JP2004342720A - 不揮発性記憶装置を含む半導体装置 - Google Patents

不揮発性記憶装置を含む半導体装置 Download PDF

Info

Publication number
JP2004342720A
JP2004342720A JP2003135426A JP2003135426A JP2004342720A JP 2004342720 A JP2004342720 A JP 2004342720A JP 2003135426 A JP2003135426 A JP 2003135426A JP 2003135426 A JP2003135426 A JP 2003135426A JP 2004342720 A JP2004342720 A JP 2004342720A
Authority
JP
Japan
Prior art keywords
impurity region
conductive layer
layer
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003135426A
Other languages
English (en)
Other versions
JP4506930B2 (ja
Inventor
Akihiko Ebina
昭彦 蝦名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003135426A priority Critical patent/JP4506930B2/ja
Publication of JP2004342720A publication Critical patent/JP2004342720A/ja
Application granted granted Critical
Publication of JP4506930B2 publication Critical patent/JP4506930B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】動作速度の向上および周辺回路面積の縮小化が達成可能である複数の不揮発性記憶装置を含む半導体装置を提供する。
【解決手段】本発明の半導体装置は、行方向および該行方向と交差する列方向に配置された複数の不揮発性記憶装置100を含む。不揮発性記憶装置100は、半導体層10のチャネル領域上に設けられたゲート絶縁層22と、ゲート絶縁層22上に設けられたゲート導電層14と、第1導電型の第1および第2不純物領域34,24と、ビット導電層80とを含む。ビット導電層80は、i行[j+1]列に配置されたメモリセル100の第2不純物領域24と、[i+1]行[j+1]列に配置されたメモリセル100の第1不純物領域34とを電気的に接続する。電荷捕捉層22bのうちゲート導電層14の一方の端部近傍に電荷蓄積領域を有し、他方の端部近傍には電荷蓄積領域を有さない。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電子捕捉層を含むゲート絶縁層中に電荷(キャリア)を捕捉してデータを記憶する不揮発性記憶装置を含む半導体装置に関する。
【0002】
【背景技術】
不揮発性記憶装置のひとつのタイプとして、例えば、チャネル領域とゲート導電層との間に、酸化シリコン層−窒化シリコン層−酸化シリコン層からなるゲート絶縁層が形成され、前記窒化シリコン層が電荷を捕捉するMONOS(Metal Oxide Nitride Oxide Semiconductor)型もしくはSONOS(Silicon Oxide Nitride Oxide Silicon)型と呼ばれるタイプがある(例えば、特許文献1参照)。
【0003】
このような不揮発性記憶装置メモリセルにおいては、メモリセルの制御が複雑化すると、メモリセルを制御する周辺回路が複雑化する。その結果、周辺回路の面積が増大するため、小型化が妨げられる場合がある。また、メモリセル制御の複雑化は、メモリセルの動作速度を低下させる一因となる。
【0004】
【特許文献1】
特開2001−118943号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、動作速度の向上および周辺回路面積の縮小化が達成可能である、複数の不揮発性記憶装置を含む半導体装置を提供することにある。
【0006】
【課題を解決するための手段】
(1)本発明の半導体装置は、
行方向および該行方向と交差する列方向に配置された複数の不揮発性記憶装置を含み、
前記不揮発性記憶装置は、
半導体層のチャネル領域上に設けられ、第1絶縁層、電荷捕捉層、および第2絶縁層からなるゲート絶縁層と、
前記ゲート絶縁層上に設けられたゲート導電層と、
前記ゲート導電層を挟むように前記半導体層に設けられた第1導電型の第1および第2不純物領域と、
i行[j+1]列に配置された前記不揮発性記憶装置の第2不純物領域と、[i+1]行[j+1]列に配置された前記不揮発性記憶装置の第1不純物領域と、を電気的に接続するビット導電層(i,jは1以上の整数)と、
を含み、
前記電荷捕捉層のうち前記ゲート導電層の一方の端部近傍に電荷蓄積領域を有し、他方の端部近傍には電荷蓄積領域を有さない。
【0007】
上記半導体装置によれば、前記ビット導電層が、i行[j+1]列に配置された前記不揮発性記憶装置の第2不純物領域と、[i+1]行[j+1]列に配置された前記不揮発性記憶装置の第1不純物領域とを電気的に接続することにより、書込みおよび消去時に電圧を印加するビット線およびワード線が限定される。これにより、列方向に隣り合う前記不揮発性記憶装置がワード線を共有し、行方向に隣り合う前記不揮発性記憶装置がビット線を共有していても、選択された前記不揮発性記憶装置以外のセルへの誤書込みおよび誤消去を効果的に防止することができる。以上により、信頼性に優れた前記不揮発性記憶装置を得ることができる。
【0008】
また、前記不揮発性記憶装置を制御する周辺回路をより単純化することができる。その結果、前記周辺回路の面積を縮小することができ、かつ前記不揮発性記憶装置の動作速度を向上させることができる。詳しくは、本実施の形態の欄で説明する。
【0009】
(2)上記半導体装置において、前記第1不純物領域は、前記半導体層のうち前記ゲート導電層の一方の端部近傍に設けられた第1導電型の高濃度不純物領域を含み、前記高濃度不純物領域は、前記半導体層のうち前記ゲート導電層の他方の端部近傍よりも、第1導電型不純物の濃度が高くすることができる。
【0010】
この場合、前記第2不純物領域は、前記半導体層のうち前記ゲート導電層の他方の端部近傍に設けられた第1導電型の低濃度不純物領域を含み、前記高濃度不純物領域および前記低濃度不純物領域は、前記ゲート導電層を挟むように配置され、前記低濃度不純物領域は、前記高濃度不純物領域よりも、第1導電型不純物の濃度を高くすることができる。
【0011】
また、この場合、さらに、前記チャネル領域により近い側で前記高濃度不純物領域と隣り合う第2導電型の第3不純物領域と、を含むことができる。
【0012】
(3)上記半導体装置において、行方向に隣り合う2つの前記不揮発性記憶装置は、共通の前記第1不純物領域または前記第2不純物領域を有することができる。
【0013】
この場合、さらに、前記共通の前記第1不純物領域上に設けられた第1コンタクト部と、前記共通の前記第2不純物領域上に設けられた第2コンタクト部と、を含むことができる。
【0014】
また、この場合、前記第1コンタクト部は、i行j列に配置された前記不揮発性記憶装置とi行[j+1]列に配置された前記不揮発性記憶装置との共通の第1不純物領域上に設けられ、前記第2コンタクト部は、[i+1]行[j+1]列に配置された前記不揮発性記憶装置と[i+1]行[j+2]列に配置された前記不揮発性記憶装置との共通の第2不純物領域上に設けられ、前記ビット導電層は、前記第1および第2コンタクト部を介して、前記共通の第1不純物領域と前記共通の第2不純物領域とを電気的に接続することができる。
【0015】
(4)上記半導体装置において、前記ゲート導電層は、列方向に延びていることができる。
【0016】
(5)上記半導体装置において、列方向に隣り合う2つの前記不揮発性記憶装置は、素子分離領域によって電気的に分離されていることができる。
【0017】
この場合、前記素子分離領域は、折れ線形状を有することができる。また、この場合、前記素子分離領域を複数含み、隣り合う2つの前記素子分離領域間の距離を等しくすることができる。
【0018】
前記ビット導電層は、行方向および列方向と交差する方向に延びる部分を有する、半導体装置。
【0019】
(6)上記半導体装置において、前記ビット導電層は、折れ線状の平面形状を有することができる。
【0020】
(7)上記半導体装置において、前記ビット導電層を複数含み、隣り合う2つの前記ビット導電層間の距離を等しくすることができる。
【0021】
(8)上記半導体装置において、前記不揮発性記憶装置の上方には埋込絶縁層が形成され、前記ビット導電層を、前記埋込絶縁層の上方に設けることができる。
【0022】
(9)上記半導体装置において、前記第1および第2絶縁層は、酸化シリコンからなり、前記電荷捕捉層は、窒化シリコンからなることができる。
【0023】
(10)上記半導体装置において、さらに、前記不揮発性記憶装置の制御回路を含み、
前記制御回路は、
書込み時には、前記ゲート導電層に高レベルの電圧を印加し、前記第2不純物領域に低レベルの電圧、前記第1不純物領域に高レベルの電圧を印加して、前記第1不純物領域近傍の前記電荷捕捉層に、第1導電型のホットキャリアを注入し、
読出し時には、書込み時とは逆方向に、第1導電型のキャリアを前記チャネル領域に流すことができる。
【0024】
この場合、前記制御回路は、書込み時には、選択された前記不揮発性記憶装置に電気的に接続されたゲート導電層およびビット導電層に電圧を印加し、選択されていない前記不揮発性記憶装置に電気的に接続されたゲート導電層およびビット導電層には電圧を印加しないことができる。
【0025】
【発明の実施の形態】
次に、本発明の一実施の形態の半導体装置について、図面を参照して説明する。図1は、本発明の一実施の形態の半導体装置を模式的に示す平面図である。図2は、図1のA−A線に沿った断面を模式的に示す図である。
【0026】
本実施の形態の半導体装置は、図1に示すように、複数の不揮発性記憶装置(メモリセル)100からなるメモリセルアレイを含む。図2は、図1に示すメモリセル100の断面を示している。
【0027】
[平面構造]
まず、本実施の形態の半導体装置の平面構造について、主に図1および図3を参照して説明する。
【0028】
図3は、図1に示す半導体装置の概略回路図である。図3に示すように、複数のワード線WL(WL,WLj+1,WLj+2,WLj+3…)と複数のビット線BL(BL,BLi+1,BLi+2,BLi+3,BLi+4…)とが互いに交差して半導体層10の上方に配置されている。なお、図1に示すビット線BLはビット導電層80に該当し、ワード線WLは図2に示すワード導電層14に接続される。
【0029】
これらのビット線BLは、ビット線ドライバBDに接続され、選択的に駆動電圧を受ける。また、これらのワード線WLは、ワード線ドライバWDに接続され、選択的に走査電圧を受ける。ビット線ドライバBDおよびワード線ドライバWDなど、メモリセル100の制御回路は、図1に示すメモリセルアレイと同一の半導体層10に形成することができる。
【0030】
図1に示すように、各ワード線WLは列方向に延びている。また、隣り合う2本のワード線WLの間には、第1不純物領域34と第2不純物領域24とが交互に配置されている。例えば、WLとWLj+1との間には第2不純物領域24が配置され、WLj+1とWLj+2との間には第1不純物領域34が配置され、WLj+2とWLj+3との間には第2不純物領域24が配置されている。
【0031】
図3に示すように、ワード線WLとビット線BLとの各交差部には、メモリセル100が接続されている。図1に示すメモリセルアレイにおいては、複数のメモリセル100が、行方向および該行方向と交差する列方向に配列されている。本実施の形態においては、行方向と列方向とが直交している場合を示している。
【0032】
なお、図1および図3において、i行j列に配置されるメモリセル100を、「Tij」と示す(i,jは1以上の整数)。ここで、「i行j列に配置されるメモリセル(Tij)」とは、i番目のビット線BLと[i+1]番目のビット線BLi+1との間に接続され、そのゲート導電層がj番目のワード線WLに接続されたメモリセルをいう(図3参照)。
【0033】
また、図1に示すように、行方向に隣り合う2つのメモリセル100は、共通の第1不純物領域34または共通の第2不純物領域24を有する。具体的には、例えば図1に示すように、行方向に隣り合うメモリセルTi+1,j+1およびTi+1,j+2は、共通の第1不純物領域34を有する。また、行方向に隣り合うメモリセルTi,jおよびTi,j+1は、共通の第2不純物領域24を有する。
【0034】
また、図1に示すように、第1および第2不純物領域34,24はそれぞれ、列方向に配列している。列方向に隣り合う共通の第1および第2不純物領域34,24は、素子分離領域12によって電気的に分離されている。素子分離領域12は、例えばSTI(shallow trench isolation)からなる。一方、行方向に隣り合う第1および第2不純物領域34,24は、ワード線WL(ゲート導電層14)を挟むように配置されている(図3参照)。
【0035】
すなわち、図1に示すように、列方向に隣り合うメモリセル100は、素子分離領域12によって電気的に分離されている。図1では、複数の素子分離領域12が行方向に直線状に延びている場合について示している。また、隣り合う2つの素子分離領域12間の距離がほぼ等しく形成されている。
【0036】
また、共通の第2不純物領域24の上には、第1コンタクト部C11,C21,C31,C13,C23,C33が設けられている。また、共通の第1不純物領域34の上には、第2コンタクト部C02,C12,C22が設けられている。
【0037】
次に、ビット線BL(ビット導電層80)の接続構造について、図1を参照しながら、列方向に隣り合うメモリセルTi,j+1およびTi+1,j+1を例にとり説明する。
【0038】
ビット線BLi+1(ビット導電層80)は、Ti,j+1(i行[j+1]列に配置されたメモリセル100)の第2不純物領域24と、Ti+1,j+1([i+1]行[j+1]列に配置されたメモリセル100)の第1不純物領域34とを電気的に接続する。
【0039】
具体的には、メモリセルTi,j+1の第2不純物領域24と、メモリセルTi+1,j+1の第1不純物領域34とは、第1コンタクト部C11および第2コンタクト部C12を介して、ビット線BLi+1(ビット導電層80)によって電気的に接続されている。
【0040】
第1コンタクト部C11は、メモリセルTi,j+1とメモリセルTi+1,j+1との共通の第2不純物領域24上に設けられ、第2コンタクト部C12は、メモリセルTi+1,j+1とメモリセルTi+1,j+2との共通の第1不純物領域34上に設けられている。よって、ビット線BLi+1(ビット導電層80)は、第1コンタクト部C11および第2コンタクト部C12を介して、共通の第2不純物領域24と共通の第1不純物領域34とを電気的に接続している。
【0041】
さらに、ビット線BLi+1(ビット導電層80)は、第2コンタクト部C12および第1コンタクト部C13を介して、共通の第1不純物領域34と共通の第2不純物領域24とを電気的に接続している。この第1コンタクト部C13は、メモリセルTi,j+2とメモリセルTi,j+3との共通の第1不純物領域24上に設けられている。
【0042】
したがって、ビット線BL(ビット導電層80)は、第1コンタクト部および第2コンタクト部を介して、共通の第1不純物領域34と共通の第2不純物領域24とを交互に電気的に接続している。
【0043】
例えば、ビット線BLi+1(ビット導電層80)は、i行に配置されたメモリセル100の第2不純物領域24と、[i+1]行に配置されたメモリセル100の第1不純物領域34とを、交互に電気的に接続している。具体的には、ビット線BLi+1は、第1コンタクト部11を介してメモリセルTi,jおよびTi,j+1の共通の第2不純物領域24と、第2コンタクト部12を介してメモリセルTi+1,j+1およびTi+1,j+2の共通の第1不純物領域34と、第1コンタクト部13を介してメモリセルTi,j+2およびTi,j+3の共通の第2不純物領域24と、…を電気的に接続している。
【0044】
図1に示すメモリセルアレイにおいては、具体的には、ビット導電層80(ビット線BL)は、行方向および列方向と交差する方向に延びる部分を有する。具体的には、ビット導電層80は、折れ線状の平面形状を有する。また、図1に示すように、隣り合う2つのビット導電層80間の距離がほぼ等しい形成されている。
【0045】
[断面構造]
次に、図1に示すメモリセル100の断面構造について、図2を主に参照して説明する。
【0046】
図2に示すように、メモリセル100は、1つのゲート導電層14(ワード線WLj+1)と、ゲート絶縁層22と、第1および第2不純物領域34,24とを含む。ゲート導電層14は、半導体層10の上にゲート絶縁層22を介して形成されている。ゲート導電層14は、例えばドープトポリシリコンからなる。また、ゲート導電層14の両側壁には、サイドウォール絶縁層15を設けることができる(図2参照)。サイドウォール絶縁層15は、例えば酸化シリコンや窒化シリコンからなる。
【0047】
ゲート絶縁層22は、第1絶縁層22a、電荷捕捉層22bおよび第2絶縁層22cを順に堆積させることにより形成される。第1絶縁層22aは、チャネル領域と電荷蓄積領域との間に電位障壁(potential barrier)を形成する。電荷捕捉層22bは、キャリア(たとえば電子)をトラップする電荷蓄積領域を含む。第2絶縁層22cは、ゲート導電層14と電荷蓄積領域との間に電位障壁(potential barrier)を形成する。
【0048】
本実施の形態のメモリセル100では、1セル当たり1ビットを記憶する。具体的には、図1および図2に示すように、電荷捕捉層22bに電荷蓄積領域Xを有する。この電荷蓄積領域Xは、電荷捕捉層22bのうちゲート導電層14の一方の端部近傍に形成される。一方、電荷捕捉層22bのうちゲート導電層14の他方の端部近傍(電荷捕捉層22bのうち低濃度不純物領域28)には電荷蓄積領域が形成されない。
【0049】
電荷捕捉層22bは例えば、窒化シリコン、酸化シリコンや窒化シリコン等の絶縁層にタングステン等の金属を分散させた層、またはポリシリコンの島が埋め込まれた酸化シリコン層からなることができる。
【0050】
ゲート絶縁層22は例えば、ONO(Oxide−Nitride−Oxide)膜からなることができる。すなわち、第1および第2絶縁層22a,22cが酸化シリコンからなり、電荷捕捉層22bが窒化シリコンからなる。
【0051】
第1および第2不純物領域34,24は、図2に示すように、半導体層10においてゲート導電層14を挟むように配置されている。半導体層10において第1および第2不純物領域34,24に挟まれた領域であってゲート導電層14の下部には、チャネル領域が形成される。
【0052】
第1および第2不純物領域34,24には、同一の導電型(第1導電型)の不純物が導入されている。本実施の形態では、第1導電型がN型であり、第2導電型がP型である場合について説明するが、これらの導電型を逆にすることもできる。
【0053】
第1不純物領域34は、高濃度不純物領域38および不純物領域36を有する。不純物領域36は高濃度不純物領域38と隣り合っている。この不純物領域36は、1つのメモリセル100において、高濃度不純物領域38よりもゲート導電層14から離れた位置に設けられている。
【0054】
第2不純物領域24は、低濃度不純物領域28および不純物領域26を有する。不純物領域26は低濃度不純物領域28と隣り合っている。この不純物領域26は、1つのメモリセル100において、低濃度不純物領域28よりもゲート導電層14から離れた位置に設けられている。この第2不純物領域24はLDD(Lightly doped drain)構造を有する。具体的には、低濃度不純物領域28は、不純物領域26よりもN型不純物の濃度が低い。
【0055】
高濃度不純物領域38は、図1に示すように、半導体層10のうちゲート導電層14の一方の端部近傍に設けられている。また、低濃度不純物領域28は、半導体層10のうちゲート導電層14の他方の端部近傍に設けられている。高濃度不純物領域38と低濃度不純物領域28は、図2に示すように、ゲート導電層14を挟むように配置されている。
【0056】
高濃度不純物領域38および低濃度不純物領域28はともに、同一の導電型(第1導電型)の不純物が導入されている。本実施の形態では、第1導電型がN型であり、第2導電型がP型である場合について説明するが、これらの導電型を逆にすることもできる。
【0057】
高濃度不純物領域38のN型不純物の濃度は、低濃度不純物領域28のN型不純物濃度よりも大きい。すなわち、高濃度不純物領域38よりもN型不純物の濃度が低い低濃度不純物領域28が、半導体層10のうちゲート導電層14の他方の端部近傍に設けられているため、高濃度不純物領域38は、半導体層10のうちゲート導電層14の他方の端部近傍よりも、N型不純物の濃度が高くなっている。
【0058】
具体的には、高濃度不純物領域38は、低濃度不純物領域28よりも、少なくとも数倍(例えば3〜4倍)以上のN型不純物濃度を有することが望ましく、10倍以上のN型不純物濃度を有することがより望ましい。
【0059】
また、図2に示すように、P型の半導体基板からなる半導体層10において、チャネル領域により近い側で高濃度不純物領域38と隣り合う領域に、第3不純物領域32が形成されている。この第3不純物領域32には、高濃度不純物領域38とは異なる導電型(第2導電型;P型)の不純物が導入されている。ここで、第3不純物領域32は、図2に示すように、高濃度不純物領域38よりも、チャネル領域の中央部により近い位置まで配置されていることが望ましい。なお、第3不純物領域32を設けなくても、高濃度不純物領域38のN型不純物濃度が十分高く、高濃度不純物領域38とチャネル領域との濃度勾配が十分大きいのであれば、メモリセル100への書込み時に、電荷蓄積領域Xにホットキャリアを注入することができる。
【0060】
さらに、図2に示すように、第1および第2不純物領域34,24およびゲート導電層14の上に、チタンやコバルト等の金属を含むシリサイド層92を形成することができる。これらのシリサイド層92が形成されていることにより、メモリセル100のアクセス速度を向上させることができる。
【0061】
また、メモリセル100の上には埋込絶縁層72が形成されている。また、埋込絶縁層72の上にはビット導電層80(図2ではビット線BLi+1,BLi+2)が設けられている。図2に示す断面では、第2不純物領域24上に設けられた第1コンタクト部C21と、第1コンタクト部C21上に設けられたビット導電層80(ビット線BLi+2)と、第1不純物領域34上に設けられた第2コンタクト部C12と、第2コンタクト部C12上に設けられたビット導電層80(ビット線BLi+1)とが示されている。第1および第2コンタクト部は、埋込絶縁層72に設けられた開口部84と、開口部84に埋め込まれた導電層82とから構成される。
【0062】
[動作]
前述したように、メモリセル100は、1セル当たり1ビットを記憶させる。具体的には、電荷蓄積層22b中の電荷捕捉領域Xに電荷を蓄積する。
【0063】
前述したように、本実施の形態のメモリセル100では、第1不純物領域34の高濃度不純物領域38は、第2不純物領域24の低濃度不純物領域28よりもN型不純物の濃度が大きい。また、高濃度不純物領域38は、ゲート導電層14aの一方の端部近傍に形成され、低濃度不純物領域28は、他方の端部近傍に形成されている。このため、電荷捕捉層22b内に電荷が導入された場合、前記電荷は、電荷捕捉層22bのうち高濃度不純物領域38により近いほうの端部近傍にある電荷捕捉領域Xにて捕捉される。一方、電荷捕捉層22bのうち低濃度不純物領域28により近いほうの端部近傍では、前記電荷は捕捉されない。
【0064】
以下、図4を参照して、メモリセル100の動作の一例を示す。ここでは、図1に示すメモリセルTi+1,j+1を選択して書込みを行なう場合について説明する。
【0065】
(1)書込み
データ書込み時において、第2不純物領域34を接地し(V=グランド電位)、第1不純物領域24およびゲート導電層14を正電位にすることで(VGT,V=正電位)、高濃度不純物領域38近傍の電荷捕捉層22b内の電荷捕捉領域Xに、ホットエレクトロン(N型ホットキャリア)を蓄積させる。
【0066】
図1のメモリセルTi+1,j+1の電荷蓄積領域Xに書込みを行なう場合、ワード線WLj+1を正電位(例えば7V)にし、ワード線WLj+1以外のワード線をグランド電位にする。そして、図1においてビット線BLi+1を正電位(例えば5V)にし、ビット線BLi+1以外のビット線をグランド電位にする。これにより、ホットエレクトロンが電荷蓄積領域Xに注入される。
【0067】
この場合、書込みを選択されたメモリセルTi+1,j+1と列方向に隣り合うメモリセルTi,j+1においては、書込みを選択されたメモリセルTi+1,j+1と同様に、ゲート導電層14および第2不純物領域24が正電位となり、第1不純物領域34がグランド電位となる。
【0068】
しかしながら、メモリセル100においては、第2不純物領域24の低濃度不純物領域28は、第1不純物領域34の高濃度不純物領域38よりも、N型不純物濃度がかなり低く設定されているため、電荷蓄積層22bのうち低濃度不純物領域28近傍(図1の領域Y)には電荷が注入されない。したがって、メモリセルTi,j+1には書込みが行なわれない。
【0069】
(2)読出し
データ読出し時には、書込み時と逆方向にN型キャリアをチャネル領域に流す。第1不純物領域24から第2不純物領域34に電流を流す場合、電荷捕捉領域X内の電荷は、チャネル電流の形成に大きな影響を与える。具体的には、データ読出し時には、第1不純物領域24を接地し(V=グランド電位)、第2不純物領域34およびゲート導電層14を正電位にする(VGT,V=正電位)。
【0070】
(3)消去
データ消去時には、電荷捕捉領域内の電荷とは逆の導電型の電荷を注入する。電荷捕捉領域Xに蓄積された電荷を消去する場合、ゲート導電層14(VGT)を低レベルまたは負電位(例えば−3V)にし、第2不純物領域34(V)に高レベルの電圧(例えば6V)を印加する。これにより、電荷捕捉領域Xにホットホール(P型ホットキャリア)を注入する。
【0071】
[特徴]
(a)メモリセルアレイの特徴
第1に、本実施の形態のメモリセルアレイによれば、ビット導電層80(ビット線BLi+1)が、メモリセルTi,j+1の第2不純物領域24と、メモリセルTi+1,j+1の第1不純物領域34とを電気的に接続する。前述したように、メモリセルTi+1,j+1の電荷蓄積領域Xに書込みを行なう場合、ワード線WLj+lを正電位にし、ワード線WLj+l以外のワード線をグランド電位にするとともに、ビット線BLi+1を正電位にし、ビット線BLi+1以外のビット線をグランド電位にする。このように、本実施の形態のメモリセル100によれば、書込みおよび消去時に電圧を印加するビット線およびワード線が限定される。これにより、列方向に隣り合うメモリセル100がワード線WLを共有し、行方向に隣り合うメモリセル100がビット線BLを共有していても、選択されたメモリセル100(この場合メモリセルTi,j)以外のセルへの誤書込みおよび誤消去を効果的に防止することができる。以上により、信頼性に優れたメモリセル100を得ることができる。
【0072】
また、この場合、選択したワード線およびビット線(この場合ワード線WLj+1およびビット線BLi+1)以外のワード線およびビット線に電圧を印加する必要がない。これにより、メモリセル100の動作制御を行なう周辺回路を単純化することができる。その結果、周辺回路面積の縮小化を達成することができ、メモリセル100の動作速度を向上させることができる。
【0073】
(b)メモリセルの特徴
第1に、本実施の形態のメモリセル100では、1つのメモリセル内にプログラミングサイトを1つ有するため、メモリセルのオペレーションの制御がより容易である。これにより、メモリセルのオペレーションを制御するための周辺回路をより簡素化することができる。その結果、周辺回路の面積を低減することができるため、半導体装置全体の小型化を達成することができる。
【0074】
第2に、高濃度不純物領域38は、半導体層10のうちゲート導電層14の他方の端部近傍よりもN型不純物の濃度が高い。この構成によれば、電荷捕捉層22bのうち高濃度不純物領域38近傍の領域においてのみ、ホットキャリアを導入させることができる。すなわち、半導体層10のうちゲート導電層14の一方の端部近傍に設けられた不純物領域(高濃度不純物領域38)を主に、メモリセル100の書込みに関与させることができる。
【0075】
具体的には、本実施の形態のメモリセル100は、ゲート導電層14を挟むように配置された高濃度不純物領域38および低濃度不純物領域28を含み、高濃度不純物領域38は低濃度不純物領域28よりも不純物濃度が高い。これにより、高濃度不純物領域38と半導体層10との濃度勾配は、低濃度不純物領域28と半導体層10との濃度勾配よりも大きくなっている。その結果、高濃度不純物領域38および低濃度不純物領域28に同程度のバイアスがかかった場合でも、低濃度不純物領域28においては、ホットキャリアの発生が抑えられるため、電荷捕捉層22bのうち高濃度不純物領域38近傍の領域(電荷捕捉領域X)においてのみ、ホットキャリアの注入が導入されて、セルの書込みが行なわれる。
【0076】
一方、低濃度不純物領域28は、高濃度不純物領域38よりもN型不純物濃度が低く設定されているため、低濃度不純物領域28においては、ホットキャリアの発生が抑えられる。すなわち、低濃度不純物領域28にバイアスがかかっても、電荷捕捉層22bのうち低濃度不純物領域28近傍の領域には、ホットキャリアが注入されることはない。これにより、ディスターブが起こりにくくなり、メモリセルアレイの構成の自由度が大きくなるという利点を有する。
【0077】
さらに、メモリセル100の低濃度不純物領域28において、ホットキャリアの発生が抑えられることにより、ゲート導電層14のうち低濃度不純物領域28近傍での電界集中を緩和することができる。すなわち、低濃度不純物領域28に高電圧が印加された場合に、誤書込みの発生や特性変化を抑えることができ、かつ読出し時のストレスに対する耐久性を高めることができる。
【0078】
そのうえ、電荷捕捉層22bのうち高濃度不純物領域38の近傍に電荷蓄積領域Xが形成されるのに対して、電荷捕捉層22bのうち低濃度不純物領域28の近傍は電荷蓄積領域として機能しない。これにより、短チャネル効果が発生しにくいため、ゲート長をより小さくすることができる。その結果、メモリセルの小型化を図ることができる。
【0079】
第3に、チャネル領域により近い側で高濃度不純物領域38と隣り合う第3不純物領域32を含み、この第3不純物領域32は、高濃度不純物領域38と異なる導電型(P型)の不純物が導入されている。この第3不純物領域32がチャネル領域により近い側で高濃度不純物領域38と隣り合っていることにより、高濃度不純物領域38と第3不純物領域32との間の濃度勾配をより大きくすることができる。これにより、電荷捕捉領域Xへのホットキャリアの注入をより促進させることができる。
【0080】
例えば、半導体層10のP型不純物の濃度が低い場合でも、この第3不純物領域32が高濃度不純物領域38と隣り合って配置されていることにより、高濃度不純物領域38と第3不純物領域32との間の濃度勾配を大きくすることができるため、電荷捕捉層22bのうち高濃度不純物領域38近傍の領域へのホットキャリアの注入をより促進することができる。
【0081】
[変形例]
図5に、本実施の形態の半導体装置(メモリセルアレイ)の一変形例を示す。本変形例のメモリセルアレイにおいても、図1のメモリセルアレイと同様の作用効果を有する。
【0082】
図5に示すメモリセルアレイでは、素子分離領域12の平面形状が折れ線状である点、ならびに第1および第2コンタクト部が千鳥格子状に配置されている点を除いて、図1に示すメモリセルアレイと同様の構成を有する。また、図5のA−Aにおける断面は、図2に示す断面と同様の構成を有する。
【0083】
また、図5のメモリセルの基本構成および動作は、図1のメモリセルと同様である。したがって、図5に示すメモリセルアレイにおいては、図1に示すメモリセルアレイと同様の構成を有する部分については、詳しい説明は省略する。なお、図5においては、メモリセルTi+1,j+1のみ、点線でその範囲が示されている。
【0084】
図5に示すメモリセルアレイでは、第1コンタクト部および第2コンタクト部が千鳥格子状に配置されている。すなわち、複数の第1および第2コンタクト部がそれぞれ列方向に配列し、1つの第2コンタクト部(または第1コンタクト部)は、4つの隣り合う第1コンタクト部(または第2コンタクト部)から等しい位置に配置されている。
【0085】
図5に示すメモリセルアレイにおいては、図1に示すメモリセルアレイよりも、列方向に隣り合うビット導電層80間の距離を大きくすることができる。これにより、パターニングによりビット導電層80を形成する際のマージンを大きくすることができる。
【0086】
以上、本発明の一実施の形態について述べたが、本発明はこれに限定されず、本発明の要旨の範囲内で種々の態様をとりうる。たとえば、上記実施の形態では、半導体層10としてバルク状の半導体基板を用いたが、SOI基板の半導体層を用いてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態の不揮発性記憶装置を含む半導体装置を模式的に示す平面図である。
【図2】図1に示す不揮発性記憶装置を模式的に示す断面図である。
【図3】図1に示す半導体装置の等価回路を示す図である。
【図4】図1に示す不揮発性記憶装置の動作を説明する図である。
【図5】図1に示す半導体装置の一変形例を模式的に示す平面図である。
【符号の説明】
10 半導体層、 12 素子分離領域、 14 ゲート導電層、 15 サイドウォール絶縁層、 22 ゲート絶縁層、 22a 第1絶縁層、 22b 電荷捕捉層、 22c 第2絶縁層、 24 第2不純物領域、 26,36 不純物領域、 28 低濃度不純物領域、 32 第3不純物領域、 34 第1不純物領域、 38 高濃度不純物領域、 72 埋込絶縁層、 80 配線層、 82 導電層、 84 開口部、 92 シリサイド層、 100 メモリセル(不揮発性記憶装置)、 BD ビット線ドライバ、 BL〜BLi+4 ビット線、 C02、C11〜C13、C21〜C23、C31〜C33 コンタクト、 WD ワード線ドライバ、 WL〜WLj+3 ワード線

Claims (18)

  1. 行方向および該行方向と交差する列方向に配置された複数の不揮発性記憶装置を含み、
    前記不揮発性記憶装置は、
    半導体層のチャネル領域上に設けられ、第1絶縁層、電荷捕捉層、および第2絶縁層からなるゲート絶縁層と、
    前記ゲート絶縁層上に設けられたゲート導電層と、
    前記ゲート導電層を挟むように前記半導体層に設けられた第1導電型の第1および第2不純物領域と、
    i行[j+1]列に配置された前記不揮発性記憶装置の第2不純物領域と、[i+1]行[j+1]列に配置された前記不揮発性記憶装置の第1不純物領域と、を電気的に接続するビット導電層(i,jは1以上の整数)と、
    を含み、
    前記電荷捕捉層のうち前記ゲート導電層の一方の端部近傍に電荷蓄積領域を有し、他方の端部近傍には電荷蓄積領域を有さない、半導体装置。
  2. 請求項1において、
    前記第1不純物領域は、前記半導体層のうち前記ゲート導電層の一方の端部近傍に設けられた第1導電型の高濃度不純物領域を含み、
    前記高濃度不純物領域は、前記半導体層のうち前記ゲート導電層の他方の端部近傍よりも、第1導電型不純物の濃度が高い、半導体装置。
  3. 請求項2において、
    前記第2不純物領域は、前記半導体層のうち前記ゲート導電層の他方の端部近傍に設けられた第1導電型の低濃度不純物領域を含み、
    前記高濃度不純物領域および前記低濃度不純物領域は、前記ゲート導電層を挟むように配置され、
    前記低濃度不純物領域は、前記高濃度不純物領域よりも、第1導電型不純物の濃度が高い、半導体装置。
  4. 請求項2または3において、
    さらに、前記チャネル領域により近い側で前記高濃度不純物領域と隣り合う第2導電型の第3不純物領域と、を含む、半導体装置。
  5. 請求項1ないし4のいずれかにおいて、
    行方向に隣り合う2つの前記不揮発性記憶装置は、共通の前記第1不純物領域または前記第2不純物領域を有する、半導体装置。
  6. 請求項5において、
    さらに、前記共通の前記第1不純物領域上に設けられた第1コンタクト部と、
    前記共通の前記第2不純物領域上に設けられた第2コンタクト部と、を含む、半導体装置。
  7. 請求項6において、
    前記第1コンタクト部は、i行j列に配置された前記不揮発性記憶装置とi行[j+1]列に配置された前記不揮発性記憶装置との共通の第1不純物領域上に設けられ、
    前記第2コンタクト部は、[i+1]行[j+1]列に配置された前記不揮発性記憶装置と[i+1]行[j+2]列に配置された前記不揮発性記憶装置との共通の第2不純物領域上に設けられ、
    前記ビット導電層は、前記第1および第2コンタクト部を介して、前記共通の第1不純物領域と前記共通の第2不純物領域とを電気的に接続する、半導体装置。
  8. 請求項1ないし7のいずれかにおいて、
    前記ゲート導電層は、列方向に延びている、半導体装置。
  9. 請求項1ないし8のいずれかにおいて、
    列方向に隣り合う2つの前記不揮発性記憶装置は、素子分離領域によって電気的に分離されている、半導体装置。
  10. 請求項9において、
    前記素子分離領域は、折れ線形状を有する、半導体装置。
  11. 請求項9または10において、
    前記素子分離領域を複数含み、
    隣り合う2つの前記素子分離領域間の距離は等しい、半導体装置。
  12. 請求項1ないし11のいずれかにおいて、
    前記ビット導電層は、行方向および列方向と交差する方向に延びる部分を有する、半導体装置。
  13. 請求項12において、
    前記ビット導電層は、折れ線状の平面形状を有する、半導体装置。
  14. 請求項1ないし13のいずれかにおいて、
    前記ビット導電層を複数含み、
    隣り合う2つの前記ビット導電層間の距離は等しい、半導体装置。
  15. 請求項1ないし14のいずれかにおいて、
    前記不揮発性記憶装置の上方には埋込絶縁層が形成され、
    前記ビット導電層は、前記埋込絶縁層の上方に設けられた、半導体装置。
  16. 請求項1ないし15のいずれかにおいて、
    前記第1および第2絶縁層は、酸化シリコンからなり、
    前記電荷捕捉層は、窒化シリコンからなる、半導体装置。
  17. 請求項1ないし16のいずれかにおいて、
    さらに、前記不揮発性記憶装置の制御回路を含み、
    前記制御回路は、
    書込み時には、前記ゲート導電層に高レベルの電圧を印加し、前記第2不純物領域に低レベルの電圧、前記第1不純物領域に高レベルの電圧を印加して、前記第1不純物領域近傍の前記電荷捕捉層に、第1導電型のホットキャリアを注入し、
    読出し時には、書込み時とは逆方向に、第1導電型のキャリアを前記チャネル領域に流す、半導体装置。
  18. 請求項17において、
    前記制御回路は、書込み時には、選択された前記不揮発性記憶装置に電気的に接続されたゲート導電層およびビット導電層に電圧を印加し、選択されていない前記不揮発性記憶装置に電気的に接続されたゲート導電層およびビット導電層には電圧を印加しない、半導体装置。
JP2003135426A 2003-05-14 2003-05-14 不揮発性記憶装置を含む半導体装置 Expired - Fee Related JP4506930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135426A JP4506930B2 (ja) 2003-05-14 2003-05-14 不揮発性記憶装置を含む半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135426A JP4506930B2 (ja) 2003-05-14 2003-05-14 不揮発性記憶装置を含む半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009277361A Division JP4507023B2 (ja) 2009-12-07 2009-12-07 不揮発性記憶装置を含む半導体装置

Publications (2)

Publication Number Publication Date
JP2004342720A true JP2004342720A (ja) 2004-12-02
JP4506930B2 JP4506930B2 (ja) 2010-07-21

Family

ID=33525690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135426A Expired - Fee Related JP4506930B2 (ja) 2003-05-14 2003-05-14 不揮発性記憶装置を含む半導体装置

Country Status (1)

Country Link
JP (1) JP4506930B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141134A (ja) * 2007-12-06 2009-06-25 Sharp Corp 半導体記憶装置及びその製造方法と半導体記憶装置の動作方法
JP2010182845A (ja) * 2009-02-05 2010-08-19 Seiko Epson Corp 不揮発性メモリー装置
JP2012518268A (ja) * 2009-02-18 2012-08-09 ナンジン ユニバーシティ 複合誘電体ゲートmosfet構造を有す感光検出器およびその信号読み取り方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02371A (ja) * 1988-05-20 1990-01-05 Hitachi Ltd 半導体装置の製造方法
JPH06188428A (ja) * 1992-12-16 1994-07-08 Rohm Co Ltd 半導体集積回路装置およびその製造方法
JPH07193151A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 不揮発性半導体記憶装置及びその記憶方法
JPH0982921A (ja) * 1995-09-11 1997-03-28 Rohm Co Ltd 半導体記憶装置、その製造方法および半導体記憶装置の仮想グランドアレイ接続方法
JPH11345888A (ja) * 1998-04-16 1999-12-14 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置およびその製造方法
JP2003068896A (ja) * 2001-08-30 2003-03-07 Sharp Corp メモリ膜およびその製造方法、並びにメモリ素子、半導体記憶装置、半導体集積回路および携帯電子機器
JP2004095893A (ja) * 2002-08-30 2004-03-25 Nec Electronics Corp 半導体記憶装置及びその制御方法と製造方法
JP2004296683A (ja) * 2003-03-26 2004-10-21 Seiko Epson Corp 半導体装置およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02371A (ja) * 1988-05-20 1990-01-05 Hitachi Ltd 半導体装置の製造方法
JPH06188428A (ja) * 1992-12-16 1994-07-08 Rohm Co Ltd 半導体集積回路装置およびその製造方法
JPH07193151A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 不揮発性半導体記憶装置及びその記憶方法
JPH0982921A (ja) * 1995-09-11 1997-03-28 Rohm Co Ltd 半導体記憶装置、その製造方法および半導体記憶装置の仮想グランドアレイ接続方法
JPH11345888A (ja) * 1998-04-16 1999-12-14 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置およびその製造方法
JP2003068896A (ja) * 2001-08-30 2003-03-07 Sharp Corp メモリ膜およびその製造方法、並びにメモリ素子、半導体記憶装置、半導体集積回路および携帯電子機器
JP2004095893A (ja) * 2002-08-30 2004-03-25 Nec Electronics Corp 半導体記憶装置及びその制御方法と製造方法
JP2004296683A (ja) * 2003-03-26 2004-10-21 Seiko Epson Corp 半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141134A (ja) * 2007-12-06 2009-06-25 Sharp Corp 半導体記憶装置及びその製造方法と半導体記憶装置の動作方法
JP2010182845A (ja) * 2009-02-05 2010-08-19 Seiko Epson Corp 不揮発性メモリー装置
JP2012518268A (ja) * 2009-02-18 2012-08-09 ナンジン ユニバーシティ 複合誘電体ゲートmosfet構造を有す感光検出器およびその信号読み取り方法

Also Published As

Publication number Publication date
JP4506930B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4758625B2 (ja) 半導体装置
US7646041B2 (en) Non-volatile memory devices including vertical channels, methods of operating, and methods of fabricating the same
US6211011B1 (en) Method for fabricating asymmetric virtual ground P-channel flash cell
US7781807B2 (en) Non-volatile semiconductor storage device
US7820516B2 (en) Methods of manufacturing non-volatile memory devices having a vertical channel
US7411822B2 (en) Nonvolatile memory cell arrangement
JP5524632B2 (ja) 半導体記憶装置
JP2007299975A (ja) 半導体装置およびその製造方法
KR20070015525A (ko) Nrom 메모리 셀 구조물 및 그 형성 방법과, nand아키텍쳐 nrom 메모리 셀 스트링 및 그 형성 방법
JP2009027136A (ja) 集積回路、メモリ、メモリ製造方法、メモリデバイス製造方法、集積回路およびシステム
EP1884956B1 (en) Non-volatile memory device having pass transistors and method of operating the same
US7940574B2 (en) Nonvolatile semiconductor memory and method of driving the same
US9287284B2 (en) Semiconductor field-effect transistor, memory cell and memory device
US8710573B2 (en) Nonvolatile semiconductor memory device and method for manufacturing the same
JP4772429B2 (ja) 半導体記憶装置
JP2006310562A (ja) 半導体記憶装置およびその製造方法
JP3472313B2 (ja) 不揮発性記憶装置
KR100568062B1 (ko) 반도체 기억 장치 및 그 구동 방법
JP4506930B2 (ja) 不揮発性記憶装置を含む半導体装置
JP2002208648A (ja) 半導体記憶装置、その製造方法及び半導体記憶装置の駆動方法
JP2007281506A (ja) 半導体装置
JP4507023B2 (ja) 不揮発性記憶装置を含む半導体装置
JP2003332472A (ja) 不揮発性半導体メモリ装置およびその製造方法
JP2005116582A (ja) 半導体装置およびその製造方法
JP2004342721A (ja) 不揮発性記憶装置を含む半導体装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees