JP2019102301A - Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery - Google Patents

Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery Download PDF

Info

Publication number
JP2019102301A
JP2019102301A JP2017232870A JP2017232870A JP2019102301A JP 2019102301 A JP2019102301 A JP 2019102301A JP 2017232870 A JP2017232870 A JP 2017232870A JP 2017232870 A JP2017232870 A JP 2017232870A JP 2019102301 A JP2019102301 A JP 2019102301A
Authority
JP
Japan
Prior art keywords
mass
composition
solid electrolyte
parts
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017232870A
Other languages
Japanese (ja)
Inventor
志朗 関
Shiro Seki
志朗 関
優輝 加藤
Yuki Kato
優輝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogakuin University
Original Assignee
Kogakuin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogakuin University filed Critical Kogakuin University
Priority to JP2017232870A priority Critical patent/JP2019102301A/en
Publication of JP2019102301A publication Critical patent/JP2019102301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a composition for solid electrolyte formation, which enables the formation of a polymer solid electrolyte having a good ion conductivity even under a condition of a low temperature as well as an atmospheric temperature, a polymer solid electrolyte, methods for manufacturing the composition and polymer solid electrolyte, and an all-solid battery.SOLUTION: Disclosed are a composition for solid electrolyte formation, a polymer solid electrolyte, a method for manufacturing the composition for solid electrolyte formation, and a method for manufacturing the polymer solid electrolyte, and an all-solid battery. The composition for solid electrolyte formation comprises: a polyether-based polymer compound including an alkylene oxide repeating unit; a lithium-containing inorganic oxide of 0.5 to 10 pts.mass to 100 pts.mass of the ionic conductive polymer compound; and a lithium salt.SELECTED DRAWING: None

Description

本開示は、固体電解質形成用組成物、高分子固体電解質、固体電解質形成用組成物の製造方法、高分子固体電解質の製造方法及び全固体電池に関する。   The present disclosure relates to a composition for forming a solid electrolyte, a solid polymer electrolyte, a method for producing a composition for forming a solid electrolyte, a method for producing a solid polymer electrolyte, and an all-solid battery.

従来、可燃性の有機液体が用いられている電解質部分を、難燃性の固体電解質に置き換えた「全固体電池」の実用化が望まれており、全固体電池の研究及び開発が行われている。
全固体電池は、液を内包する従来型の電池に比較して、セパレータが不要であること、液絡の回避のため行われなかった単一包装内での積層化が可能になるなどの利点を有し、安定性に優れる。
There is a demand for commercialization of “all solid battery” in which the electrolyte part where the flammable organic liquid is used is replaced by the flame retardant solid electrolyte, and research and development of the all solid battery are conducted. There is.
The all-solid-state battery has advantages such as no separator required and the possibility of layering in a single package which has not been performed to avoid a liquid junction, as compared to a conventional battery containing a liquid. Have excellent stability.

全固体電池の電解質部分は、例えば、粒子状の酸化物系無機固体電解質の充填により形成することが試みられていた。酸化物系無機固体電解質自体は、伝導性が比較的高いものの、微細な粒子間の界面である粒界においてリチウムイオン移動が妨げられることが判明した。これは、粒界でのリチウムイオンの跳ね返り減少が生じる現象があるためである(例えば、非特許文献1参照)。
このため、粒界を有しない電解質が望まれている。
粒界を有することなく、全固体電池の理想性能を発揮できる電解質材料としては、有機系の高分子固体電解質が挙げられる。これはポリエチレンオキサイド(PEO)等の類縁体中にキャリヤーイオンとなる電解質塩を溶解させた系からなることが多い。しかし、いずれの場合においても反応イオン種となるカチオンよりも対アニオンの方が、移動性が高くなり、いわゆる低カチオン輸率の状態である。詳細には、高分子固体電解質においては、イオン全体内におけるリチウムイオン輸率は約10%であり、このため、入出力特性の問題も顕在化している。
高分子固体電解質は、成形性に優れ、電極との界面形成が容易であるという特徴を有しており、全固体電池の電解質としての応用が期待されている。しかし、室温におけるイオン伝導度が低く、またその温度依存性の高さから、電解質としての性能は十分ではない。
このため、高リチウムイオン輸率と、高分子固体電解質の有する良好な界面形成能及び加工成形性を有する高分子固体電解質が望まれている。
It has been attempted to form the electrolyte portion of the all-solid-state battery by, for example, filling of a particulate oxide-based inorganic solid electrolyte. Although the oxide-based inorganic solid electrolyte itself has relatively high conductivity, it has been found that lithium ion migration is hindered at the grain boundaries, which are interfaces between fine particles. This is because there is a phenomenon in which lithium ions bounce back and reduce at grain boundaries (see, for example, Non-Patent Document 1).
For this reason, the electrolyte which does not have a grain boundary is desired.
As an electrolyte material which can exhibit the ideal performance of an all-solid-state battery without having a grain boundary, a polymer solid electrolyte of an organic type can be mentioned. This often consists of a system in which an electrolyte salt serving as a carrier ion is dissolved in an analogue such as polyethylene oxide (PEO). However, in any case, the mobility of the counter anion is higher than that of the cation serving as the reactive ion species, and the so-called low cation transport number state is obtained. In detail, in the solid polymer electrolyte, the lithium ion transport number in the whole ion is about 10%, and therefore, the problem of input / output characteristics is also manifested.
Solid polymer electrolytes are characterized by excellent formability and easy interface formation with electrodes, and their application as electrolytes of all-solid batteries are expected. However, due to the low ion conductivity at room temperature and the high degree of temperature dependence, the performance as an electrolyte is not sufficient.
For this reason, a polymer solid electrolyte having high lithium ion transport number, and good interface forming ability and processability of the polymer solid electrolyte is desired.

固体電解質の改良は種々提案されており、例えば、リチウムイオン伝導性固体電解質と、リチウムイオン伝導性固体電解質の表面における高分子含有電解質コーティング層とを有し、高分子含有電解質コーティング層は、酸化アルキレン系セグメントを含んだイオン伝導性高分子を含む複合固体電解質が提案されている(例えば、特許文献1参照)。
また、イオン伝導性高分子化合物、無機酸化物、及びリチウム塩を有し、電解質において、イオン伝導性高分子化合物及び無機酸化物の合計に対して無機酸化物は30wt%より多く50wt%以下である電解質層を有する蓄電装置が提案されている(例えば、特許文献2参照)。
これらは、充放電効率の向上を目的として提案された電解質層であり、従来の粒子を充填した固体電解質に比較すると充放電効率には改良がみられる。
Various improvements of solid electrolytes have been proposed, for example, having a lithium ion conductive solid electrolyte and a polymer containing electrolyte coating layer on the surface of the lithium ion conductive solid electrolyte, wherein the polymer containing electrolyte coating layer is oxidized A composite solid electrolyte containing an ion conductive polymer containing an alkylene-based segment has been proposed (see, for example, Patent Document 1).
In addition, it contains an ion conductive polymer compound, an inorganic oxide, and a lithium salt, and in the electrolyte, the content of the inorganic oxide is more than 30 wt% and not more than 50 wt% with respect to the total of the ion conductive polymer compound and the inorganic oxide. A power storage device having a certain electrolyte layer has been proposed (see, for example, Patent Document 2).
These are electrolyte layers proposed for the purpose of the improvement of charge and discharge efficiency, and improvement is seen in the charge and discharge efficiency compared with the solid electrolyte with which conventional particles are filled.

特開2017−191766号公報JP, 2017-191766, A 特開2016−192413号公報JP, 2016-192413, A

早水、関ら、J.Chem.Phys.,第146卷,024701(2017年)Hayami, K. et al. Chem. Phys. , 146th, 024701 (2017)

特許文献1に記載の電解質層は、リチウムイオン伝導性固体電解質と、高分子含有電解質コーティング層との積層構造を有し、2層の界面におけるイオン伝導性には、なお改良の余地がある。また、特許文献2に記載の技術においても、無機酸化物を特定量含む電解質層を効率よく作動させるためには、正極及び負極の少なくともいずれかは、高分子化合物を有する活物質層を必要とする。
また、本発明者らの検討によれば、特許文献1及び特許文献2のいずれの電解質においても、常温における充放電効率が良好であっても、低温領域、例えば0℃以下の温度下では、イオン伝導度が十分に得られず、充放電性能が著しく低下する。
The electrolyte layer described in Patent Document 1 has a laminated structure of a lithium ion conductive solid electrolyte and a polymer-containing electrolyte coating layer, and there is still room for improvement in ion conductivity at the interface of the two layers. Also in the technique described in Patent Document 2, at least one of the positive electrode and the negative electrode needs an active material layer having a polymer compound in order to operate the electrolyte layer containing a specific amount of inorganic oxide efficiently. Do.
Further, according to the study of the present inventors, in any of the electrolytes of Patent Document 1 and Patent Document 2, even if the charge / discharge efficiency at normal temperature is good, under the low temperature region, for example, a temperature of 0 ° C. or less The ion conductivity is not sufficiently obtained, and the charge and discharge performance is significantly reduced.

本発明のある実施形態が解決しようとする課題は、常温のみならず、低温条件下においてもイオン伝導性が良好な高分子固体電解質を形成しうる固体電解質形成用組成物、高分子固体電解質及びそれらの製造方法を提供することである。
また、本発明の別の実施形態が解決しようとする課題は、常温のみならず、低温条件下においても充放電性能が良好な全固体電池を提供することである。
The problem to be solved by an embodiment of the present invention is a composition for forming a solid electrolyte, a solid polymer electrolyte capable of forming a solid polymer electrolyte having good ion conductivity under low temperature conditions as well as normal temperature, and It is to provide a method of manufacturing them.
Another problem to be solved by another embodiment of the present invention is to provide an all-solid-state battery having good charge / discharge performance not only at ordinary temperature but also under low temperature conditions.

既述の課題の解決手段は、以下の実施形態を含む。
<1> アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記イオン導電性高分子化合物100質量部に対し、0.5質量部〜10質量部の下記化合物群から選択される少なくとも1種のリチウム含有無機酸化物と、リチウム塩と、を含む固体電解質形成用組成物。
The means for solving the problems described above includes the following embodiments.
<1> At least 1 sort (s) selected from the following compound group of 0.5 mass part-10 mass parts with respect to 100 mass parts of polyether type polymer compounds containing an alkylene oxide repeating unit, and the said ion conductive polymer compound A composition for forming a solid electrolyte comprising:

<2> 前記リチウム含有無機酸化物が、下記化合物群より選択される少なくとも1種を含む<1>に記載の固体電解質形成用組成物。
(化合物群)
LiLaZr12
Lix1La2/3−X1TiO(0≦x1≦1/6)
Lix2(Al又はGa)y2(Ti又はGe)z2Si(1≦x2≦3、0≦y2≦1、0≦z2≦2、0≦a≦1、1≦m≦7、3≦n≦13)
LiAlLaZr12
<3> 前記ポリエーテル系高分子化合物が、エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選択される1種以上の繰り返し単位を主鎖又は側鎖に含む、<1>又は<2>に記載の固体電解質形成用組成物。
<2> The composition for forming a solid electrolyte according to <1>, wherein the lithium-containing inorganic oxide contains at least one selected from the following compound group.
(Compound group)
Li 7 La 3 Zr 2 O 12
Li x1 La 2 / 3-X1 TiO 3 (0 ≦ x1 ≦ 1/6)
Li x 2 (Al or Ga) y 2 (Ti or Ge) z 2 Si a P m O n (1 ≦ x2 ≦ 3, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 2, 0 ≦ a ≦ 1, 1 ≦ m ≦ 7 , 3 ≦ n ≦ 13)
Li 7 Al 3 La 3 Zr 2 O 12
<3> The solid according to <1> or <2>, wherein the polyether polymer compound contains, in its main chain or side chain, at least one repeating unit selected from ethylene oxide, propylene oxide, and butylene oxide. Composition for electrolyte formation.

<4> 前記リチウム塩が、LiSCN、LiN(CN)、LiClO、LiBF、LiAsF、LiPF、LiCFSO、Li(FSON、Li(CFSOC、LiN(SOCF、LiN(SOCFCF、LiSbF、LiPF(CFCF、LiPF(C、LiPF(CF及びLiB(Cから選択される少なくとも1種のリチウム塩を含む<1>〜<3>のいずれか1つに記載の固体電解質形成用組成物。
<5> 前記ポリエーテル系高分子化合物100質量部に対するリチウム塩の含有量が、0.01質量部〜1質量部の範囲である<1>〜<4>のいずれか1つに記載の固体電解質形成用組成物。
<4> The lithium salt, LiSCN, LiN (CN) 2 , LiClO 4, LiBF 4, LiAsF 6, LiPF 6, LiCF 3 SO 3, Li (FSO 2) 2 N, Li (CF 3 SO 2) 3 C , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 and LiB (C 2 O 4) comprises at least one lithium salt selected from 2 <1> to solid electrolyte composition according to any one of <3>.
<5> The solid according to any one of <1> to <4>, wherein the content of the lithium salt is in the range of 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the polyether polymer compound. Composition for electrolyte formation.

<6> アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記イオン導電性高分子化合物100質量部に対し、0.5質量部〜10質量部の下記化合物群から選択される少なくとも1種のリチウム含有無機酸化物と、リチウム塩と、を含む固体電解質形成用組成物の硬化物である高分子固体電解質。 The polyether polymer compound containing a <6> alkylene oxide repeating unit, and at least 1 sort (s) selected from the following compound group of 0.5 mass part-10 mass parts with respect to 100 mass parts of said ion conductive polymer compounds Polymer solid electrolyte which is a hardened | cured material of the composition for solid electrolyte formation containing lithium containing inorganic oxide and lithium salt.

<7> アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記ポリエーテル系高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウム塩を添加し、混合して混合物を得る工程と、得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、を混合する工程と、
を含む固体電解質形成用組成物の製造方法。
0.01 parts by mass to 1 part by mass of lithium salt is added to and mixed with a polyether polymer compound containing an alkylene oxide repeating unit and 100 parts by mass of the polyether polymer compound. Mixing the obtained mixture with 0.5 parts by mass to 10 parts by mass of lithium-containing inorganic oxide with respect to 100 parts by mass of the polyether polymer compound contained in the mixture; ,
A method for producing a composition for forming a solid electrolyte, comprising:

<8> アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記ポリエーテル系高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウム塩を添加し、混合して混合物を得る工程と、得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物とを混合して固体電解質形成用組成物を得る工程と、得られた固体電解質形成用組成物に含まれる液状成分を除去して固体電解質形成用組成物を硬化させ、高分子固体電解質を得る工程と、を含む高分子固体電解質の製造方法。 0.01 parts by mass to 1 part by mass of lithium salt is added to and mixed with a polyether polymer compound containing an alkylene oxide repeating unit and 100 parts by mass of the polyether polymer compound. And mixing the obtained mixture with 0.5 parts by mass to 10 parts by mass of lithium-containing inorganic oxide with respect to 100 parts by mass of the polyether polymer compound contained in the mixture to obtain a solid electrolyte A polymer comprising the steps of: obtaining a forming composition; and curing the composition for forming a solid electrolyte by removing liquid components contained in the obtained composition for forming a solid electrolyte to obtain a solid polymer electrolyte. Method of producing a solid electrolyte

<9> 前記固体電解質形成用組成物がさらに架橋剤を含み、前記高分子固体電解質を得る工程が、前記液状成分を除去した後、さらに、活性光線を照射する工程を含む<8>に記載の高分子固体電解質の製造方法。 <9> The composition for forming a solid electrolyte further includes a crosslinking agent, and the step of obtaining the solid polymer electrolyte further includes a step of irradiating an actinic ray after removing the liquid component. Method of producing a solid polymer electrolyte.

<10> <1>〜<5>のいずれか1つに記載の固体電解質形成用組成物の硬化物である高分子固体電解質からなる電解質層を備える全固体電池。 All-solid-state battery provided with the electrolyte layer which consists of a solid polymer electrolyte which is a hardened | cured material of the composition for solid electrolyte formation as described in any one of <10> <1>-<5>.

本発明のある実施形態によれば、常温のみならず、低温条件下においてもイオン伝導性が良好な高分子固体電解質を形成しうる固体電解質形成用組成物、高分子固体電解質及びそれらの製造方法を提供することができる。
また、本発明の別の実施形態によれば、常温のみならず、低温条件下においても充放電性能が良好な全固体電池を提供することができる。
According to an embodiment of the present invention, a composition for forming a solid electrolyte capable of forming a solid polymer electrolyte having good ion conductivity not only at ordinary temperature but also under low temperature conditions, a solid polymer electrolyte, and a method for producing them Can be provided.
In addition, according to another embodiment of the present invention, it is possible to provide an all-solid battery having good charge / discharge performance not only at ordinary temperature but also under low temperature conditions.

実施例1、及び比較例1の高分子固体電解質のイオン伝導度の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the ionic conductivity of the solid polymer electrolyte of Example 1 and Comparative Example 1. 実施例1、及び比較例1の高分子固体電解質の示差走査熱量分析(DSC)の測定結果を示すグラフである。It is a graph which shows the measurement result of the differential scanning calorimetry (DSC) of the solid polymer electrolyte of Example 1 and Comparative Example 1.

以下、本開示の固体電解質形成用組成物等について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に限定されない。その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the composition for forming a solid electrolyte and the like of the present disclosure will be described in detail, but the description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and is not limited to these contents. Various modifications may be made within the scope of the present invention.

なお、本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本明細書において組成物に含まれる各成分の量は、組成物中に、各成分に該当する物質が複数含まれる場合、特に断らない限り、当該複数の物質の合計量を意味する。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In addition, the numerical range shown using "-" in this specification shows the range which includes the numerical value described before and after "-" as the minimum value and the maximum value, respectively.
In the present specification, the amount of each component contained in the composition means the total amount of the plurality of substances unless a plurality of substances corresponding to each component are contained in the composition.
In the numerical ranges that are described stepwise in the present specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in the other stepwise Good. In addition, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present specification, the combination of preferred embodiments is a more preferred embodiment.
In the present specification, the term "process" is included in the term if the intended purpose of the process is achieved, even if it can not be clearly distinguished from other processes, as well as independent processes.
In the present specification, the amount of each component in the composition means, when there is a plurality of substances corresponding to each component in the composition, the total amount of the plurality of substances present in the composition unless otherwise specified. Do.

[固体電解質形成用組成物]
本開示の固体電解質形成用組成物(以下、電解質組成物と称することがある)は、アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物(以下、特定高分子化合物と称することがある)と、前記イオン導電性高分子化合物100質量部に対し、0.5質量部〜10質量部の下記化合物群から選択される少なくとも1種のリチウム含有無機酸化物と、リチウム塩と、を含む。
[Composition for forming solid electrolyte]
The composition for forming a solid electrolyte of the present disclosure (hereinafter sometimes referred to as an electrolyte composition) is a polyether polymer compound (hereinafter sometimes referred to as a specific polymer compound) containing an alkylene oxide repeating unit, It contains at least one lithium-containing inorganic oxide selected from the following compound group of 0.5 parts by mass to 10 parts by mass with respect to 100 parts by mass of the ion conductive polymer compound, and a lithium salt.

本開示の電解質組成物及びこれを用いて得られる高分子固体電解質における作用機構は明確ではないが、以下のように考えている。
一般に、液状の電解質はイオン伝導性が良好であるのに対し、固体電解質は、イオン伝導性が低下する。
本開示の固体電解質形成用組成物は、イオン伝導性が良好な、アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物に、特定量のリチウム含有無機酸化物を含むことで、複合化したリチウム含有無機酸化物と特定高分子化合物のセグメント間において相互作用が形成され、特定高分子化合物のセグメントとセグメントの間にリチウム含有無機酸化物が入り込む。これにより、誘引力低下を伴う相互作用が発現し、特定高分子化合物の分子内における隣接する疑似的架橋点同士、或いは、隣接するセグメント間の距離を押し広げることにより、特定高分子化合物とリチウム含有無機化合物とを含む複合体に含まれるリチウムイオンの運動性が向上したと推察される。
なお、本開示は、上記推定機構には何ら制限されない。
本明細書における常温とは、全固体電池の動作環境である15℃〜40℃の温度範囲を指し、低温とは、15℃未満であり、好ましくは−20℃程度までの温度範囲を指す。
Although the mechanism of action in the electrolyte composition of the present disclosure and the solid polymer electrolyte obtained using the same is not clear, it is considered as follows.
Generally, liquid electrolytes have good ion conductivity, whereas solid electrolytes have reduced ion conductivity.
The composition for forming a solid electrolyte of the present disclosure comprises a lithium-containing complexed by containing a specific amount of a lithium-containing inorganic oxide in a polyether-based polymer compound having an alkylene oxide repeating unit, which has good ion conductivity. An interaction is formed between the inorganic oxide and the segment of the specific polymer compound, and the lithium-containing inorganic oxide intercalates between the segments of the specific polymer compound. As a result, an interaction accompanied by a decrease in attraction is developed, and the distance between the adjacent pseudo crosslinking points in the molecule of the specific polymer compound or the distance between the adjacent segments is expanded, whereby the specific polymer compound and lithium are separated. It is inferred that the mobility of the lithium ion contained in the complex containing the contained inorganic compound is improved.
The present disclosure is not limited to the above estimation mechanism.
The normal temperature in this specification refers to the temperature range of 15 ° C. to 40 ° C., which is the operating environment of the all-solid-state battery, and the low temperature refers to a temperature range below 15 ° C., preferably up to about −20 ° C.

〔特定高分子化合物〕
本開示の固体電解質形成用組成物は、イオン伝導性が良好な特定高分子化合物を含む。特定高分子化合物は、アルキレンオキシド繰り返し単位を分子内に含む化合物であれば特に制限はない。アルキレンオキシド繰り返し単位を主鎖構造に含む高分子化合物であってもよく、側鎖にアルキレンオキシド繰り返し単位を有する高分子化合物であってもよい。
[Specific polymer compound]
The composition for forming a solid electrolyte of the present disclosure contains a specific polymer compound having good ion conductivity. The specific polymer compound is not particularly limited as long as it is a compound containing an alkylene oxide repeating unit in the molecule. It may be a polymer compound containing an alkylene oxide repeating unit in the main chain structure, or may be a polymer compound having an alkylene oxide repeating unit in a side chain.

特定高分子化合物は、エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選択される1種以上の繰り返し単位を主鎖又は側鎖に含むことが好ましい。
エチレンオキシド繰り返し単位を含むことで特定高分子化合物の結晶性が良好となり、リジッドな高分子固体電解質を形成しうる。ここで、結晶性が高すぎる場合、高分子固体電解質の構造内に含まれるリチウムイオンの運動性が低下し、イオン伝導性が十分に得られない場合がある。このため、エチレンオキシド繰り返し単位を含む特定高分子化合物においては、例えば、プロピレンオキシド繰り返し単位の如き、よりアルキル鎖長の大きい繰り返し単位を適切な量で導入することで、結晶性を制御して、成形性、形状保持性と、イオンの運動性とを両立させることも好ましい態様である。例えば、エチレンオキシド繰り返し単位とプロピレンオキシド繰り返し単位とを含む特定高分子化合物においては、エチレンオキシド繰り返し単位とプロピレンオキシド繰り返し単位との含有比率は、質量比で90:10〜70:30とすることが好ましい。
The specific polymer compound preferably contains in the main chain or side chain one or more repeating units selected from ethylene oxide, propylene oxide, and butylene oxide.
By containing an ethylene oxide repeating unit, the crystallinity of the specific polymer compound is improved, and a rigid polymer solid electrolyte can be formed. Here, if the crystallinity is too high, the mobility of lithium ions contained in the structure of the solid polymer electrolyte may be reduced, and the ion conductivity may not be sufficiently obtained. For this reason, in a specific polymer compound containing ethylene oxide repeating units, for example, by introducing repeating units having a longer alkyl chain length, such as propylene oxide repeating units, in an appropriate amount, the crystallinity is controlled to be shaped. It is also a preferred embodiment to make the properties, shape retention and ion mobility compatible. For example, in a specific polymer compound containing ethylene oxide repeating units and propylene oxide repeating units, the content ratio of ethylene oxide repeating units to propylene oxide repeating units is preferably 90:10 to 70:30 in mass ratio.

特定高分子化合物としては、より具体的には、直鎖状の高分子化合物としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリブチレンオキシド(PBO)、ポリエチレンオキシド/ポリプロピレンオキシドブロック共重合体、ポリエチレンオキシド/ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド/ポリプロピレンオキシド/ポリブチレンオキシドブロック共重合体、ポリブチレンオキシド/ポリエチレンオキシド/ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド/ポリブチレンオキシド/ポリエチレンオキシドブロック共重合体など、エーテル系結合を主骨格とする高分子鎖等が挙げられる。
ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド等は、目的に応じて2種以上の混合物として用いてもよい。
More specifically, as the specific polymer compound, as the linear polymer compound, polyethylene oxide (PEO), polypropylene oxide (PPO), polybutylene oxide (PBO), polyethylene oxide / polypropylene oxide block copolymer Combination, polyethylene oxide / polybutylene oxide block copolymer, polyethylene oxide / polypropylene oxide / polybutylene oxide block copolymer, polybutylene oxide / polyethylene oxide / polybutylene oxide block copolymer, polyethylene oxide / polybutylene oxide / poly Examples thereof include polymer chains having an ether bond as a main skeleton, such as ethylene oxide block copolymer.
Polyethylene oxide, polypropylene oxide, polybutylene oxide and the like may be used as a mixture of two or more depending on the purpose.

また、側鎖にアルキレンオキシド繰り返し単位を有する高分子化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド、及びポリブチレンオキシドから選ばれる1種以上がグラフトされたポリメチルメタクリレート(PMMA)等が挙げられる。   Moreover, as a high molecular compound which has an alkylene oxide repeating unit in a side chain, the polymethyl methacrylate (PMMA) etc. with which 1 or more types chosen from polyethylene oxide, a polypropylene oxide, and a polybutylene oxide were grafted are mentioned.

なかでも、イオン伝導性が良好であるという観点から、特定高分子化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリエチレンオキシド/ポリプロピレンオキシドブロック共重合体、ポリエチレンオキシド/ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド/ポリプロピレンオキシド/ポリブチレンオキシドブロック共重合体、ポリブチレンオキシド/ポリエチレンオキシド/ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド/ポリブチレンオキシド/ポリエチレンオキシドブロック共重合体等が好ましく、ポリエチレンオキシド、プロピレンオキシド及びポリエチレンオキシド/ポリプロピレンオキシドブロック共重合体及びこれらの混合物がより好ましい。
特定高分子化合物は、合成品を用いてもよく、市販品を用いてもよい。
Among them, from the viewpoint of good ion conductivity, specific polymer compounds include polyethylene oxide, polypropylene oxide, polybutylene oxide, polyethylene oxide / polypropylene oxide block copolymer, polyethylene oxide / polybutylene oxide block copolymer Preferred are polyethylene oxide / polypropylene oxide / polybutylene oxide block copolymer, polybutylene oxide / polyethylene oxide / polybutylene oxide block copolymer, polyethylene oxide / polybutylene oxide / polyethylene oxide block copolymer, etc. polyethylene oxide Propylene oxide and polyethylene oxide / polypropylene oxide block copolymers and mixtures thereof are more preferred.
As the specific polymer compound, a synthetic product may be used, or a commercially available product may be used.

〔リチウム含有無機酸化物〕
本開示の電解質組成物は、既述の特定高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物を含む。
特定高分子化合物にリチウム含有無機酸化物を含有させ、複合化させることで、本開示の電解質組成物を用いて形成される高分子固体電解質は高いイオン伝導性を示す。
リチウム含有無機酸化物としては、下記化合物から選ばれる少なくとも1種を含有することが好ましい。
(化合物群)
LiLaZr12
Lax1Liy1TiO(x1=0.3〜0.7、y1=0.3〜0.7)
Lix2(Al又はGa)y2(Ti又はGe)z2Si(1≦x2≦3、0≦y2≦1、0≦z2≦2、0≦a≦1、1≦m≦7、3≦n≦13)
LiAlLaZr12
Lithium-containing inorganic oxide
The electrolyte composition of the present disclosure includes 0.5 parts by mass to 10 parts by mass of the lithium-containing inorganic oxide with respect to 100 parts by mass of the specific polymer compound described above.
The polymer solid electrolyte formed using the electrolyte composition of the present disclosure exhibits high ion conductivity by containing the lithium-containing inorganic oxide in the specific polymer compound to form a complex.
The lithium-containing inorganic oxide preferably contains at least one selected from the following compounds.
(Compound group)
Li 7 La 3 Zr 2 O 12
La x 1 Li y 1 TiO 3 (x 1 = 0.3 to 0.7, y 1 = 0.3 to 0.7)
Li x 2 (Al or Ga) y 2 (Ti or Ge) z 2 Si a P m O n (1 ≦ x2 ≦ 3, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 2, 0 ≦ a ≦ 1, 1 ≦ m ≦ 7 , 3 ≦ n ≦ 13)
Li 7 Al 3 La 3 Zr 2 O 12

Lax1Liy1TiO(x1=0.3〜0.7、y1=0.3〜0.7)の代表的な化合物として、Li3xLa2/3−xTiO(0≦x≦1/6)が挙げられる。
これらの中でも、イオン伝導性に優れるという観点からLi3xLa2/3−xTiO(0≦x≦1/6)(LLTO)、LiAlLaZr12、LiLaZr12(LLZO)、Li1+xGe2−yAl12で表される化合物に包含されるLi1.5Ge1.5Al0.5(PO(LAGP)などが好ましく、LiLaZr12(LLZO)がさらに好ましい。
As a representative compound of La x1 Li y1 TiO 3 (x1 = 0.3-0.7, y1 = 0.3-0.7), Li 3x La 2 / 3-x TiO 3 (0 ≦ x ≦ 1) / 6) is mentioned.
Among these, from the viewpoint of excellent ion conductivity, Li 3x La 2 / 3-x TiO 3 (0 ≦ x ≦ 1/6) (LLTO), Li 7 Al 3 La 3 Zr 2 O 12 , Li 7 La 3 Li 1.5 Ge 1.5 Al 0.5 (PO 4 ) 3 (LAGP) and the like included in the compounds represented by Zr 2 O 12 (LLZO) and Li 1 + x Ge 2-y Al y P 3 O 12 Is preferred, and Li 7 La 3 Zr 2 O 12 (LLZO) is more preferred.

電解質組成物におけるリチウム含有無機化合物の含有量は、特定高分子化合物100質量部に対し、0.5質量部〜10質量部であり、1質量部〜5質量部の範囲であることが好ましい。含有量が上記範囲において、リチウム含有無機化合物の添加効果が十分に得られ、常温のみならず、低温領域においてもリチウムイオンの伝導性が良好となる。   The content of the lithium-containing inorganic compound in the electrolyte composition is 0.5 parts by mass to 10 parts by mass and preferably in the range of 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the specific polymer compound. When the content is in the above range, the addition effect of the lithium-containing inorganic compound is sufficiently obtained, and the conductivity of lithium ions is good not only at normal temperature but also in a low temperature region.

〔リチウム塩〕
本開示の電解質組成物は、リチウム塩を含む。リチウム塩は、電解質組成物中においてキャリアイオンとなるリチウムイオンの供給源となる。
リチウム塩は、通常、リチウム電池に用いられる公知のリチウム塩を制限なく使用することができる。
なかでも、入手容易であり、イオン伝導性が良好であるという観点から、リチウム塩として、LiSCN、LiN(CN)、LiClO、LiBF、LiAsF、LiPF、LiCFSO、Li(FSON、Li(CFSOC、LiN(SOCF、LiN(SOCFCF、LiSbF、LiPF(CFCF、LiPF(C、LiPF(CF、LiB(C等から選択される少なくとも1種のリチウム塩を含むことが好ましい。
Lithium salt
The electrolyte composition of the present disclosure contains a lithium salt. The lithium salt is a supply source of lithium ions which become carrier ions in the electrolyte composition.
As lithium salts, known lithium salts usually used for lithium batteries can be used without limitation.
Among them, LiSCN, LiN (CN) 2 , LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , Li (as lithium salts) from the viewpoint of easy availability and good ion conductivity. FSO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiPF It is preferable to include at least one lithium salt selected from 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiB (C 2 O 4 ) 2 and the like.

電解質組成物におけるリチウム塩の含有量は、既述の特定高分子化合物100質量部に対し、0.01質量部〜1質量部の範囲であることが好ましい。
リチウムイオンの含有量が上記範囲において、常温のみならず、低温領域においても、十分なイオン伝導性を得ることができ、電解質組成物を用いて得られる高分子固体電解質を組込んだ全固体電池は十分な充放電性能を得ることができる。
The content of the lithium salt in the electrolyte composition is preferably in the range of 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the specific polymer compound described above.
An all solid battery incorporating a solid polymer electrolyte in which sufficient ion conductivity can be obtained not only at ordinary temperature but also in a low temperature range within the above range of lithium ion content, and obtained using the electrolyte composition Thus, sufficient charge and discharge performance can be obtained.

〔その他の成分〕
本開示の電解質組成物は、効果を損なわない限り、目的に応じてその他の成分を含むことができる。
その他の成分としては、高分子固体電解質の架橋性能を改良するための架橋剤などが挙げられる。
なお、電解質組成物の製造方法については後述する。
[Other ingredients]
The electrolyte composition of the present disclosure can contain other components depending on the purpose, as long as the effects are not impaired.
Other components include a crosslinking agent for improving the crosslinking performance of the solid polymer electrolyte.
In addition, the manufacturing method of electrolyte composition is mentioned later.

[高分子固体電解質]
本開示の高分子固体電解質は、既述の本開示の電解質組成物、即ち、特定高分子化合物と、前記特定高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、リチウム塩と、を含む電解質組成物の硬化物である。
高分子固体電解質の形成に用いる電解質組成物は、既述の通りであり、好ましい例も同様である。電解質組成物を用いた高分子固体電解質の製造方法については後述する。
[Polymer solid electrolyte]
The solid polymer electrolyte of the present disclosure comprises the electrolyte composition of the present disclosure described above, that is, a specific polymer compound, and 0.5 parts by mass to 10 parts by mass of lithium per 100 parts by mass of the specific polymer compound. It is a hardened | cured material of the electrolyte composition containing an inorganic oxide and lithium salt.
The electrolyte composition used to form the solid polymer electrolyte is as described above, and preferred examples are also the same. The method for producing a solid polymer electrolyte using the electrolyte composition will be described later.

〔固体電解質形成用組成物の製造方法〕
本開示の固体電解質形成用組成物の製造方法は、アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記イオン伝導性高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウムイオンを添加し、混合して混合物を得る工程(工程A)と、得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部の既述の化合物群から選択される少なくとも1種のリチウム含有無機酸化物と、を混合する工程(工程B)と、を含む。
[Method of producing composition for forming solid electrolyte]
The method for producing a composition for forming a solid electrolyte according to the present disclosure comprises 0.01 part by mass to 1 part by mass with respect to a polyether polymer compound containing an alkylene oxide repeating unit and 100 parts by mass of the ion conductive polymer compound. The step of adding lithium ion of (iv) and mixing to obtain a mixture (step A), and 0.5 parts by mass to 10 parts by mass of the obtained mixture to 100 parts by mass of the polyether polymer compound contained in the mixture Mixing (part B) with at least one lithium-containing inorganic oxide selected from the compound group described above in parts by mass.

(工程A)
工程Aでは、高分子固体電解質の基材となる特定高分子化合物にリチウム塩を含有させ、均一に分散するまで十分に撹拌、混合して、リチウム塩を含む高分子化合物の混合物を得る。撹拌装置は、公知の装置を適宜使用することができる。
ここで、リチウム塩を添加する特定高分子化合物は、固体状態でもよく、溶媒、高分子化合物の前駆体である低分子成分等を含むゲル状、又は粘稠な液状であってもよい
。 特定高分子化合物とリチウム塩とを含む混合物が、高分子固体電解質の基材となる。
(Step A)
In step A, a lithium salt is contained in a specific polymer compound as a base of the polymer solid electrolyte, and sufficiently stirred and mixed until uniformly dispersed, to obtain a mixture of polymer compounds containing a lithium salt. A well-known apparatus can be suitably used for a stirring apparatus.
Here, the specific polymer compound to which the lithium salt is added may be in a solid state, or may be in the form of a gel or a viscous liquid containing a solvent, a low molecular component which is a precursor of a polymer compound, and the like. A mixture containing the specific polymer compound and the lithium salt is a base of the solid polymer electrolyte.

(工程B)
工程Bでは、工程Aで得られた混合物に、混合物に含まれる特定高分子化合物100質量部に対し、0.5質量部〜10質量部の既述のリチウム含有無機酸化物を混合する。先にリチウム塩を含有させた混合物に、リチウム含有無機化合物を添加することで、均一な系を得易くなる。
得られた混合物を撹拌しながら、LLZOなどのリチウム含有無機化合物を徐々に添加し、均一になるまで撹拌を継続する。リチウム含有無機化合物は、そのまま添加してもよく、可溶とするための溶媒を添加してから、添加した溶媒を乾燥し、除去してもよい。
なお、必要に応じて用いられるその他の成分は、工程A及び工程Bのいずれかにおいて、成分の物性に応じて含有させればよい。
このようにして、本開示の電解質組成物を得ることができる。工程Bを経た電解質組成物は、既述のように、溶媒などの低分子量成分等、その他の成分をさらに含んでいてもよい。
(Step B)
In step B, 0.5 parts by mass to 10 parts by mass of the lithium-containing inorganic oxide described above is mixed with the mixture obtained in step A with respect to 100 parts by mass of the specific polymer compound contained in the mixture. By adding the lithium-containing inorganic compound to the mixture previously containing the lithium salt, it becomes easy to obtain a uniform system.
While stirring the obtained mixture, a lithium-containing inorganic compound such as LLZO is gradually added, and the stirring is continued until it becomes uniform. The lithium-containing inorganic compound may be added as it is, or after adding a solvent for making it soluble, the added solvent may be dried and removed.
In addition, what is necessary is just to include the other component used as needed according to the physical property of a component in either of the process A and the process B.
Thus, the electrolyte composition of the present disclosure can be obtained. The electrolyte composition subjected to step B may further contain other components such as a low molecular weight component such as a solvent as described above.

〔高分子固体電解質の製造方法〕
本開示の高分子固体電解質の製造方法は、既述の特定高分子化合物と、特定高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウム塩を添加し、混合して混合物を得る工程(工程A)と、得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部の既述のリチウム含有無機酸化物と、を混合して固体電解質形成用組成物を得る工程(工程B)と、得られた固体電解質形成用組成物に含まれる液状成分を除去して固体電解質形成用組成物を硬化させ、高分子固体電解質を得る工程(工程C)と、を含む。
工程A及び工程Bは、既述の本開示の固体電解質形成用組成物の製造方法における工程A及び工程Bと同様である。
[Manufacturing method of solid polymer electrolyte]
In the method for producing a solid polymer electrolyte according to the present disclosure, 0.01 mass part to 1 mass part of lithium salt is added and mixed with 100 mass parts of the specific polymer compound described above and 100 mass parts of the specific polymer compound. Step of obtaining a mixture (Step A), and 0.5 parts by mass to 10 parts by mass of the lithium-containing inorganic oxide described above with respect to 100 parts by mass of the polyether-based polymer compound contained in the mixture. (Step B) to obtain a composition for forming a solid electrolyte by mixing substances, and removing the liquid component contained in the obtained composition for forming a solid electrolyte to cure the composition for forming a solid electrolyte, And (e) obtaining a solid polymer electrolyte (step C).
The steps A and B are the same as the steps A and B in the method for producing a composition for forming a solid electrolyte of the present disclosure described above.

(工程C)
工程Cは、得られた固体電解質形成用組成物に含まれる液状成分を除去して高分子固体電解質形成用組成物を硬化させ、高分子固体電解質を得る工程である。
特定高分子化合物が直鎖状の高分子化合物であり、液状或いはゲル状の形態である場合には、加熱乾燥、真空乾燥などにより含まれる溶媒を除去することで、直鎖状高分子化合物が絡まり合って固体状になる過程で、分子の絡まってできた微細な空隙にLLZOなどのリチウム含有無機化合物が固定化され、複合体が形成される。
また、硬化に際しては、架橋剤を添加して、アルキレンオキシドに含まれる部分構造同士を架橋させて硬化させることもできる。この場合、架橋剤による架橋構造の形成のためにエネルギーを付与することで高分子固体電解質内に架橋構造が形成され、架橋構造により形成された三次元空間にリチウム含有無機化合物が固定化され、複合化される。
活性光線の照射は、酸素による硬化阻害を抑制するため、アルゴンガスなどの不活性ガス存在下で行うことが好ましい。
(Step C)
Step C is a step of removing the liquid component contained in the obtained composition for forming a solid electrolyte and curing the composition for forming a solid polymer electrolyte to obtain a solid polymer electrolyte.
When the specific polymer compound is a linear polymer compound and is in a liquid or gel form, the contained solvent is removed by heat drying, vacuum drying, etc. to remove the linear polymer compound. In the process of becoming entangled and becoming solid, a lithium-containing inorganic compound such as LLZO is immobilized in the microvoids formed by molecular entanglement to form a complex.
In addition, at the time of curing, a crosslinking agent may be added to crosslink and cure partial structures contained in the alkylene oxide. In this case, by applying energy to form a crosslinked structure with a crosslinking agent, a crosslinked structure is formed in the solid polymer electrolyte, and the lithium-containing inorganic compound is immobilized in a three-dimensional space formed by the crosslinked structure, It is compounded.
The irradiation with actinic rays is preferably performed in the presence of an inert gas such as argon gas in order to suppress the inhibition of curing by oxygen.

工程Cにおいては、電解質組成物がさらに架橋剤を含み、高分子固体電解質を得る工程にて溶媒などの液状成分を除去した後、さらに、活性光線を照射する工程を含むことができる。
例えば、高分子化合物と架橋剤とを含む電解質組成物を成形した後、溶媒を除去し、その後、紫外線などの活性光線を照射して架橋構造を形成させることにより、リチウム含有無機化合物と複合化され、架橋構造が内在する高強度の高分子固体電解質を得ることができる。
活性光線としては、用いる架橋剤を活性化させ、架橋構造を形成させうるエネルギーを付与しうる限り、特に制限はない。活性光線としては、例えば、紫外線(UV)、可視光などが挙げられる。活性光線の波長としては、例えば、200nm〜600nmであることが好ましい。
活性光線の照射に用いられる光源としては、水銀ランプ、ガスレーザ、固体レーザなどが挙げられ、これらを目的に応じて使用することができる。
In the step C, the electrolyte composition may further include a crosslinking agent, and after removing liquid components such as a solvent in the step of obtaining a solid polymer electrolyte, the step of irradiating an actinic ray may further be included.
For example, after forming an electrolyte composition containing a polymer compound and a crosslinking agent, the solvent is removed, and then an active ray such as ultraviolet light is irradiated to form a crosslinked structure, thereby forming a composite with the lithium-containing inorganic compound. It is possible to obtain a high-strength solid polymer electrolyte in which a crosslinked structure is embedded.
The actinic ray is not particularly limited as long as it can activate the crosslinking agent to be used and provide energy capable of forming a crosslinked structure. Examples of actinic radiation include ultraviolet (UV) light and visible light. The wavelength of the actinic light is preferably, for example, 200 nm to 600 nm.
As a light source used for irradiation of actinic rays, a mercury lamp, a gas laser, a solid state laser, etc. may be mentioned, and these can be used according to the purpose.

[全固体電池]
本開示の全固体電池は、既述の本開示の電解質組成物の硬化物である高分子固体電解質からなる電解質層を備える。
既述の本開示の高分子固体電解質からなる電解質層を、正極及び負極と貼り合わせ、3層構造とすることで、目的とする本開示の全固体電池を得ることができる。
[All solid state battery]
The all-solid-state battery of the present disclosure includes an electrolyte layer made of a solid polymer electrolyte which is a cured product of the above-described electrolyte composition of the present disclosure.
By bonding an electrolyte layer composed of the solid polymer electrolyte of the present disclosure as described above to a positive electrode and a negative electrode to form a three-layer structure, it is possible to obtain the intended all-solid battery of the present disclosure.

以下、実施例を挙げて詳細に説明するが、以下の実施例は一態様を挙げたに過ぎず、これに限定されない。   Hereinafter, the present invention will be described in detail by way of examples, but the following examples merely exemplify one aspect and are not limited thereto.

(実施例1、比較例1)
アルゴンガス雰囲気のグローブボックス内で、エレクセル(登録商標)TA−210(エチレンオキシド/プロピレンオキシドの質量比8:2の共重合体、第一工業製薬(株)製)に、リチウムイオン源であるLiTFSAを、[Li]/[O]比が0.1になる含有量で添加し、溶解させ、混合物を得た(工程A)。
得られた混合物に対し、リチウム含有無機化合物であるLLZOを、TA−210に対して、1.42質量%となる量で加え、溶解させて、液状を呈する実施例1の組成物を得た(工程B)。また、LLZOを添加しない試料を作製し、比較例1の組成物とした。
(Example 1, Comparative Example 1)
In the glove box under an argon gas atmosphere, LiTFSA, which is a lithium ion source, for Eleccel (registered trademark) TA-210 (copolymer having an ethylene oxide / propylene oxide weight ratio of 8: 2, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Were added at a content such that the [Li] / [O] ratio was 0.1 and dissolved to obtain a mixture (Step A).
The lithium-containing inorganic compound LLZO was added to the obtained mixture in an amount of 1.42% by mass with respect to TA-210, and was dissolved to obtain the composition of Example 1 exhibiting a liquid state. (Step B). In addition, a sample to which LLZO was not added was prepared and used as the composition of Comparative Example 1.

それぞれの溶液に、架橋剤である2,2,−ジメトキシアセトフェノン(DMPA) 0.01質量%及びLLZOを溶解させ易くする溶剤であるアセトニトリルを適量加え、12時間以上真空乾燥し、溶液から溶媒を除去した。
2枚のガラス板と厚さ0.5[mm]のテフロン(登録商標)スペーサを用いて、乾燥した溶液を、ガラス板の上に流しだし、密閉した状態で紫外線照射を5分間行い、厚さ0.5mmの高分子固体電解質を作製した。
To each solution is added 0.01 mass% of the crosslinker 2, 2- dimethoxyacetophenone (DMPA) and a suitable amount of acetonitrile, which is a solvent that facilitates dissolution of LLZO, vacuum-dried for 12 hours or more, and the solvent is removed from solution Removed.
Using two glass plates and a Teflon (registered trademark) spacer with a thickness of 0.5 [mm], the dried solution is poured out onto the glass plate, and UV irradiation is performed for 5 minutes in a sealed state. A 0.5 mm thick solid polymer electrolyte was prepared.

(高分子固体電解質の評価)
得られた実施例1及び比較例1の各高分子固体電解質を、直径12mmにくり抜いて試料を作製し、イオン伝導度及びガラス転移温度を下記条件で測定した。
(1.イオン伝導度の測定)
ACインピーダンス法により、下記装置を用い、下記条件にて測定した。結果を図1のグラフに示す。
測定は、Bio−Logic社製、マルチポテンショスタットVSP測定装置を用いて実施した。
試料である高分子固体電解質を80℃に昇温し、80℃から降温させながら、90分以上の温度安定化の後に、各温度において印加電圧:200kHz〜50mHz、印加電圧:10mVとし、交流インピーダンス測定を行った。
(Evaluation of solid polymer electrolytes)
Each of the obtained solid polymer electrolytes of Example 1 and Comparative Example 1 was hollowed out to a diameter of 12 mm to prepare a sample, and the ion conductivity and the glass transition temperature were measured under the following conditions.
(1. Measurement of ion conductivity)
It measured on the following conditions using the following apparatus by AC impedance method. The results are shown in the graph of FIG.
The measurement was performed using Bio-Logic's multipotentiostat VSP measurement apparatus.
The temperature is stabilized for 90 minutes or more while raising the temperature to 80 ° C. and lowering the temperature from 80 ° C., and then the applied voltage: 200 kHz to 50 mHz, the applied voltage: 10 mV, and alternating current impedance It measured.

(2.ガラス転移温度の測定)
示差走査熱量計(DSC)であるリガク社製、Thermoevo2示差走査熱量計を用い、下記条件にて測定した。結果を図2のグラフに示す。
室温から−100℃まで、10℃min−1の降温レートにて、試料である高分子固体電解質を冷却した後、10℃min−1の昇温レートにて温度を上げながら、DSC測定を実施した。熱容量の変化からガラス転移温度を算出した。
(2. Measurement of glass transition temperature)
The differential scanning calorimeter (DSC) was measured under the following conditions using a Thermoevo 2 differential scanning calorimeter manufactured by Rigaku Corporation. The results are shown in the graph of FIG.
From room temperature to -100 ° C., at a cooling rate of 10 ° C. min -1, after cooling the polymer solid electrolyte as a sample, while raising the temperature at Atsushi Nobori rate of 10 ° C. min -1, implementing the DSC measurement did. The glass transition temperature was calculated from the change in heat capacity.

図1は、高分子固体電解質のイオン伝導度の温度依存性を示すグラフである。
図1に明らかなように、LLZOを1.42質量%複合した実施例1の高分子固体電解質は、LLZOを複合していない比較例1の高分子固体電解質と比較して、60℃付近では、殆ど差異がないが、10℃以下の低温条件では、実施例1の高分子固体電解質のイオン伝導度が、比較例1の高分子固体電解質に比較して、より高いことがわかった。このことから、実施例1の高分子固体電解質では、低温におけるイオン伝導度の低下が抑制されていることがわかる。
FIG. 1 is a graph showing the temperature dependence of the ionic conductivity of a solid polymer electrolyte.
As apparent from FIG. 1, the solid polymer electrolyte of Example 1 in which 1.42% by mass of LLZO is complexed is around 60 ° C. in comparison with the solid polymer electrolyte of Comparative Example 1 in which LLZO is not complexed. It was found that the ion conductivity of the solid polymer electrolyte of Example 1 was higher than that of the solid polymer electrolyte of Comparative Example 1 under low temperature conditions of 10 ° C. or less, although there was almost no difference. From this, it can be seen that in the solid polymer electrolyte of Example 1, the decrease in ion conductivity at low temperatures is suppressed.

図2は、電解質のDSC測定の結果を示すグラフである。
図2に示すように、実施例1の高分子固体電解質は、LLZOを含まない比較例1の高分子固体電解質に対し、ガラス転移点が10K以上低下し、ガラス転移における熱容量変化量の増大がみられた。
これらの電気的及び熱的性質の改良は、複合したLLZOと特定高分子化合物のセグメント間の相互作用に起因していると考えられる。即ち、特定高分子化合物のセグメントとセグメントの間にLLZO等のリチウム含有無機化合物が入り込むことで、誘引力低下を伴う相互作用が発現し、高分子の疑似的架橋点やセグメント間の距離を押し広げることにより、高分子セグメントの運動性が向上し、リチウムイオン伝導性が向上したと推察される。
FIG. 2 is a graph showing the results of DSC measurement of the electrolyte.
As shown in FIG. 2, in the solid polymer electrolyte of Example 1, the glass transition temperature is lowered by 10 K or more relative to the solid polymer electrolyte of Comparative Example 1 not containing LLZO, and the increase in the heat capacity change amount in the glass transition is It was seen.
These improvements in the electrical and thermal properties are considered to be due to the interaction between the conjugated LLZO and the segment of the specific polymer compound. That is, when a lithium-containing inorganic compound such as LLZO enters between the segments of the specific polymer compound, an interaction accompanied by a decrease in attraction is developed, and the pseudo crosslinking point of the polymer and the distance between the segments are pushed. It is inferred that the mobility of the polymer segment is improved and the lithium ion conductivity is improved by widening.

Claims (10)

アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、
前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、
リチウム塩と、を含む固体電解質形成用組成物。
A polyether polymer compound containing an alkylene oxide repeating unit,
0.5 parts by mass to 10 parts by mass of lithium-containing inorganic oxide with respect to 100 parts by mass of the polyether polymer compound,
A composition for forming a solid electrolyte, comprising: a lithium salt.
前記リチウム含有無機酸化物が、下記化合物群より選択される少なくとも1種を含む請求項1に記載の固体電解質形成用組成物。
(化合物群)
LiLaZr12
Lix1La2/3−X1TiO(0≦x1≦1/6)
Lix2(Al又はGa)y2(Ti又はGe)z2Si(1≦x2≦3、0≦y2≦1、0≦z2≦2、0≦a≦1、1≦m≦7、3≦n≦13)
LiAlLaZr12
The composition for forming a solid electrolyte according to claim 1, wherein the lithium-containing inorganic oxide contains at least one selected from the following compound group.
(Compound group)
Li 7 La 3 Zr 2 O 12
Li x1 La 2 / 3-X1 TiO 3 (0 ≦ x1 ≦ 1/6)
Li x 2 (Al or Ga) y 2 (Ti or Ge) z 2 Si a P m O n (1 ≦ x2 ≦ 3, 0 ≦ y2 ≦ 1, 0 ≦ z2 ≦ 2, 0 ≦ a ≦ 1, 1 ≦ m ≦ 7 , 3 ≦ n ≦ 13)
Li 7 Al 3 La 3 Zr 2 O 12
前記ポリエーテル系高分子化合物が、エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選択される1種以上の繰り返し単位を主鎖又は側鎖に含む、請求項1又は請求項2に記載の固体電解質形成用組成物。   The solid electrolyte according to claim 1 or 2, wherein the polyether polymer compound contains one or more repeating units selected from ethylene oxide, propylene oxide and butylene oxide in the main chain or side chain. Composition. 前記リチウム塩が、LiSCN、LiN(CN)、LiClO、LiBF、LiAsF、LiPF、LiCFSO、Li(FSON、Li(CFSOC、LiN(SOCF、LiN(SOCFCF、LiSbF、LiPF(CFCF、LiPF(C、LiPF(CF及びLiB(Cから選択される少なくとも1種のリチウム塩を含む請求項1〜請求項3のいずれか1項に記載の固体電解質形成用組成物。 The lithium salt is LiSCN, LiN (CN) 2 , LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , Li (FSO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, LiN ( SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 and LiB The composition for forming a solid electrolyte according to any one of claims 1 to 3, comprising at least one lithium salt selected from (C 2 O 4 ) 2 . 前記ポリエーテル系高分子化合物100質量部に対するリチウム塩の含有量が、0.01質量部〜1質量部の範囲である請求項1〜請求項4のいずれか1項に記載の固体電解質形成用組成物。   Content of lithium salt with respect to 100 mass parts of said polyether type polymer compounds is the range of 0.01 mass part-1 mass part, The solid electrolyte formation of any one of Claims 1-4 Composition. アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、リチウム塩と、を含む固体電解質形成用組成物の硬化物である高分子固体電解質。   A polyether polymer compound containing an alkylene oxide repeating unit, and 0.5 parts by mass to 10 parts by mass of a lithium-containing inorganic oxide with respect to 100 parts by mass of the polyether polymer compound, and a lithium salt A solid polymer electrolyte which is a cured product of a composition for forming a solid electrolyte. アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記ポリエーテル系高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウム塩を添加し、混合して混合物を得る工程と、
得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、を混合する工程と、
を含む固体電解質形成用組成物の製造方法。
A step of adding and mixing 0.01 parts by mass to 1 part by mass of lithium salt with respect to 100 parts by mass of the polyether-based polymer compound containing an alkylene oxide repeating unit and 100 parts by mass of the polyether-based polymer compound When,
Mixing 0.5 parts by mass to 10 parts by mass of a lithium-containing inorganic oxide with respect to 100 parts by mass of the polyether-based polymer compound contained in the mixture;
A method for producing a composition for forming a solid electrolyte, comprising:
アルキレンオキシド繰り返し単位を含むポリエーテル系高分子化合物と、前記ポリエーテル系高分子化合物100質量部に対し、0.01質量部〜1質量部のリチウム塩を添加し、混合して混合物を得る工程と、
得られた混合物に、混合物に含まれる前記ポリエーテル系高分子化合物100質量部に対し、0.5質量部〜10質量部のリチウム含有無機酸化物と、を混合して固体電解質形成用組成物を得る工程と、
得られた固体電解質形成用組成物に含まれる液状成分を除去して固体電解質形成用組成物を硬化させ、高分子固体電解質を得る工程と、を含む高分子固体電解質の製造方法。
A step of adding and mixing 0.01 parts by mass to 1 part by mass of lithium salt with respect to 100 parts by mass of the polyether-based polymer compound containing an alkylene oxide repeating unit and 100 parts by mass of the polyether-based polymer compound When,
0.5 to 10 parts by mass of lithium-containing inorganic oxide is mixed with 100 parts by mass of the polyether polymer compound contained in the mixture to the obtained mixture to prepare a composition for forming a solid electrolyte Obtaining
And D. removing the liquid component contained in the obtained composition for forming a solid electrolyte and curing the composition for forming a solid electrolyte to obtain a solid polymer electrolyte.
前記固体電解質形成用組成物がさらに架橋剤を含み、
前記高分子固体電解質を得る工程が、前記液状成分を除去した後、さらに、活性光線を照射する工程を含む請求項8に記載の高分子固体電解質の製造方法。
The composition for forming a solid electrolyte further comprises a crosslinking agent,
The method for producing a solid polymer electrolyte according to claim 8, wherein the step of obtaining the solid polymer electrolyte further comprises a step of irradiating an actinic ray after removing the liquid component.
請求項1〜請求項5のいずれか1項に記載の固体電解質形成用組成物の硬化物である高分子固体電解質からなる電解質層を備える全固体電池。   The all-solid-state battery provided with the electrolyte layer which consists of a solid polymer electrolyte which is a hardened | cured material of the composition for solid electrolyte formation of any one of Claims 1-5.
JP2017232870A 2017-12-04 2017-12-04 Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery Pending JP2019102301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232870A JP2019102301A (en) 2017-12-04 2017-12-04 Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232870A JP2019102301A (en) 2017-12-04 2017-12-04 Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery

Publications (1)

Publication Number Publication Date
JP2019102301A true JP2019102301A (en) 2019-06-24

Family

ID=66977071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232870A Pending JP2019102301A (en) 2017-12-04 2017-12-04 Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery

Country Status (1)

Country Link
JP (1) JP2019102301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029646A (en) * 2019-11-29 2020-04-17 湖北万润新能源科技发展有限公司 Preparation method of inorganic oxide-polymer composite electrolyte membrane
WO2021080005A1 (en) * 2019-10-25 2021-04-29 日本特殊陶業株式会社 Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
WO2021153593A1 (en) 2020-01-31 2021-08-05 住友化学株式会社 Solid electrolyte-containing layer
WO2021153594A1 (en) 2020-01-31 2021-08-05 住友化学株式会社 Laminate
WO2021200229A1 (en) 2020-03-31 2021-10-07 住友化学株式会社 Solid electrolyte-containing layer
CN113540557A (en) * 2020-04-13 2021-10-22 精工爱普生株式会社 Solid composition and method for producing solid electrolyte molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140052A (en) * 1992-09-08 1994-05-20 Sumitomo Seika Chem Co Ltd Gel-like electrolyte
JP2010192258A (en) * 2009-02-18 2010-09-02 Tdk Corp Solid electrolyte, lithium ion secondary battery, and method of manufacturing solid electrolyte
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140052A (en) * 1992-09-08 1994-05-20 Sumitomo Seika Chem Co Ltd Gel-like electrolyte
JP2010192258A (en) * 2009-02-18 2010-09-02 Tdk Corp Solid electrolyte, lithium ion secondary battery, and method of manufacturing solid electrolyte
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080005A1 (en) * 2019-10-25 2021-04-29 日本特殊陶業株式会社 Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
JPWO2021080005A1 (en) * 2019-10-25 2021-11-18 日本特殊陶業株式会社 Method for Producing Lithium Ion Conductive Solid Electrolyte and Lithium Ion Conductive Solid Electrolyte
CN111029646A (en) * 2019-11-29 2020-04-17 湖北万润新能源科技发展有限公司 Preparation method of inorganic oxide-polymer composite electrolyte membrane
WO2021153593A1 (en) 2020-01-31 2021-08-05 住友化学株式会社 Solid electrolyte-containing layer
WO2021153594A1 (en) 2020-01-31 2021-08-05 住友化学株式会社 Laminate
KR20220132570A (en) 2020-01-31 2022-09-30 스미또모 가가꾸 가부시키가이샤 Solid electrolyte-containing layer
WO2021200229A1 (en) 2020-03-31 2021-10-07 住友化学株式会社 Solid electrolyte-containing layer
KR20220161312A (en) 2020-03-31 2022-12-06 스미또모 가가꾸 가부시키가이샤 layer containing solid electrolyte
CN113540557A (en) * 2020-04-13 2021-10-22 精工爱普生株式会社 Solid composition and method for producing solid electrolyte molded body
CN113540557B (en) * 2020-04-13 2024-04-26 精工爱普生株式会社 Solid composition and method for producing solid electrolyte molded body

Similar Documents

Publication Publication Date Title
JP2019102301A (en) Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery
Wang et al. Siloxane-based polymer electrolytes for solid-state lithium batteries
Wang et al. Structure code for advanced polymer electrolyte in lithium‐ion batteries
Lei et al. Progress and perspective of solid‐state lithium–sulfur batteries
EP3336931B1 (en) Composite electrolyte structure and lithium metal battery including the same
Siyal et al. Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs)
CN107359309B (en) Negative electrode for lithium metal battery and lithium metal battery including the same
Yue et al. All solid-state polymer electrolytes for high-performance lithium ion batteries
Lin et al. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery
Long et al. Polymer electrolytes for lithium polymer batteries
Irfan et al. Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries
US11302458B2 (en) Composite solid electrolytes for rechargeable energy storage devices
CN107394115A (en) Negative pole for lithium metal battery and the lithium metal battery including it
Armand et al. Polymer electrolytes
WO2017030811A1 (en) Hybrid electrolytes with controlled network structures for lithium metal batteries
CN108258175A (en) For lithium-battery and/or the protective layer with improved contact of lithium-battery pack
Zhang et al. In situ generation of a soft–tough asymmetric composite electrolyte for dendrite-free lithium metal batteries
JP2015531144A (en) Hybrid electrolyte
CN106058311A (en) Electrolyte for lithium second battery, and lithium second battery comprising the electrolyte
Nguyen et al. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries
Gowneni et al. Swapping conventional salts with an entrapped lithiated anionic polymer: fast single-ion conduction and electrolyte feasibility in LiFePO 4/Li batteries
Hamrahjoo et al. Poly (poly (ethylene glycol) methyl ether methacrylate-co-acrylonitrile) gel polymer electrolytes for high performance lithium ion batteries: comparing controlled and conventional radical polymerization
KR102085706B1 (en) Polymer electrolyte membrane for lithium ion secondary battery and Method of manufacturing the same
CN110994016A (en) Polymer solid electrolyte and preparation method and application thereof
Wang et al. In-situ constructing of dual bifunctional interfacial layers of garnet-type Li6. 4La3Zr1. 4Ta0. 6O12 solid electrolyte towards long-cycle stability for flexible solid metal lithium batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220322