JPH0492459A - Resin sealing type semiconductor device - Google Patents

Resin sealing type semiconductor device

Info

Publication number
JPH0492459A
JPH0492459A JP20946790A JP20946790A JPH0492459A JP H0492459 A JPH0492459 A JP H0492459A JP 20946790 A JP20946790 A JP 20946790A JP 20946790 A JP20946790 A JP 20946790A JP H0492459 A JPH0492459 A JP H0492459A
Authority
JP
Japan
Prior art keywords
sealing resin
resin body
semiconductor device
sealing
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20946790A
Other languages
Japanese (ja)
Other versions
JP2936669B2 (en
Inventor
Tadatoshi Asada
忠利 浅田
Kenji Yamada
憲治 山田
Hitoshi Harada
均 原田
Keizo Funae
船江 敬三
Koji Shibata
浩司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20946790A priority Critical patent/JP2936669B2/en
Publication of JPH0492459A publication Critical patent/JPH0492459A/en
Application granted granted Critical
Publication of JP2936669B2 publication Critical patent/JP2936669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To lighten thermal stress by a method wherein a body constitution part is sealed by a first sealing resin material, this first sealing resin material is made to be covered with a second sealing resin material and a coefficient of linear expansion of the second sealing resin material is smaller set up than a coefficient of linear expansion of the first sealing resin material. CONSTITUTION:For instance, in the case where the packaging final shape is not to be changed, it is necessary to design to maintain the thickness of the package to some extent. Now, in the case where a double mold construction is adopted, thickness of a first sealing resin material 16 is thinly constituted to near a molding limit and later to be molded to the thickness required by a resin with a second sealing resin material 17. At this time, when material selection is performed so that a linear expansion coefficient alpha2 of the second sealing resin material 17 may become smaller at least than a linear expansion coefficient alpha1 of the first sealing resin material 16, so far as a resin cross section A of a single mold and the sum A' of a cross section 1 of the first sealing resin material 16 and a cross section A2 of the second sealing resin material 17 of the double mold are equal, thermal stress generated in the interface between a semiconductor element 11 and resin can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野j この発明は、半導体素子およびこの半導体素子の端子導
出機構を含む本体構成部を第1の封止樹脂で封止し、さ
らにこれを第2の封止樹脂で封止する樹脂封止型半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application j This invention is directed to sealing a main body component including a semiconductor element and a terminal lead-out mechanism of the semiconductor element with a first sealing resin, and further sealing this with a second sealing resin. The present invention relates to a resin-sealed semiconductor device that is sealed with a sealing resin.

[従来の技術] 半導体素子を含む本体構成部を第1の封止樹脂によって
封止すると共に、さらにこの第1の封止樹脂体を第2の
封止樹脂で封止するようにした半導体装置は、耐湿性の
向上を目的とする構成として、例えば特開昭63−42
151号公報、あるいは特開昭64−37043号公報
に示されている。さらに特開昭64−91498号公報
に示されるように、外周の第2の封止樹脂体によってコ
ネクタハウジングを外囲形成し、機能向上を図るように
することも考えられている。
[Prior Art] A semiconductor device in which a main body component including a semiconductor element is sealed with a first sealing resin, and the first sealing resin body is further sealed with a second sealing resin. For example, as a structure aiming at improving moisture resistance, JP-A-63-42
This method is disclosed in Japanese Patent Application Laid-open No. 151 or Japanese Patent Application Laid-Open No. 64-37043. Furthermore, as shown in Japanese Patent Application Laid-Open No. 64-91498, it has been considered to surround the connector housing with a second sealing resin body on the outer periphery to improve its functionality.

しかし、第1の封止樹脂体をさらに第2の封止樹脂体に
よって封止することによって、冷熱ストレスによって発
生する熱応力が増大するようにムリ、本体構成部の半導
体素子と第1の封止樹脂体との間に剥離現象が発生する
ことがある。したかって耐湿性の劣化、さらに機能劣化
等が生じ、信頼性に問題が発生する。
However, by further sealing the first sealing resin body with a second sealing resin body, it is impossible to increase the thermal stress generated due to cold stress. A peeling phenomenon may occur between the resin and the resin stopper. This results in deterioration in moisture resistance, further deterioration in functionality, and problems in reliability.

また特開平1−309357号公報で示されるように、
第1の封止樹脂体を低弾性率の柔らかい樹脂材料によっ
て構成することが考えられている。
Also, as shown in Japanese Patent Application Laid-Open No. 1-309357,
It has been considered that the first sealing resin body is made of a soft resin material with a low elastic modulus.

しかしこのようにしたのでは、例えばアルミニウム等に
よって構成されるヒートシンクを一体的に構成すること
ができず、第1の封止樹脂体の熱伝導率も悪くなる。し
たがって、半導体チップ部分の発熱による機能損失があ
り、信頼性の低下の要因となる。
However, in this case, a heat sink made of, for example, aluminum cannot be integrally constructed, and the thermal conductivity of the first sealing resin body also deteriorates. Therefore, there is a loss of function due to heat generation in the semiconductor chip portion, which causes a decrease in reliability.

[発明が解決しようとする課題] この発明は上記のような点に鑑みなされたもので、第1
の封止樹脂体と第2の封止樹脂体とによって2重に封止
した構造であっても、第1の封止樹脂体によって封止さ
れた半導体素子と第1の封止樹脂体との間に発生する熱
応力が効果的に緩和され、耐湿性と共に信頼性が確実に
向上されるようにする樹脂封止型半導体装置を提供しよ
うとするものである。
[Problem to be solved by the invention] This invention was made in view of the above points, and the first problem is
Even if the structure is double-sealed with a sealing resin body and a second sealing resin body, the semiconductor element sealed with the first sealing resin body and the first sealing resin body It is an object of the present invention to provide a resin-sealed semiconductor device in which thermal stress generated during the process is effectively alleviated, and moisture resistance and reliability are reliably improved.

[課題を解決するための手段] この発明に係る樹脂封止型半導体装置は、半導体素子、
その他の端子導出機構を含む本体構成部を第1の封止樹
脂体によって封止すると共に、この第1の封止樹脂体を
第2の封止樹脂体によって被覆されるようにするもので
、第1の封止樹脂体の線膨脹率αlより、第2の封止樹
脂体の線膨脹率α2を小さく設定する。
[Means for Solving the Problems] A resin-sealed semiconductor device according to the present invention includes a semiconductor element,
The main body component including other terminal lead-out mechanisms is sealed with a first sealing resin body, and the first sealing resin body is covered with a second sealing resin body, The linear expansion coefficient α2 of the second sealing resin body is set smaller than the linear expansion coefficient αl of the first sealing resin body.

[作用コ この様に構成された樹脂封止型半導体装置にあっては、
冷却時において発生される第2の封止樹脂体の収縮度合
いが、第1の封止樹脂体において発生する収縮の度合い
よりも小さいため、この冷却時において第2の封止樹脂
体の作用によって、第1の封止樹脂体の圧縮応力が緩和
される。したがって、第1の封止樹脂体によって封止さ
れた半導体素子と、第1の封止樹脂体との間に発生する
熱応力が効果的に低減されるようになる。したがって、
第1の封止樹脂と半導体素子との間に発生する剥離現象
が抑制され、信頼性が著しく向上されるようになる。
[Function] In a resin-sealed semiconductor device configured in this way,
Since the degree of contraction of the second sealing resin body that occurs during cooling is smaller than the degree of contraction that occurs in the first sealing resin body, the effect of the second sealing resin body during cooling , the compressive stress of the first sealing resin body is relaxed. Therefore, thermal stress generated between the semiconductor element sealed by the first sealing resin body and the first sealing resin body is effectively reduced. therefore,
The peeling phenomenon that occurs between the first sealing resin and the semiconductor element is suppressed, and reliability is significantly improved.

[発明の実施例] 以下、図面を参照してこの発明の一実施例を説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はその断面構造を示しているもので、半導体素子
11は例えばシリコン等を母材にして構成され、この半
導体素子11は金属によるフレ半導体素子11の周囲部
分には、例えば銅を主成分とする合金、42アロイ等の
導電性を有する材料を母材として構成されたリード14
が設けられ、このリード14と半導体素子11の導出端
子部とは、Ag1Au、Cu等のボンディングワイヤ1
5によって接続されている。そして、リード14は詳細
は図示していないがこの半導体装置とこの半導体装置外
部との接続等に用いられる。
FIG. 1 shows its cross-sectional structure, and the semiconductor element 11 is constructed using, for example, silicon as a base material. The lead 14 is made of a conductive material such as 42 alloy as a base material.
The lead 14 and the lead-out terminal portion of the semiconductor element 11 are connected to a bonding wire 1 made of Ag1Au, Cu, etc.
Connected by 5. Although the lead 14 is not shown in detail, it is used for connection between this semiconductor device and the outside of this semiconductor device.

ここで、半導体素子11を搭載したフレーム12および
リード14は、通常リードフレームとして一枚の板材よ
りプレス、ホトエツチング等によって加工形成される。
Here, the frame 12 on which the semiconductor element 11 is mounted and the leads 14 are usually formed as a lead frame by pressing, photoetching, etc. from a single plate.

この様な半導体素子11、リード14、ボンディングワ
イヤ15等からなる半導体装置の本体構成部は、エポキ
シ系樹脂等で構成される第1の封止樹脂体1Bによって
封止され、本体構成部の各構成要素は、この第1の封止
樹脂体16によって固定される。
The main body components of the semiconductor device including the semiconductor element 11, leads 14, bonding wires 15, etc. are sealed with a first sealing resin body 1B made of epoxy resin or the like, and each of the main body components The components are fixed by this first sealing resin body 16.

この第1の封止樹脂体■6は、さらにPPS、PBT等
の熱可塑性樹脂、あるいはエポキシ系、シリコン系統の
熱硬化性樹脂によって構成された第2の封止樹脂体17
によって封止固定される。
This first sealing resin body 6 is further provided with a second sealing resin body 17 made of thermoplastic resin such as PPS or PBT, or thermosetting resin such as epoxy or silicone.
It is sealed and fixed by.

ここで、第1の封止樹脂体16の上面部および下面部の
周囲には、これを取り囲むようにして第2図の(A)に
示すように突起状帯18が形成されており、この突起状
帯18 t−J半導体装置の本体構成部を封止するに際
して、第1の封止樹脂体16を成形するときに形成され
る。
Here, protruding bands 18 are formed around the upper and lower surfaces of the first sealing resin body 16 so as to surround them, as shown in FIG. 2(A). The protruding band 18 is formed when the first sealing resin body 16 is molded when sealing the main body component of the t-J semiconductor device.

この突起状帯18は、第1の封止樹脂体16の一方の面
に対してのみ形成するようにしても良く、また第2図の
(B)で示すように特に全周にわたって連続して形成さ
せる必要もない。
The protruding band 18 may be formed only on one surface of the first sealing resin body 16, or may be formed continuously over the entire circumference as shown in FIG. 2(B). There is no need to form it.

そして、第2の封止樹脂体17は、第1の封止樹脂体1
6に形成された突起状帯18が埋め込まれるように成形
されるもので、第1および第2の封止樹脂体16および
17が一体的に結合されるようにしている。
The second sealing resin body 17 is connected to the first sealing resin body 1.
It is molded so that the protruding band 18 formed at 6 is embedded, so that the first and second sealing resin bodies 16 and 17 are integrally joined.

この様な半導体装置において、第2の封止樹脂体17の
熱膨張率α2は、第1の封止樹脂体1Bの熱膨張率α1
よりも小さく設定されている。
In such a semiconductor device, the thermal expansion coefficient α2 of the second sealing resin body 17 is equal to the thermal expansion coefficient α1 of the first sealing resin body 1B.
is set smaller than.

樹脂封止型半導体装置が、高温の状態から冷却されると
、半導体素子11と第1の封止樹脂体16を構成する樹
脂との線膨脹率の相違によって、半導体素子11と第1
の封止樹脂体16の界面に、熱応力が発生する。この熱
応力は、半導体素子11と第1の封止樹脂体16との界
面を剥離したり、またボンディングワイヤ15の寿命を
低下させ、さらにパッシベーションクラックの発生の要
因となる。
When the resin-sealed semiconductor device is cooled from a high temperature state, the difference in linear expansion coefficient between the semiconductor element 11 and the resin constituting the first sealing resin body 16 causes the semiconductor element 11 and the first
Thermal stress is generated at the interface of the sealing resin body 16. This thermal stress causes separation of the interface between the semiconductor element 11 and the first sealing resin body 16, shortens the life of the bonding wire 15, and causes passivation cracks.

この様に界面部に発生する熱応力について、第1の封止
樹脂体16の線膨脹率α1と、第2の封止樹脂体17の
線膨脹率α2の関係でまとめると、以下のようになる。
The thermal stress generated at the interface in this way can be summarized as follows based on the relationship between the linear expansion coefficient α1 of the first sealing resin body 16 and the linear expansion coefficient α2 of the second sealing resin body 17. Become.

第3図は第1図で示した半導体装置を3層構造でモデル
化して示したもので、その各層の断面積をAX、ヤング
率をE X X線膨脹率をα8でそれぞれ示している。
FIG. 3 shows a model of the semiconductor device shown in FIG. 1 with a three-layer structure, in which the cross-sectional area of each layer is shown as AX, the Young's modulus as E X , and the X-ray expansion coefficient as α8.

このモデルにおいてΔTの温度変化を与えたときにの半
導体素子11、第1および第2の封止樹脂体16.17
にそれぞれ発生する熱応力を、それぞれσs1σ1、σ
2とすると、次のような行列式で表される。
In this model, the semiconductor element 11, the first and second sealing resin bodies 16 and 17 when a temperature change of ΔT is applied
The thermal stress generated in σs1σ1 and σ
2, it is expressed by the following determinant.

半導体素子11に加わる応力σSを求めると、次のよう
になる。
The stress σS applied to the semiconductor element 11 is determined as follows.

as =K (C+E2 A2 ((22−al ) 
1したがって、第2の封止樹脂17の線膨脹率α2を“
al>α21とすることによって、σSを小さくするこ
とができる。
as = K (C+E2 A2 ((22-al)
1 Therefore, the linear expansion coefficient α2 of the second sealing resin 17 is “
By setting al>α21, σS can be made small.

第4因は第2の封止樹脂体17の線膨脹率α2と熱応力
との関係を示している。この図の意味するところは、第
2の封止樹脂体17の線膨脹率α2を小さくすることに
よって、半導体素子11と第1の封止樹脂体16との界
面に発生する熱応力を低減することができることである
The fourth factor shows the relationship between the linear expansion coefficient α2 of the second sealing resin body 17 and thermal stress. What this figure means is that by reducing the coefficient of linear expansion α2 of the second encapsulating resin body 17, the thermal stress generated at the interface between the semiconductor element 11 and the first encapsulating resin body 16 is reduced. This is something that can be done.

すなわち、従来の例では、冷却時に半導体素子と第1の
封止樹脂体の界面に発生する熱応力が、σ2csσ1 
(図中の点Cおよび点1)となるものであるが、実施例
で示した構成とすると、第2の封止樹脂体170線膨脹
率α2を第1の封止樹脂体16の線膨脹率α1より小さ
くすることで、発生する熱応力をσ2b(図中の点b)
にまで低減することができる。さらに第2の封止樹脂体
17によって封止されていない構造において、冷却時に
半導体素子11と第1の封止樹脂体15との界面に発生
する熱応力σ0 (図中の点O)よりも、第2の封止樹
脂体17の線膨脹率α2を とすることにより、σ2a (図中の点a)にまで低減
できる。
That is, in the conventional example, the thermal stress generated at the interface between the semiconductor element and the first sealing resin body during cooling is σ2csσ1
(Points C and 1 in the figure) However, if the configuration shown in the example is used, the linear expansion coefficient α2 of the second sealing resin body 170 is set to the linear expansion coefficient α2 of the first sealing resin body 16. By making the rate smaller than α1, the generated thermal stress can be reduced to σ2b (point b in the figure).
can be reduced to Furthermore, in a structure that is not sealed by the second sealing resin body 17, the thermal stress σ0 (point O in the figure) generated at the interface between the semiconductor element 11 and the first sealing resin body 15 during cooling is , the linear expansion coefficient α2 of the second sealing resin body 17 can be reduced to σ2a (point a in the figure).

ここで、第2の封止樹脂体17かない場合の熱応力σ0
を求めると以下のようになる。
Here, the thermal stress σ0 when the second sealing resin body 17 is not present
The result is as follows.

ao =K fc+E2 A2 (α2−at ) l
A2−0であるので、 ao −KC −EI Al  (al −as ) 次に第2の封止樹脂体】7があるときにσOとなるよう
な線膨脹率a’oを求めると次のようになる。
ao = K fc + E2 A2 (α2-at) l
Since A2-0, ao -KC -EI Al (al -as) Next, when there is a second sealing resin body ]7, finding the linear expansion coefficient a'o that becomes σO is as follows. become.

(EI Al +E2 A2 )  (al −as 
) +E2 A2  (cro −crl )上式をa
oについて解(と次のようになる。
(EI Al +E2 A2) (al -as
) +E2 A2 (cro -crl)Convert the above formula to a
The solution for o (and the following.

第2の樹脂封止体17が存在しない状態では、フレーム
カット面が露出しており、この端面部からの湿気の侵入
によって耐湿性は低下するが、第5図で示すように第1
の封止樹脂体16および第2の封止樹脂体17によって
2重封止することによって、フレーム12の端面が被覆
され、耐湿性の向上を図ることができる。
When the second resin encapsulant 17 is not present, the frame cut surface is exposed, and the moisture resistance decreases due to moisture infiltration from this end surface.
By performing double sealing with the first sealing resin body 16 and the second sealing resin body 17, the end face of the frame 12 is covered, and moisture resistance can be improved.

さらに第2の封止樹脂体17の線膨脹率α2を、N1の
封止樹脂体1Bの線膨脹率a1より小さくなるようにす
ることによって、次のような場合に熱応力低減の効果が
発揮される。
Furthermore, by making the linear expansion coefficient α2 of the second sealing resin body 17 smaller than the linear expansion coefficient a1 of the N1 sealing resin body 1B, the effect of reducing thermal stress is exhibited in the following cases. be done.

まず第1に、パッケージ最終形状を変えない場合、パッ
ケージの機械的な強度を保持するため、あるいは耐湿性
確保のためにパッケージの厚さをある程度保つよう設計
する必要がある。そこで、2重モールド構造を採用した
場合には、第1の封止樹脂体16の厚みを成形限界付近
まで薄く構成し、その後第2の封止樹脂体17で設計上
必要とされる厚みに成形する。この際、第2の封止樹脂
体17の線膨脹率α2が、少なくとも第1の封止樹脂体
16の線膨脹率αIより小さくなるように材料選定すれ
ば、単一モールドの樹脂断面積Aと、2重モールドの第
1の封止樹脂体16の断面積Atと第2の封止樹脂体1
7の断面積A2との和A’(−AI+A2)が等しい限
りは、半導体素子IIと樹脂との界面に発生する熱応力
は低減できる。
First of all, if the final shape of the package is not changed, it is necessary to design the package to maintain a certain thickness in order to maintain its mechanical strength or ensure moisture resistance. Therefore, when a double mold structure is adopted, the thickness of the first sealing resin body 16 is reduced to near the molding limit, and then the thickness of the second sealing resin body 17 is reduced to the thickness required for the design. Shape. At this time, if the material is selected so that the linear expansion coefficient α2 of the second sealing resin body 17 is smaller than the linear expansion coefficient αI of the first sealing resin body 16, the cross-sectional area of the resin of the single mold is A. , the cross-sectional area At of the double molded first sealing resin body 16 and the second sealing resin body 1
As long as the sum A' (-AI+A2) of 7 and the cross-sectional area A2 is equal, the thermal stress generated at the interface between the semiconductor element II and the resin can be reduced.

第2に、第2の封止樹脂体17の成形によってパッケー
ジが大きくなる場合、前記第1の場合のように成形限界
からみてパッケージの厚さに余裕のある形状の場合には
、第2の封止樹脂体17の成形によるサイズの拡大を、
第1の封止樹脂体16のすイズを小さくする等のことに
よって補うことができる。しかし、第1の封止樹脂体1
6が成形限界付近まで縮小化されている場合には、第2
の封止樹脂体17によってサイズが大型化されることは
避けられない。そこで、第2の封止樹脂体17の線膨脹
率α2か、先に述べたα0より小さい材料を選定するこ
とによって、パッケージが大型化されたとしても、熱応
力は単一のモールドのパッケージよりも低減することが
可能とされる。
Second, when the package becomes larger due to molding of the second sealing resin body 17, if the package has a shape with a margin of thickness considering the molding limit as in the first case, the second sealing resin body 17 Expansion of the size by molding the sealing resin body 17,
This can be compensated for by reducing the noise of the first sealing resin body 16. However, the first sealing resin body 1
6 is reduced to near the forming limit, the second
It is inevitable that the sealing resin body 17 increases the size. Therefore, by selecting a material with a linear expansion coefficient α2 of the second sealing resin body 17 that is smaller than α0 mentioned above, even if the package is enlarged, the thermal stress will be lower than that of a single molded package. It is also possible to reduce the

材料物性的にはこの様な関係を満足させれば熱応力を低
減できる。しかし、この熱応力低減の効果をさらに高め
るために、突起状帯18を少なくとも第1の封止樹脂体
I6の上面の縁部分か、下面部の縁部分に形成すること
によって、第1の封止樹脂体16と第2の封止樹脂体1
7の界面におけるアンカー効果が発揮されるようにする
ことによって、−層の効果が期待できる。
In terms of material properties, thermal stress can be reduced if such a relationship is satisfied. However, in order to further enhance this thermal stress reduction effect, the protruding band 18 is formed at least on the edge of the upper surface or the edge of the lower surface of the first sealing resin body I6. Sealing resin body 16 and second sealing resin body 1
By making the anchor effect at the interface of layer 7 exerted, the effect of the − layer can be expected.

第]の封止樹脂体16と第2の封止樹脂体17との密着
力あるいは密着性を向上するために、これまでの実施例
においては突起状帯1Bを第1の封止樹脂体16の面上
に形成した。しかし、この構造は任意に選択できるもの
であり、例えば第6図の(A)に示すように、第1の封
止樹脂体■6の少なくとも上面もしくは下面に溝181
を形成するようにしても良い。また同図の(B)で示す
ように第1の封止樹脂体IBの上面もしくは下面の中央
部分に凹部182を形成するように構成し、また(C)
図に示すように突起状帯18と溝181とを組み合わせ
形成するようにしても良い。
In order to improve the adhesion or adhesion between the first sealing resin body 16 and the second sealing resin body 17, in the previous embodiments, the projecting band 1B is attached to the first sealing resin body 16. was formed on the surface of However, this structure can be selected arbitrarily; for example, as shown in FIG.
may be formed. Further, as shown in (B) of the figure, a recess 182 is formed in the center portion of the upper surface or lower surface of the first sealing resin body IB, and (C)
As shown in the figure, the protruding band 18 and the groove 181 may be formed in combination.

この様に形成される突起状帯18、満181、凹部18
2は第1の封止樹脂体1Bの一体成形時に形成されるも
のであるが、第1の封止樹脂体16の成形後、切削、接
着剤等によって、第1の封止樹脂体16の表面に固定手
段を設定することもできる。例えば第6図の(D)に示
すように第1の封止樹脂体16の表面に接着剤183を
塗布し、接着剤183によって第1の封止樹脂体16と
第2の封止樹脂体17との密着性を高める。また(E)
図で示すように第1の封止樹脂体16の表面に凹凸18
4を形成する加工を施し、この凹凸184によって第2
の封止樹脂体17か第1の封止樹脂体16に効果的に密
着されるようにしても良い。
The protruding band 18, full 181, and recess 18 formed in this way
2 is formed when the first sealing resin body 1B is integrally molded, and after the first sealing resin body 16 is molded, the first sealing resin body 16 is removed by cutting, adhesive, etc. It is also possible to provide fixing means on the surface. For example, as shown in FIG. 6(D), an adhesive 183 is applied to the surface of the first sealing resin body 16, and the adhesive 183 connects the first sealing resin body 16 and the second sealing resin body. Improves adhesion with 17. Also (E)
As shown in the figure, unevenness 18 is formed on the surface of the first sealing resin body 16.
4, and the unevenness 184 forms the second
The first sealing resin body 17 may be effectively adhered to the first sealing resin body 16.

熱可塑性樹脂によって第2の封止樹脂体17を形成した
場合、一般的には樹脂自体の強度向上等の目的のため、
ガラス繊維等による充填材を混入している。成形時の樹
脂の流れに沿って、この充填材が配向されるようになり
、したがって樹脂の流れ方向(配向方向)とこれに垂直
な方向で線膨脹率が異なる現象が現れる。
When the second sealing resin body 17 is formed of thermoplastic resin, generally for the purpose of improving the strength of the resin itself,
Contains filler such as glass fiber. The filler is oriented along the flow of the resin during molding, and therefore a phenomenon occurs in which the coefficient of linear expansion is different in the flow direction (orientation direction) of the resin and in the direction perpendicular thereto.

ここで、配向方向の線膨脹率をα211 、これと垂直
の方向の線膨脹率をα21とした場合、α211<al
”および“α21〈α1″の組み合わせならば、第1図
で示した第1の実施例の構造で効果が発揮される。しか
し、α211 <αI#および“α21>α工”の組み
合わせの場合には、第7図に示すように配向方向の断面
積Allより配向方向に垂直な面の断面積A1を小さく
することで、目的を達成させることができる。
Here, if the coefficient of linear expansion in the orientation direction is α211 and the coefficient of linear expansion in the direction perpendicular to this is α21, then α211<al
” and “α21<α1”, the structure of the first embodiment shown in FIG. The objective can be achieved by making the cross-sectional area A1 of the plane perpendicular to the orientation direction smaller than the cross-sectional area All in the orientation direction, as shown in FIG.

この図においてα21およびAIで発生する熱応力はσ
bであり、α211およびAllで発生する熱応力はσ
Cであって、従来構造で発生する熱応力σaよりも小さ
くなる。
In this figure, the thermal stress generated at α21 and AI is σ
b, and the thermal stress generated at α211 and All is σ
C, which is smaller than the thermal stress σa generated in the conventional structure.

ここで、σa1σb1σCはそれぞれ次の式で表現され
る。
Here, σa1σb1σC are each expressed by the following equations.

(All−A2 、Al−KA2とする)配向方向に垂
直方向の断面積A1を、配向方向の断面積Allのに倍 に設計することで、熱応力が従来に比較して下げられる
(All-A2, Al-KA2) By designing the cross-sectional area A1 in the direction perpendicular to the orientation direction to be twice the cross-sectional area All in the orientation direction, thermal stress can be lowered compared to the conventional one.

ac<aa  (、’、(!211 <alよりac 
−cya <O)X I(1−4C)Es As(α1
−α5)−K(EIA1+E2A2+EsAs)×(α
21−α1) −C[Es As(al−as)−K((EI Al 
+E2 A2((221−aL)+Es As(α21
−al)) ] ≧0 よって  σO≧σb 第8図乃至第13図は、それぞれこの様な点を考慮した
実施例を示しているもので、第8図で示した実施例にお
いては、第2の封止樹脂体17の少なくとも上面もしく
は下面に窪み40を形成し、配向方向の断面積Allを
、配向方向に垂直な断面積AIより大きくしている。こ
こで、各図の(D)図では線膨脹率の方向性を示してい
るもので、矢印の長さは絶対値の大きさを表している。
ac<aa (,',(!211 <al from ac
-cya <O)X I(1-4C)Es As(α1
−α5)−K(EIA1+E2A2+EsAs)×(α
21-α1) -C[Es As(al-as)-K((EI Al
+E2 A2((221-aL)+Es As(α21
-al)) ] ≧0 Therefore, σO≧σb FIGS. 8 to 13 respectively show examples that take these points into consideration. A depression 40 is formed in at least the upper surface or the lower surface of the sealing resin body 17, and the cross-sectional area All in the orientation direction is made larger than the cross-sectional area AI perpendicular to the orientation direction. Here, the diagram (D) in each figure shows the directionality of the linear expansion coefficient, and the length of the arrow represents the magnitude of the absolute value.

第9図は第2の封止樹脂体16の一方方向に開放部41
を形成し、配向方向に垂直な方向の線膨脹率α2Iによ
って発生する熱応力を開放するようにしている。また第
10図は第2の封止樹脂体17の配向方向に沿って、少
なくとも]っのスリット42を形成した構成を示すもの
で、配向方向に垂直な方向の線膨脹率α21により発生
する熱応力を開放するようにしている。
FIG. 9 shows an open portion 41 in one direction of the second sealing resin body 16.
is formed to release the thermal stress generated by the coefficient of linear expansion α2I in the direction perpendicular to the orientation direction. Furthermore, FIG. 10 shows a configuration in which at least one slit 42 is formed along the orientation direction of the second sealing resin body 17, and the heat generated by the linear expansion coefficient α21 in the direction perpendicular to the orientation direction is I'm trying to release stress.

第11図で示した例では、第8図および第9図で示した
例を組み合わせた開放部43を形成している。第12図
は第8図で示した例と第11図で示した例を組み合わせ
たスリット状開放部44を第2の封止樹脂体17に形成
している。
In the example shown in FIG. 11, the open portion 43 is formed by combining the examples shown in FIGS. 8 and 9. In FIG. 12, a slit-like opening 44 is formed in the second sealing resin body 17, which is a combination of the example shown in FIG. 8 and the example shown in FIG.

第13図に示した例においては、配向方向と垂直とされ
る方向に向けて、第1の封止樹脂体16の少なくとも上
面もしくは下面に、少なくとも1つの突起45を形成し
、配向方向にはアンカー効果を働かせ、配向方向と垂直
な方向にはアンカー効果が作用しないようにしている。
In the example shown in FIG. 13, at least one protrusion 45 is formed on at least the upper surface or the lower surface of the first sealing resin body 16 in a direction perpendicular to the orientation direction, and An anchor effect is activated, and the anchor effect is prevented from acting in a direction perpendicular to the orientation direction.

この突起45は溝てあっても良い。This protrusion 45 may have a groove.

以上種々の変形例を示したが、もちろんここで示された
例に限定されず、第2の封止樹脂体17の少なくとも1
つの特定方向(配向方向等)の線膨脹率を、第1の封止
樹脂体18の線膨脹率より小さくすることによって、半
導体素子11部分の損傷の発生を確実に阻止できるもの
であり、その効果を高めるために形成された溝、突起等
の構造も、これまで示された例を種々組み合わせて構成
することができる。また、線膨脹率に異方性がある場合
は、さらに実施例で示した構造を適宜組み合わせて対処
できる。
Although various modified examples have been shown above, it is of course not limited to the examples shown here, and at least one of the second sealing resin bodies 17
By making the linear expansion coefficient in two specific directions (orientation direction, etc.) smaller than the linear expansion coefficient of the first sealing resin body 18, damage to the semiconductor element 11 portion can be reliably prevented. Structures such as grooves and protrusions formed to enhance the effect can also be constructed by combining various examples shown so far. Furthermore, if there is anisotropy in the coefficient of linear expansion, this can be dealt with by appropriately combining the structures shown in the embodiments.

[発明の効果コ 以上のようにこの発明に係る樹脂封止型半導体装置によ
れば、第1の封止樹脂体の形状に工夫を加え、また第2
の封止樹脂体の形状と材料を工夫することによって、内
部に埋設される半導体素子を含む本体構造部と第1の封
止樹脂体との間に発生する熱応力が緩和されるようにな
り、この半導体装置の信頼性が効果的に向上される。
[Effects of the Invention] As described above, according to the resin-sealed semiconductor device according to the present invention, the shape of the first sealing resin body is devised, and the second
By devising the shape and material of the first encapsulating resin body, the thermal stress generated between the main body structure including the semiconductor element embedded therein and the first encapsulating resin body can be alleviated. , the reliability of this semiconductor device is effectively improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る樹脂封止型半導体装
置を説明する断面構成図、第2図の(A)および(B)
はそれぞれこの実施例の第1の封止樹脂体の外観を示す
図、第3′図は熱応力を説明するためのモデルを示す図
、第4図はこのモデルに説明される熱応力の状態を示す
図、第5図は実施例で示した半導体装置のモデルを示す
図、第6図の(A)〜(E)はそれぞれ半導体装置の断
面構造の例を示す図、第7図は第2の封止樹脂体のだ断
面積に対する効果を説明する図、第8図乃至第13図は
それぞれこの発明のさらに他の実施例を示すもので、そ
れぞれ(A)は平面図、(B)および(C)図はそれぞ
れ(A)図のb−b線およびc−c線に沿った断面図、
(D)は線膨脹率の方向性を示す図である。 11・・・半導体素子、12・・・フレーム、14・・
・リード、15・・・ボンディングワイヤ、16・・・
第1の封止樹脂体、17・・ 第2の封止樹脂体、 18・・・突起状帯、 溝、 ・・・四部、 ・・・接着剤、 ・・・凹凸、 40・・・窪 み、 L 43. 44・・・開放部、 42・・・ス リ ト。
FIG. 1 is a cross-sectional configuration diagram illustrating a resin-sealed semiconductor device according to an embodiment of the present invention, and FIG. 2 (A) and (B)
are diagrams showing the appearance of the first sealing resin body of this example, Figure 3' is a diagram showing a model for explaining thermal stress, and Figure 4 is a diagram showing the state of thermal stress explained by this model. 5 is a diagram showing a model of the semiconductor device shown in the example, FIGS. 6A to 6E are diagrams each showing an example of the cross-sectional structure of the semiconductor device, and FIG. Figures 8 to 13, which illustrate the effect on the cross-sectional area of the sealing resin body in No. 2, respectively show still other embodiments of the present invention, in which (A) is a plan view and (B) is a plan view. and (C) are cross-sectional views taken along line b-b and line c-c in figure (A), respectively;
(D) is a diagram showing the directionality of linear expansion coefficient. 11... Semiconductor element, 12... Frame, 14...
・Lead, 15...Bonding wire, 16...
First sealing resin body, 17...Second sealing resin body, 18...Protruding band, groove,...Four parts,...Adhesive,...Irregularities, 40...Indentations , L 43. 44...opening part, 42...slit.

Claims (7)

【特許請求の範囲】[Claims] (1)半導体素子、リード、さらにこれらの両者を接続
するボンディングワイヤを含む本体構成部を一体的に封
止する第1の封止樹脂体と、この第1の封止樹脂体の外
周部の少なくとも一部を被覆するように形成された第2
の封止樹脂体とを具備し、 前記第1の封止樹脂体の線膨脹率よりも、前記第2の封
止樹脂体の線膨脹率が小さくされるように、前記第1お
よび第2の封止樹脂体が選定されるようにしたことを特
徴とする樹脂封止型半導体装置。
(1) A first sealing resin body that integrally seals the main body components including the semiconductor element, leads, and bonding wires that connect these two, and the outer peripheral part of this first sealing resin body. a second formed to cover at least a portion of the
a sealing resin body, and the first and second sealing resin bodies are arranged such that a linear expansion coefficient of the second sealing resin body is smaller than a linear expansion coefficient of the first sealing resin body. 1. A resin-sealed semiconductor device characterized in that a molded resin body is selected from the following.
(2)前記第1の封止樹脂体の少なくとも1つの面に凹
凸形状が形成され、前記第2の封止樹脂体にこの凹凸形
状部分で結合されるようにした請求項1の樹脂封止型半
導体装置。
(2) The resin sealing according to claim 1, wherein an uneven shape is formed on at least one surface of the first sealing resin body, and the first sealing resin body is bonded to the second sealing resin body at the uneven portion. type semiconductor device.
(3)半導体素子、リード、さらにこれらの両者を接続
するボンディングワイヤを含む本体構成部を一体的に封
止する第1の封止樹脂体と、この第1の封止樹脂体の外
周部の少なくとも一部を被覆するように形成された第2
の封止樹脂体とを具備し、 前記第1の封止樹脂体の線膨脹率よりも、前記第2の封
止樹脂体の繊維質の配列方向に対応した特定される方向
の線膨脹率が小さくされるように、前記第1および第2
の封止樹脂体が選定されるようにしたことを特徴とする
樹脂封止型半導体装置。
(3) A first sealing resin body that integrally seals the main body components including the semiconductor element, leads, and bonding wires that connect these two, and the outer peripheral part of this first sealing resin body. a second formed to cover at least a portion of the
a sealing resin body, the coefficient of linear expansion of the second sealing resin body in a specified direction corresponding to the direction in which the fibers are arranged is higher than that of the first sealing resin body. the first and second
1. A resin-sealed semiconductor device characterized in that a molded resin body is selected from the following.
(4)前記第2の封止樹脂体の前記特定される方向に沿
った断面積よりも、これと垂直の方向の断面積が大きく
設定されるようにした請求項3の樹脂封止型半導体装置
(4) The resin-sealed semiconductor according to claim 3, wherein the cross-sectional area of the second sealing resin body in a direction perpendicular to the specified direction is set larger than the cross-sectional area along the specified direction. Device.
(5)前記第2の封止樹脂体の前記特定される方向に垂
直の方向の少なくとも一方に、前記第1の封止樹脂体が
露出される開口が形成されるようにした請求項3の樹脂
封止型半導体装置。
(5) An opening through which the first sealing resin body is exposed is formed in at least one direction perpendicular to the specified direction of the second sealing resin body. Resin-sealed semiconductor device.
(6)前記第2の封止樹脂体の前記特定される方向に沿
って前記第1の封止樹脂体が露出される溝を形成し、前
記第2の封止樹脂体が前記溝によって2分割されるよう
にした請求項3の樹脂封止型半導体装置。
(6) forming a groove in which the first sealing resin body is exposed along the specified direction of the second sealing resin body; 4. The resin-sealed semiconductor device according to claim 3, wherein the resin-sealed semiconductor device is divided into parts.
(7)前記第1の樹脂封止体に形成された凹凸形状は、
前記特定される方向に対して垂直な方向に延びるように
形成した請求項3の樹脂封止型半導体装置。
(7) The uneven shape formed on the first resin sealing body is
4. The resin-sealed semiconductor device according to claim 3, wherein the resin-sealed semiconductor device is formed to extend in a direction perpendicular to the specified direction.
JP20946790A 1990-08-07 1990-08-07 Resin-sealed semiconductor device Expired - Fee Related JP2936669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20946790A JP2936669B2 (en) 1990-08-07 1990-08-07 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20946790A JP2936669B2 (en) 1990-08-07 1990-08-07 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPH0492459A true JPH0492459A (en) 1992-03-25
JP2936669B2 JP2936669B2 (en) 1999-08-23

Family

ID=16573350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20946790A Expired - Fee Related JP2936669B2 (en) 1990-08-07 1990-08-07 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP2936669B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698899A (en) * 1995-11-30 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with first and second sealing resins
US5886400A (en) * 1995-08-31 1999-03-23 Motorola, Inc. Semiconductor device having an insulating layer and method for making
JP2002048951A (en) * 2000-08-07 2002-02-15 Sumitomo Electric Ind Ltd Optical device
US6383841B2 (en) * 1998-03-12 2002-05-07 Delta Electronics, Inc. Method for encapsulating with a fixing member to secure an electronic device
US7067905B2 (en) * 2002-08-08 2006-06-27 Micron Technology, Inc. Packaged microelectronic devices including first and second casings
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2010071723A (en) * 2008-09-17 2010-04-02 Mitsubishi Electric Corp Resin mold semiconductor sensor and method of manufacturing the same
JP2012098243A (en) * 2010-11-05 2012-05-24 Denso Corp Sensor device and method for manufacturing the same
US8256326B2 (en) 2006-11-24 2012-09-04 Aisin Aw Co., Ltd. Automatic transmission control unit and automatic transmission including the same
WO2014136509A1 (en) * 2013-03-08 2014-09-12 アピックヤマダ株式会社 Resin molding mold, resin molding device, resin molding method, and resin molding mold evaluation method
JP2015032705A (en) * 2013-08-02 2015-02-16 株式会社デンソー Mold package
KR20180090768A (en) * 2012-10-02 2018-08-13 스태츠 칩팩 피티이. 엘티디. A semiconductor device and a method of making a semiconductor device
US10395947B2 (en) 2014-02-27 2019-08-27 Denso Corporation Manufacturing method of a resin molded article
US10658330B2 (en) 2013-01-03 2020-05-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages
US10777528B2 (en) 2013-01-03 2020-09-15 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming embedded wafer level chip scale packages
US11011423B2 (en) 2012-10-02 2021-05-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier in semiconductor packaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442483C (en) * 2004-09-16 2008-12-10 夏普株式会社 Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886400A (en) * 1995-08-31 1999-03-23 Motorola, Inc. Semiconductor device having an insulating layer and method for making
US5698899A (en) * 1995-11-30 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with first and second sealing resins
US6383841B2 (en) * 1998-03-12 2002-05-07 Delta Electronics, Inc. Method for encapsulating with a fixing member to secure an electronic device
JP2002048951A (en) * 2000-08-07 2002-02-15 Sumitomo Electric Ind Ltd Optical device
US7067905B2 (en) * 2002-08-08 2006-06-27 Micron Technology, Inc. Packaged microelectronic devices including first and second casings
US7306974B2 (en) 2002-08-08 2007-12-11 Micron Technology, Inc. Microelectronic devices and methods for manufacturing and operating packaged microelectronic device assemblies
DE102005043928B4 (en) * 2004-09-16 2011-08-18 Sharp Kk Optical semiconductor device and method for its production
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
US8256326B2 (en) 2006-11-24 2012-09-04 Aisin Aw Co., Ltd. Automatic transmission control unit and automatic transmission including the same
JP2010071723A (en) * 2008-09-17 2010-04-02 Mitsubishi Electric Corp Resin mold semiconductor sensor and method of manufacturing the same
JP2012098243A (en) * 2010-11-05 2012-05-24 Denso Corp Sensor device and method for manufacturing the same
US10515828B2 (en) 2012-10-02 2019-12-24 STATS ChipPAC Pte. Ltd. Method of depositing encapsulant along sides and surface edge of semiconductor die in embedded WLCSP
US11961764B2 (en) 2012-10-02 2024-04-16 STATS ChipPAC Pte. Ltd. Semiconductor device and method of making a wafer-level chip-scale package
US11222793B2 (en) 2012-10-02 2022-01-11 STATS ChipPAC Pte. Ltd. Semiconductor device with encapsulant deposited along sides and surface edge of semiconductor die in embedded WLCSP
KR20180090768A (en) * 2012-10-02 2018-08-13 스태츠 칩팩 피티이. 엘티디. A semiconductor device and a method of making a semiconductor device
US11011423B2 (en) 2012-10-02 2021-05-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier in semiconductor packaging
US10777528B2 (en) 2013-01-03 2020-09-15 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming embedded wafer level chip scale packages
US10658330B2 (en) 2013-01-03 2020-05-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages
US11488933B2 (en) 2013-01-03 2022-11-01 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming embedded wafer level chip scale packages
US11488932B2 (en) 2013-01-03 2022-11-01 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages
TWI634627B (en) * 2013-03-08 2018-09-01 山田尖端科技股份有限公司 Resin molding apparatus, resin molding method and resin molding die set
WO2014136509A1 (en) * 2013-03-08 2014-09-12 アピックヤマダ株式会社 Resin molding mold, resin molding device, resin molding method, and resin molding mold evaluation method
JP2015032705A (en) * 2013-08-02 2015-02-16 株式会社デンソー Mold package
US10395947B2 (en) 2014-02-27 2019-08-27 Denso Corporation Manufacturing method of a resin molded article

Also Published As

Publication number Publication date
JP2936669B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JPH0492459A (en) Resin sealing type semiconductor device
JP2531382B2 (en) Ball grid array semiconductor device and manufacturing method thereof
JPS58207657A (en) Manufacture of semiconductor device
JPH10163400A (en) Semiconductor device and two-layer lead frame used for it
US20100102459A1 (en) Semiconductor device
JPH0541464A (en) Resin sealed semicondcutor device
JP2006100636A (en) Method of manufacturing semiconductor device
US8377753B2 (en) Method of fabricating a semiconductor device having a resin with warpage compensated structures
JPS60195955A (en) Semiconductor device
JPH10116954A (en) Semiconductor device
JP2005093635A (en) Resin-sealed semiconductor device
JP3013810B2 (en) Method for manufacturing semiconductor device
JPS61102758A (en) Resin sealing type semiconductor device
JP3313009B2 (en) Heat dissipation member, lead frame and semiconductor device
JPH06188333A (en) Semiconductor device
JPH06216313A (en) Semiconductor device sealed with resin
KR100308899B1 (en) semiconductor package and method for fabricating the same
JPS6223096Y2 (en)
JP2890841B2 (en) Resin-sealed semiconductor device
JPH0526760Y2 (en)
JPH09116050A (en) Resin-sealed semiconductor device
JP2008147267A (en) Semiconductor device and manufacturing method therefor, and lead frame with radiation board
JPH05121626A (en) Lead frame for semiconductor chip carrier and juniction structure thereof
JP3305308B2 (en) Method for manufacturing semiconductor device
JPH05121622A (en) Resin sealed semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees