JP2004352757A - Ion-conducting polymer composition and filler for ion-conducting polymer - Google Patents

Ion-conducting polymer composition and filler for ion-conducting polymer Download PDF

Info

Publication number
JP2004352757A
JP2004352757A JP2003148993A JP2003148993A JP2004352757A JP 2004352757 A JP2004352757 A JP 2004352757A JP 2003148993 A JP2003148993 A JP 2003148993A JP 2003148993 A JP2003148993 A JP 2003148993A JP 2004352757 A JP2004352757 A JP 2004352757A
Authority
JP
Japan
Prior art keywords
ion
conductive polymer
inorganic filler
filler
sba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148993A
Other languages
Japanese (ja)
Other versions
JP4324697B2 (en
Inventor
Yoichi Tominaga
洋一 富永
Shigeo Asai
茂雄 浅井
Masao Sumita
雅夫 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2003148993A priority Critical patent/JP4324697B2/en
Publication of JP2004352757A publication Critical patent/JP2004352757A/en
Application granted granted Critical
Publication of JP4324697B2 publication Critical patent/JP4324697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion-conducting polymer composition, and to provide a filler for ion-conducting polymer compositions. <P>SOLUTION: This ion-conducting polymer composition is characterized by comprising an ion-conducting polymer prepared by compounding a polymer with a metal salt, and a filler for ion-conducting polymers. The polymer is preferably a polyether bond-having polymer, and the metal salt is preferably one or more alkali metal salts. The ion-conducting polymer composition is preferably brought into contact with supercritical CO<SB>2</SB>for a prescribed time to improve the ionic conductivity. The filler for ion-conducting polymer compositions is preferably a mesoporous inorganic filler comprising a porous metal oxide having mesopores each having a diameter of 3 to 30 nm and a regular arrangement structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン伝導性高分子電解質に係り、詳細には、メソ多孔体無機フィラー及びそれを含んだイオン伝導性高分子電解質のイオン伝導性高分子組成物及びイオン伝導性高分子用フィラーに関する。
【0002】
【従来の技術】
従来のイオン伝導性高分子は、主に、高分子量のポリエチレンオキサイド(PEO、Polyethylene Oxide)にアルカリ金属塩を配合して構成され、各種のPEO誘導体に各種のアルカリ金属塩を添加した複合体が提案されている。
【0003】
アルカリ金属塩を溶解させた高分子量のPEO複合体のイオン伝導性が1971年に初めて報告されて以来、ポリエーテルをベースとしたイオン伝導性高分子は、ポリマー2次電池などの次世代電気化学的デバイスには欠かせない材料となっている。
【0004】
これまでに報告されたイオン伝導度の有望な改善技術としては、ポリマー骨格の架橋化、グラフト化による分子設計及び極性溶媒の含浸によるゲル化等が挙げられる。これらの手法により、イオン伝導度は、室温で、10−4〜10−3S/cm程度にまで改善され、一部が電池の電解質材料として実用化されている(例えば、非特許文献1参照)。
【0005】
ところが、前記ゲル化による方法では、溶媒の高い極性によりアルカリ金属塩の溶解性を促進させ、イオン拡散係数を増大させているに過ぎず、また、固体高分子電解質としての本来の特性が充分に活かされているとはいえなかった。そして、前記溶媒の蒸発や漏洩を防ぐことが必要になるため、安定性やコスト面、あるいは機械的強度の点で問題があった。
【0006】
一方、近年、TiO、SiO及びAlなどの微粒子からなる無機フィラー(以下、「微粒子無機フィラー」と称す)を高分子量のPEOに添加したイオン伝導性高分子の優れたイオン伝導特性が報告されている(例えば、非特許文献2参照)。これについては、前記微粒子無機フィラーの充填により、PEOの結晶相が減少して非晶質相が増加し、さらに前記PEOと前記微粒子無機フィラー表面との間にイオン伝導パスが形成されたため、イオン移動度が向上したものと考えられる。ただし、前記微粒子無機フィラーを添加したPEOは、そのイオン伝導機構や耐久性等について、未だ研究段階であり、電池等の実用に供せられるレベルには達していない。
【0007】
ところで、金属酸化物の微粒子は、イオン伝導性高分子のみならず触媒や半導体分野でも用いられるものであり、新たな特性を求めて、そのミクロな構造についての研究が盛んに行われている。なかでも、メソ多孔体からなる無機フィラー(以下、「メソ多孔体無機フィラー」と称す)は、直径3nm〜30nmのメソ細孔と規則的配置構造とを有する金属酸化物の多孔体で構成され、その多孔性の状態を制御して合成することが比較的容易であることから、次世代の材料として有望視されている。
【0008】
とりわけ、SiOを骨格とするメソ多孔体無機フィラー(いわゆる、SBA−15、MCM−41等)については、その製造方法と物性について詳細に研究がなされている(例えば、非特許文献3及び4参照)。ただし、現状では、それらをイオン伝導性高分子へ添加するという試みは極めて少なく、前記MCM−41をイオン伝導性高分子へ添加した場合、イオン伝導度は3〜4倍程度しか向上しないと報告されており、前記MCM−41のメソ細孔径やSiO骨格の厚み等の最適化がさらに検討されている(例えば、非特許文献4参照)。
【0009】
一方、超臨界状態のCO流体を用いてPEO−Li塩の複合体を処理することで、特に低温域でのイオン伝導度が著しく向上することも報告されている(例えば、非特許文献5参照)。こうした超臨界状態のCO流体による処理は、イオン伝導性高分子の組成を変えることなく、その製造後の後処理でイオン移動度を向上させることができるので、有効な方法の1つと考えられている。しかしながら、未だ、広範囲の用途に対応できる良好なイオン伝導度を有するイオン伝導性高分子は報告されていないのが現状である。
【0010】
【非特許文献1】
Shinji Takeoka、他2名、「Recent Advancement of Ion−conductive Polymers」、Polymers for Advanced Technologies、2002年、第4巻、p.53−73
【非特許文献2】
富永洋一、他2名「PEO−塩複合体の構造解析及びイオン伝導度の改善に関する最新研究」、材料の科学と工学、2002年、第39巻、第3号、p.34−38
【非特許文献3】
Dongyuan Zhao、他6名、「Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores」Science、1998年、第279巻、p.548−552
【非特許文献4】
Peter P.Chu、他2名、「Novel composite polymer electrolyte comprising mesoporous structured SiO and PEO/Li」、Solid State Ionics、2002年、第156巻、p.141−153
【非特許文献5】
Yoichi Tominaga、他4名、「Improvementof the ionic conductivity for PEO−LiCFSO complex by supercritical CO treatment」、Meterials Letter、2002年、第57巻、p.777−780
【0011】
【発明が解決しようとする課題】
そこで、本発明は、前記事情に鑑み、イオン伝導性高分子に係り、特に、イオン伝導度の優れたイオン伝導性電解質と、このイオン伝導性電解質に添加することでイオン伝導度をさらに向上させるフィラーとを用いて、広範囲の用途に適用できる高イオン伝導性を有するイオン伝導性高分子を製造するためのイオン伝導性高分子組成物及びイオン伝導性高分子用フィラーを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、前記問題点を解決すべく、従来のイオン伝導性高分子系において最も大きな問題点であった断続的なイオン伝導性パスの形成や無機フィラー添加によるイオン伝導度の限界の克服という観点から、特に、メソ多孔体無機フィラーの添加について鋭意研究を重ねた。その結果、均一なメソ細孔径と規則的配置構造とを有する金属酸化物の多孔体で構成される無機フィラーはイオン伝導パスの形成を促進し、イオン伝導度のさらなる向上に大きな効果があることを見い出し、本発明を創案するに到った。
【0013】
すなわち、本発明に係る請求項1に記載のイオン伝導性高分子組成物は、高分子に金属塩が配合されたイオン伝導性高分子と、イオン伝導性高分子用フィラーとを含むことを特徴とする。
【0014】
このように構成すれば、機械的強度、寸法安定性に優れ、かつ、広い温度範囲で高いイオン伝導度を有するイオン伝導性高分子を提供することができるようになる。
【0015】
請求項2に記載のイオン伝導性高分子組成物は、請求項1に記載のイオン伝導性高分子組成物において、前記高分子が、ポリエーテル結合を有する高分子であることを特徴とすることを特徴とする。
【0016】
このように構成すれば、支持電解質の金属塩から供給されるイオンのマトリックスとなる前記高分子が適切な極性を有するので、前記イオンの分散性又は相溶性が良好に保持されるとともに、このイオンの移動度が高くなり、前記イオン伝導性をさらに向上させたイオン伝導性高分子を提供できる。
【0017】
また、前記イオン伝導性高分子のマトリックスとなる高分子は、ポリエチレンオキサイド(PEO)またはポリプロピレンオキシド(PPO)を主鎖または側鎖に有する直鎖型、分岐型、架橋型等の誘導体が好ましい。中でも、PEOは、アルカリ金属塩と複合化したときに比較的高いイオン伝導度となるので、特に好ましい。
【0018】
請求項3に記載のイオン伝導性高分子組成物は、請求項1に記載のイオン伝導性高分子組成物において、前記金属塩が、1種又は2種以上のアルカリ金属塩であることを特徴とする。
【0019】
このように構成すれば、前記アルカリ金属塩によって前記イオン伝導性高分子のマトリックスに供給されるイオンが、このマトリックスの極性を有する基又は電荷を有する基と強い相互作用をするので、このイオンの解離度が高くなり、イオン伝導性をさらに向上させたイオン伝導性高分子組成物を提供できる。
【0020】
ここで、前記アルカリ金属塩は、前記イオン伝導性高分子のマトリックスとの分散性又は相溶性が良いものが好ましく、ナトリウム、リチウム又はカリウムの適当な塩を含み、より好ましくは、リチウム塩である。このような塩としては、たとえば、従来公知のLiPF、LiClO、LiBF、LiAsF、LiAlCl、LiI、LiCFSO、LiN(CSO、LiC(CFSO、及びこれらの誘導体等からなる群より選ばれた1種又は2種以上であることが、化学的安定性、高純度品の入手の容易さ、そしてコストの点でさらに好ましい。
【0021】
請求項4に記載のイオン伝導性高分子組成物は、請求項1に記載のイオン伝導性高分子組成物が、超臨界状態のCOと、所定時間、接触されたことを特徴とする。
【0022】
このように構成すれば、各種の金属塩を含んで構成されるイオン伝導性高分子組成物を、超臨界状態のCOを用いて処理することにより、前記金属塩から供給されるイオンの分散性が改善され、イオン伝導性が向上したイオン伝導性高分子を提供できる。また、この処理は、前記イオン伝導性高分子の製造条件を大幅に変えることなく簡便に施すことができるので、製造コストの低減に寄与できる。
【0023】
請求項5に記載のイオン伝導性高分子用フィラーは、直径3nm〜30nmのメソ細孔と規則的配置構造とを有する金属酸化物の多孔体からなることを特徴とする。
【0024】
このように構成すれば、前記イオンの移動度がさらに高められて一段と高いイオン伝導性を発現するイオン伝導性高分子を提供できるようになる。
【0025】
前記メソ多孔体無機フィラーとしては、SiO、Al、TiO等、及びそれらの複合酸化物を骨格とする従来公知の各種材料が使用できる。中でも、TiOを骨格とするメソ多孔体無機フィラーが好ましく、SBA−15及びその未焼成体であるSBA−15N並びにMCM−41で知られる前記メソ多孔体無機フィラーであって、メソ細孔の直径が、3nm〜30nmであることが、より好ましい。
【0026】
通常、前記MCM−41は、アルキルアンモニウム塩を用いて合成され、また前記SBA−15は、非イオン性の界面活性剤であるポリエーテル系トリブロック共重合体を用いて合成される。一方、前記SBA−15は、前記界面活性剤自身が安価であり、非イオン性であり環境に優しく、無臭であり取扱いが容易であるなどの利点を有するため、工業的には、前記SBA−15を用いることが、より好ましい。更に、前記SBA−15の未焼成体であるSBA−15Nは、細孔内に界面活性剤であるポリエーテル系トリブロック共重合体を取り込んだままの状態である。ポリエーテル系トリブロック共重合体は、それ自体がイオン伝導体として機能し、細孔内を通じた高イオン伝導パスの形成が期待されるため、SBA−15およびSBA−15Nの適用がより好ましい。
【0027】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
【0028】
まず、本発明のイオン伝導性高分子組成物及びイオン伝導性高分子用フィラーの構成材料及びその製造方法について順次説明する。
【0029】
[イオン伝導性高分子]
本発明に係る一実施の形態のイオン伝導性高分子は、マトリックスとなる高分子と、支持電解質として作用する金属塩とを備えて構成される。そして、前記高分子には、PEOに代表されるポリエーテル結合を有する高分子が好適に用いられ、また、金属塩としては、高分子や有機溶媒への溶解度、安定性及びイオン伝導度を勘案すると、リチウム塩を用いることが好ましい。このように構成することで、前記イオン伝導性高分子に対し、比較的高いイオン伝導度、広い電位窓、薄膜形成性、柔軟性、軽量性、弾性及び透明性を付与することが容易となる。
【0030】
一例として、前記PEOは、分子量10〜10の範囲から選択され、これと相溶性の良い金属塩として、LiPF、LiClO、LiBF、LiAsF、LiAlCl、LiI、LiCFSO、LiN(CSO及びLiC(CFSOのうちの1種又は2種を用いることが、特に好ましい。そして、所定の分子量のPEOと、それと相溶性の良いリチウム塩のそれぞれの所定量を、有機溶媒に溶解し、充分に混合した後、前記有機溶媒を蒸発させることで、固体状のイオン伝導性電解質を製造することができる。ここで、前記有機溶媒は、前記高分子及び前記リチウム塩の溶解度が高く、蒸発し易いアセトンのような有機溶媒を使うことが好ましい。
【0031】
前記PEOと前記リチウム塩との配合割合は、前記PEOのエチレンオキサイド(EO)ユニットとLiとのモル比を[Li]/[EO]で表すと、[Li]/[EO]=0.02〜0.2の範囲が好ましい。ただし、前記モル比の範囲は、前記PEO及び前記リチウム塩の種類により異なるので、得られるイオン伝導度が最も高くなるように、前記モル比の最適値を選ぶことがさらに好ましい。
【0032】
[イオン伝導性高分子用フィラー]
本発明に係る一実施の形態のイオン伝導性高分子用フィラーは、前記イオン伝導性高分子に添加され、そのイオン伝導度をさらに向上させる効果をもつ。これは、前記イオン伝導性高分子用フィラーが、均一なメソ細孔径と規則的配置構造とを有する金属酸化物の多孔体で構成されることで、前記イオン伝導性高分子中のイオン伝導パスの形成が促進され、イオン伝導度のさらなる向上が具現されたものと考えられる。
【0033】
前記イオン伝導性高分子用フィラーとしては、直径3nm〜30nmのメソ細孔と規則的配置構造とを有する金属酸化物の多孔体からなり、特に、SiOを骨格とするメソ多孔体無機フィラーが好ましい。特に、メソ細孔の直径が、3nm〜30nmであるSBA−15及びその未焼成体であるSBA−15N並びにMCM−41で知られる前記メソ多孔体無機フィラーを用いることが、より好ましい。
【0034】
一例として、前記SBA−15を製造する場合、超分子鋳型として、エチレンオキサイド(EO)とプロピレンオキサイド(PO)から成り、EO−PO−EO型の構造(n、mは、1以上の自然数)を持つ、非イオン性界面活性剤を用いる。通常、前記EO−PO−EOを塩酸水溶液に溶解し、(CO)Si(通称、TEOS)を滴下し、この混合溶液を、所定時間撹拌後、乾燥してSiOを骨格とするメソ多孔体無機フィラーを製造することができる。ここで、この混合溶液のモル比は、EO−PO−EO:TEOS:HCl:HO=1:60:350:9400であることが合成条件の点で好ましい。
【0035】
[超臨界状態のCOによる処理]
前記イオン伝導性高分子組成物は、超臨界状態のCOと、所定時間、接触されることにより、さらにイオン伝導性が向上する。この超臨界状態のCOによる処理を施すことにより、前記イオン伝導性高分子組成物中の金属塩のイオンの分散状態が改善され、前記イオンの移動度が向上することでイオン伝導性が向上すると考えられる。なお、COの超臨界状態は、温度31℃以上、かつ圧力7.4MPa以上で、生成させることが好ましく、特に、温度40〜100℃及び圧力10〜20MPaの範囲が好ましい。
【0036】
以下において、本発明のイオン伝導性高分子組成物及びイオン伝導性高分子用フィラーの実施例について説明する。
【0037】
【実施例】
(SBA−15及びSBA−15Nの製造方法)
まず、本発明の一実施の形態であるSiOを骨格とするメソ多孔体無機フィラーとして、SBA−15及びSBA−15Nの製造方法について説明する。
【0038】
メソ細孔径が3〜30nmの前記SBA−15を製造する場合には、前記超分子鋳型として、EO20−PO70−EO20(BASF社製、商品名「P123」)の構造を有するトリブロック共重合体を用いることが好ましい。
【0039】
最初に、前記P123を6Mの塩酸水溶液に室温で溶解し、(CO)Siをゆっくりと滴下し、この混合溶液を、35℃で24時間撹拌する。ここで、この混合溶液のモル比は、TEOS:P123:HCl:HO=1:60:350:9400であることが合成条件の点で好ましい。そして、撹拌終了後、80℃で48時間保持し、得られた沈殿物を100℃で24時間真空乾燥してSBA−15Nの粉末を得る。前記SBA−15Nを、400℃で4時間焼成し、超分子鋳型である界面活性剤P123を除去し、メソ細孔を有する粉末状のSBA−15を得ることができる。
【0040】
図1は、本実施の形態に係るSBA−15Nの構造を視覚的に表す図面である。図1の(A)は、SBA−15のマクロ構造を示すTEM写真であり、図1の(B)は、その要部拡大TEM写真である。そして、図1の(C)はSBA−15Nのミクロ構造を模式的に表す図面である。図1の(A)に示すように、SBA−15は、麦の穂のようなマクロ構造をしており、拡大すると図1の(B)に示すように、六角形に近いミクロ構造となっている。
【0041】
ここでは、詳細な説明を省略するが、前記SBA−15のミクロ構造の解析により、図1の(C)に示すように、SBA−15Nは、SiOで構成される断面が六角形の隔壁により仕切られた多数の貫通孔(メソ細孔)を有するハニカム構造であり、前記貫通孔の内部に、前記超分子鋳型に用いた前記EO及びPOユニットが入っていると考えられる。そして、前記SBA−15がイオン伝導性高分子に添加されると、前記メソ細孔の内部の前記EO及びPOユニットもイオン伝導に寄与すると考えられる。図1の(C)に示す前記メソ細孔の直径dporeは、約10nmであるが、この値は、EO−PO−EOの構造、すなわちn及びmの値、及びSBA−15の作製条件により制御することが可能であり、dporeは、概ね、3nm〜30nmの範囲で制御可能である。
【0042】
(無機フィラーを添加したイオン伝導性高分子の製造方法)
図2は、無機フィラーを添加したイオン伝導性高分子の製造方法の一例を示すフローチャートである。以下において、図2を参照しながら、一例として、従来公知のTiOの微粒子無機フィラーを、イオン伝導性高分子PEO10LiCFSOに、10質量%添加する場合の製造方法について説明するが、他のPEOベースのイオン伝導性高分子、あるいは他の材料からなる無機フィラーで添加量が異なる場合についても、同様な手順で行うことができる。
【0043】
(1)まず、平均粒径30nm、表面pH3のTiOからなる無機フィラー1.35gをアセトン100gに加え、撹拌してスラリを作製する(ステップS10)。
【0044】
(2)次に、分子量5×10のポリエチレンオキサイド(PEO)を9g、そしてLiCFSOを3.18g溶解させたアセトン300gを前記スラリに加えて、60℃で加熱・撹拌し、粘稠な液体を作製する(ステップS12)。
【0045】
ここで、PEOのエチレンオキサイド(EO)ユニットとLiとのモル比を[Li]/[EO]と表すと、[Li]/[EO]=1/10となっている。また、このステップS12で、前記粘稠な液体は、PEO10LiCFSOで表されるイオン伝導性高分子を含み、無機フィラーの添加量は10質量%となっている。
【0046】
(3)続いて、前記粘稠な液体を窒素雰囲気中でテフロン(R)板にキャストし、1cm角で厚さ1mmのフィルムに成形する(ステップS14)。
【0047】
(4)前記フィルムを30℃で24時間真空乾燥し、前記無機フィラーが充填された固体状のイオン伝導性高分子フィルムが得られる(ステップS16)。
【0048】
(5)前記イオン伝導性高分子フィルムの物性(例えば、イオン伝導度、DSC等)を測定する(ステップS18)。
【0049】
前記したステップS10において、TiOの微粒子無機フィラーの代わりに、平均粒径26nm、表面pH4のSiO、又は平均粒径33nm、表面pH5のAlからなる従来公知の微粒子無機フィラーを用いて、ステップS12〜S16を行うことにより、SiO又はAlの微粒子無機フィラーを添加した固体状のイオン伝導性高分子フィルムが得られる。なお、前記微粒子無機フィラーの充填効果を評価するために、前記微粒子無機フィラーを充填しない固体状のイオン伝導性高分子フィルム(PEO10LiCFSO)も作製した。
【0050】
図3は、従来公知の微粒子無機フィラーを添加したイオン伝導性高分子におけるイオン伝導度σの温度依存性を示すグラフである。ここでは、前記微粒子無機フィラーを添加したイオン伝導性高分子は、前記微粒子無機フィラーとしてTiO、SiO又はAlをイオン伝導性高分子の1つであるPEO10LiCFSOに各々10質量%添加したものである。また、前記微粒子無機フィラーを添加しないPEO10LiCFSO単味のものは比較サンプルである。
【0051】
図3のグラフは、このような従来公知の微粒子無機フィラーを添加したイオン伝導性高分子に対し、約30℃〜約100℃の温度範囲でイオン伝導度σ(S/cm)を測定し、その常用対数値を縦軸にとり、測定温度の絶対温度をTとして1000/Tを横軸にとって作成されている。
【0052】
図3に示すように、前記微粒子無機フィラーを添加しないPEO10LiCFSOに比べ、従来公知の微粒子無機フィラー(TiO、SiO及びAl)を添加することにより、特に低温域でのイオン伝導度σが向上すること、及びTiOを添加したものが最も高いイオン伝導度σを示すことがわかる。
【0053】
図4は、従来公知の微粒子無機フィラーの添加効果が優れているTiOのPEO10LiCFSOへの添加量と、40℃におけるイオン伝導度σとの関係を示す。図4に示すように、前記TiOを前記PEO10LiCFSOに添加すればするほど、イオン伝導度σが単調に増加するのではなく、約10質量%添加のところで最大ピークとなることが特徴的である。
【0054】
すなわち、図4において、前記TiOを約10質量%まで添加していく過程では、前記TiOのフィラーの充填により、前記PEOと前記TiOのフィラー表面との間のイオン伝導パスの形成が促進されてイオン移動度が向上するが、前記TiOフィラーの添加量が約10質量%を超えると、断続的なイオン伝導性パスが形成される、あるいはPEO中のイオン伝導が前記TiOフィラーにより阻害される等の理由でイオン伝導度σが減少するものと考えられる。
【0055】
次に、図2のフローチャートに従って、本実施の形態に係るメソ多孔体無機フィラーSBA−15を、5、10、15質量%添加したイオン伝導性高分子フィルムを作製し、各々のイオン伝導度σの温度依存性を測定した。
【0056】
図5は、本実施の形態に係るメソ多孔体無機フィラーSBA−15を添加したイオン伝導性高分子フィルムのイオン伝導度σの温度依存性を示すグラフである。図5には、比較サンプルとして、従来公知の微粒子無機フィラーTiOを10質量%添加したイオン伝導性高分子フィルムを比較サンプルとして、そのイオン伝導度σの温度依存性も示してある。図5に示すように、SBA−15を10質量%添加したイオン伝導性高分子フィルムが、測定全温度領域(約30℃〜100℃)で、前記比較サンプルを上回るイオン伝導度σを有することがわかる。
【0057】
次に、図2のフローチャートに従って、本実施の形態に係るメソ多孔体無機フィラーSBA−15Nを、10、15、20質量%添加したイオン伝導性高分子フィルムを作製し、各々のイオン伝導度σの温度依存性を測定した。
【0058】
図6は、本実施の形態に係るメソ多孔体無機フィラーSBA−15Nを添加したイオン伝導性高分子フィルムのイオン伝導度σの温度依存性を示すグラフである。図5には、比較サンプルとして、従来公知の微粒子無機フィラーTiOを10質量%添加したイオン伝導性高分子フィルムを比較サンプルとして、そのイオン伝導度σの温度依存性も示してある。図5に示すように、SBA−15Nを15質量%添加したイオン伝導性高分子フィルムが、測定全温度領域(約30℃〜100℃)で、前記比較サンプルを上回るイオン伝導度σを有することがわかる。
【0059】
図7は、本実施の形態に係るメソ多孔体無機フィラーSBA−15及びSBA−15N、並びに比較サンプルである従来公知の微粒子無機フィラーTiOのイオン伝導性高分子への添加量とイオン伝導度σとの関係を示すグラフであり、図7の(A)及び(B)は、イオン伝導度σの測定温度がそれぞれ40℃及び90℃の場合を表す。
【0060】
図7に示すように、いずれの温度においても、SBA−15では、添加量が約10質量%の時に、そして、SBA−15Nでは添加量が約15質量%の時に、それぞれイオン伝導度σσが最大になることがわかる。SBA−15とSBA−15Nとでは、イオン伝導度σが最大となる無機フィラー添加量が異なり、SBA−15製造時の焼成の有無がイオン伝導機構に影響を及ぼしていると考えられる。また、比較サンプルのTiOについては、40℃及び90℃でのイオン伝導度σが最大になる添加量は、約10質量%である。
【0061】
従って、イオン伝導度σを最大にするための無機フィラー添加量の最適値は、前記無機フィラーの材料、製造条件によるミクロ構造の差、製造後の焼成条件等により異なるため、これまでに説明した以外の材料及びその製造条件を用いる時には、図3〜図7に示すような評価を行って、無機フィラー添加量の最適値を適宜決定することが好ましい。
【0062】
本発明に係るイオン伝導性高分子のフィルムを、超臨界CO流体に所定時間接触させる超臨界処理を施してイオン伝導度σに対する影響の評価を行った。以下において、前記超臨界処理の方法の概略を説明する。
【0063】
すなわち、まず、本実施の形態に係るイオン伝導性高分子として、前記SBA−15Nの無機フィラーを各種質量%で添加したイオン伝導性高分子フィルムを作製し、それらを高圧反応容器に入れ、COを導入した。そして、前記高圧反応容器を密閉し、加熱及び加圧することで、100℃、20MPaの超臨界CO流体状態を形成し、このCO流体に前記イオン伝導性高分子フィルムの各試料を30分間接触させて超臨界処理を施した。
【0064】
その後、前記高圧反応容器内部が20℃になるまで冷却し、その内部に残留しているCOガスを速やかに放出させた。前記高圧反応容器の中から前記試料を取り出し、引き続いて30℃で24時間真空乾燥を施して、イオン伝導度σの測定サンプルとした。前記超臨界処理の効果を比較するための比較サンプルとして前記超臨界処理を施さなかったものについてもイオン伝導度σの測定サンプルとした。
【0065】
一方、前記超臨界処理の効果を比較するための他の比較サンプルとして、従来公知の微粒子無機フィラーTiOを各種質量%で添加したイオン伝導性高分子のフィルムを作製し、その後、前記超臨界処理を施さなかったもの、及び前記超臨界処理を施したものに分別して、それぞれをイオン伝導度σの測定サンプルとした。
【0066】
図8は、前記した種々の無機フィラーを各種質量%で添加したイオン伝導性高分子フィルムに対する前記超臨界処理の有無によるイオン伝導度σへの影響を示すグラフである。図8の(A)は、無機フィラーが従来公知の微粒子無機フィラーTiOの場合であり、図8の(B)は、無機フィラーが本実施の形態に係るメソ多孔体無機フィラーSBA−15Nの場合であり、それぞれ前記臨界処理をしたものと未処理のものについて、それぞれの無機フィラーの添加量とイオン伝導度σを40℃で測定した結果をプロットしてある。
【0067】
図8の(A)に示すように、無機フィラーが従来公知の微粒子無機フィラーTiOの場合には、その添加量が0質量%から15質量%に増加すると、前記超臨界処理を施したサンプルのイオン伝導度σは急減する傾向にあり、前記超臨界処理は、イオン伝導度σを増加に寄与しないことがわかる。
【0068】
これに対し、図8の(B)に示すように、無機フィラーが本実施の形態に係るメソ多孔体無機フィラーSBA−15Nの場合には、その添加量の増加とともに、前記超臨界処理を施したサンプルのイオン伝導度σは漸増する傾向にあり、前記超臨界処理が、メソ多孔体無機フィラーの添加と相俟ってイオン伝導度σの増加に寄与することがわかる。
【0069】
以上説明したことを要約すると、次の通りである。まず、PEOをマトリックスとし、リチウム塩を含むイオン伝導性高分子(例えば、PEO10LiCFSO)に、従来公知の微粒子無機フィラーとしてTiO、Al及びSiOを添加すると、イオン伝導度σは、添加しないものより明らかに向上する。中でも、TiOの添加が、最も高いイオン伝導度σを与える。
【0070】
そして、本発明に係るメソ多孔体無機フィラーとしてSiOを骨格とするSBA−15又はその未焼成体であるSBA−15Nのメソ多孔体無機フィラーを前記イオン伝導性高分子に添加すると、前記従来公知の微粒子無機フィラーが添加されたものより、さらにイオン伝導度σが高くなる。
【0071】
また、本発明に係るメソ多孔体無機フィラーとして前記SBA−15Nの無機フィラーを前記イオン伝導性高分子に添加したものに、さらにCOによる超臨界処理を施すと、イオン伝導度σが一段と向上することが明らかになった。
【0072】
以上の説明において、多くの事項が具体的に記載されているが、それらは発明の範囲を限定するものというより、好ましい実施の形態の例示として解釈さるべきである。例えば、本発明が属する技術分野で通常の知識を有する者ならば、本発明の技術的思想に基づいて、無機フィラーの組成の変更、そのマクロな形状、あるいはメソ細孔のミクロな構造を変形することができるであろう。また、イオン伝導性高分子に含まれるマトリックスの組成、あるいは支持電解質の金属塩の組成の変更をすることも容易に行うことができるであろう。ゆえに、本発明の範囲は、以上説明した実施の形態により定められるのではなく、特許請求範囲に記載された技術的思想により定められるべきである。
【0073】
【発明の効果】
以上説明した通り、本発明に係るメソ多孔体無機フィラーを添加したイオン伝導性高分子は、以下に示すように優れた効果を奏する。
【0074】
請求項1に係る本発明のイオン伝導性高分子組成物によれば、機械的強度、寸法安定性に優れ、かつ、広い温度範囲で高いイオン伝導度σを確保できるという効果を有し、かつ、フィルム状に成形できるので、応用範囲の広いイオン伝導性高分子組成物を提供することができる。
【0075】
請求項2に係る本発明のイオン伝導性高分子のマトリックスとなる高分子によれば、支持電解質の金属塩から供給されるイオンのマトリックスとなる前記高分子が適切な極性を有するので、イオンの分散性が良好に保持され、このイオンの移動度が高くなるという効果を有し、イオン伝導性をさらに向上させたイオン伝導性高分子組成物を提供できる。また、マトリックスとなる高分子が、ポリエーテル結合を有する安価な高分子で構成されるので、製造コストを低減できるという効果も生まれる。
【0076】
請求項3に係る本発明のイオン伝導性高分子組成物において支持電解質としての作用をする金属塩によれば、イオン伝導性をさらに向上させたイオン伝導性高分子組成物を提供できるとともに、化学的安定性が良好で安価なため、製造コストを低減できる効果が生まれる。
【0077】
請求項4に係る本発明の超臨界状態のCO流体中で処理されるイオン伝導性高分子組成物によれば、イオン伝導性高分子組成物中の金属塩のイオンの分散がさらに向上する効果が現れるので、高イオン伝導性を要求される分野への応用が拡大される。
【0078】
請求項5に係る本発明のイオン伝導性高分子に添加されるイオン伝導性高分子用フィラーによれば、イオンの移動度がさらに高められて一段と高いイオン伝導性を発現するイオン伝導性高分子組成物を提供できるようになる。また、イオン伝導性高分子用フィラーとして、メソ多孔体無機フィラーをイオン電解質に添加することで、機械的性質の向上のみならず、電池等に応用する場合、正極と負極との電気的短絡を防止する効果も現れる。
【図面の簡単な説明】
【図1】本実施の形態に係るSBA−15及びSBA−15Nの構造を視覚的に表す図面である。
【図2】無機フィラーを添加したイオン伝導性高分子の製造方法を示すフローチャートである。
【図3】従来公知の微粒子無機フィラーを添加したイオン伝導性高分子におけるイオン伝導度σの温度依存性を示すグラフである。
【図4】従来公知の微粒子無機フィラーの添加効果が優れているTiOのPEO10LiCFSOへの添加量と、40℃におけるイオン伝導度σとの関係を示す。
【図5】本実施の形態に係るメソ多孔体無機フィラーSBA−15を添加したイオン伝導性高分子フィルムのイオン伝導度σの温度依存性を示すグラフである。
【図6】本実施の形態に係るメソ多孔体無機フィラーSBA−15Nを添加したイオン伝導性高分子フィルムのイオン伝導度σの温度依存性を示すグラフである。
【図7】本実施の形態に係るメソ多孔体無機フィラーSBA−15及びSBA−15N、並びに比較サンプルである従来公知の微粒子無機フィラーTiOのイオン伝導性高分子への添加量とイオン伝導度σとの関係を示すグラフである。
【図8】種々の無機フィラーを各種質量%で添加したイオン伝導性高分子フィルムに対する前記超臨界処理の有無によるイオン伝導度σへの影響を示すグラフである。
【符号の説明】
pore…メソ細孔の直径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ion conductive polymer electrolyte, and more particularly, to a mesoporous inorganic filler, an ion conductive polymer electrolyte containing the same, and a filler for an ion conductive polymer. .
[0002]
[Prior art]
Conventional ion conductive polymers are mainly composed of a high molecular weight polyethylene oxide (PEO, Polyethylene Oxide) mixed with an alkali metal salt, and a complex obtained by adding various alkali metal salts to various PEO derivatives. Proposed.
[0003]
Since the ionic conductivity of high molecular weight PEO composites in which alkali metal salts were dissolved was first reported in 1971, ion conductive polymers based on polyethers have been the next generation of electrochemical devices such as polymer secondary batteries. It is an indispensable material for intelligent devices.
[0004]
Promising techniques for improving ionic conductivity that have been reported so far include cross-linking of the polymer skeleton, molecular design by grafting, and gelation by impregnation with a polar solvent. With these techniques, the ionic conductivity at room temperature is 10 -4 -10 -3 It has been improved to about S / cm, and a part thereof has been put to practical use as an electrolyte material of a battery (for example, see Non-Patent Document 1).
[0005]
However, in the gelation method, the solubility of the alkali metal salt is promoted by the high polarity of the solvent, and the ion diffusion coefficient is merely increased, and the original characteristics as the solid polymer electrolyte are sufficiently improved. It could not be said that it was utilized. Further, since it is necessary to prevent the solvent from evaporating or leaking, there are problems in terms of stability, cost, and mechanical strength.
[0006]
On the other hand, in recent years, TiO 2 , SiO 2 And Al 2 O 3 Excellent ion-conducting properties of an ion-conductive polymer in which an inorganic filler composed of fine particles such as the above (hereinafter referred to as “fine-particle inorganic filler”) is added to high molecular weight PEO have been reported (for example, see Non-Patent Document 2). ). Regarding this, the filling of the fine particle inorganic filler reduced the crystal phase of PEO and increased the amorphous phase, and further formed an ion conduction path between the PEO and the fine particle inorganic filler surface. It is considered that the mobility was improved. However, the PEO to which the fine particle inorganic filler is added is still in the research stage in terms of its ion conduction mechanism, durability, etc., and has not yet reached a level that can be put to practical use in batteries and the like.
[0007]
By the way, metal oxide fine particles are used not only in ion-conductive polymers but also in the field of catalysts and semiconductors, and research on their microstructure is being actively conducted in search of new characteristics. Above all, an inorganic filler composed of a mesoporous body (hereinafter, referred to as a “mesoporous inorganic filler”) is composed of a metal oxide porous body having mesopores having a diameter of 3 nm to 30 nm and a regular arrangement structure. It is relatively promising as a next-generation material because it is relatively easy to synthesize by controlling its porous state.
[0008]
In particular, SiO 2 About the mesoporous inorganic filler (so-called SBA-15, MCM-41 etc.) which has a skeleton of, the production method and the physical properties have been studied in detail (for example, see Non-Patent Documents 3 and 4). However, at present, there are very few attempts to add them to ion-conductive polymers, and it has been reported that when the MCM-41 is added to ion-conductive polymers, the ion conductivity is improved only about 3 to 4 times. The mesopore diameter of the MCM-41 and SiO 2 Optimization of the skeleton thickness and the like has been further studied (for example, see Non-Patent Document 4).
[0009]
On the other hand, supercritical CO2 2 It has also been reported that treating a composite of a PEO-Li salt with a fluid significantly improves ionic conductivity, particularly in a low temperature range (for example, see Non-Patent Document 5). Such supercritical CO 2 Treatment with a fluid is considered to be one of the effective methods because the ion mobility can be improved by post-treatment after the production without changing the composition of the ion-conductive polymer. However, at present, there is no report of an ion-conductive polymer having good ion conductivity that can be used in a wide range of applications.
[0010]
[Non-patent document 1]
Shinji Takeoka and 2 others, "Recent Advancement of Ion-Conductive Polymers", Polymers for Advanced Technologies, 2002, Vol. 4, p. 53-73
[Non-patent document 2]
Yoichi Tominaga, et al., "The latest research on structural analysis of PEO-salt complex and improvement of ionic conductivity", Materials Science and Engineering, 2002, Vol. 39, No. 3, p. 34-38
[Non-Patent Document 3]
Dongguan Zhao, and six others, "Triblock Polymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores", Science, 1998, vol. 279, p. 548-552
[Non-patent document 4]
Peter P. Chu and two others, "Novel composite polymer electrifying combining mesoporous structured SiO." 2 and PEO / Li ", Solid State Ionics, 2002, Vol. 156, p. 141-153
[Non-Patent Document 5]
Yoshichi Tominaga and 4 others, "Improvement of the ionic conductivity for PEO-LiCF 3 SO 3 complex by supercritical CO 2 treatment ", Materials Letter, 2002, Vol. 57, p. 777-780
[0011]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention relates to an ion conductive polymer, and in particular, further improves the ion conductivity by adding an ion conductive electrolyte having excellent ion conductivity to this ion conductive electrolyte. It is intended to provide an ion conductive polymer composition and a filler for an ion conductive polymer for producing an ion conductive polymer having high ion conductivity applicable to a wide range of applications using a filler. I do.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have found that the biggest problem in the conventional ion-conductive polymer system is the formation of intermittent ion-conductive paths and the limitation of ion conductivity due to the addition of inorganic filler. From the viewpoint of overcoming the problem, intensive studies have been made especially on the addition of mesoporous inorganic filler. As a result, an inorganic filler composed of a porous metal oxide having a uniform mesopore diameter and a regular arrangement structure promotes the formation of ion conduction paths and has a great effect on further improving ion conductivity. And came to invent the present invention.
[0013]
That is, the ion-conductive polymer composition according to claim 1 of the present invention includes an ion-conductive polymer obtained by mixing a metal salt with a polymer, and a filler for the ion-conductive polymer. And
[0014]
With this configuration, it is possible to provide an ion conductive polymer having excellent mechanical strength and dimensional stability and having high ionic conductivity in a wide temperature range.
[0015]
The ion conductive polymer composition according to claim 2 is the ion conductive polymer composition according to claim 1, wherein the polymer is a polymer having a polyether bond. It is characterized by.
[0016]
According to this structure, the polymer serving as the matrix of the ions supplied from the metal salt of the supporting electrolyte has an appropriate polarity, so that the dispersibility or compatibility of the ions is maintained well, and Mobility is increased, and an ionic conductive polymer with further improved ionic conductivity can be provided.
[0017]
The polymer serving as the matrix of the ion conductive polymer is preferably a linear, branched, or cross-linked derivative having polyethylene oxide (PEO) or polypropylene oxide (PPO) in the main chain or side chain. Among them, PEO is particularly preferable because it has a relatively high ionic conductivity when complexed with an alkali metal salt.
[0018]
The ion conductive polymer composition according to claim 3 is the ion conductive polymer composition according to claim 1, wherein the metal salt is one or more alkali metal salts. And
[0019]
According to this structure, the ions supplied to the matrix of the ion-conductive polymer by the alkali metal salt have a strong interaction with the polar group or the charged group of the matrix. It is possible to provide an ion-conductive polymer composition having a high degree of dissociation and further improved ion conductivity.
[0020]
Here, the alkali metal salt preferably has good dispersibility or compatibility with the matrix of the ion-conductive polymer, and includes a suitable salt of sodium, lithium or potassium, and more preferably a lithium salt. . Such salts include, for example, a conventionally known LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiAlCl 4 , LiI, LiCF 3 SO 3 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 2 And at least one selected from the group consisting of these derivatives and the like are more preferable in terms of chemical stability, availability of high-purity products, and cost.
[0021]
The ion-conductive polymer composition according to claim 4 is the one in which the ion-conductive polymer composition according to claim 1 is a supercritical CO2. 2 For a predetermined time.
[0022]
With this configuration, the ion-conductive polymer composition containing various metal salts can be converted into a supercritical CO 2 2 By treating with, the dispersibility of ions supplied from the metal salt is improved, and an ion conductive polymer with improved ion conductivity can be provided. In addition, since this treatment can be easily performed without significantly changing the production conditions of the ion-conductive polymer, it can contribute to a reduction in production cost.
[0023]
The filler for an ion conductive polymer according to claim 5 is characterized in that the filler is made of a porous metal oxide having mesopores having a diameter of 3 nm to 30 nm and a regular arrangement structure.
[0024]
According to this structure, it is possible to provide an ion-conductive polymer which further enhances the ion mobility and exhibits higher ion conductivity.
[0025]
Examples of the mesoporous inorganic filler include SiO. 2 , Al 2 O 3 , TiO 2 And various conventionally known materials having a composite oxide thereof as a skeleton can be used. Among them, TiO 2 Is a mesoporous inorganic filler having a skeleton of SBA-15 and the unsintered SBA-15N and the mesoporous inorganic filler known as MCM-41, wherein the diameter of the mesopores is 3 nm. More preferably, it is 30 nm.
[0026]
Usually, the MCM-41 is synthesized using an alkyl ammonium salt, and the SBA-15 is synthesized using a polyether-based triblock copolymer that is a nonionic surfactant. On the other hand, the SBA-15 is advantageous in that the surfactant itself is inexpensive, nonionic, environmentally friendly, odorless, and easy to handle. It is more preferable to use 15. Further, SBA-15N, which is an unfired SBA-15, is in a state in which a polyether-based triblock copolymer, which is a surfactant, is taken in pores. Since the polyether-based triblock copolymer itself functions as an ion conductor and is expected to form a high ion conduction path through the pores, it is more preferable to use SBA-15 and SBA-15N.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028]
First, the constituent materials of the ion-conductive polymer composition and the filler for the ion-conductive polymer of the present invention and the method for producing the same will be sequentially described.
[0029]
[Ion conductive polymer]
The ion-conductive polymer according to one embodiment of the present invention includes a polymer serving as a matrix and a metal salt acting as a supporting electrolyte. As the polymer, a polymer having a polyether bond typified by PEO is preferably used, and as the metal salt, solubility in a polymer or an organic solvent, stability and ionic conductivity are taken into consideration. Then, it is preferable to use a lithium salt. With this configuration, it is easy to impart relatively high ionic conductivity, a wide potential window, thin film forming property, flexibility, light weight, elasticity, and transparency to the ion conductive polymer. .
[0030]
As an example, the PEO has a molecular weight of 10 5 -10 7 LiPF as a metal salt having good compatibility with LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiAlCl 4 , LiI, LiCF 3 SO 3 , LiN (C 2 F 5 SO 2 ) 2 And LiC (CF 3 SO 2 ) 2 It is particularly preferable to use one or two of the above. A predetermined amount of PEO having a predetermined molecular weight and a predetermined amount of a lithium salt having good compatibility with the PEO are dissolved in an organic solvent, mixed well, and then the organic solvent is evaporated to obtain a solid ionic conductive material. An electrolyte can be manufactured. Here, as the organic solvent, it is preferable to use an organic solvent such as acetone, which has high solubility of the polymer and the lithium salt and is easily evaporated.
[0031]
The mixing ratio of the PEO and the lithium salt is such that the ethylene oxide (EO) unit of the PEO and Li + And the molar ratio of [Li + ] / [EO], [Li + ] / [EO] = 0.02 to 0.2 is preferred. However, since the range of the molar ratio varies depending on the types of the PEO and the lithium salt, it is more preferable to select the optimal value of the molar ratio so that the obtained ionic conductivity is the highest.
[0032]
[Filler for ion conductive polymer]
The ion conductive polymer filler according to one embodiment of the present invention is added to the ion conductive polymer, and has an effect of further improving the ion conductivity. This is because the ion-conductive polymer filler is composed of a porous metal oxide having a uniform mesopore diameter and a regular arrangement structure, so that the ion-conductive path in the ion-conductive polymer is reduced. It is considered that the formation of γ was promoted, and the ionic conductivity was further improved.
[0033]
The ion conductive polymer filler is made of a porous metal oxide having mesopores having a diameter of 3 nm to 30 nm and a regular arrangement structure. 2 A mesoporous inorganic filler having a skeleton of is preferred. In particular, it is more preferable to use the mesoporous inorganic filler known as SBA-15 having a mesopore diameter of 3 nm to 30 nm, SBA-15N which is an unfired body thereof, and MCM-41.
[0034]
As an example, when manufacturing the SBA-15, the supramolecular template is composed of ethylene oxide (EO) and propylene oxide (PO), n -PO m -EO n A nonionic surfactant having a type structure (n and m are natural numbers of 1 or more) is used. Usually, the EO n -PO m -EO n Is dissolved in an aqueous hydrochloric acid solution, and (C 2 H 5 O) 4 Si (commonly referred to as TEOS) was added dropwise, and the mixed solution was stirred for a predetermined time, dried, and dried. 2 Can be produced. Here, the molar ratio of this mixed solution is EO n -PO m -EO n : TEOS: HCl: H 2 It is preferable that O = 1: 60: 350: 9400 in terms of synthesis conditions.
[0035]
[CO in supercritical state 2 Processing by
The ion-conductive polymer composition comprises a supercritical CO 2 2 And for a predetermined time, the ionic conductivity is further improved. This supercritical CO 2 Is considered to improve the dispersion state of ions of the metal salt in the ion-conductive polymer composition, and improve the ion mobility by improving the mobility of the ions. Note that CO 2 Is preferably formed at a temperature of 31 ° C. or higher and a pressure of 7.4 MPa or higher, and particularly preferably in a temperature range of 40 to 100 ° C. and a pressure of 10 to 20 MPa.
[0036]
Hereinafter, examples of the ion conductive polymer composition and the filler for the ion conductive polymer of the present invention will be described.
[0037]
【Example】
(Method for producing SBA-15 and SBA-15N)
First, an embodiment of the present invention, SiO 2 2 A method for producing SBA-15 and SBA-15N as a mesoporous inorganic filler having a skeleton of will be described.
[0038]
When producing the SBA-15 having a mesopore diameter of 3 to 30 nm, EO is used as the supramolecular template. 20 -PO 70 -EO 20 It is preferable to use a triblock copolymer having a structure (trade name “P123” manufactured by BASF).
[0039]
First, the P123 was dissolved in a 6 M aqueous hydrochloric acid solution at room temperature, and (C 2 H 5 O) 4 Si is slowly added dropwise, and the mixed solution is stirred at 35 ° C. for 24 hours. Here, the molar ratio of this mixed solution is TEOS: P123: HCl: H 2 It is preferable that O = 1: 60: 350: 9400 in terms of synthesis conditions. After completion of the stirring, the mixture is kept at 80 ° C. for 48 hours, and the obtained precipitate is vacuum-dried at 100 ° C. for 24 hours to obtain a powder of SBA-15N. The SBA-15N is calcined at 400 ° C. for 4 hours to remove the surfactant P123, which is a supramolecular template, to obtain powdered SBA-15 having mesopores.
[0040]
FIG. 1 is a drawing visually representing the structure of SBA-15N according to the present embodiment. FIG. 1A is a TEM photograph showing a macro structure of SBA-15, and FIG. 1B is an enlarged TEM photograph of a main part thereof. FIG. 1C is a drawing schematically showing the microstructure of SBA-15N. As shown in FIG. 1 (A), SBA-15 has a macro structure like wheat ears, and when expanded, becomes a hexagonal micro structure as shown in FIG. 1 (B). ing.
[0041]
Although a detailed description is omitted here, as shown in FIG. 1 (C), SBA-15N is converted to SiO2 by analyzing the microstructure of the SBA-15. 2 Is a honeycomb structure having a large number of through-holes (mesopores) partitioned by hexagonal partition walls. The EO and PO units used in the supramolecular template are inside the through-holes It is considered to be in. When the SBA-15 is added to the ion conductive polymer, it is considered that the EO and PO units inside the mesopores also contribute to the ion conduction. The diameter d of the mesopores shown in FIG. pore Is about 10 nm, but this value is n -PO m -EO n , Ie, the values of n and m, and the conditions for producing SBA-15, and d pore Is generally controllable in a range of 3 nm to 30 nm.
[0042]
(Production method of ion conductive polymer to which inorganic filler is added)
FIG. 2 is a flowchart illustrating an example of a method for producing an ion-conductive polymer to which an inorganic filler has been added. In the following, referring to FIG. 2 Fine particle inorganic filler of the ion conductive polymer PEO 10 LiCF 3 SO 3 The manufacturing method when 10% by mass is added will be described. However, the same procedure is applied to the case where the amount of addition is different with another PEO-based ion conductive polymer or an inorganic filler made of another material. Can be.
[0043]
(1) First, TiO having an average particle size of 30 nm and a surface pH of 3 2 Is added to 100 g of acetone, and stirred to produce a slurry (step S10).
[0044]
(2) Next, a molecular weight of 5 × 10 5 9 g of polyethylene oxide (PEO), and LiCF 3 SO 3 Is added to the slurry, and the mixture is heated and stirred at 60 ° C. to produce a viscous liquid (Step S12).
[0045]
Here, the ethylene oxide (EO) unit of PEO and Li + And the molar ratio of [Li + ] / [EO], [Li + ] / [EO] = 1/10. In this step S12, the viscous liquid is PEO 10 LiCF 3 SO 3 And the addition amount of the inorganic filler is 10% by mass.
[0046]
(3) Subsequently, the viscous liquid is cast on a Teflon (R) plate in a nitrogen atmosphere and formed into a 1 cm square and 1 mm thick film (step S14).
[0047]
(4) The film is vacuum-dried at 30 ° C. for 24 hours to obtain a solid ion-conductive polymer film filled with the inorganic filler (Step S16).
[0048]
(5) Measure the physical properties (for example, ionic conductivity, DSC, etc.) of the ion-conductive polymer film (Step S18).
[0049]
In step S10 described above, TiO 2 Instead of the fine particle inorganic filler, SiO 2 having an average particle size of 26 nm and a surface pH of 4 2 Or Al with an average particle size of 33 nm and a surface pH of 5 2 O 3 By performing steps S12 to S16 using a conventionally known fine particle inorganic filler made of 2 Or Al 2 O 3 To obtain a solid ion-conductive polymer film to which the fine particle inorganic filler is added. In order to evaluate the filling effect of the fine particle inorganic filler, a solid ion-conductive polymer film (PEO) not filled with the fine particle inorganic filler was used. 10 LiCF 3 SO 3 ) Was also prepared.
[0050]
FIG. 3 is a graph showing the temperature dependence of the ionic conductivity σ of a conventionally known ion conductive polymer to which a fine particle inorganic filler is added. Here, the ion conductive polymer to which the fine particle inorganic filler is added is TiO 2 as the fine particle inorganic filler. 2 , SiO 2 Or Al 2 O 3 Is PEO which is one of the ion conductive polymers 10 LiCF 3 SO 3 10% by mass. PEO without the addition of the fine particle inorganic filler 10 LiCF 3 SO 3 The plain one is a comparative sample.
[0051]
The graph of FIG. 3 shows the ionic conductivity σ (S / cm) of the ion conductive polymer to which such a conventionally known fine particle inorganic filler is added in a temperature range of about 30 ° C. to about 100 ° C. The common logarithmic value is plotted on the vertical axis, and the absolute temperature of the measured temperature is set as T, and 1000 / T is plotted on the horizontal axis.
[0052]
As shown in FIG. 3, PEO without the addition of the fine particle inorganic filler 10 LiCF 3 SO 3 Compared with conventional fine particle inorganic fillers (TiO 2) 2 , SiO 2 And Al 2 O 3 ) Improves ionic conductivity σ especially in a low temperature range, and 2 It can be seen that the one with the addition of exhibits the highest ionic conductivity σ.
[0053]
FIG. 4 shows TiO which is excellent in the effect of adding a conventionally known fine particle inorganic filler. 2 PEO 10 LiCF 3 SO 3 2 shows the relationship between the amount added to the alloy and the ionic conductivity σ at 40 ° C. As shown in FIG. 2 The PEO 10 LiCF 3 SO 3 The characteristic feature is that the more the amount is added, the more the ion conductivity σ does not monotonously increase, but reaches the maximum peak at about 10% by mass addition.
[0054]
That is, in FIG. 2 In the process of adding up to about 10% by mass, 2 PEO and the TiO 2 Formation of an ion conduction path between the TiO 2 and the filler surface is promoted to improve the ion mobility. 2 When the amount of the filler exceeds about 10% by mass, an intermittent ion conductive path is formed, or the ion conduction in 2 It is considered that the ionic conductivity σ is decreased due to inhibition by the filler or the like.
[0055]
Next, according to the flow chart of FIG. 2, ion-conductive polymer films were prepared by adding 5, 10, and 15% by mass of the mesoporous inorganic filler SBA-15 according to the present embodiment. Was measured for temperature dependence.
[0056]
FIG. 5 is a graph showing the temperature dependence of the ionic conductivity σ of the ion-conductive polymer film to which the mesoporous inorganic filler SBA-15 according to the present embodiment is added. FIG. 5 shows, as a comparative sample, a conventionally known fine particle inorganic filler TiO. 2 Is also shown as a comparative sample, and the temperature dependence of the ionic conductivity σ is shown. As shown in FIG. 5, the ion conductive polymer film to which 10% by mass of SBA-15 is added has an ionic conductivity σ higher than that of the comparative sample in the entire measurement temperature range (about 30 ° C. to 100 ° C.). I understand.
[0057]
Next, according to the flowchart of FIG. 2, ion-conductive polymer films were prepared by adding 10, 15, and 20% by mass of the mesoporous inorganic filler SBA-15N according to the present embodiment. Was measured for temperature dependence.
[0058]
FIG. 6 is a graph showing the temperature dependence of the ionic conductivity σ of the ion-conductive polymer film to which the mesoporous inorganic filler SBA-15N according to the present embodiment is added. FIG. 5 shows, as a comparative sample, a conventionally known fine particle inorganic filler TiO. 2 Is also shown as a comparative sample, and the temperature dependence of the ionic conductivity σ is shown. As shown in FIG. 5, the ion-conductive polymer film to which 15% by mass of SBA-15N is added has an ionic conductivity σ higher than that of the comparative sample in the entire measurement temperature range (about 30 ° C. to 100 ° C.). I understand.
[0059]
FIG. 7 shows mesoporous inorganic fillers SBA-15 and SBA-15N according to the present embodiment, and a conventionally known fine particle inorganic filler TiO as a comparative sample. 2 7A and 7B are graphs showing the relationship between the amount of ionic conductivity added to the ion-conductive polymer and the ionic conductivity σ. FIG. 7A and FIG. Represents the case of
[0060]
As shown in FIG. 7, at any temperature, when the addition amount is about 10% by mass in SBA-15, and when the addition amount is approximately 15% by mass in SBA-15N, the ionic conductivity σσ is respectively increased. It turns out that it becomes the maximum. SBA-15 and SBA-15N differ in the amount of addition of the inorganic filler that maximizes the ionic conductivity σ, and it is considered that the presence or absence of firing during the production of SBA-15 affects the ionic conduction mechanism. In addition, the comparative sample TiO 2 Is about 10% by mass at which the ionic conductivity σ at 40 ° C. and 90 ° C. becomes maximum.
[0061]
Therefore, the optimum value of the inorganic filler addition amount for maximizing the ionic conductivity σ varies depending on the material of the inorganic filler, the difference in the microstructure due to the manufacturing conditions, the firing conditions after the manufacturing, and the like. When a material other than the above and its manufacturing conditions are used, it is preferable to perform an evaluation as shown in FIGS. 3 to 7 and appropriately determine the optimum value of the inorganic filler addition amount.
[0062]
The film of the ion-conducting polymer according to the present invention is supercritical CO 2 2 A supercritical treatment in which the fluid was brought into contact with the fluid for a predetermined time was performed to evaluate the effect on the ionic conductivity σ. Hereinafter, an outline of the method of the supercritical treatment will be described.
[0063]
That is, first, as the ion-conductive polymer according to the present embodiment, an ion-conductive polymer film to which the above-mentioned inorganic filler of SBA-15N was added in various mass% was prepared, and they were put into a high-pressure reaction vessel, 2 Was introduced. Then, the high-pressure reaction vessel is sealed, and heated and pressurized to obtain a supercritical CO of 100 ° C. and 20 MPa. 2 A fluid state is formed and this CO 2 Each sample of the ion conductive polymer film was brought into contact with the fluid for 30 minutes to perform a supercritical treatment.
[0064]
Thereafter, the inside of the high-pressure reaction vessel is cooled down to 20 ° C. 2 The gas was released quickly. The sample was taken out of the high-pressure reaction vessel, and subsequently vacuum-dried at 30 ° C. for 24 hours to obtain a sample for measurement of ionic conductivity σ. As a comparative sample for comparing the effects of the supercritical treatment, a sample not subjected to the supercritical treatment was also used as a measurement sample of the ionic conductivity σ.
[0065]
On the other hand, as another comparative sample for comparing the effects of the supercritical treatment, a conventionally known fine particle inorganic filler TiO 2 was used. 2 Was added at various mass% to produce a film of an ion conductive polymer, and then separated into those not subjected to the supercritical treatment and those subjected to the supercritical treatment. It was a measurement sample.
[0066]
FIG. 8 is a graph showing the influence on the ionic conductivity σ depending on the presence or absence of the supercritical treatment on the ion conductive polymer film to which the various inorganic fillers described above are added in various mass%. FIG. 8 (A) shows a conventional finely divided inorganic filler TiO 2 as an inorganic filler. 2 FIG. 8B shows the case where the inorganic filler is the mesoporous inorganic filler SBA-15N according to the present embodiment. The results obtained by measuring the addition amount of the inorganic filler and the ionic conductivity σ at 40 ° C. are plotted.
[0067]
As shown in FIG. 8A, the inorganic filler is a conventionally known fine particle inorganic filler TiO. 2 In the case of the above, when the addition amount is increased from 0% by mass to 15% by mass, the ionic conductivity σ of the sample subjected to the supercritical treatment tends to decrease sharply. Does not contribute to the increase.
[0068]
On the other hand, as shown in FIG. 8B, when the inorganic filler is the mesoporous inorganic filler SBA-15N according to the present embodiment, the supercritical treatment is performed with an increase in the amount of addition. The ionic conductivity σ of the sample thus obtained tends to gradually increase, which indicates that the supercritical treatment contributes to an increase in ionic conductivity σ in combination with the addition of the mesoporous inorganic filler.
[0069]
The above is summarized as follows. First, an ion conductive polymer (eg, PEO) containing PEO as a matrix and containing a lithium salt is used. 10 LiCF 3 SO 3 ), TiO as a conventionally known fine particle inorganic filler 2 , Al 2 O 3 And SiO 2 , The ionic conductivity σ is clearly higher than that without the addition. Among them, TiO 2 Gives the highest ionic conductivity σ.
[0070]
And, as the mesoporous inorganic filler according to the present invention, SiO 2 2 When a mesoporous inorganic filler of SBA-15 or SBA-15N which is an unfired body thereof having a skeleton of is added to the ion-conductive polymer, the ion-conducting polymer is further ionized than the conventionally known fine-particle inorganic filler is added. The conductivity σ increases.
[0071]
Further, as the mesoporous inorganic filler according to the present invention, the inorganic filler of SBA-15N is added to the ion-conductive polymer, 2 It was clarified that the ionic conductivity σ was further improved when the supercritical treatment was performed.
[0072]
In the above description, a number of items are specifically described, but they should be construed as exemplifications of preferred embodiments rather than limiting the scope of the invention. For example, a person having ordinary knowledge in the technical field to which the present invention pertains, based on the technical idea of the present invention, changes the composition of the inorganic filler, deforms its macro shape, or deforms the micro structure of mesopores. Could be done. In addition, the composition of the matrix contained in the ion-conductive polymer or the composition of the metal salt of the supporting electrolyte can easily be changed. Therefore, the scope of the present invention should be determined not by the embodiments described above but by the technical idea described in the claims.
[0073]
【The invention's effect】
As described above, the ion-conductive polymer to which the mesoporous inorganic filler according to the present invention is added exhibits excellent effects as described below.
[0074]
According to the ion-conductive polymer composition of the present invention according to claim 1, mechanical strength, excellent dimensional stability, and has the effect of securing a high ionic conductivity σ over a wide temperature range, and Since it can be formed into a film, it is possible to provide an ion conductive polymer composition having a wide range of applications.
[0075]
According to the polymer serving as the matrix of the ion conductive polymer of the present invention according to claim 2, since the polymer serving as the matrix of ions supplied from the metal salt of the supporting electrolyte has an appropriate polarity, It is possible to provide an ion-conductive polymer composition having an effect of maintaining good dispersibility and increasing the mobility of ions and further improving ion conductivity. Further, since the polymer serving as the matrix is composed of an inexpensive polymer having a polyether bond, an effect of reducing the manufacturing cost is also produced.
[0076]
According to the metal salt acting as a supporting electrolyte in the ion conductive polymer composition of the present invention according to claim 3, it is possible to provide an ion conductive polymer composition with further improved ion conductivity, Since the stability is good and inexpensive, there is an effect that the manufacturing cost can be reduced.
[0077]
The supercritical CO of the present invention according to claim 4 2 According to the ion conductive polymer composition treated in a fluid, the effect of further improving the dispersion of metal salt ions in the ion conductive polymer composition appears. Applications are expanded.
[0078]
According to the ion conductive polymer filler added to the ion conductive polymer of the present invention according to claim 5, the ion mobility is further increased, and the ion conductive polymer which expresses higher ion conductivity is obtained. The composition can be provided. In addition, by adding a mesoporous inorganic filler to the ionic electrolyte as a filler for the ion conductive polymer, not only is the mechanical property improved, but also when applied to batteries, etc., an electrical short circuit between the positive electrode and the negative electrode can be prevented. The effect of prevention also appears.
[Brief description of the drawings]
FIG. 1 is a drawing visually illustrating the structures of SBA-15 and SBA-15N according to the present embodiment.
FIG. 2 is a flowchart showing a method for producing an ion conductive polymer to which an inorganic filler has been added.
FIG. 3 is a graph showing the temperature dependence of ionic conductivity σ in a conventionally known ion conductive polymer to which a fine particle inorganic filler is added.
FIG. 4 shows a TiO having an excellent effect of adding a conventionally known fine particle inorganic filler. 2 PEO 10 LiCF 3 SO 3 2 shows the relationship between the amount added to the alloy and the ionic conductivity σ at 40 ° C.
FIG. 5 is a graph showing the temperature dependence of the ionic conductivity σ of the ion-conductive polymer film to which the mesoporous inorganic filler SBA-15 according to the present embodiment is added.
FIG. 6 is a graph showing the temperature dependence of the ionic conductivity σ of the ion-conductive polymer film to which the mesoporous inorganic filler SBA-15N according to the present embodiment is added.
FIG. 7 shows mesoporous inorganic fillers SBA-15 and SBA-15N according to the present embodiment, and a conventionally known fine particle inorganic filler TiO as a comparative sample. 2 4 is a graph showing the relationship between the amount of ionic conductive polymer added to an ion conductive polymer and the ionic conductivity σ.
FIG. 8 is a graph showing the effect on the ionic conductivity σ of the ion-conductive polymer film to which various inorganic fillers are added in various mass% by the presence or absence of the supercritical treatment.
[Explanation of symbols]
d pore … Mesopore diameter

Claims (5)

高分子に金属塩が配合されたイオン伝導性高分子と、
イオン伝導性高分子用フィラーと、
を含むことを特徴とするイオン伝導性高分子組成物。
An ion-conductive polymer in which a metal salt is blended with the polymer,
An ion-conductive polymer filler,
An ion conductive polymer composition comprising:
前記高分子は、ポリエーテル結合を有する高分子であることを特徴とする請求項1に記載のイオン伝導性高分子組成物。The ion conductive polymer composition according to claim 1, wherein the polymer is a polymer having a polyether bond. 前記金属塩は、1種又は2種以上のアルカリ金属塩であることを特徴とする請求項1に記載のイオン伝導性高分子組成物。The ion conductive polymer composition according to claim 1, wherein the metal salt is one or more alkali metal salts. 前記イオン伝導性高分子組成物は、超臨界状態のCOと、所定時間、接触されたことを特徴とする請求項1に記載のイオン伝導性高分子組成物。The ion conductive polymer composition, and CO 2 in the supercritical state for a predetermined time, the ion conductive polymer composition according to claim 1, characterized in that it is in contact. 直径3nm〜30nmのメソ細孔と規則的配置構造とを有する金属酸化物の多孔体からなることを特徴とするイオン伝導性高分子用フィラー。A filler for an ion-conductive polymer, comprising a porous metal oxide having mesopores having a diameter of 3 nm to 30 nm and a regular arrangement structure.
JP2003148993A 2003-05-27 2003-05-27 Ion conductive polymer composition Expired - Fee Related JP4324697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148993A JP4324697B2 (en) 2003-05-27 2003-05-27 Ion conductive polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148993A JP4324697B2 (en) 2003-05-27 2003-05-27 Ion conductive polymer composition

Publications (2)

Publication Number Publication Date
JP2004352757A true JP2004352757A (en) 2004-12-16
JP4324697B2 JP4324697B2 (en) 2009-09-02

Family

ID=34045221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148993A Expired - Fee Related JP4324697B2 (en) 2003-05-27 2003-05-27 Ion conductive polymer composition

Country Status (1)

Country Link
JP (1) JP4324697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722834B1 (en) * 2005-09-16 2007-05-30 한국화학연구원 Preparation method of solid polymer electrolytic composite and lithium polymer cell employing solid polymer electrolytic composite
CN105980739A (en) * 2014-02-14 2016-09-28 阪东化学株式会社 Double-cogged V-belt

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037705A1 (en) * 1997-12-09 1999-07-29 The Regents Of The University Of California Block polymer processing for mesostructured inorganic oxide materials
JP2001246256A (en) * 2000-03-09 2001-09-11 Univ Tohoku Catalyst for hydrogenation reaction of carbon monoxide and method for preparing hydrogenated product
JP2002042550A (en) * 2000-07-31 2002-02-08 Canon Inc Ion conductive solid electrolyte, its manufacturing process and ion conductive solid electrolyte element
JP2002042549A (en) * 2000-07-31 2002-02-08 Canon Inc Structure, ion conductive solid electrolyte thin film, its manufacturing process and ion conductive solid electrolyte thin film element
JP2002280072A (en) * 2001-03-19 2002-09-27 National Institute Of Advanced Industrial & Technology Battery incorporating organic/inorganic composite polymer solid electrolyte
JP2003016834A (en) * 2001-06-28 2003-01-17 Kagawa Industry Support Foundation Ionic-conductive organic-inorganic compound electrolyte
WO2003024927A1 (en) * 2001-09-12 2003-03-27 Asahi Kasei Chemicals Corporation Process for producing lactam
JP2003112051A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Mesoporous basic catalyst
JP2003128660A (en) * 2001-10-22 2003-05-08 Showa Denko Kk Oxidation method of carbon-carbon double bond and production method of oxidized compound using the same
JP2003138142A (en) * 2001-11-06 2003-05-14 Rikogaku Shinkokai Ion conductive polymer and method for producing the same and method for treating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037705A1 (en) * 1997-12-09 1999-07-29 The Regents Of The University Of California Block polymer processing for mesostructured inorganic oxide materials
JP2001246256A (en) * 2000-03-09 2001-09-11 Univ Tohoku Catalyst for hydrogenation reaction of carbon monoxide and method for preparing hydrogenated product
JP2002042550A (en) * 2000-07-31 2002-02-08 Canon Inc Ion conductive solid electrolyte, its manufacturing process and ion conductive solid electrolyte element
JP2002042549A (en) * 2000-07-31 2002-02-08 Canon Inc Structure, ion conductive solid electrolyte thin film, its manufacturing process and ion conductive solid electrolyte thin film element
JP2002280072A (en) * 2001-03-19 2002-09-27 National Institute Of Advanced Industrial & Technology Battery incorporating organic/inorganic composite polymer solid electrolyte
JP2003016834A (en) * 2001-06-28 2003-01-17 Kagawa Industry Support Foundation Ionic-conductive organic-inorganic compound electrolyte
WO2003024927A1 (en) * 2001-09-12 2003-03-27 Asahi Kasei Chemicals Corporation Process for producing lactam
JP2003112051A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Mesoporous basic catalyst
JP2003128660A (en) * 2001-10-22 2003-05-08 Showa Denko Kk Oxidation method of carbon-carbon double bond and production method of oxidized compound using the same
JP2003138142A (en) * 2001-11-06 2003-05-14 Rikogaku Shinkokai Ion conductive polymer and method for producing the same and method for treating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722834B1 (en) * 2005-09-16 2007-05-30 한국화학연구원 Preparation method of solid polymer electrolytic composite and lithium polymer cell employing solid polymer electrolytic composite
CN105980739A (en) * 2014-02-14 2016-09-28 阪东化学株式会社 Double-cogged V-belt

Also Published As

Publication number Publication date
JP4324697B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
Tripathi Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery
Hasegawa et al. Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery
JP7189122B2 (en) Ion-conducting material and manufacturing method for electrochemical generator
Saikia et al. Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery
Ahmad et al. Synthesis and characterization of porous poly (vinylidene fluoride-co-hexafluoro propylene)(PVDF-co-HFP)/poly (aniline)(PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane
WO2011028804A2 (en) Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
KR20130119432A (en) Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
US20040029015A1 (en) Solid electrolyte
JP2001519464A (en) Mixtures with specific plasticizers suitable as solid electrolytes or separators for electrochemical cells
Wu et al. Safety-reinforced plastic crystal composite polymer electrolyte by 3D MoS2-based nano-hybrid for Li-metal batteries
CN104380409A (en) Capacitor
CN111313083A (en) Composite solid electrolyte film and preparation and application thereof
JP2019102301A (en) Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery
KR101835925B1 (en) Organic-Inorganic Complexed Polymer Gel Electrolyte and Lithium Secondary Battery Having the Same
Chen et al. Highly Elastic and Polar Block Polymer Binder Enabling Accommodation of Volume Change and Confinement of Polysulfide for High-Performance Lithium–Sulfur Batteries
Wang et al. Polymer composite electrolytes containing ionically active mesoporous SiO2 particles
Fan et al. Preparation of PVA-KOH-Halloysite nanotube alkaline solid polymer electrolyte and its application in Ni-MH battery
Lechartier et al. Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity
Sovizi et al. Fabrication of a new gel polymer electrolyte containing core–shell silica–polyelectrolyte nanoparticles via activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) for high-performance lithium–sulfur batteries
Wang et al. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries
Hu et al. Quasi-solid-state electrolyte membranes based on helical mesoporous polysilsesquioxane nanofibers for high-performance lithium batteries
Li et al. Nanopore separator of cross-linked poly (propylene glycol)-co-pentaerythritol triacrylate for effectively suppressing polysulfide shuttling in Li–S batteries
JP2004352757A (en) Ion-conducting polymer composition and filler for ion-conducting polymer
KR102042108B1 (en) Sulfur composite electrode for lithium sulfur battery and method of preparing thereof
Halder et al. Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees