JP2004344996A - Method for manufacturing optical filter, and optical filter by the same manufacturing method - Google Patents

Method for manufacturing optical filter, and optical filter by the same manufacturing method Download PDF

Info

Publication number
JP2004344996A
JP2004344996A JP2003141705A JP2003141705A JP2004344996A JP 2004344996 A JP2004344996 A JP 2004344996A JP 2003141705 A JP2003141705 A JP 2003141705A JP 2003141705 A JP2003141705 A JP 2003141705A JP 2004344996 A JP2004344996 A JP 2004344996A
Authority
JP
Japan
Prior art keywords
optical filter
grinding
grinding wheel
curvature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003141705A
Other languages
Japanese (ja)
Other versions
JP3931332B2 (en
Inventor
Hideshi Saito
秀史 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2003141705A priority Critical patent/JP3931332B2/en
Publication of JP2004344996A publication Critical patent/JP2004344996A/en
Application granted granted Critical
Publication of JP3931332B2 publication Critical patent/JP3931332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical filter of high quality in which optical foreign matter generated at the optical filter is extremely restricted, and also to provide a manufacturing method of high precision and at low manufacturing cost. <P>SOLUTION: In a first drive zone 2, holding parts 21a and 21b, and a profiling model 22 on the outer side of the holding part 21a are disposed on a first drive shaft 20. In a second drive zone 3, a grinding wheel 31 and a profiling roller 32 adjoining the grinding wheel are provided on a second drive shaft 30. Gears 33 and 33 to provide rotation driving to the grinding wheel 31 are coaxially disposed. The grinding wheel 31 in the second drive zone is rotated at high speed (3700rpm, for example) in a direction of an arrow Y1 to move in a direction of an arrow X1, for example, for grinding a workpiece along the outer circumference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は単数または複数の光学板からなる光学フィルタの製造方法に関するものであり、板状またはブロック状の光学フィルタの稜を曲率面取りする製造方法に関するものである。
【0002】
【従来の技術】
ビデオカメラやデジタルスチルカメラ等の撮像装置には、光学ローパスフィルタ等の各種光学フィルタが用いられ、赤外線等不要な波長光を除去したり、光学的疑似信号を濾波する役割を担っている。このような光学フィルタの構成は、例えば光学ローパスフィルタを例にとると、水晶複屈折板や赤外線カットガラス板等を所望の濾波特性に応じて適宜組み合わせた構成のものが多用されているが、近年においては用途によって単板に光学干渉膜を形成した構成も用いられている。このような光学フィルタの製造は、複数板の組み合わせ構成の場合、従来は組み合わせる光学板を小割りした状態で接着剤により個々に貼り合わせていた。
【0003】
ところがこのような小割りされた光学フィルタはその切断された稜部分が鋭利な状態であり、またこの稜部分は微視的に見て、割れあるいは欠けが多数箇所で見受けられる状態であることが多かった。このような状態は光学板の一部がさらに欠けたり、割れたりする可能性が高く、割れ片あるいは欠け片が光学板の主面すなわち光学情報透過面に付着し、光学的な異物となることがあった。このような異物はCCD等の撮像素子に捕捉され、例えばビデオ出力した際の画質悪化の原因となっていた。
【0004】
また、稜部の鋭利な状態は他の部材を切削することがあり、このような切削くずが光学的な異物を発生させることがあった。例えば、光学フィルタは樹脂ケースに収納梱包され顧客に納品されることが多いが、収納ケース内で遊動することにより前記稜部分で樹脂ケース内壁を切削し、この切削くずが光学板の主面に付着することがあった。
【0005】
このような割れ片や欠け片あるいは切削くずのようなダストによる不具合をなくすために、固体撮像装置封止用透明板に側面を鏡面仕上げする構成が実開平5−43557号に開示されている。実開平5−43557号は光学フィルタではないが、棒状のガラスをスライス(切り出し)し、次にダイシングし、その後透明板の側面を荒ズリにより寸法出しをする。次いで、側面をバフ研磨により鏡面仕上げするとともに、稜をR面にし、その後、ガラス面の上下両面を光学研磨する。旨が開示されている。
【0006】
稜をR面にすることにより、透明板自体が欠けたり、あるいは透明板を収納するケースにもダストが生じず、歩留まりの向上した透明板を得ることができる。しかしながら上述の製法、すなわち側面をバフ研磨することにより稜をR面にするという製法は稜部分を研磨部材に接触させるため透明板を斜めに保持して研磨を進める必要があり、また透明板全体の稜を研磨するには研磨対象となる稜部分を移動させなければならず、全体として研磨作業が手作業を多く必要としたり、あるいは透明板の保持等において複雑な構成が必要となっていた。
【0007】
特に本願の対象となる光学フィルタは、できるだけ広い面積でかつ高精度で所定の光情報を透過させる必要があり、稜の面取り量について細かな制御が必要であるが、上記製造方法では製造コストが高く、R面形状加工において形状バラツキが大きくなり、高精度の製造には適していなかった。
【0008】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたもので、光学フィルタに発生する光学的異物を極力抑制した高品質な光学フィルタを得るとともに、安価な製造コストによる精度の高い製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明は、光学フィルタに形成する曲率面取りに対応した曲率面を有する研削ホイールにより、光学フィルタの端面を研削するものであり、次の製造方法により解決できる。
【0010】
すなわち、請求項1に示すように、単数または複数の光学板からなる光学フィルタであって、当該光学フィルタ側面間に形成される稜と側面と主面間に形成される稜のいずれか一方あるいは両者を曲率面取りした光学フィルタの製造方法であって、光学フィルタの主面を固定するとともに、固定した状態で主面を平面的に回転させる保持回転手段と、円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転してなる高速回転研削手段を有し、前記固定された光学フィルタを平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させることにより、光学フィルタの稜を曲率面取りしたことを特徴とする光学フィルタの製造方法である。
【0011】
本製造方法で用いる研削ホイールは、円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する構成であり、より詳しくは、研削面は、底面と、その両端に形成された側面と、底面と側面間にある曲率面とからなる構成である。この底面と側面並びに曲率面の構成は被研削部材である光学フィルタの端面(側面)形状に対応するもので、この形状が最終的に光学フィルタに転写されることになる。
【0012】
請求項1によれば、固定された光学フィルタをその板面の中心を回転軸として平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させることにより、光学フィルタの端面形状を研削加工するとともに、光学フィルタの稜を前記研削面の形状に対応した端面形状に曲率面取りすることができる。ここで得られる曲率面取りは研削ホイールの研削面の形状で決定できるので、所望の寸法、形状にて加工が行えるとともに、従来のように光学フィルタ(ワーク)に対する加工対象領域を変化させるために、保持位置を切り換える等複雑な装置構成を必要としないので、製造に係るコストを低減できる。
【0013】
また請求項2に示すように、単数または複数の光学板からなる光学フィルタであって、当該光学フィルタ側面間に形成される稜と側面と主面間に形成される稜のいずれか一方あるいは両者を曲率面取りした光学フィルタの製造方法であって、光学フィルタの主面を固定するとともに、固定した状態で主面を平面的に回転させる第1の駆動軸からなる保持回転手段と、円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転する第2の駆動軸からなる高速回転研削手段を有し、前記第1の駆動軸に前記光学フィルタの所望の外周形状に対応した外周形状を有する倣いモデルを設けるとともに、当該倣いモデルに対応して接触し、自由回転する倣いローラを第2の駆動軸側に設けた外形形状決定手段を有し、前記固定された光学フィルタを平面的に回転させながら、前記倣いモデルと倣いローラに押圧力をかけることにより、光学フィルタの端面を前記高速回転する研削ホイールの研削面に接触させ、光学フィルタの稜を曲率面取りしたことを特徴とする光学フィルタの製造方法であってもよい。
【0014】
上記製造方法によれば、光学フィルタ(ワーク)の主面を保持し、当該主面の中心部分を回転軸として平面的に回転駆動させる第1の駆動軸に対し、前記光学フィルタの所望の外周形状に対応した外周形状を有する倣いモデルを設けるとともに、当該倣いモデルに対応して接触し、自由回転する倣いローラを第2の駆動軸側に設けた外形形状決定手段を有しているので、光学フィルタと倣いモデルは同軸上にあり、協同して回転動作を行う。また、研削ホイールは研削時高速回転し、これに対して倣いローラは駆動が与えられない自由回転構成であるが、研削ホイールと外形サイズがほぼ等しい倣いローラが倣いモデルに接触して動作するために、光学フィルタに対する研削ホイールの研削動作が規制され、倣いモデルに対応した外形加工を行うことができる。また上述のとおり光学フィルタの稜についても、前記研削面の曲率面により所望の曲率面取りを行うことができる。
【0015】
本発明はさらに請求項3に示すように、請求項1または請求項2記載の光学フィルタの製造方法において、前記研削ホイールの研削面を光学フィルタの端面よりも大きくし、前記固定された光学フィルタを平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させるとともに、光学フィルタの端面に対し前記研削面を幅方向に往復動作させることにより、光学フィルタの稜を曲率面取りしてもよい。
【0016】
光学フィルタ端面の研削は、当該光学フィルタを高速回転する前記研削面の底面と曲率面の形成された範囲で幅方向に往復動作させるが、その方法としては、例えば、光学フィルタの固定される第1の駆動軸を固定軸とし、研削ホイールを有する第2の駆動軸を駆動軸方向に所定の移動幅(研削面の範囲)で往復運動させ、曲率面取り加工を行ってもよい。この場合、光学フィルタを挟持固定した第1の駆動軸に無用な動作を行わせしめないので、固定状態が微小変位することが無く安定した加工が行える。また逆に第2の駆動軸を固定軸とし、第1の駆動軸を可動構成にしてもよいし、両方の軸を動作させる構成としてもよい。
【0017】
光学フィルタは要求される光学特性により、その厚さが変化することがある。例えば周知のとおり、光学複屈折板においてはその厚さが光分離幅を決めるパラメーターとなっているため、仕様によってその厚さが異なる。このような場合、研削ホイールの研削面の幅を光学フィルタの端面(側面)すなわち厚さより大きくすることにより、加工対象となる光学フィルタの厚さが変化しても柔軟にこれに対応することができる。また、光学フィルタの端面を前記研削面の底面と曲率面を幅方向に往復動作させることにより、研削面の底面において、同じ部位のみが研削に用いられることを防止するとともに、効率よく曲率面への接触を行わしめることができ、研削ホイールの耐久性の向上並びに高効率の製造を行うことができる。
【0018】
また、請求項4は請求項1または請求項2または請求項3記載の光学フィルタの製造方法において、円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転する第2の駆動軸からなる高速回転研削手段を有し、前記研削ホイールの研削面は、底面と、その両端に形成された側面と、底面と側面間にある曲率面とからなり、当該曲率面は側面側より底面側が長く形成されており、前記固定された光学フィルタを平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させることにより、光学フィルタの稜を曲率面取りしたことを特徴としている。
【0019】
光学フィルタは光学情報の透過する主面を可能な限り広く使用するよう構成することが好ましい。本構成はこのような要求に対応するものであり、曲率面は側面側より底面側が長く形成されている研削面を有する研削ホイールにより曲率面取り加工を行うことにより、主面の加工量を小さく、側面の加工量を大きく取ることができる。
【0020】
さらに請求項5は、請求項1乃至請求項4のいずれかに記載の製造方法を実行後、光学フィルタをエッチング液に浸漬することにより曲率研削面の加工面を安定化させたことを特徴としている。
【0021】
光学フィルタの曲率面取り領域は、加工効率を低くすればその研削面の表面荒さを良好にすることは可能であるが、製造効率等の実用面を考慮するとどうしても研削面の表面荒さを小さくすることが困難であり、この部位において研削面のカケが発生することがあった。このような場合に、例えばフッ化アンモニウム溶液によるウェットエッチング処理を施すことにより、機械加工による加工変質層を除去でき、光学的異物となる光学フィルタ構成部材の割れや欠けを防止することができる。
【0022】
請求項6は請求項1乃至請求項5のいずれかに記載の製造方法により得られた曲率面取りされた光学フィルタであり、このような光学フィルタは曲率面取りが高精度に形成されることにより、割れ、欠けに伴う不具合のない、高品質な光学特性を有するとともに、コスト安の光学フィルタを得ることができる。
【0023】
【発明の実施の形態】
本発明による実施の形態について、光学ローパスフィルタの製造方法を例にとり図面を参照して説明する。図1は本発明による実施の形態に係る装置構成を示す模式図であり、図2は図1において光学フィルタ保持部分を示す部分斜視図、図3は研削例を示す模式図である。
【0024】
本実施の形態による光学ローパスフィルタは、図4(a)に示すように水晶複屈折板に所定のコーティング膜を設けた単板構成であったり、あるいは図4(b)に示すように、例えば水晶複屈折板1と1/4波長板2と水晶複屈折板3とを重ね合わせた複数板構成である。水晶複屈折板は周知のとおり、水晶の複屈折効果により入射光を常光線と異常光線に光分離して出射光とするもので、光分離方向、分離幅は所定のパラメータにより適宜調整することができる。
【0025】
単板構成の光学ローパスフィルタは比較的シンプルな構成であるが、複数板構成の場合は、複数の光分離を組み合わせることになる。例えば、水晶複屈折板1aと1/4波長板1bと水晶複屈折板1cとを重ね合わせた複数板構成において、水晶複屈折板1は例えば水平方向に光線分離するよう設定されており、入射した光を水晶の複屈折効果により水平方向に分離する機能を有する。また水晶複屈折板1aの光入射面(主面)には、光反射防止コートが形成されている。当該光反射防止コートは詳細図示していないが、酸化金属膜等からなる誘電体薄膜の多層形成することにより得ることができる。水晶複屈折板1cは例えば90度方向に光線分離するよう設定されており、入射した光を水晶の複屈折効果により90度方向に分離する機能を有する。また水晶複屈折板1cの光出射面(主面)には、赤外線カットコートが形成されており、当該赤外線カットコートについても、詳細図示していないが誘電体薄膜の多層形成することにより得ることができる。
【0026】
このような光学フィルタ1の光出射面(主面)の周囲および側面には、曲面取り10,10が形成されている。曲率面取りは図4(a)、(b)に示すように稜部分が曲率を持った状態で面取りされた構成である。このような構成により、通常の直線的な面取りに比較して稜を形成しない構成であるので、光学フィルタが割れたり、欠けたりすることによる光学的異物の発生が無くなるとともに、稜部分が梱包ケース等を切削することによる光学的異物の発生を極力抑制することができる。そしてさらに主面側の面取り量を小さくすることにより、主面の実質的な光学情報透過エリアが広く確保できるので光学情報の損失を減少させることができる。特に最近においてはビデオカメラ等の撮像装置の小型化が急速に進んでおり、画質低下を抑制することができる。
【0027】
次に上記曲率面取りを形成する方法について説明する。本発明の製造に係る装置Fは、第1の駆動領域2と第2の駆動領域3を有する構成で、それぞれ異なった回転駆動が与えられる構成となっている。
【0028】
第1の駆動領域2には、第1の駆動軸20に、保持部21a,21bと当該保持部21aの外側に倣いモデル22が配置されている。また21cは保持部21bと一体形成された、例えばベークライトからなる樹脂ブロックである。これら保持部と倣いモデルに回転駆動を伝達するギア23,23が同軸上に形成されている。保持部21a,21b間には研削加工対象となるワーク(光学フィルタ)1が保持される。従って、少なくとも一方の保持部は駆動軸方向(X2)に動作可能となっている。本実施の形態においては保持部21a側が駆動軸方向の動作については固定されており、保持部21a,21b間にワークが供給されると保持部21bが保持部21a側に近接する方向に動作し、ワークが挟持される。なお、保持部21aは金属ブロックからなるが、ワークと接触する挟持部分において、例えばベークライト等の樹脂材を介在させてもよい。これによりワークに対する緩衝効果を得ることができ、ワークを損傷したりワークの主面を傷つけることを防止できる。
【0029】
また前記倣いモデル22は直方体形状の金属ブロックからなり、保持部と同様駆動軸に脱着可能となっている。当該倣いモデル22の外形形状はワークの研削対象面における最終外形形状と等しく設定されている。ワーク1を挟持した保持部21a,21bは、倣いモデル22とともに押圧力により一体化され、研削実行時にはワーク主面がその中心を軸として平面的に回転するよう所定の回転動作を行う。例えば1つの外周加工を行うにあたり、図示しないカムの動作により、ギア23,23に対し、例えば6〜15回転を行うように設定される。なお、これら第1の駆動領域2は固定されているのに対し、次に説明する第2の駆動領域3は前後、左右と2次元的に動作可能な状態に設定される。
【0030】
第2の駆動領域3は第2の駆動軸30に研削ホイール31と研削ホイールに隣接して倣いローラ32を有する構成で、これら研削ホイール31に対し回転駆動を与えるギア33,33が同軸上に配置されている。研削ホイール31は円板形状であり、その円周の端面(側面)には径方向に凹部が形成された研削面310を有している。研削面310は断面で見て凹形状を有しており、平面からなる底面31aと当該底面にほぼ垂直な側面31c、そして底面と側面をつなぐ曲率面31bを有している。なお、研削面の構成によっては底面と曲率面のみからなり側面を有しない構成となってもよい。
【0031】
ところで研削ホイール31は多種の材質構成のものを採用することができる。例えばレジノイドボンド砥石からなるものであり、これはダイヤ砥粒を樹脂で結合したものである。またメタルボンド砥石からなるものも用いられており、これはダイヤ砥粒を例えばニッケル等の金属で結合したものである。さらには電着砥石によるものもあり、これは台金の表面にダイヤ砥粒をメッキにて結合したものである。一般的には前者ほど研削面がなめらかであるが、逆に単位時間あたりの研削能力は前者ほど劣る。従って、上記電着砥石は研削面が比較的粗面であるため、加工時間は短くて済むとともに、長時間の使用を行っても外形寸法が変わりにくいという特徴を有しており、よく用いられている研削ホイールの材料である。この研削ホイール31は前記ワークに対向する位置に配置されている。
【0032】
倣いローラ32は円板形状の金属板からなり、隣接して配置される研削ホイールとほぼ同じ外形形状であり、詳しくは倣いローラの端面(側面)と当該研削ホイール研削面の底面31aの外周位置がほぼ合致した構成である。当該倣いローラは第2の駆動軸に取着されるが、研削ホイールに与えられる回転駆動は与えられず、自由回転可能な状態となっており、前述の倣いモデルと接触加圧されることにより、倣いモデル回転に対応して受動的に回転する構成となっている。
【0033】
前述のとおり、第2の駆動領域は固定の第1の駆動領域に対し、前後左右に動作可能となっている。まず、矢印X1で示す前後の動作は、装置に組み込まれた図示しない前後送りカムにより第2の駆動領域を第1の駆動領域に対し近接あるいは離間させる動作であり、これにより研削ホイール31をワーク1に接触させたり、離したりする動作である。これにより高速回転(例えば3000〜4000rpm)させた研削ホイールをワークに接触させ、研削を行う。
【0034】
また矢印X2で示す左右の動作は、装置に組み込まれた図示しない横送りカムにより第2の駆動領域を第1の駆動領域に対し左右に動作させる動きであり、これにより研削ホイールの研削面の範囲で左右に往復動作させることにより、研削面の底面31a、曲率面31bをワークに接触させ研削を行う動作である。いずれの動作も当該製造に係る装置に組み込まれたカム駆動制御により一連の加工作業の中に組み込まれる。
【0035】
なお、本実施の形態においては第1の駆動領域に対しては図示しない第1のモータから駆動エネルギーが与えられ、第2の駆動領域に対しては別の第2のモータから駆動エネルギーが与えられるように構成される。しかしながらギア並びにカムの設定により1つの駆動源(モータ)により、複数の駆動領域を動作させることも可能である。
【0036】
次に本発明による光学フィルタの製造手順について説明する。例えば水晶板を例にとると、水晶ウェハを平行平面研磨によりラッピング加工を行う。その後、スライス装置により当該水晶ウェハを小割加工する。この小割加工された水晶板に対して本発明による製造を行う。
【0037】
まず、ハンドリング装置により、複数のワークが収納されたマガジンから1枚のワーク取り出す。このときワークの側面をチャッキングアームにより把持し、前記保持部21a,21b間のほぼ中央部分に移送される。なお、ハンドリング装置やその一部であるチャッキングアームあるいはマガジンは図示していない。保持部21a,21bにより移送されたワークの主面を挟持し、所定圧力によりワークの主面を保持する。その後、前記ハンドリング装置のチャッキングを解除し、チャッキングアームは所定の定常位置に戻る。
【0038】
第2の駆動領域の研削ホイール31を例えば矢印Y1方向に高速回転(例えば3700rpmの回転)させながら、矢印X1方向に移動させ、ワーク外周の研削を開始する。このときワークは研削ホイールが接触する時点あるいはその前後に第1の駆動軸20の回転駆動により、例えば矢印Y2方向に回転を開始させる。この矢印Y2方向は矢印Y1方向と反対の回転方向に設定している。ワークの回転は前述のとおりカムによる駆動制御でゆっくりと回転し、1つのワークの加工が完了するまでに、例えば10回転させる。この回転数は研削ホイール研削面の砥石の種類あるいは必要な加工量により決定すればよい。
【0039】
また前述のとおり研削ホイールはワークに接した状態において所定範囲で左右に動作する。これは前述の横送りカムの動作により、第2の駆動軸に固定された研削ホイールを左右に動作させるもので、図3に示すようにワークの左右の稜を研削する範囲で動作する。この研削動作を図3とともに説明すると、まず図3(a)に示すようにワークを研削面に近接させ、図3(b)に示すように高速回転(Y1)する底面31a部分とワークの端面(側面)を接触させる。もちろんワークも前述の所定の回転(Y2)が行われている。その後図3(c)に示すようにワーク1に対して研削ホイール31を右側に漸次移動させ、曲率面31bの一方と接触させる。これによりワークの左側の稜が全周にわたって曲率面取りされる。次に図3(d)に示すように研削ホイール31は左側に漸次移動し、ワークの右側の稜を曲率面31bの他方と接触させ、全周にわたって曲率面取りを行う。その後図3(e)に示すように、ワークを底面31aに移動する。なお、これら図3(b)〜(e)の動作を複数回往復動作させてもよい。所定の加工が完了した後、図3(f)に示すように、研削ホイールをワークから離し、研削加工を終了する。
【0040】
なお、倣いモデル22と倣いローラ32とが接触することにより、ワークの外周形状が所定の形状に研磨される。加工量の例として、例えば縦、横、厚さの各寸法がそれぞれ、10.0mm、10.0mm、1.0mmの曲率面取り加工する際、約0.3〜0.5mmの外周形状が研削される。
【0041】
上記加工を完了したワークは、その後角度検査等の所定の検査後、主面に対し第2次ラッピング加工を行い、その後さらにポリッシング加工により鏡面に仕上げる。
【0042】
ところで上述の曲率面取りを行った際、その曲率面において微視的な割れや欠けが生じていることがある。このような表面層を加工変質層と称することもある。このような加工変質層においては、その割れ片、欠け片が製品化された後に脱落して光学的な異物として光学フィルタの主面に付着することがある。このような割れや欠けを極力抑制するには、研削面の細かなもので前述のレジノイドボンド砥石を用い長時間をかけて加工を行うことが必要であるが、加工コスト等を考慮するとは実用上困難な場合がある。このような場合においては、所定のエッチング液に曲率面取り後の光学フィルタを浸漬し、ウェットエッチングを行ってもよい。本実施例においては水晶板を用いており、摂氏80度のフッ化アンモニウム溶液からなるエッチング液に所定時間浸漬することにより、曲率面取り部分の加工変質層を除去する。これにより割れや欠けを除去することができる。もちろん周知のとおり、処理対象材料によって、エッチング液並びに温度等の諸条件を選択調整する必要がある。
【0043】
なお、本発明による曲率面取りは、上記製造方法に限定されるものではない。例えば光学フィルタにおいて、主面の曲率面取り量を側面の曲率面取り量より小さくする構成を得たい場合は、図5に示すような曲率面を有する研削ホイールを用いて研削加工を行えばよい。図5に示す研削ホイールは、曲率部31bにおいて、ホイールの板厚方向の寸法aに対してこれに直交する方向の寸法bが小となる構成を採用している。このような断面形状を有する研削ホイールで研削加工を行うことにより、当該曲率面の形状が被加工物である光学フィルタの稜形状に転写され、主面の曲率面取り量を側面の曲率面取り量より小さくする構成の光学フィルタを得ることができる。このような光学フィルタは主面の曲率面取り形成領域を小さくすることができ、当該光学フィルタに多くのより光学的情報を透過させることができる。なお、曲率面取り加工を行う装置構成並びに製造手順は前述の説明と同様の方法により行えばよい。
【0044】
このように本発明は研削ホイールの研削面の形状を適宜選択することにより、所望の曲率面取り形状を得ることができ、またこの加工バラツキも小さく安定した加工を行うことができる。また倣いモデルの形状により最終的に得られるワーク形状を決定できるので、例えば平面視長円形状や小判型形状の加工も容易に行ことができる。すなわち本発明は外形形状を倣いモデルで決定するとともに、端面の形状を研削ホイールの研削面で決定することにより、一度に必要な立体加工を行うことができる。
【0045】
本発明によるその他の実施の形態について図6(a),(b)とともに説明する。図6(a),(b)は研削ホイールとワークの研削状態を示す部分断面図である。基本的な製造方法は前述と同様であるが、この実施の形態においては研削ホイールの構成が異なっており、研削ホイール42の研削面の構成が楕円弧形状の凹部を有する構成で、かつワークの厚さすなわち端面寸法にほぼ合致した開口の凹部構成である。このような構成の研削ホイール42を高速回転させ、図6(b)に示すように、ワーク(光学フィルタ)5の端面を接触させることにより、研削加工を行うことができる。このような研削ホイール42を用いるとワークを研削面上で左右に動作させない製造方法となる。このような製造方法においても外形形状を倣いモデルで決定するとともに、端面の形状を研削ホイールの研削面で決定することにより、一度に必要な立体加工を行うことができる。
【0046】
なお、研削ホイールは同一材料で一体的に構成してもよいし、研削ホイールの構成を複数のパーツからなる分割構成としてもよい。図7は研削ホイール43の研削面を示す部分分解断面図であるが、中央部材431と側面部材432,433とからなり、これらを強固に接着することにより一体化させる。中央部材431は研削ホイールの底面を構成し、側面部材432,433は曲率部を構成している。図7においては中央部材と側面部材の砥石の粗さを変えており、中央部分より側面部材の粗さを小さく(細かく)している。従って研削後において側面表面の加工変質層の形成を小さくすることができ、曲率面からの割れ、欠けの発生を抑制することができる。
【0047】
なお、本発明に適用する光学フィルタは、単板構成であっても良いし、複数枚構成であってもよい。複数板構成の場合は各単板をそれぞれ本発明により曲率面取り加工し、その後接着剤等により貼り付けてもよいし、あるいは先に曲率面取り加工前の各単板を貼り付け、その後当該貼り付けた一体構成物に対して本発明による曲率面取り加工を行ってもよい。また光学フィルタを構成する部材は水晶板のみならず、光学ガラス等の他の光学材料であってもよい。
【0048】
【発明の効果】
本発明によれば、研削面に曲率部を有する研削ホイールを用いて光学フィルタの端面(側面)を研削しているので、当該研削面の曲率が確実に光学フィルタの稜を研削し、その曲率が転写されるので、確実にかつ比較的短時間で曲率面取り加工を行うことができる。従って、光学フィルタに発生する光学的異物を極力抑制した高品質な光学フィルタを得るとともに、安価な光学フィルタを得ることができる。
【0049】
また請求項2によれば、上記効果に加えて、倣いモデルにより光学フィルタの外周形状の加工を規制しているので 確実にかつ簡単に所定形状の光学フィルタを得ることができる。
【0050】
また請求項3によれば、上記各効果に加えて、複数の厚さの光学フィルタを加工する際に適用することができるとともに、光学フィルタの端面を前記研削面の底面と曲率面を幅方向に往復動作させることにより、研削面の底面において、同じ部位のみが研削に用いられることを防止するとともに、効率よく曲率面への接触を行わしめることができ、研削ホイールの耐久性を向上させ、かつ高効率の製造を行うこができる。
【0051】
さらに請求項4によれば、上記各効果に加えて、曲率面は側面側より底面側が長く形成されている研削面を有する研削ホイールにより曲率面取り加工を行うことにより、主面の加工量を小さく、側面の加工量を大きく取ることができ、光学特性に優れた光学フィルタを得ることができる。
【0052】
また請求項5によれば、上記各効果に加えて、ウェットエッチング処理を施すことにより、機械加工による加工変質層を除去でき、光学的異物となる光学フィルタ構成部材のワレ、カケを防止することができる。従って、光学特性の安定した光学フィルタを得ることができる。
【0053】
請求項6によれば、本発明による製造方法により得られた曲率面取りされた光学フィルタは曲率面取りが高精度に形成されることにより、割れ、欠けに伴う不具合のない、高品質な光学特性を有するとともに、コスト安の光学フィルタを得ることができる。
【図面の簡単な説明】
【図1】光学フィルタの実施の形態を示す模式図。
【図2】図1の部分拡大斜視図。
【図3】光学フィルタの製造方法を示す図。
【図4】光学フィルタの構成例を示す図。
【図5】光学フィルタの研削ホイールの変形例を示す部分拡大図。
【図6】本発明による他の製造方法を示す図。
【図7】本発明による他の研削ホイールの例を示す図。
【符号の説明】
1、5 光学フィルタ(ワーク)
2 第1の駆動領域
21a,21b 保持部
22 倣いモデル
23、33 ギア
3 第1の駆動領域
31、41,42,43 研削ホイール
32 倣いローラ
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing an optical filter including one or a plurality of optical plates, and more particularly to a method for manufacturing a plate-shaped or block-shaped optical filter by chamfering a ridge.
[0002]
[Prior art]
2. Description of the Related Art Various optical filters such as an optical low-pass filter are used in an imaging device such as a video camera and a digital still camera, and play a role of removing unnecessary wavelength light such as infrared rays and filtering optical pseudo signals. The configuration of such an optical filter, for example, taking an optical low-pass filter as an example, a configuration in which a crystal birefringent plate or an infrared cut glass plate or the like is appropriately combined according to a desired filtering characteristic is often used. In recent years, a configuration in which an optical interference film is formed on a single plate depending on the application has been used. In the manufacture of such an optical filter, in the case of a combination structure of a plurality of plates, conventionally, the optical plates to be combined are individually divided into small portions and bonded to each other with an adhesive.
[0003]
However, in such a small optical filter, the cut ridge portion is sharp, and this ridge portion may be microscopically viewed in a state where cracks or chips are found in many places. There were many. In such a state, there is a high possibility that a part of the optical plate is further chipped or broken, and the broken pieces or chipped pieces adhere to the main surface of the optical plate, that is, the optical information transmitting surface, and become optical foreign substances. was there. Such foreign matter is captured by an image pickup device such as a CCD and causes image quality to deteriorate when, for example, video is output.
[0004]
In addition, the sharp state of the ridge may cut other members, and such cutting waste may generate optical foreign matter. For example, an optical filter is often stored and packed in a resin case and delivered to a customer.However, the optical filter moves inside the storage case and cuts the resin case inner wall at the ridge portion, and the cutting waste forms on the main surface of the optical plate. May adhere.
[0005]
Japanese Laid-Open Utility Model Publication No. 5-43557 discloses a configuration in which the side surface of the transparent plate for encapsulating a solid-state imaging device is mirror-finished in order to eliminate such problems caused by dust such as cracks, chips, and cutting chips. Japanese Utility Model Laid-Open No. 5-43557 is not an optical filter, but a rod-shaped glass is sliced (cut out), then diced, and then the side surface of the transparent plate is dimensioned by roughening. Next, the side surfaces are mirror-finished by buffing, the ridges are turned into R surfaces, and then the upper and lower surfaces of the glass surface are optically polished. Is disclosed.
[0006]
By making the ridge an R surface, the transparent plate itself is not chipped, or dust is not generated in the case for storing the transparent plate, and a transparent plate with an improved yield can be obtained. However, in the above-mentioned manufacturing method, that is, the manufacturing method of making the ridge an R-surface by buffing the side surface, it is necessary to hold the transparent plate at an angle to advance the polishing in order to bring the ridge portion into contact with the polishing member. In order to polish the ridge, the ridge portion to be polished had to be moved, and the polishing work required a lot of manual work as a whole, or a complicated configuration was required for holding the transparent plate and the like. .
[0007]
In particular, the optical filter that is the subject of the present application needs to transmit predetermined optical information with as large an area as possible and with high precision, and it is necessary to finely control the amount of chamfering of the ridge. However, it is not suitable for high-precision manufacturing.
[0008]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above problems, and provides a high-quality optical filter in which optical foreign matter generated in an optical filter is suppressed as much as possible, and provides a highly accurate manufacturing method at a low manufacturing cost. It is aimed at.
[0009]
[Means for Solving the Problems]
According to the present invention, an end face of an optical filter is ground by a grinding wheel having a curvature surface corresponding to a curvature chamfer formed on an optical filter, and can be solved by the following manufacturing method.
[0010]
That is, as set forth in claim 1, an optical filter comprising one or more optical plates, and either one of a ridge formed between the side surfaces of the optical filter and a ridge formed between the side surface and the main surface, or A method of manufacturing an optical filter in which both are chamfered, while holding a main surface of the optical filter, holding and rotating means for rotating the main surface in a planar state in a fixed state, and a radial direction on a disk-shaped end surface. A grinding surface having a concave portion formed thereon, the grinding surface having high-speed rotation grinding means for rotating a grinding wheel having a bottom surface and a curvature surface at an end of the bottom surface at a high speed, and the fixed optical filter having a flat surface; A method for manufacturing an optical filter, wherein the edge of the optical filter is chamfered by bringing its end face into contact with the grinding surface of the grinding wheel that rotates at a high speed while being rotated.
[0011]
The grinding wheel used in the present manufacturing method has a grinding surface in which a concave portion is formed in a radial direction on an end surface of a disk shape, and the grinding surface has a bottom surface and a curvature surface at an end of the bottom surface. Has a configuration in which a ground surface includes a bottom surface, side surfaces formed at both ends thereof, and a curvature surface between the bottom surface and the side surface. The configurations of the bottom surface, the side surfaces, and the curvature surface correspond to the end surface (side surface) shape of the optical filter that is the member to be ground, and this shape is finally transferred to the optical filter.
[0012]
According to the first aspect, while rotating the fixed optical filter two-dimensionally about the center of the plate surface as a rotation axis, the end surface thereof is brought into contact with the grinding surface of the grinding wheel that rotates at high speed, whereby the optical filter In addition to grinding the end face shape, the edge of the optical filter can be chamfered to have an end face shape corresponding to the shape of the ground surface. Since the curvature chamfer obtained here can be determined by the shape of the grinding surface of the grinding wheel, processing can be performed with a desired size and shape, and in order to change the processing target area for the optical filter (work) as in the related art, Since a complicated device configuration such as switching of the holding position is not required, manufacturing costs can be reduced.
[0013]
Further, as set forth in claim 2, an optical filter comprising one or a plurality of optical plates, wherein one or both of a ridge formed between the side surfaces of the optical filter and a ridge formed between the side surface and the main surface. A holding and rotating means comprising a first drive shaft for fixing the main surface of the optical filter and rotating the main surface in a planar manner while fixing the optical filter; A high-speed rotary grinding means comprising a second drive shaft for high-speed rotation of a grinding wheel having a bottom surface and a curvature surface at an end of the bottom surface. A scanning model having an outer peripheral shape corresponding to a desired outer peripheral shape of the optical filter provided on the first drive shaft, and a second scanning roller that contacts and freely rotates corresponding to the second scanning model. Drive Grinding means for applying a pressing force to the copying model and the copying roller while rotating the fixed optical filter two-dimensionally, whereby the end face of the optical filter is rotated at a high speed. A method of manufacturing an optical filter, wherein the edge of the optical filter is chamfered by being brought into contact with a grinding surface of a wheel may be employed.
[0014]
According to the above manufacturing method, a desired outer periphery of the optical filter (work) is held with respect to the first drive shaft that holds the main surface of the optical filter and rotationally drives the optical filter in a plane around the center of the main surface. In addition to providing a copying model having an outer peripheral shape corresponding to the shape, and having a contour shape determining means in which a copying roller that is in contact with the copying model and rotates freely is provided on the second drive shaft side, The optical filter and the copying model are coaxial and cooperate to rotate. In addition, the grinding wheel rotates at high speed during grinding, while the copying roller has a free rotation configuration in which no drive is given, but since the copying roller whose outer size is almost the same as the grinding wheel operates in contact with the copying model. Furthermore, the grinding operation of the grinding wheel with respect to the optical filter is restricted, so that the outer shape processing corresponding to the copying model can be performed. As described above, the desired curvature chamfering can also be performed on the ridge of the optical filter by using the curvature surface of the ground surface.
[0015]
According to a third aspect of the present invention, in the method for manufacturing an optical filter according to the first or second aspect, the ground surface of the grinding wheel is larger than an end surface of the optical filter, and the fixed optical filter is provided. While rotating the flat surface, the end surface thereof is brought into contact with the grinding surface of the high-speed rotating grinding wheel, and the grinding surface is reciprocated in the width direction with respect to the end surface of the optical filter, so that the ridge of the optical filter has a curvature. It may be chamfered.
[0016]
The grinding of the end face of the optical filter is performed by reciprocating the optical filter in the width direction in a range where the bottom surface of the grinding surface rotating at a high speed and the curvature surface are formed. The first drive shaft may be a fixed shaft, and the second drive shaft having a grinding wheel may be reciprocated in the drive shaft direction with a predetermined moving width (range of the grinding surface) to perform the curvature chamfering. In this case, since the useless operation is not performed on the first drive shaft holding and fixing the optical filter, stable processing can be performed without a small displacement of the fixed state. Conversely, the second drive shaft may be a fixed shaft, and the first drive shaft may be movable, or both may be operated.
[0017]
The thickness of the optical filter may change depending on required optical characteristics. For example, as is well known, the thickness of an optical birefringent plate is a parameter that determines the light separation width, and thus the thickness differs depending on the specifications. In such a case, by making the width of the grinding surface of the grinding wheel larger than the end face (side face), that is, the thickness of the optical filter, it is possible to flexibly cope with the change in the thickness of the optical filter to be processed. it can. In addition, by reciprocating the end face of the optical filter between the bottom surface of the grinding surface and the curvature surface in the width direction, at the bottom surface of the grinding surface, it is possible to prevent only the same portion from being used for grinding, and efficiently to the curvature surface. , And the durability of the grinding wheel can be improved and the grinding wheel can be manufactured with high efficiency.
[0018]
According to a fourth aspect of the present invention, in the method for manufacturing an optical filter according to the first, second, or third aspect, the disk-shaped end face has a ground surface in which a concave portion is formed in a radial direction. A high-speed rotating grinding means comprising a second drive shaft for rotating a grinding wheel having a bottom surface and a curvature surface at an end of the bottom surface at a high speed, wherein the grinding surface of the grinding wheel has a bottom surface and side surfaces formed at both ends thereof And a curvature surface between the bottom surface and the side surface. The curvature surface is formed such that the bottom surface side is formed longer than the side surface side, and rotates the end surface at the high speed while rotating the fixed optical filter in a plane. The ridge of the optical filter is characterized by being chamfered by being brought into contact with the grinding surface of the grinding wheel.
[0019]
It is preferable that the optical filter is configured to use the main surface through which optical information is transmitted as widely as possible. This configuration responds to such a demand, and the curvature surface is reduced by performing a curvature chamfering process with a grinding wheel having a grinding surface formed such that the bottom surface is formed longer than the side surface, thereby reducing the amount of processing of the main surface, The amount of processing on the side surface can be increased.
[0020]
According to a fifth aspect of the present invention, after performing the manufacturing method according to any one of the first to fourth aspects, the optical filter is immersed in an etching solution to stabilize a processed surface of the curvature ground surface. I have.
[0021]
The curvature chamfered area of the optical filter can improve the surface roughness of the ground surface if the processing efficiency is reduced, but it is absolutely necessary to reduce the surface roughness of the ground surface in consideration of practical aspects such as manufacturing efficiency. This was difficult, and chipping of the ground surface occurred in some cases. In such a case, for example, by performing a wet etching process using an ammonium fluoride solution, a deteriorated layer due to mechanical processing can be removed, and cracking or chipping of an optical filter constituent member that becomes an optical foreign matter can be prevented.
[0022]
A sixth aspect is an optical filter having a chamfered curvature obtained by the manufacturing method according to any one of the first to fifth aspects. Such an optical filter has a curvature chamfer formed with high precision. It is possible to obtain an optical filter having high quality optical characteristics free from defects due to cracking and chipping and having low cost.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings, taking a method of manufacturing an optical low-pass filter as an example. FIG. 1 is a schematic view showing an apparatus configuration according to an embodiment of the present invention, FIG. 2 is a partial perspective view showing an optical filter holding portion in FIG. 1, and FIG. 3 is a schematic view showing an example of grinding.
[0024]
The optical low-pass filter according to the present embodiment has a single-plate configuration in which a predetermined coating film is provided on a crystal birefringent plate as shown in FIG. 4A, or, for example, as shown in FIG. This is a multi-plate configuration in which a quartz birefringent plate 1, a quarter-wave plate 2, and a quartz birefringent plate 3 are superimposed. As is well known, the crystal birefringent plate separates incident light into an ordinary ray and an extraordinary ray by using the birefringence effect of quartz to make outgoing light, and the light separation direction and separation width are appropriately adjusted by predetermined parameters. Can be.
[0025]
An optical low-pass filter having a single-plate configuration has a relatively simple configuration. However, in the case of a multiple-plate configuration, a plurality of light separations are combined. For example, in a multi-plate configuration in which a quartz birefringent plate 1a, a quarter-wave plate 1b, and a quartz birefringent plate 1c are superimposed, the quartz birefringent plate 1 is set, for example, to separate light beams in the horizontal direction. It has the function of separating the separated light in the horizontal direction by the birefringence effect of quartz. An anti-reflection coating is formed on the light incident surface (principal surface) of the crystal birefringent plate 1a. Although not shown in detail, the anti-reflection coating can be obtained by forming a multilayer dielectric thin film made of a metal oxide film or the like. The quartz birefringent plate 1c is set, for example, to separate light rays in the 90-degree direction, and has a function of separating incident light in the 90-degree direction by the birefringence effect of quartz. An infrared cut coat is formed on the light emitting surface (principal surface) of the crystal birefringent plate 1c, and the infrared cut coat can also be obtained by forming a multilayer dielectric thin film (not shown in detail). Can be.
[0026]
Curved chamfers 10, 10 are formed around and around the light exit surface (principal surface) of such an optical filter 1. As shown in FIGS. 4A and 4B, the curvature chamfering is a configuration in which a ridge portion is chamfered with a curvature. With such a configuration, a ridge is not formed as compared with a normal linear chamfer, so that there is no generation of optical foreign matter due to cracking or chipping of the optical filter, and the ridge portion is a packaging case. It is possible to minimize the generation of optical foreign matter due to cutting and the like. Further, by further reducing the amount of chamfering on the main surface side, a substantial optical information transmission area of the main surface can be secured widely, so that loss of optical information can be reduced. In particular, in recent years, miniaturization of an imaging device such as a video camera has been rapidly progressing, and a decrease in image quality can be suppressed.
[0027]
Next, a method of forming the curvature chamfer will be described. The apparatus F according to the present invention has a first drive area 2 and a second drive area 3 and different rotational drives are provided.
[0028]
In the first drive area 2, holding portions 21 a and 21 b and a copying model 22 are arranged outside the holding portion 21 a on the first drive shaft 20. Reference numeral 21c denotes a resin block formed integrally with the holding portion 21b and made of, for example, bakelite. Gears 23, 23 for transmitting rotational drive to the holding unit and the copying model are formed coaxially. A work (optical filter) 1 to be ground is held between the holding portions 21a and 21b. Therefore, at least one of the holding units is operable in the drive axis direction (X2). In the present embodiment, the operation of the holding portion 21a in the drive axis direction is fixed, and when a work is supplied between the holding portions 21a and 21b, the holding portion 21b operates in the direction approaching the holding portion 21a. , The work is clamped. The holding portion 21a is made of a metal block. However, a resin material such as bakelite may be interposed in a holding portion that comes into contact with the work. Thereby, a buffering effect on the work can be obtained, and damage to the work and damage to the main surface of the work can be prevented.
[0029]
The copying model 22 is made of a rectangular parallelepiped metal block and can be attached to and detached from the drive shaft similarly to the holder. The outer shape of the copying model 22 is set equal to the final outer shape of the workpiece on the surface to be ground. The holding units 21a and 21b holding the work 1 are integrated together with the copying model 22 by pressing force, and perform a predetermined rotation operation such that the main surface of the work rotates two-dimensionally around its center during grinding. For example, in performing one outer peripheral processing, the gears 23 are set to perform, for example, 6 to 15 rotations by the operation of a cam (not shown). In addition, while these first drive regions 2 are fixed, a second drive region 3 described below is set in a state in which it can operate two-dimensionally in front and rear, left and right.
[0030]
The second drive region 3 has a configuration in which a second drive shaft 30 has a grinding wheel 31 and a copying roller 32 adjacent to the grinding wheel, and gears 33, 33 for rotating the grinding wheel 31 are coaxial. Are located. The grinding wheel 31 has a disk shape, and has a grinding surface 310 in which a concave portion is formed in a radial direction on an end surface (side surface) of the circumference. The grinding surface 310 has a concave shape when viewed in cross section, and has a bottom surface 31a formed of a plane, a side surface 31c substantially perpendicular to the bottom surface, and a curvature surface 31b connecting the bottom surface and the side surface. Note that, depending on the configuration of the ground surface, a configuration that includes only the bottom surface and the curvature surface and does not have the side surface may be used.
[0031]
By the way, the grinding wheel 31 having a variety of material configurations can be adopted. For example, it is made of a resinoid bond whetstone, which is formed by bonding diamond abrasive grains with a resin. Also, a metal bond grindstone is used, in which diamond abrasive grains are bonded with a metal such as nickel. Further, there is also a method using an electrodeposition whetstone, in which diamond abrasive grains are bonded to the surface of a base metal by plating. Generally, the former has a smoother grinding surface, but the grinding ability per unit time is inferior to the former. Therefore, the electrodeposited grindstone has a feature that the grinding surface is relatively rough, so that the processing time is short, and the external dimensions are hard to change even after a long use. That is the material of the grinding wheel. The grinding wheel 31 is disposed at a position facing the work.
[0032]
The copying roller 32 is made of a disk-shaped metal plate, and has substantially the same outer shape as a grinding wheel arranged adjacently. Specifically, the outer peripheral position of the end surface (side surface) of the copying roller and the bottom surface 31a of the grinding surface of the grinding wheel. Are almost the same. The copying roller is attached to the second drive shaft, but is not given the rotation drive given to the grinding wheel, is in a freely rotatable state, and is contact-pressed with the copying model described above. , And passively rotates in accordance with the scanning model rotation.
[0033]
As described above, the second drive region is operable in front, rear, left and right with respect to the fixed first drive region. First, the front-back operation indicated by arrow X1 is an operation of moving the second drive area closer to or away from the first drive area by a not-shown front-rear feed cam incorporated in the apparatus, and thereby the grinding wheel 31 is moved to the workpiece. This is an operation of bringing the touch panel 1 into contact with or releasing the touch panel 1. Thus, the grinding wheel rotated at a high speed (for example, 3000 to 4000 rpm) is brought into contact with the workpiece to perform grinding.
[0034]
The left and right movements indicated by the arrow X2 are movements in which the second drive area is moved left and right with respect to the first drive area by a not-shown lateral feed cam incorporated in the apparatus, and thereby the grinding surface of the grinding wheel is moved. By reciprocating left and right within the range, the bottom surface 31a of the grinding surface and the curvature surface 31b are brought into contact with the workpiece to perform grinding. Each operation is incorporated in a series of machining operations by a cam drive control incorporated in the device related to the manufacturing.
[0035]
In this embodiment, a first motor (not shown) receives driving energy from a first motor, and a second driving region receives driving energy from another second motor. It is configured to be. However, it is also possible to operate a plurality of drive regions by one drive source (motor) by setting the gear and the cam.
[0036]
Next, the manufacturing procedure of the optical filter according to the present invention will be described. For example, taking a quartz plate as an example, a lapping process is performed on a quartz wafer by parallel plane polishing. Thereafter, the quartz wafer is subdivided by a slicing apparatus. The manufacturing according to the present invention is performed on the quartz plate that has been subjected to the small processing.
[0037]
First, a single work is taken out of a magazine in which a plurality of works are stored by a handling device. At this time, the side surface of the work is gripped by the chucking arm and transferred to a substantially central portion between the holding portions 21a and 21b. It should be noted that the handling device and the chucking arm or magazine as a part thereof are not shown. The main surfaces of the transferred work are held by the holding units 21a and 21b, and the main surfaces of the work are held by a predetermined pressure. Thereafter, the chucking of the handling device is released, and the chucking arm returns to a predetermined steady position.
[0038]
The grinding wheel 31 in the second drive area is moved in the direction of the arrow X1 while rotating at a high speed (for example, rotation of 3700 rpm) in the direction of the arrow Y1, for example, to start grinding the outer periphery of the work. At this time, the work is started to rotate, for example, in the direction of arrow Y2 by the rotational drive of the first drive shaft 20 at or before or after the contact of the grinding wheel. The direction of the arrow Y2 is set to a rotation direction opposite to the direction of the arrow Y1. As described above, the rotation of the work is slowly performed by the drive control by the cam, and the work is rotated, for example, ten times until the processing of one work is completed. The number of revolutions may be determined according to the type of grindstone on the grinding surface of the grinding wheel or the required processing amount.
[0039]
Further, as described above, the grinding wheel moves left and right within a predetermined range in a state in contact with the work. This is to operate the grinding wheel fixed to the second drive shaft to the left and right by the operation of the above-mentioned lateral feed cam, and operates within the range for grinding the left and right edges of the work as shown in FIG. This grinding operation will be described with reference to FIG. 3. First, as shown in FIG. 3 (a), the work is brought close to the grinding surface, and as shown in FIG. 3 (b), the bottom surface 31a which rotates at high speed (Y1) and the end face of the work. (Side). Of course, the work is also subjected to the aforementioned predetermined rotation (Y2). Thereafter, as shown in FIG. 3 (c), the grinding wheel 31 is gradually moved to the right with respect to the work 1, and is brought into contact with one of the curvature surfaces 31b. As a result, the left edge of the work is chamfered over the entire circumference. Next, as shown in FIG. 3D, the grinding wheel 31 is gradually moved to the left, and the right edge of the work is brought into contact with the other one of the curvature surfaces 31b to perform the curvature chamfering over the entire circumference. Thereafter, as shown in FIG. 3E, the work is moved to the bottom surface 31a. The operations shown in FIGS. 3B to 3E may be reciprocated a plurality of times. After the predetermined processing is completed, the grinding wheel is separated from the workpiece as shown in FIG.
[0040]
When the copying model 22 and the copying roller 32 come into contact with each other, the outer peripheral shape of the workpiece is polished to a predetermined shape. As an example of the processing amount, for example, when performing the chamfering processing of the vertical, horizontal, and thickness dimensions of 10.0 mm, 10.0 mm, and 1.0 mm, respectively, the outer peripheral shape of about 0.3 to 0.5 mm is ground. Is done.
[0041]
After a predetermined inspection such as an angle inspection, the workpiece that has been subjected to the above-described processing is subjected to a secondary lapping process on the main surface, and then is further mirror-finished by polishing.
[0042]
By the way, when the above-mentioned curvature chamfering is performed, microscopic cracks or chips may occur on the curvature surface. Such a surface layer may be referred to as a work-affected layer. In such a work-affected layer, cracks and chips may fall off after being commercialized and adhere to the main surface of the optical filter as optical foreign matter. In order to suppress such cracks and chipping as much as possible, it is necessary to perform processing over a long time using the above-mentioned resinoid bonded grindstone with a fine ground surface, but it is practical to consider processing costs etc. Can be difficult. In such a case, the optical filter after the curvature chamfering may be immersed in a predetermined etching solution to perform wet etching. In this embodiment, a quartz plate is used, and the damaged layer in the chamfered portion of the curvature is removed by immersing it in an etching solution composed of an ammonium fluoride solution at 80 degrees Celsius for a predetermined time. Thereby, cracks and chips can be removed. Of course, as is well known, it is necessary to selectively adjust various conditions such as an etching solution and a temperature depending on a material to be processed.
[0043]
Note that the curvature chamfering according to the present invention is not limited to the above manufacturing method. For example, in an optical filter, when it is desired to obtain a configuration in which the amount of curvature chamfering on the main surface is smaller than the amount of curvature chamfering on the side surface, grinding may be performed using a grinding wheel having a curvature surface as shown in FIG. The grinding wheel shown in FIG. 5 employs a configuration in which the dimension b in the direction orthogonal to the dimension a in the thickness direction of the wheel is smaller in the curvature portion 31b. By performing grinding with a grinding wheel having such a cross-sectional shape, the shape of the curvature surface is transferred to the ridge shape of the optical filter that is the workpiece, and the curvature chamfer amount of the main surface is calculated from the curvature chamfer amount of the side surface. An optical filter configured to be small can be obtained. Such an optical filter can reduce the curvature chamfering formation area of the main surface, and can transmit much more optical information to the optical filter. Note that the configuration of the apparatus for performing the curvature chamfering and the manufacturing procedure may be performed by the same method as described above.
[0044]
As described above, according to the present invention, by appropriately selecting the shape of the grinding surface of the grinding wheel, a desired curvature chamfered shape can be obtained, and stable processing can be performed with small processing variations. In addition, since the finally obtained work shape can be determined by the shape of the copying model, for example, machining of an oval shape or an oval shape in plan view can be easily performed. That is, according to the present invention, the required three-dimensional processing can be performed at one time by determining the outer shape by the copying model and determining the shape of the end face by the grinding surface of the grinding wheel.
[0045]
Another embodiment according to the present invention will be described with reference to FIGS. FIGS. 6A and 6B are partial cross-sectional views showing a grinding wheel and a grinding state of a work. The basic manufacturing method is the same as that described above, but in this embodiment, the configuration of the grinding wheel is different, the configuration of the grinding surface of the grinding wheel 42 is a configuration having an elliptical arc-shaped concave portion, and the thickness of the workpiece is In other words, the concave portion of the opening substantially matches the end face dimensions. The grinding process can be performed by rotating the grinding wheel 42 having such a configuration at a high speed and bringing the end face of the work (optical filter) 5 into contact as shown in FIG. 6B. The use of such a grinding wheel 42 provides a manufacturing method in which the workpiece is not moved left and right on the ground surface. In such a manufacturing method as well, the necessary three-dimensional processing can be performed at a time by determining the outer shape by the copying model and determining the shape of the end face by the grinding surface of the grinding wheel.
[0046]
Note that the grinding wheel may be integrally formed of the same material, or the configuration of the grinding wheel may be a divided configuration including a plurality of parts. FIG. 7 is a partially exploded sectional view showing the grinding surface of the grinding wheel 43. The grinding wheel 43 includes a central member 431 and side members 432, 433, which are firmly bonded to be integrated. The center member 431 forms the bottom surface of the grinding wheel, and the side members 432, 433 form the curvature. In FIG. 7, the roughness of the grindstone of the center member and the side member is changed, and the roughness of the side member is made smaller (finer) than the center portion. Therefore, the formation of a damaged layer on the side surface after grinding can be reduced, and the occurrence of cracks and chips from the curvature surface can be suppressed.
[0047]
Note that the optical filter applied to the present invention may have a single-plate configuration or a multi-plate configuration. In the case of a multi-plate configuration, each veneer may be subjected to curvature chamfering according to the present invention and then adhered with an adhesive or the like, or each veneer before curvature chamfering may be pasted first and then the pasting may be performed. The curvature chamfering process according to the present invention may be performed on the integrated component. Further, the member constituting the optical filter is not limited to the quartz plate, but may be another optical material such as optical glass.
[0048]
【The invention's effect】
According to the present invention, since the end surface (side surface) of the optical filter is ground using the grinding wheel having the curvature portion on the grinding surface, the curvature of the grinding surface surely grinds the ridge of the optical filter, and the curvature Is transferred, so that the curvature chamfering can be performed reliably and in a relatively short time. Therefore, it is possible to obtain a high-quality optical filter in which optical foreign matter generated in the optical filter is suppressed as much as possible, and to obtain an inexpensive optical filter.
[0049]
According to the second aspect, in addition to the above-described effects, the processing of the outer peripheral shape of the optical filter is regulated by the copying model, so that an optical filter having a predetermined shape can be obtained reliably and easily.
[0050]
According to the third aspect, in addition to the above-described effects, the present invention can be applied to processing of an optical filter having a plurality of thicknesses, and the end face of the optical filter is defined by the bottom surface of the ground surface and the curvature surface in the width direction. By reciprocating, the bottom surface of the grinding surface can be prevented from being used only for the same portion for grinding, and the contact with the curvature surface can be performed efficiently, improving the durability of the grinding wheel, And highly efficient manufacturing can be performed.
[0051]
According to claim 4, in addition to the above effects, the curvature surface is subjected to curvature chamfering by a grinding wheel having a grinding surface formed so that the bottom surface is formed longer than the side surface, thereby reducing the amount of machining of the main surface. In addition, a large amount of processing can be performed on the side surface, and an optical filter having excellent optical characteristics can be obtained.
[0052]
According to the fifth aspect, in addition to the above-described effects, by performing a wet etching process, it is possible to remove a work-affected layer by machining, thereby preventing cracking and chipping of an optical filter constituent member that becomes an optical foreign matter. Can be. Therefore, an optical filter having stable optical characteristics can be obtained.
[0053]
According to the sixth aspect, the optical filter having the chamfered curvature obtained by the manufacturing method according to the present invention has high quality optical characteristics free from defects due to cracking and chipping due to the high precision of the curvature chamfering. In addition, it is possible to obtain an optical filter having low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of an optical filter.
FIG. 2 is a partially enlarged perspective view of FIG.
FIG. 3 is a diagram illustrating a method of manufacturing an optical filter.
FIG. 4 is a diagram showing a configuration example of an optical filter.
FIG. 5 is a partially enlarged view showing a modified example of the grinding wheel of the optical filter.
FIG. 6 is a view showing another manufacturing method according to the present invention.
FIG. 7 is a diagram showing an example of another grinding wheel according to the present invention.
[Explanation of symbols]
1,5 Optical filter (work)
2 First drive area
21a, 21b Holder
22 Copying model
23, 33 gear
3 First drive area
31, 41, 42, 43 Grinding wheel
32 Copy Roller

Claims (6)

単数または複数の光学板からなる光学フィルタであって、当該光学フィルタ側面間に形成される稜と側面と主面間に形成される稜のいずれか一方あるいは両者を曲率面取りした光学フィルタの製造方法であって、
光学フィルタの主面を固定するとともに、固定した状態で主面を平面的に回転させる保持回転手段と、
円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転してなる高速回転研削手段を有し、
前記固定された光学フィルタを平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させることにより、光学フィルタの稜を曲率面取りしたことを特徴とする光学フィルタの製造方法。
A method for manufacturing an optical filter comprising an optical plate or a plurality of optical plates, wherein one or both of a ridge formed between the side surfaces of the optical filter and a ridge formed between the side surface and the main surface is chamfered. And
Holding and rotating means for fixing the main surface of the optical filter and rotating the main surface in a fixed state in a planar manner,
The disk-shaped end surface has a grinding surface with a concave portion formed in the radial direction, and the grinding surface has a high-speed rotary grinding means that rotates a grinding wheel having a bottom surface and a curvature surface at an end of the bottom surface at a high speed. ,
A method of manufacturing an optical filter, wherein the edge of the optical filter is chamfered by bringing the end face into contact with the grinding surface of the high-speed rotating grinding wheel while rotating the fixed optical filter in a plane. .
単数または複数の光学板からなる光学フィルタであって、当該光学フィルタ側面間に形成される稜と側面と主面間に形成される稜のいずれか一方あるいは両者を曲率面取りした光学フィルタの製造方法であって、
光学フィルタの主面を固定するとともに、固定した状態で主面を平面的に回転させる第1の駆動軸からなる保持回転手段と、
円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転する第2の駆動軸からなる高速回転研削手段を有し、
前記第1の駆動軸に前記光学フィルタの所望の外周形状に対応した外周形状を有する倣いモデルを設けるとともに、当該倣いモデルに対応して接触し、自由回転する倣いローラを第2の駆動軸側に設けた外形形状決定手段を有し、
前記固定された光学フィルタを平面的に回転させながら、前記倣いモデルと倣いローラに押圧力をかけることにより、光学フィルタの端面を前記高速回転する研削ホイールの研削面に接触させ、光学フィルタの稜を曲率面取りしたことを特徴とする光学フィルタの製造方法。
A method for manufacturing an optical filter comprising an optical plate or a plurality of optical plates, wherein one or both of a ridge formed between the side surfaces of the optical filter and a ridge formed between the side surface and the main surface is chamfered. And
Holding and rotating means comprising a first drive shaft for fixing the main surface of the optical filter and rotating the main surface in a planar manner in a fixed state;
The disk-shaped end surface has a grinding surface with a concave portion formed in the radial direction, and the grinding surface has a bottom surface and a high-speed rotation including a second drive shaft that rotates a grinding wheel having a curvature surface at an end of the bottom surface at a high speed. Having grinding means,
A copying model having an outer peripheral shape corresponding to a desired outer peripheral shape of the optical filter is provided on the first drive shaft, and a copying roller that contacts and freely rotates in correspondence with the copying model is connected to a second drive shaft side. External shape determining means provided in the
By applying a pressing force to the copying model and the copying roller while rotating the fixed optical filter in a plane, the end face of the optical filter is brought into contact with the grinding surface of the high-speed rotating grinding wheel, and the ridge of the optical filter is rotated. A method for producing an optical filter, characterized by having a chamfered surface.
前記研削ホイールの研削面を光学フィルタの端面よりも大きくし、前記固定された光学フィルタの主面を平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させるとともに、光学フィルタの端面に対し前記研削面を幅方向に往復動作させることにより、光学フィルタの稜を曲率面取りしたことを特徴とする請求項1または請求項2記載の光学フィルタの製造方法。The grinding surface of the grinding wheel is larger than the end surface of the optical filter, and while rotating the main surface of the fixed optical filter in a plane, the end surface is brought into contact with the grinding surface of the high-speed rotating grinding wheel, The method for manufacturing an optical filter according to claim 1, wherein the edge of the optical filter is reciprocated in the width direction with respect to an end face of the optical filter, so that a ridge of the optical filter is chamfered. 円板形状の端面に径方向に凹部が形成された研削面を有し、当該研削面は底面と底面の端部に曲率面を有する研削ホイールを高速回転する第2の駆動軸からなる高速回転研削手段を有し、
前記研削ホイールの研削面は、底面と、その両端に形成された側面と、底面と側面間にある曲率面とからなり、当該曲率面は側面側より底面側が長く形成されており、前記固定された光学フィルタを平面的に回転させながら、その端面を前記高速回転する研削ホイールの研削面に接触させることにより、光学フィルタの稜を曲率面取りしたことを特徴とする請求項1または請求項2または請求項3記載の光学フィルタの製造方法。
The disk-shaped end surface has a grinding surface with a concave portion formed in the radial direction, and the grinding surface has a bottom surface and a high-speed rotation including a second drive shaft that rotates a grinding wheel having a curvature surface at an end of the bottom surface at a high speed. Having grinding means,
The grinding surface of the grinding wheel includes a bottom surface, side surfaces formed at both ends thereof, and a curvature surface between the bottom surface and the side surface.The curvature surface is formed such that the bottom surface side is longer than the side surface side, and the fixed surface is fixed. The edge of the optical filter is chamfered by bringing the end face into contact with the grinding surface of the high-speed rotating grinding wheel while rotating the optical filter in a plane. A method for manufacturing an optical filter according to claim 3.
請求項1乃至請求項4のいずれかに記載の製造方法を実行後、光学フィルタをエッチング液に浸漬することにより曲率研削面の加工面を安定化させたことを特徴とする光学フィルタの製造方法。5. A method for manufacturing an optical filter, comprising: performing the manufacturing method according to claim 1; and immersing the optical filter in an etchant to stabilize a processed surface of the curvature ground surface. . 請求項1乃至請求項5のいずれかに記載の製造方法により得られた曲率面取りされた光学フィルタ。An optical filter having a chamfered curvature obtained by the manufacturing method according to claim 1.
JP2003141705A 2003-05-20 2003-05-20 Manufacturing method of optical filter and optical filter by the manufacturing method Expired - Fee Related JP3931332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141705A JP3931332B2 (en) 2003-05-20 2003-05-20 Manufacturing method of optical filter and optical filter by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141705A JP3931332B2 (en) 2003-05-20 2003-05-20 Manufacturing method of optical filter and optical filter by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2004344996A true JP2004344996A (en) 2004-12-09
JP3931332B2 JP3931332B2 (en) 2007-06-13

Family

ID=33529993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141705A Expired - Fee Related JP3931332B2 (en) 2003-05-20 2003-05-20 Manufacturing method of optical filter and optical filter by the manufacturing method

Country Status (1)

Country Link
JP (1) JP3931332B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181044A (en) * 2005-12-28 2007-07-12 Mitsumi Electric Co Ltd Camera module
CN100500372C (en) * 2006-01-13 2009-06-17 鸿富锦精密工业(深圳)有限公司 Rounding equipment and rounding method
JP2015127079A (en) * 2013-12-27 2015-07-09 旭硝子株式会社 Grindstone, grinding device, grinding method, and manufacturing method of glass substrate
KR20170108888A (en) * 2016-03-17 2017-09-27 (주)이티에스 Laminated sheet polishing method and apparatus performing the same
CN108312001A (en) * 2018-01-20 2018-07-24 邵东和谐五金机电有限公司 A kind of processing of multilayer independence hammer handle and polissoir
CN110076653A (en) * 2019-04-23 2019-08-02 东旭科技集团有限公司 Edge processing apparatus
CN113640908A (en) * 2021-08-26 2021-11-12 武汉正可科技有限公司 Optical glass optical filter and grinding processing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181044A (en) * 2005-12-28 2007-07-12 Mitsumi Electric Co Ltd Camera module
CN100500372C (en) * 2006-01-13 2009-06-17 鸿富锦精密工业(深圳)有限公司 Rounding equipment and rounding method
JP2015127079A (en) * 2013-12-27 2015-07-09 旭硝子株式会社 Grindstone, grinding device, grinding method, and manufacturing method of glass substrate
KR20170108888A (en) * 2016-03-17 2017-09-27 (주)이티에스 Laminated sheet polishing method and apparatus performing the same
KR101925616B1 (en) * 2016-03-17 2019-02-27 (주)이티에스 Laminated sheet polishing method and apparatus performing the same
CN108312001A (en) * 2018-01-20 2018-07-24 邵东和谐五金机电有限公司 A kind of processing of multilayer independence hammer handle and polissoir
CN110076653A (en) * 2019-04-23 2019-08-02 东旭科技集团有限公司 Edge processing apparatus
CN113640908A (en) * 2021-08-26 2021-11-12 武汉正可科技有限公司 Optical glass optical filter and grinding processing method thereof

Also Published As

Publication number Publication date
JP3931332B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3620554B2 (en) Semiconductor wafer manufacturing method
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
TWI424484B (en) Wafer grinding method and wafer
JP2009233794A (en) Grinding/polishing machine for silicon block, and method of working silicon wafer
JP3328193B2 (en) Method for manufacturing semiconductor wafer
KR101645634B1 (en) Bonded wafer production method
WO2023112345A1 (en) Semiconductor crystal wafer manufacturing device and manufacturing method
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JP3931332B2 (en) Manufacturing method of optical filter and optical filter by the manufacturing method
JPWO2003044573A1 (en) Optical filter, method for manufacturing the optical filter, optical device using the optical filter, and housing structure for the optical filter
TW202017695A (en) Carrier wafers and methods of forming carrier wafers
JP4905238B2 (en) Polishing method of glass substrate for magnetic recording medium
JP4578939B2 (en) Manufacturing method of small glass products
JP2007130723A (en) Holder for chamfering corner of glass substrate and chamfering method for corner of glass substrate
JP3658851B2 (en) Thin plate surface grinding method
JP4935230B2 (en) Method for manufacturing translucent substrate
JP2005205543A (en) Wafer grinding method and wafer
JPH06310479A (en) Chamber polishing and mirror polishing of planar work
JP3109419B2 (en) Wafer processing method
JP4741280B2 (en) Manufacturing method of optical low-pass filter
JP6684603B2 (en) Manufacturing method of recycled semiconductor wafer
JP2013116540A (en) Method of manufacturing optical element
JP2008304600A (en) Method for manufacturing light wavelength conversion element
JPH11189500A (en) Production of oxide single crystal substrate
JPH1131670A (en) Manufacture of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070304

R150 Certificate of patent or registration of utility model

Ref document number: 3931332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees