JP2004363454A - Reliable optical semiconductor device - Google Patents

Reliable optical semiconductor device Download PDF

Info

Publication number
JP2004363454A
JP2004363454A JP2003162112A JP2003162112A JP2004363454A JP 2004363454 A JP2004363454 A JP 2004363454A JP 2003162112 A JP2003162112 A JP 2003162112A JP 2003162112 A JP2003162112 A JP 2003162112A JP 2004363454 A JP2004363454 A JP 2004363454A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor chip
resin
semiconductor device
soft resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003162112A
Other languages
Japanese (ja)
Inventor
Aki Hiramoto
亜紀 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2003162112A priority Critical patent/JP2004363454A/en
Priority to EP03023836.4A priority patent/EP1484802B1/en
Priority to US10/691,705 priority patent/US7078734B2/en
Publication of JP2004363454A publication Critical patent/JP2004363454A/en
Priority to US11/276,093 priority patent/US7645643B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of performance deterioration such as the reduction of a light quantity because a gap has to be provided between a soft resin and a hard resin when carrying out double sealing with both of the resins for increasing reliability in the conventional optical semiconductor device. <P>SOLUTION: In this reliable semiconductor device 1, the surrounding of an optical semiconductor chip is sealed with the soft resin, and the outside of it is sealed with the hard resin harder than it. In a direction of giving no optical influence to the function of the optical semiconductor chip 2, the hard resin 4 is provided with an opening part 7b for reducing the sealed state of the soft resin 3. Thus, when the reliable optical semiconductor device is formed by double-sealing it with the soft resin and the hard resin, double sealing is realized without making the gap, thereby solving the problem. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、例えばLEDランプなど光半導体チップを用いた光デバイスに関するものであり、詳細には、環境温度の変化による半導体チップの損傷などを生じないものとして信頼性を向上させ、且つ、信頼性の向上に伴う性能低下を生じないものとして、信頼性と性能との両立を可能とする構成の提供を目的とするものである。
【0002】
【従来の技術】
従来の光半導体デバイスにおいて信頼性の向上を図るときには、先ず、光半導体チップを比較的に軟質な第一の樹脂部材で封止して、耐衝撃性、耐湿性を向上させ、更に、第一の樹脂部材の外側を比較的に硬質な第二の樹脂部材で封止して機械的強度を向上させるなど、異なる特性を有する二種類の樹脂を併用することでお互いが不足する機能を補わせ信頼性を向上させるものであった。(例えば、特許文献1参照)
【0003】
【特許文献1】
特開平05−327029号公報(段落「0005」〜段落「0007」、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、前記した従来の構成において、二種類の樹脂を選択するときには、上記にも例として説明したように、光半導体チップに直接触れる内側の樹脂は比較的に軟質の樹脂が選択されることが多く、外側の樹脂は機械的強度が得られるように比較的に硬質の樹脂が選択されることが多い。
【0005】
この場合、軟質の樹脂と硬質の樹脂との間には熱膨張係数の相違を生じることが多く、その相違は往々にして10倍にも達するものとなり、高温の雰囲気下では、軟質の樹脂が硬質の樹脂に取囲まれている状態で体積膨張を行うので、光半導体チップに過大な圧縮圧力が加わるものとなり、特性劣化の要因となる問題点を生じている。
【0006】
この問題を回避するために、図3に示す光半導体デバイス90のように軟質の樹脂91と硬質の樹脂92との間に空隙Bを設けておき、環境温度の上昇により軟質の樹脂91側に体積の膨張を生じても光半導体チップ93に圧縮応力が加わらないようにした光半導体デバイス90も提案されている。
【0007】
この場合には、前記光半導体チップ93からの光(または、光半導体チップ93に入射する光)は常に空隙B、即ち、樹脂に比較して屈折率が低い空気中を通過するものとなり、樹脂と空気との境界面で生じる反射により光量の損失を生じるものとなり、約25〜35%の出力低下を生じるものとなって、光半導体デバイスとして性能が低下する問題点を生じている。
【0008】
【課題を解決するための手段】
本発明は、前記した従来の課題を解決するための具体的手段として、光半導体チップの周囲を軟質樹脂で封止し、その外側をそれよりも硬い硬質樹脂で封止して成る高信頼型光半導体デバイスにおいて、前記硬質樹脂の前記光半導体チップの機能に対し光学的に影響を与えない方向には、前記軟質樹脂に対する密封状態を緩和するための開口部が設けられていることを特徴とする高信頼型光半導体デバイスを提供することで、性能の低下を生じることなく信頼性の向上が図れるものとして課題を解決するものである。
【0009】
【発明の実施の形態】
つぎに、本発明を図に示す実施形態に基づいて詳細に説明する。図1および図2に符号1で示すものは本発明に係る高信頼型光半導体デバイスであり、この高信頼型光半導体デバイス1は、光半導体チップ2が比較的に軟質とされた軟質樹脂3と、比較的に硬質とされた硬質樹脂4とで二重に封止が行われているものである点は従来例のものと同様である。
【0010】
そして、前記光半導体チップ2は、先ず前記軟質樹脂3で全周を包まれ空気と遮断されて、大気中の湿度などにより光半導体チップ2に劣化が生じるのを防止している。また、前記光半導体チップ2には細径の金線5による配線も行われているものであるので、軟質樹脂3で覆うことで、振動などによる金線5の断線、あるいは、光半導体チップ2からの剥がれなども防止する。
【0011】
このようにして軟質樹脂3により覆われた光半導体チップ2は更に外側から硬質樹脂4で覆うことで機械的強度を向上させて、前記軟質樹脂3に外部応力による変形などを生じないものとして、信頼性の向上を一層に確実なものとするのである。また、このときに、前記硬質樹脂4には、例えば耐薬品性など軟質樹脂3の弱点を補強する特性を持たせるなど、上記した外部応力以外の点でも信頼性の向上を図るものとする。
【0012】
そして、本発明では、前記軟質樹脂3と硬質樹脂4との膨張係数の差により高温時に生じる光半導体チップ2に対する圧縮応力の過剰な上昇を避ける手段として、光半導体チップ2が発光素子である場合には、この半導体チップ2が放射する光の光路に関与しない位置、光半導体チップ2が受光素子である場合には、この半導体チップ2に達する外光の光路に関与しない位置に開口部を設けるものとしている。
【0013】
以上の構成を、更に具体的に説明を行えば、実際の前記高信頼型光半導体デバイス1の製造工程においては、前記硬質樹脂4により形成される部分はレンズ部6とホルダー部7とに分割されて予めに形成されているものであり、また、前記ホルダー部7には前記光半導体チップ2をマウントするためのリードフレーム8も設けられている。
【0014】
そして、前記光半導体チップ2は前記ホルダー部7に一体化して設けられているリードフレーム8上にマウントが行われ、金線5による配線が行われる。従って、前記ホルダー部7には前記光半導体チップ2をマウントするための開口部7aが前面側、即ち、後に説明するレンズ部6と組合せが行われる側に設けられていると共に、上記した光半導体チップ2に加わる圧縮応力を緩和するための開口部7bが背面側に設けられている。
【0015】
以上のように光半導体チップ2はマウントされた後には、前記ホルダー部7とレンズ部6との、例えばフック構造など適宜な結合手段による結合が行われる。従って、光半導体チップ2の前面側に設けられていた開口部7aはレンズ部6により閉止され、背面側に設けられた開口部7bのみが開口しているものとなる。
【0016】
本発明では、上記開口部7bから、例えばシリコーン樹脂など軟質樹脂3を注入し、脱泡処理を行った後に加熱処理を行い適宜な硬度を得るものとしている。このようにすることで、光半導体チップ2を全周で包む軟質樹脂3と、前記軟質樹脂3を光半導体チップ2が機能しない開口部7bの部分を除き包む硬質樹脂4(レンズ部6、ホルダー部7)とから成る本発明の構成が得られるものとなる。
【0017】
次いで、上記の構成とした本発明に係る高信頼型光半導体デバイス1の作用および効果について説明を行う。先ず、光半導体チップ2はシリコーン樹脂など軟質樹脂3に全周を包まれ封止が行われていることで、外気とは遮断され湿度、有害ガスなどによる劣化は生じないものとなる。また、振動などが外部から加わったときには軟質樹脂3の柔軟性により光半導体チップ2を保護する。
【0018】
これに対し、前記硬質樹脂4(レンズ部6、ホルダー部7)には、上記にも説明したように開口部7bが設けられているので、前記軟質樹脂3を密封するものとはなっていない。従って、軟質樹脂3側の熱膨張係数が大きい場合、環境温度が上昇し軟質樹脂3に生じた体積の剰余分は開口部7b側にはみ出すことで処理され、光半導体チップ2に対する圧力上昇は生じない。
【0019】
また、環境温度が低下して前記軟質樹脂3に体積の収縮を生じた場合には、前記軟質樹脂3は開口部7bにより一端が自由端状態であるので、レンズ部6側の端部に収縮による空隙を生じることなく体積の収縮が行えるものとなる。従って、光半導体チップ2→軟質樹脂3→レンズ部6(硬質樹脂4)と繋がる光路中に空気層が生じることが無く、約30%と言われる空気層による損失も生じないものとすることができる。
【0020】
【発明の効果】
以上に説明したように本発明により、光半導体チップの周囲を軟質樹脂で封止し、その外側をそれよりも硬い硬質樹脂で封止して成る高信頼型光半導体デバイスにおいて、前記硬質樹脂の前記光半導体チップの機能に対し光学的に影響を与えない方向には、前記軟質樹脂に対する密封状態を緩和するための開口部が設けられている高信頼型光半導体デバイスとしたことで、軟質樹脂と硬質樹脂とで二重封止して高信頼型の光半導体デバイスを形成するときには、信頼性を損なうことなく空隙を設けずに二重封止を可能とするものであり、これにより光半導体チップからの光、あるいは、光半導体チップに達する光に光量の損失を生じないものとして性能を向上させるという極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る高信頼型光半導体デバイスの実施形態を示す平面図である。
【図2】図1のA−A線に沿う断面図である。
【図3】従来例の断面図である。
【符号の説明】
1……高信頼型光半導体デバイス
2……光半導体チップ
3……軟質樹脂
4……硬質樹脂
5……金線
6……レンズ部
7……ホルダー部
7a、7b……開口部
8……リードフレーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical device using an optical semiconductor chip such as an LED lamp, for example. More specifically, the present invention relates to an optical device that does not cause damage to a semiconductor chip due to a change in environmental temperature, thereby improving reliability and improving reliability. It is an object of the present invention to provide a configuration capable of realizing both reliability and performance, without causing a decrease in performance due to an improvement in performance.
[0002]
[Prior art]
In order to improve the reliability of a conventional optical semiconductor device, first, the optical semiconductor chip is sealed with a relatively soft first resin member to improve impact resistance and moisture resistance. By using two kinds of resins with different characteristics together, such as improving the mechanical strength by sealing the outside of the resin member with a relatively hard second resin member, the functions that are mutually lacking can be compensated. The reliability was improved. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP 05-327029 A (paragraphs “0005” to “0007”, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, when two types of resins are selected, as described above as an example, a relatively soft resin may be selected as the inner resin directly touching the optical semiconductor chip. In many cases, a relatively hard resin is often selected as the outer resin so as to obtain mechanical strength.
[0005]
In this case, a difference in the coefficient of thermal expansion often occurs between the soft resin and the hard resin, and the difference often reaches 10 times. Since volume expansion is performed in a state where the optical semiconductor chip is surrounded by a hard resin, an excessive compression pressure is applied to the optical semiconductor chip, which causes a problem of deteriorating characteristics.
[0006]
In order to avoid this problem, a gap B is provided between the soft resin 91 and the hard resin 92 as in the optical semiconductor device 90 shown in FIG. An optical semiconductor device 90 in which a compressive stress is not applied to the optical semiconductor chip 93 even when the volume is expanded has been proposed.
[0007]
In this case, the light from the optical semiconductor chip 93 (or the light incident on the optical semiconductor chip 93) always passes through the air gap B, that is, the air having a lower refractive index than the resin. The reflection at the interface between the air and the air causes a loss in the amount of light, resulting in a decrease in output of about 25 to 35%, which causes a problem that the performance of the optical semiconductor device is reduced.
[0008]
[Means for Solving the Problems]
The present invention, as a specific means for solving the above-mentioned conventional problem, is a highly reliable type in which the periphery of an optical semiconductor chip is sealed with a soft resin and the outside thereof is sealed with a hard resin harder than that. In the optical semiconductor device, an opening for relaxing a sealing state with respect to the soft resin is provided in a direction in which the hard resin does not optically affect the function of the optical semiconductor chip. The object of the present invention is to provide a highly reliable optical semiconductor device that can improve reliability without deteriorating performance.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on an embodiment shown in the drawings. 1 and 2 is a highly reliable optical semiconductor device according to the present invention. This highly reliable optical semiconductor device 1 has a soft resin 3 in which an optical semiconductor chip 2 is relatively soft. This is the same as the conventional example in that the sealing is performed twice with the hard resin 4 which is relatively hard.
[0010]
The optical semiconductor chip 2 is first wrapped all around with the soft resin 3 and is blocked from the air, thereby preventing the optical semiconductor chip 2 from being deteriorated due to humidity in the atmosphere or the like. Further, since the optical semiconductor chip 2 is also wired with a thin gold wire 5, it is covered with the soft resin 3 so that the gold wire 5 is broken by vibration or the like, or the optical semiconductor chip 2 Also prevents peeling from the surface.
[0011]
The optical semiconductor chip 2 covered with the soft resin 3 is further covered with the hard resin 4 from the outside to improve the mechanical strength so that the soft resin 3 is not deformed by external stress. It will further enhance the reliability. At this time, the hard resin 4 has a property of reinforcing the weak point of the soft resin 3 such as chemical resistance, for example, so that the reliability is improved in points other than the above-mentioned external stress.
[0012]
In the present invention, the optical semiconductor chip 2 is a light emitting element as means for preventing an excessive increase in compressive stress on the optical semiconductor chip 2 caused at a high temperature due to a difference in expansion coefficient between the soft resin 3 and the hard resin 4. An opening is provided at a position not involved in the optical path of light emitted by the semiconductor chip 2, or at a position not involved in the optical path of external light reaching the semiconductor chip 2 when the optical semiconductor chip 2 is a light receiving element. It is assumed.
[0013]
The above configuration will be described more specifically. In the actual manufacturing process of the highly reliable optical semiconductor device 1, a portion formed by the hard resin 4 is divided into a lens portion 6 and a holder portion 7. The holder part 7 is also provided with a lead frame 8 for mounting the optical semiconductor chip 2.
[0014]
Then, the optical semiconductor chip 2 is mounted on a lead frame 8 provided integrally with the holder section 7, and wiring by a gold wire 5 is performed. Therefore, the holder 7 is provided with an opening 7a for mounting the optical semiconductor chip 2 on the front side, that is, on the side where a combination with the lens unit 6 described later is performed. An opening 7b for reducing the compressive stress applied to the chip 2 is provided on the back side.
[0015]
After the optical semiconductor chip 2 is mounted as described above, the holder portion 7 and the lens portion 6 are connected by an appropriate connecting means such as a hook structure. Therefore, the opening 7a provided on the front side of the optical semiconductor chip 2 is closed by the lens unit 6, and only the opening 7b provided on the back side is open.
[0016]
In the present invention, a soft resin 3 such as a silicone resin is injected from the opening 7b, and after performing a defoaming process, a heating process is performed to obtain an appropriate hardness. In this manner, the soft resin 3 that wraps the optical semiconductor chip 2 around the entire circumference and the hard resin 4 that wraps the soft resin 3 except for the opening 7b where the optical semiconductor chip 2 does not function (the lens portion 6 and the holder 7) is obtained.
[0017]
Next, the operation and effect of the highly reliable optical semiconductor device 1 according to the present invention having the above configuration will be described. First, since the optical semiconductor chip 2 is completely sealed and wrapped in a soft resin 3 such as a silicone resin, the optical semiconductor chip 2 is shielded from the outside air and does not deteriorate due to humidity, harmful gas or the like. Further, when vibration or the like is applied from the outside, the optical semiconductor chip 2 is protected by the flexibility of the soft resin 3.
[0018]
On the other hand, since the hard resin 4 (the lens portion 6 and the holder portion 7) is provided with the opening 7b as described above, it does not seal the soft resin 3. . Therefore, when the thermal expansion coefficient of the soft resin 3 is large, the ambient temperature rises and the excess volume generated in the soft resin 3 is processed by protruding to the opening 7b side, and the pressure on the optical semiconductor chip 2 increases. Absent.
[0019]
Further, when the ambient temperature is lowered and the volume of the soft resin 3 shrinks, the soft resin 3 is shrunk to the end on the lens unit 6 side because one end is in a free end state by the opening 7b. The volume can be contracted without generating voids due to the above. Therefore, an air layer does not occur in the optical path connecting the optical semiconductor chip 2 → the soft resin 3 → the lens portion 6 (the hard resin 4), and a loss due to the air layer of about 30% does not occur. it can.
[0020]
【The invention's effect】
As described above, according to the present invention, a highly reliable optical semiconductor device in which the periphery of an optical semiconductor chip is sealed with a soft resin and the outside thereof is sealed with a hard resin harder than the optical semiconductor chip, A highly reliable optical semiconductor device in which an opening for relaxing a sealing state with respect to the soft resin is provided in a direction that does not optically affect the function of the optical semiconductor chip. When a highly reliable optical semiconductor device is formed by double encapsulation with a hard resin, it is possible to perform double encapsulation without providing a gap without deteriorating reliability. The light from the chip or the light reaching the optical semiconductor chip does not cause a loss of the light amount, and has an extremely excellent effect of improving the performance.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of a highly reliable optical semiconductor device according to the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a sectional view of a conventional example.
[Explanation of symbols]
1 High-reliability optical semiconductor device 2 Optical semiconductor chip 3 Soft resin 4 Hard resin 5 Gold wire 6 Lens part 7 Holder parts 7a and 7b Opening part 8 Lead frame

Claims (1)

光半導体チップの周囲を軟質樹脂で封止し、その外側をそれよりも硬い硬質樹脂で封止して成る高信頼型光半導体デバイスにおいて、前記硬質樹脂の前記光半導体チップの機能に対し光学的に影響を与えない方向には、前記軟質樹脂に対する密封状態を緩和するための開口部が設けられていることを特徴とする高信頼型光半導体デバイス。In a highly-reliable optical semiconductor device in which the periphery of an optical semiconductor chip is sealed with a soft resin and the outside thereof is sealed with a hard resin harder than the optical resin, an optical function is provided for the function of the optical semiconductor chip of the hard resin. A highly-reliable optical semiconductor device, characterized in that an opening is provided in a direction in which no influence is exerted on the soft resin, in order to ease a sealed state with respect to the soft resin.
JP2003162112A 2003-06-06 2003-06-06 Reliable optical semiconductor device Pending JP2004363454A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003162112A JP2004363454A (en) 2003-06-06 2003-06-06 Reliable optical semiconductor device
EP03023836.4A EP1484802B1 (en) 2003-06-06 2003-10-20 Optical semiconductor device
US10/691,705 US7078734B2 (en) 2003-06-06 2003-10-24 Optical semiconductor device
US11/276,093 US7645643B2 (en) 2003-06-06 2006-02-14 Optical semiconductor device method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162112A JP2004363454A (en) 2003-06-06 2003-06-06 Reliable optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004363454A true JP2004363454A (en) 2004-12-24

Family

ID=34054351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162112A Pending JP2004363454A (en) 2003-06-06 2003-06-06 Reliable optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2004363454A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532300A (en) * 2005-02-28 2008-08-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lighting device
EP1983580A2 (en) 2007-04-19 2008-10-22 Stanley Electric Co., Ltd. Optical semiconductor device and method for manufacturing the same
JP2011066463A (en) * 2005-03-11 2011-03-31 Seoul Semiconductor Co Ltd Light-emitting element having plurality of light-emitting cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683062A (en) * 1979-12-12 1981-07-07 Toshiba Corp Photo-semiconductor device
JPS62105486A (en) * 1985-10-31 1987-05-15 Koudenshi Kogyo Kenkyusho:Kk Photoelectric conversion element with attachment lens
JPH0311771A (en) * 1989-05-31 1991-01-21 Siemens Ag Opto-device to which surface mounting is enabled
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002198570A (en) * 2000-12-26 2002-07-12 Toyoda Gosei Co Ltd Solid state optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683062A (en) * 1979-12-12 1981-07-07 Toshiba Corp Photo-semiconductor device
JPS62105486A (en) * 1985-10-31 1987-05-15 Koudenshi Kogyo Kenkyusho:Kk Photoelectric conversion element with attachment lens
JPH0311771A (en) * 1989-05-31 1991-01-21 Siemens Ag Opto-device to which surface mounting is enabled
JP2002185046A (en) * 2000-12-19 2002-06-28 Sharp Corp Chip-part type led and its manufacturing method
JP2002198570A (en) * 2000-12-26 2002-07-12 Toyoda Gosei Co Ltd Solid state optical element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532300A (en) * 2005-02-28 2008-08-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lighting device
JP2013070082A (en) * 2005-02-28 2013-04-18 Osram Opto Semiconductors Gmbh Illumination device
KR101285492B1 (en) * 2005-02-28 2013-07-12 오스람 옵토 세미컨덕터스 게엠베하 Illumination device
US8525206B2 (en) 2005-02-28 2013-09-03 Osram Opto Semiconductor Gmbh Illumination device
JP2011066463A (en) * 2005-03-11 2011-03-31 Seoul Semiconductor Co Ltd Light-emitting element having plurality of light-emitting cells
US8937326B2 (en) 2005-03-11 2015-01-20 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
EP1983580A2 (en) 2007-04-19 2008-10-22 Stanley Electric Co., Ltd. Optical semiconductor device and method for manufacturing the same
JP2008270444A (en) * 2007-04-19 2008-11-06 Stanley Electric Co Ltd Optical semiconductor device and method of manufacturing the same
US8120151B2 (en) 2007-04-19 2012-02-21 Stanley Electric Co., Ltd. Optical semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6710377B2 (en) Light emitting device having a silicone resin
EP1484802B1 (en) Optical semiconductor device
KR101844603B1 (en) Method of manufacturing light emitting device
KR100964812B1 (en) Semiconductor light emitting device package
JP2005159296A5 (en)
JP2007218858A (en) Semiconductor pressure sensor device
JP2002198570A (en) Solid state optical element
JP2008192769A (en) Resin-sealed semiconductor photodetector and method of manufacturing the resin-sealed semiconductor photodetector, and electronic apparatus using the resin-sealed semiconductor photodetector
JP2011023621A (en) Light emitting device
JPH0492459A (en) Resin sealing type semiconductor device
JP2004363454A (en) Reliable optical semiconductor device
JP4768433B2 (en) Optical semiconductor device and electronic apparatus equipped with the same
JP2000049387A (en) Semiconductor light emitting device
US20130015488A1 (en) Light emitting diode package and method for fabricating the same
JP4884074B2 (en) Semiconductor light emitting device
JP2007201028A (en) Light emitting device
JP4730135B2 (en) Image sensor package
JP2007180275A (en) Optical semiconductor device and electronic device
JP3183715B2 (en) Resin-sealed optical element
JPH11340480A (en) Plastic package
JP2005039030A (en) Optical semiconductor device
JP4003862B2 (en) Compact
JP2617236B2 (en) Semiconductor laser device
JP2001330530A (en) Manufacturing method of pressure sensor
JPH02103967A (en) Package for optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817