminal capping modules of ankyrin repeat domains
WO2022043517A2 (en) 2020-08-27 2022-03-03 Cureab Gmbh Anti-golph2 antibodies for macrophage and dendritic cell differentiation
EP4209227A4 (en) 2020-09-01 2024-05-29 Chugai Seiyaku Kabushiki Kaisha PHARMACEUTICAL COMPOSITION FOR THE PREVENTION AND/OR TREATMENT OF PRURITUS IN DIALYSIS CONTAINING AN IL-31 ANTAGONIST AS ACTIVE INGREDIENT
CA3198668A1 (en) 2020-10-15 2022-04-21 Genentech, Inc. Hyaluronic acid binding derivatives of versican (vg1) for long acting delivery of therapeutics
EP4229082A1 (en) 2020-10-16 2023-08-23 AC Immune SA Antibodies binding to alpha-synuclein for therapy and diagnosis
CN112230587B (zh) * 2020-10-29 2021-08-10 中国民用航空总局第二研究所 一种仪表着陆***同频异呼运行监测***及方法
EP4240491A1 (en) 2020-11-06 2023-09-13 Novartis AG Cd19 binding molecules and uses thereof
IL302412A (en) 2020-11-06 2023-06-01 Novartis Ag Anti-CD19 and B-cell targeting agent combination therapy for the treatment of B-cell malignancies
EP4244254A1 (en) 2020-11-16 2023-09-20 F. Hoffmann-La Roche AG Combination therapy with fap-targeted cd40 agonists
WO2022123459A1 (en) 2020-12-11 2022-06-16 Friedrich Miescher Institute For Biomedical Research Hdac6 binding proteins and their anti-viral use
MX2023007067A (es) 2020-12-16 2023-08-09 Molecular Partners Ag Proteinas recombinantes de union a cd3 y su uso.
AU2021403833A1 (en) 2020-12-16 2023-07-27 Molecular Partners Ag Novel slow-release prodrugs
MX2023007846A (es) 2021-01-06 2023-07-07 Hoffmann La Roche Tratamiento conjunto que usa un anticuerpo biespecifico contra pd1-lag3 y un anticuerpo biespecifico de linfocitos t cd20.
EP4288455A1 (en) 2021-02-03 2023-12-13 Mozart Therapeutics, Inc. Binding agents and methods of using the same
WO2022171831A1 (en) 2021-02-11 2022-08-18 Universität Zürich Use of markers found on lymph node metastatic samples for the prognosis of breast cancer
WO2022184659A1 (en) 2021-03-01 2022-09-09 Quadrucept Bio Limited Antibody domains & multimers
AU2022233791A1 (en) 2021-03-09 2023-09-28 Molecular Partners Ag Novel darpin based cd123 engagers
WO2022190008A1 (en) 2021-03-09 2022-09-15 Molecular Partners Ag Protease cleavable prodrugs
MX2023010543A (es) 2021-03-09 2023-10-13 Molecular Partners Ag Ligadores multiespecificos de celulas t novedosos basados en darpin.
AU2022231913A1 (en) 2021-03-09 2023-09-28 Molecular Partners Ag Novel darpin based cd33 engagers
WO2022219185A1 (en) 2021-04-16 2022-10-20 Athebio Ag N-terminal capping modules of ankyrin repeat domains
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
JPWO2022244838A1 (ja) 2021-05-19 2022-11-24
AR126009A1 (es) 2021-06-02 2023-08-30 Hoffmann La Roche Moléculas agonistas de unión al antígeno cd28 que se dirigen a epcam
CA3223534A1 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
CA3227284A1 (en) 2021-08-05 2023-02-09 Osiris MARROQUIN BELAUNZARAN A modified hla-b57 with increased expression levels
AU2022322029A1 (en) 2021-08-05 2024-02-15 Immunos Therapeutics Ag Combination medicaments comprising hla fusion proteins
WO2023021006A1 (en) 2021-08-16 2023-02-23 Universität Zürich Il-1 targeting agents for treatment of pitiyriasis rubra pilaris
WO2023021050A1 (en) 2021-08-17 2023-02-23 Athebio Ag Variants of ankyrin repeat domains
EP4137508A1 (en) 2021-08-17 2023-02-22 Athebio AG Variants of ankyrin repeat domains
WO2023036849A1 (en) 2021-09-07 2023-03-16 ETH Zürich Identifying and predicting future coronavirus variants
EP4163380A1 (en) 2021-10-08 2023-04-12 ETH Zurich Device and method for manipulation of extracellular vesicles
WO2023076876A1 (en) 2021-10-26 2023-05-04 Mozart Therapeutics, Inc. Modulation of immune responses to viral vectors
WO2023088959A1 (en) 2021-11-16 2023-05-25 Ac Immune Sa Novel molecules for therapy and diagnosis
WO2023110983A1 (en) 2021-12-14 2023-06-22 Molecular Partners Ag Designed repeat domains with dual binding specificity and their use
WO2023110942A1 (en) 2021-12-14 2023-06-22 Charité-Universitätsmedizin Berlin Prevention of impaired fracture healing
AR128031A1 (es) 2021-12-20 2024-03-20 Hoffmann La Roche Anticuerpos agonistas anti-ltbr y anticuerpos biespecíficos que los comprenden
WO2023117987A1 (en) 2021-12-21 2023-06-29 Universität Zürich Adenoviral vectors
WO2023156549A1 (en) 2022-02-16 2023-08-24 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
WO2023180527A1 (en) 2022-03-25 2023-09-28 Universität Zürich Adenoviral mediated targeting of activated immune cells
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
WO2023195515A1 (ja) * 2022-04-06 2023-10-12 独立行政法人国立高等専門学校機構 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
EP4260907A1 (en) 2022-04-11 2023-10-18 Universität Zürich Agents for treatment of endometriosis and other benign gynecological neoplasms
WO2023217904A1 (en) 2022-05-10 2023-11-16 Institut National de la Santé et de la Recherche Médicale Syncitin-1 fusion proteins and uses thereof for cargo delivery into target cells
WO2024002914A1 (en) 2022-06-27 2024-01-04 Charité-Universitätsmedizin Berlin Prediction of, and composition to improve, tendon healing
WO2024008755A1 (en) 2022-07-04 2024-01-11 Vib Vzw Blood-cerebrospinal fluid barrier crossing antibodies
WO2024028278A1 (en) 2022-08-01 2024-02-08 Molecular Partners Ag Charge modified designed repeat domains and their use
WO2024030956A2 (en) 2022-08-03 2024-02-08 Mozart Therapeutics, Inc. Cd39-specific binding agents and methods of using the same
WO2023194628A2 (en) 2022-08-16 2023-10-12 Athebio Ag Variants of ankyrin repeat domains
WO2024037743A1 (en) 2022-08-16 2024-02-22 Athebio Ag Variants of ankyrin repeat domains
WO2024038307A1 (en) 2022-08-19 2024-02-22 Novartis Ag Dosing regimens for sars-cov-2 binding molecules
WO2024044770A1 (en) 2022-08-26 2024-02-29 Core Biotherapeutics, Inc. Oligonucleotides for the treatment of breast cancer
WO2024047114A1 (en) 2022-08-31 2024-03-07 Universität Zürich Adenoviral-based in situ delivery of bispecific t cell engagers
WO2024056861A1 (en) 2022-09-15 2024-03-21 Avidicure Ip B.V. Multispecific antigen binding proteins for stimulating nk cells and use thereof
WO2024077118A2 (en) 2022-10-06 2024-04-11 Bicara Therapeutics Inc. Multispecific proteins and related methods
WO2024074706A1 (en) 2022-10-07 2024-04-11 Universität Zürich Paracrine adenoviral delivery of biomolecules
WO2024094741A1 (en) 2022-11-03 2024-05-10 F. Hoffmann-La Roche Ag Combination therapy with anti-cd19/anti-cd28 bispecific antibody
GB202216503D0 (en) 2022-11-05 2022-12-21 Quadrucept Bio Ltd Non-human vertebrates & cells
WO2024133013A1 (en) 2022-12-19 2024-06-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Means and methods to target endogenous condensates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014586A (ja) * 1986-11-04 1998-01-20 Syntro Corp オリゴペプチド反復単位を有する大ポリペプチド

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892296A1 (en) 1988-09-02 2008-02-27 Dyax Corporation Generation and selection of recombinant varied binding proteins
ES2118066T3 (es) 1989-10-05 1998-09-16 Optein Inc Sintesis y aislamiento, exentos de celulas, de nuevos genes y polipeptidos.
US5270170A (en) 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
US5348867A (en) 1991-11-15 1994-09-20 George Georgiou Expression of proteins on bacterial surface
EP0656950B1 (en) 1992-08-21 1998-11-04 Biogen, Inc. Tat-derived transport polypeptides
JP4118327B2 (ja) 1994-08-20 2008-07-16 ゲンダック・リミテッド Dna認識のための結合タンパク質におけるまたはそれに関連する改良
DE19631106A1 (de) 1996-08-01 1998-02-05 Heinz Peter Brandstetter Statorplatte oder Statorelement
US5932440A (en) * 1996-08-16 1999-08-03 Life Technologies, Inc. Mammalian ribonuclease inhibitors and use thereof
CA2196496A1 (en) 1997-01-31 1998-07-31 Stephen William Watson Michnick Protein fragment complementation assay for the detection of protein-protein interactions
JP4086325B2 (ja) 1997-04-23 2008-05-14 プリュックテュン,アンドレアス 標的分子と相互作用する(ポリ)ペプチドをコードする核酸分子の同定方法
US5827692A (en) * 1997-04-24 1998-10-27 Heska Corporation Dirofilaria and Brugia ankyrin proteins, nucleic acid molecules, and uses thereof
WO1999003494A1 (en) * 1997-07-18 1999-01-28 Yale University STRUCTURE OF THE ANKYRIN BINDING DOMAIN OF A ALPHA-Na,K-ATPase
US6416950B1 (en) 1998-12-02 2002-07-09 Phylos, Inc. DNA-protein fusions and uses thereof
ES2329959T5 (es) * 1998-12-10 2013-12-18 Bristol-Myers Squibb Company Armazones de proteína para miméticos de anticuerpo y otras proteínas de unión
US20020042094A1 (en) * 1999-12-15 2002-04-11 Venezia Domenick R. RING finger protein zapop2
AU2001251695A1 (en) * 2000-02-17 2001-08-27 Millennium Pharmaceuticals, Inc. Molecules of the pyrin domain protein family and uses thereof
AU2001259471A1 (en) 2000-05-05 2001-11-20 Maxygen, Inc. Evolution of plant disease response pathways to enable the development of plant based biological sensors and to develop novel disease resistance strategies
US6750057B2 (en) * 2000-06-29 2004-06-15 University Of Florida Ubiquitin ligase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014586A (ja) * 1986-11-04 1998-01-20 Syntro Corp オリゴペプチド反復単位を有する大ポリペプチド

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN5003000966; KOBE, B. et al.: NATURE Vol.374, 19950309, P.183-186 *
JPN5003000967; KAJAVA, A.V.: JOURNAL OF MOLECULAR BIOLOGY Vol.277, No.277, 1998, P.519-527 *
JPN5003000968; NYGREN, P.-A. et al.: CURRENT OPINION IN STRUCTURAL BIOLOGY Vol.7, No.4, 1997, P.463-469 *
JPN5003000969; SEDGWICK, S.G. et al.: TIBS TRENDS IN BIOCHEMICAL SCIENCES Vol.24, No.8, 19990801, P.311-316 *
JPN5003000970; ZHANG, B. et al.: JOURNAL OF MOLECULAR BIOLOGY Vol.299, No.4, 2000, P.1121-1132 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125401A (ja) * 2006-11-17 2008-06-05 National Institute Of Agrobiological Sciences ロイシンリッチリピート(lrr)配列等反復配列を利用した新規タンパク質の作製方法、並びにそれにより得られる新規タンパク質及び新規タンパク質をコードする遺伝子
JP2010539915A (ja) * 2007-09-24 2010-12-24 ユニバーシティ・オブ・チューリッヒ 設計されたアルマジロリピートタンパク質
JP2014501510A (ja) * 2010-11-26 2014-01-23 モレキュラー・パートナーズ・アーゲー 設計アンキリンリピートタンパク質のための改善されたキャッピングモジュール
JP2015522576A (ja) * 2012-06-28 2015-08-06 モレキュラー・パートナーズ・アーゲーMolecular Partners Ag 血小板由来成長因子に結合する設計アンキリンリピートタンパク質

Also Published As

Publication number Publication date
CA2421447A1 (en) 2002-03-14
WO2002020565A2 (en) 2002-03-14
JP2016053031A (ja) 2016-04-14
DK1332209T3 (da) 2010-03-29
EP1332209B1 (en) 2009-11-11
JP5291279B2 (ja) 2013-09-18
CA2421447C (en) 2012-05-08
ES2335861T3 (es) 2010-04-06
US20090082274A1 (en) 2009-03-26
JP2013179942A (ja) 2013-09-12
US7417130B2 (en) 2008-08-26
EP1332209A2 (en) 2003-08-06
US9006389B2 (en) 2015-04-14
US20040132028A1 (en) 2004-07-08
US8110653B2 (en) 2012-02-07
US20120142611A1 (en) 2012-06-07
AU2002218166A1 (en) 2002-03-22
ATE448301T1 (de) 2009-11-15
US20150275201A1 (en) 2015-10-01
EP2149604A1 (en) 2010-02-03
WO2002020565A3 (en) 2002-11-07
DE60140474D1 (de) 2009-12-24
US9657287B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
JP5291279B2 (ja) 反復モジュールを含む反復タンパク質の集合体
JP6722263B2 (ja) 選択的結合表面を有するフィブロネクチンiii型反復ベースのタンパク質スカフォールド
EP2198022B1 (en) Designed armadillo repeat proteins
US8017559B2 (en) Combinatorial libraries of proteins having the scaffold structure of C-type lectin-like domains
JP2002502238A (ja) 核酸結合ポリペプチドライブラリー
PT1200583E (pt) Projecto de proteínas em folhas plissadas beta com propriedades de ligação específicas
WO2005019254A1 (en) Muteins of a bilin-binding protein with affinity for a given target
WO2005019255A1 (en) Muteins of tear lipocalin
EP2161278B1 (en) Single-chain coiled coil scaffold
JP2022505866A (ja) 直交タンパク質ヘテロ二量体
JP2013507123A (ja) C型レクチンドメインをベースとするコンビナトリアルライブラリー
US8357511B2 (en) Protein purification tags and uses thereof
Stassen et al. Single-stranded DNA binding protein encoded by the filamentous bacteriophage M13: structural and functional characteristics
JP2004528802A (ja) Dnaおよびタンパク質を結合する小型タンパク質
US20050196810A1 (en) Hairpin peptides with a novel structural motif and methods relating thereto
WO2001057065A2 (en) Combinatorial protein domains
CN113461829A (zh) 一种重组trpv4蛋白及制备方法
CA2568859A1 (en) Cytokine variant polypeptides
JPH07501529A (ja) 陸蛭からの新規トロンビン阻害性蛋白質
Class et al. Patent application title: COMBINATORIAL LIBRARIES OF PROTEINS HAVING THE SCAFFOLD STRUCTURE OF C-TYPE LECTIN-LIKE DOMAINS Inventors: Michael Etzerodt (Hinnerup, DK) Thor Las Holtet (Ronde, DK) Thor Las Holtet (Ronde, DK) Niels Jonas Heilskov Graversen (Abyhoj, DK) Hans Christian Thøgersen (Mundelstrup, DK) Assignees: ANAPHORE, INC.
WO2008147859A2 (en) Self-assembled proteins and related methods and protein structures
Parmeggiani Design of armadillo repeat protein scaffolds
MacIntosh Structural studies of protein partnerships of the PNT domain of GABP [alpha]

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080828

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120322

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term