JP2004342682A - 半導体装置及びその製造方法、携帯電子機器、並びにicカード - Google Patents

半導体装置及びその製造方法、携帯電子機器、並びにicカード Download PDF

Info

Publication number
JP2004342682A
JP2004342682A JP2003134642A JP2003134642A JP2004342682A JP 2004342682 A JP2004342682 A JP 2004342682A JP 2003134642 A JP2003134642 A JP 2003134642A JP 2003134642 A JP2003134642 A JP 2003134642A JP 2004342682 A JP2004342682 A JP 2004342682A
Authority
JP
Japan
Prior art keywords
semiconductor
memory
gate electrode
region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134642A
Other languages
English (en)
Inventor
Hiroshi Iwata
浩 岩田
Takayuki Ogura
孝之 小倉
Akihide Shibata
晃秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003134642A priority Critical patent/JP2004342682A/ja
Priority to US10/842,424 priority patent/US7301198B2/en
Priority to CNB2004100431865A priority patent/CN1303691C/zh
Publication of JP2004342682A publication Critical patent/JP2004342682A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7923Programmable transistors with more than two possible different levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/43Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】半導体基板1上に半導体スイッチング素子31と半導体記憶素子32とを混載した半導体装置であって、簡単なプロセスで容易に作製でき、低コスト化できるものを提供すること。
【解決手段】半導体スイッチング素子31,半導体記憶素子32はそれぞれ、ゲート電極3と、一対のソース/ドレイン領域13,13とチャネル形成領域19を有する。半導体記憶素子32のゲート電極3の両側に、電荷を蓄積する機能を有するメモリ機能体25が設けられている。半導体記憶素子32では、メモリ機能体25に保持された電荷の多寡により、ゲート電極3に電圧を印加した際の一方のソース/ドレイン領域13から他方のソース/ドレイン領域13に流れる電流量を変化させ得る。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、論理回路領域を構成する半導体スイッチング素子と、メモリ領域を構成する半導体記憶素子とを同一基板上に混載した半導体装置およびその製造方法に関する。
また、本発明は、そのような半導体装置を備えた携帯電子機器及びICカードに関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来は、フラッシュメモリと論理回路を混載した半導体装置を製造する場合、大幅なコスト・アップが避けられなかった。コスト・アップの要因である製造コストがかさむ理由としては、混載のため複雑なプロセスになり、余計にマスクが必要となることが挙げられる。例えばフラッシュメモリでは、メモリ素子に2層のポリシリコン層を必要とするなどの理由から、標準のCMOS製造プロセスに対して7から8枚のマスクを追加しなければならなかった(例えば、非特許文献1参照。)。
【0003】
そこで、本発明の課題は、論理回路領域を構成する半導体スイッチング素子とメモリ領域を構成する半導体記憶素子とを混載した半導体装置であって、簡単なプロセスで容易に作製でき、低コスト化することができるものを提供することにある。
【0004】
また、本発明の課題は、論理回路領域を構成する半導体スイッチング素子とメモリ領域を構成する半導体記憶素子とを混載した半導体装置を、簡単なプロセスで容易に作製でき、低コスト化できる半導体装置の製造方法を提供することにある。
【0005】
また、本発明の課題は、そのような半導体装置を備えた携帯電子機器及びICカードを提供することにある。
【0006】
なお、一般的なフラッシュメモリの素子の構造断面図を、図24に示す。P型ウェル領域101上に第1酸化膜104を介してポリシリコンからなる浮遊ゲート106を有し、浮遊ゲート106の上に第2酸化膜105を介してポリシリコンからなる制御ゲート107を有する。ゲート電極106,107の両側のP型ウェル領域101表面には第1のN型拡散領域102及び第2のN型拡散領域103が形成されている。ゲート電極106,107の端部は第1のN型拡散領域102,第2のN型拡散領域103の端部上にそれぞれ重なっている。また、フラッシュメモリと論理回路を混載した場合の一形態として、アレイ状に配置したメモリセルアレイ、並びに、その周辺にデコーダ、書き込み/消去回路及び読み出し回路等の周辺回路となる論理回路を配置する技術が知られている。さらに、メモリユニットをパソコンや携帯電話等の情報処理システムとして機能させるためには、MPU(マイクロ・プロセッシング・ユニット)等の論理回路部、キャッシュとして用いるSRAM(スタティックRAM)部等を配置する技術が知られている。
【0007】
【非特許文献1】
大石 基之、『「誰でも使える不揮発性メモリ」が登場,標準CMOS技術で製造可能に』、第3段落「従来の不揮発性メモリは〜が使いづらかった。」、[online]、2002年3月6日、日経BP社、[平成15年3月17日検索]、インターネット<URL: http://ne.nikkeibp.co.jp/edaonline/2002/03/1000011229.html>
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の半導体装置は、半導体基板上に、半導体スイッチング素子を有する論理回路領域と半導体記憶素子を有するメモリ領域とが配置され、
上記半導体スイッチング素子及び半導体記憶素子は、夫々、ゲート電極と、このゲート電極の両側に相当する上記半導体基板表面に形成された第1導電型を有する一対のソース/ドレイン領域と、この一対のソース/ドレイン領域の間に形成された第2導電型を有するチャネル形成領域とを有し、
上記半導体記憶素子のゲート電極の両側に、電荷を蓄積する機能を有するメモリ機能体が設けられ、
上記半導体記憶素子においては、上記メモリ機能体に保持された電荷の多寡により、上記ゲート電極に電圧を印加した際の一方の上記ソース/ドレイン領域から他方の上記ソース/ドレイン領域に流れる電流量を変化させ得るように構成されていることを特徴としている。
【0009】
一般的なフラッシュメモリは電荷を蓄積するための領域がゲート電極下部にあるのでゲート絶縁膜が厚膜化した電界効果トランジスタとしての能力しかなかったが、本発明における半導体記憶素子は、メモリ機能体がゲート電極側方にあるため、最先端のMOSFET製造プロセスを容易に適用できる。そして、本発明によれば、そのような半導体記憶素子と半導体スイッチング素子を混載した、半導体装置を提供できる。さらに、上記複数の半導体スイッチング素子より論理回路部が構成され、上記複数の半導体記憶素子により不揮発性メモリ部が構成されているため、上記効果を有し、同一基板上に容易に混載された論理回路部と不揮発性メモリ部を有する半導体装置を実現することができる。
【0010】
また、別の局面では、本発明の半導体装置は、半導体基板上に、半導体スイッチング素子を有する論理回路領域と半導体記憶素子を有するメモリ領域とが配置され、
上記半導体スイッチング素子及び半導体記憶素子は、夫々、ゲート電極と、このゲート電極の両側に相当する上記半導体基板表面に形成された第1導電型を有する一対のソース/ドレイン領域と、この一対のソース/ドレイン領域の間に形成された第2導電型を有するチャネル形成領域とを有し、
上記半導体スイッチング素子では、上記チャネル方向に関して上記ゲート電極下に上記ソース/ドレイン領域が延在して重なり、
上記半導体記憶素子では、上記チャネル方向に関して上記ゲート電極と上記ソース/ドレイン領域との間に間隔が設けられると共に、上記半導体基板表面上の上記間隔に重なるように、電荷を蓄積する機能を有するメモリ機能体が、上記ゲート電極の両側に配置されていることを特徴としている。
【0011】
本発明の半導体装置では、半導体基板上に、半導体スイッチング素子を有する論理回路領域と、半導体記憶素子を有するメモリ領域とが配置されている。つまり、同一基板内に半導体スイッチング素子と半導体記憶素子とが混載されている。半導体記憶素子は、一方のソース/ドレイン領域から他方のソース/ドレイン領域に流れる電流量を保持電荷の多寡により変化させ得るものとする。半導体スイッチング素子は、たとえ電荷を保持し得る場合であっても、一方のソース/ドレイン拡散領域から他方のソース/ドレイン拡散領域に流れる電流量を、素子の動作に影響する程度には、保持電荷の多寡により変化させないものとする。半導体記憶素子において、ゲート電極の側方に、電荷を蓄積する機能を有するメモリ機能体が配置されるため、不揮発性半導体記憶素子として働くことができる。
【0012】
さらに、チャネル方向に関して上記ゲート電極と上記ソース/ドレイン領域との間に間隔(オフセット領域)を有する半導体記憶素子と、そのような間隔を有しない半導体スイッチング素子とが同一基板内に混載されているので、電流駆動能力の高い半導体スイッチング素子とメモリ効果の良好な半導体記憶素子が混載できる。
【0013】
また、一般的なフラッシュメモリは電荷を蓄積するための領域がゲート電極下部にあるのでゲート絶縁膜が厚膜化した電界効果トランジスタとしての能力しかなかったが、本発明の半導体記憶素子は、メモリ機能体がゲート電極側方にあるため、最先端のMOSFET製造プロセスを容易に適用できる。そして、本発明によれば、そのような半導体記憶素子と半導体スイッチング素子と半導体記憶素子を混載した、半導体装置を提供できる。さらに、上記複数の半導体スイッチング素子より論理回路部が構成され、上記複数の半導体記憶素子により不揮発性メモリ部が構成されているため、上記効果を有し、同一基板上に容易に混載された論理回路部と不揮発性メモリ部を有する半導体装置を実現することができる。
【0014】
一実施形態の半導体装置は、上記半導体スイッチング素子のゲート電極の両側に、上記半導体記憶素子のメモリ機能体と同じものが設けられていることを特徴とする。
【0015】
このように、半導体記憶素子だけでなく半導体スイッチング素子でもゲート電極の側方にメモリ機能体を形成しているため、両者の作製プロセスに大幅な差がなくなって、半導体スイッチング素子と半導体記憶素子とを混載した半導体装置を、簡単なプロセスで容易に作製でき、低コスト化できる。
【0016】
また、一実施形態の半導体装置は、上記メモリ機能体が、上記ゲート電極の側面に設けられたサイドウォールスペーサであることを特徴としている。
【0017】
この一実施形態の半導体装置では、サイドウォールスペーサがセルフアラインプロセスにより形成され得るため、例えば、半導体スイッチング素子からなる論理回路等と半導体記憶素子からなる不揮発性メモリとの混載が自己整合的なプロセスを用いて非常に容易に可能になる。
【0018】
また、一実施形態の半導体装置は、上記メモリ機能体は、電荷を蓄積する機能を有する材料からなる電荷保持部と、蓄積された電荷の散逸を防止する機能を有する散逸防止絶縁体とからなり、
上記散逸防止絶縁体は、上記電荷保持部と上記ゲート電極との間、及び、上記電荷保持部と上記半導体基板との間に介在する第1の絶縁体を有することを特徴としている。
【0019】
この一実施形態の半導体装置では、電荷保持部は、ゲート電極および半導体基板とは、第1の絶縁体を介して接しているため、電荷保持部からゲート電極及び半導体基板への蓄積電荷のリークを抑制することができる。それにより、電荷保持特性がよくなって、長期信頼性が高まる。
【0020】
また、一実施形態の半導体装置は、上記メモリ機能体は、電荷を蓄積する機能を有する材料からなる電荷保持部と、蓄積された電荷の散逸を防止する機能を有する散逸防止絶縁体とからなり、
上記散逸防止絶縁体は、上記電荷保持部と上記ゲート電極との間、及び、上記電荷保持部と上記半導体基板との間に介在する第1の絶縁体と、この第1の絶縁体と共働きして上記電荷保持部を挟持する第2の絶縁体とからなることを特徴としている。
【0021】
この一実施形態の半導体装置では、上記電荷保持部は、ゲート電極および半導体基板とは、第1の絶縁体を介して接しているため、電荷保持部からゲート電極及び半導体基板への蓄積電荷のリークを抑制することができる。それにより、電荷保持特性がよくなって、長期信頼性が高まる。更に、電荷保持部は、第1の絶縁体と第2の絶縁体とに挟まれているため、例えば、第1の絶縁体側から電荷保持部に注入された電子が、電荷保持部を突き抜けるのを第2の絶縁体によって防止できる。よって、注入効率が高くなるので、高速動作不揮発性メモリが提供できる。
【0022】
また、一実施形態の半導体装置は、上記電荷保持部の最上部位置は、上記ゲート電極の最上部位置より下方であることを特徴としている。
【0023】
この一実施形態の半導体装置によれば、電荷保持部がチャネル近傍に限定して配置される。よって、書き込みによって注入される電子はチャネル近傍付近に限定されるので、消去によって電子を除去し易くなる。それゆえ、消去不良を防止できる。また、電荷保持部の占める領域が限定されるので、注入電子数が変わらないとすれば、電子密度が高くなる。よって、効率的に電子の書き込み/消去を行うことができ、書き込み/消去スピードが早い不揮発性メモリ素子が形成できる。
【0024】
また、一実施形態の半導体装置は、上記電荷保持部の最上部位置は、上記第1の絶縁体の最上部位置より下方であることを特徴としている。
【0025】
この一実施形態の半導体装置によれば、電荷保持部の最上部位置が第1の絶縁体の最上部位置より下方にあるため、ゲート電極と電荷保持部とが接続する場合の最短距離が長くなる。よって、シリサイドや配線工程等において、ゲート電極と電荷保持部との短絡が抑制できるため、歩留まりのよい半導体装置が形成できる。
【0026】
また、一実施形態の半導体装置は、上記電荷保持部は、電荷を蓄積する機能を有する複数の微粒子からなることを特徴としている。
【0027】
この一実施形態の半導体装置によれば、上記微粒子をチャネル近傍に沿って配置できるため、書き込みによって注入される電子はチャネル近傍付近に限定されるので、消去によって電子を除去し易くなる。それゆえ、消去不良を防止できる。また、1例としては、上記微粒子をナノドット状に形成することもできる。よって、クーロンブロッケード効果により極めてメモリ効果が向上する。これにより、極めて長期信頼性の高い不揮発性メモリ素子が形成される。
【0028】
また、一実施形態の半導体装置は、上記半導体スイッチング素子の上記ソース/ドレイン領域のうち上記ゲート電極下に延在する部分は、該ソース/ドレイン領域のうち上記ゲート電極及びメモリ機能体の外側に相当する部分よりも不純物濃度が低いことを特徴としている。
【0029】
この一実施形態の半導体装置によれば、半導体スイッチング素子のソース/ドレイン領域のうちゲート電極の端部の下に延在する部分は、このソース/ドレイン領域のうちゲート電極及びメモリ機能体の外側に相当する部分よりも不純物濃度が低いので、ドレイン耐圧が向上する。一方、上記半導体記憶素子では、チャネル方向に関して上記ゲート電極と上記ソース/ドレイン領域との間に間隔が設けられているため、ホットキャリヤが効率的に発生し、充分に早い書き込み/消去速度が得られる。よって、信頼性の高い半導体スイッチング素子と、充分に早い書き込み/消去速度を有する半導体記憶素子とを同時に実現することができる。
【0030】
さらに、上記論理回路領域の半導体スイッチング素子と上記メモリ領域の半導体記憶素子とに対して供給される電源電圧が、互いに独立に設定されるようになっているのが望ましい。その場合、メモリ領域における半導体記憶素子には比較的高電源電圧の供給ができるため、書き込み/消去速度を比較的向上させることができる。さらに、論理回路領域における半導体スイッチング素子には比較的低電源電圧の供給ができるため、ゲート絶縁膜の破壊等による、トランジスタ特性の劣化を抑制することができ、さらに低消費電力化が達成され、それらが混載される。よって、同一基板上に容易に混載された信頼性の高い論理回路領域と書き込み/消去速度が格段に速いメモリ領域を有する半導体装置を実現することができる。
【0031】
さらに、上記複数の半導体スイッチング素子により、スタティック・ランダム・アクセス・メモリが構成されているのが望ましい。その場合、上記複数の半導体スイッチング素子により論理回路部及びスタティック・ランダム・アクセス・メモリが構成され、上記複数の半導体記憶素子により不揮発性メモリ部が構成される。このため、同一基板上に混載された論理回路部及びスタティック・ランダム・アクセス・メモリと不揮発性メモリ部を有する半導体装置を容易に実現することができる。さらに、スタティック・ランダム・アクセス・メモリを高速動作メモリ一時記憶メモリとして混載することにより、さらなる機能の向上を達成することができる。
【0032】
また、一実施形態の半導体装置では、上記半導体記憶素子では、上記電荷保持部の少なくとも一部が前記ソース/ドレイン領域の一部にオーバーラップしていることを特徴としている。
【0033】
この一実施形態の半導体装置では、半導体記憶素子の読出し動作時の電流値がオーバーラップしていない場合と比較して、格段に向上する。それによって、半導体記憶素子の読出し速度が格段に向上する。
【0034】
また、一実施形態の半導体装置では、上記電荷保持部が、上記ゲート電極の直下に形成されたゲート絶縁膜の表面と略平行な表面を有することを特徴としている。
【0035】
この一実施形態の半導体装置では、電荷保持部に保持された電荷の多寡によりオフセット領域での反転層の形成されやすさを効果的に制御することができ、メモリ効果を大きくすることができる。また、オフセット量がばらついた場合でもメモリ効果の変化を比較的小さく保つことができ、メモリ効果のばらつきを抑制することができる。
【0036】
また、一実施形態の半導体装置では、上記電荷保持部が、上記ゲート電極の側面と略平行な表面を有することを特徴としている。
【0037】
この一実施形態の半導体装置では、書換え動作時に電荷保持部に注入される電荷が増加し、書換え速度が増大する。
【0038】
また、一実施形態の半導体装置では、上記第1の絶縁体の膜厚が、上記ゲート電極の直下に形成されたゲート絶縁膜の膜厚より薄く、かつ0.8nm以上であることを特徴としている。
【0039】
この一実施形態の半導体装置では、電荷保持部への電荷の注入が容易になり、書込み動作及び消去動作の電圧を低下させ、又は書込み動作及び消去動作を高速にすることが可能となり、また、電荷保持部に電荷が保持された時にチャネル形成領域又はウェル領域に誘起される電荷量が増えるため、メモリ効果を増大させることができる。また、上記第1の絶縁体の膜厚が0.8nm以上なので保持特性の極端な劣化が抑制される。
【0040】
また、一実施形態の半導体装置では、上記第1の絶縁体の膜厚が、上記ゲート電極の直下に形成されたゲート絶縁膜の膜厚より厚く、かつ20nm以下であることを特徴としている。
【0041】
この一実施形態の半導体装置では、メモリの短チャネル効果を悪化させることなく保持特性を改善することが可能となる。また、上記第1の絶縁体の膜厚が20nm以下であるため書換え速度の低下を抑制できる。
【0042】
また、本発明のICカードは、上記発明の半導体装置を備えたことを特徴としている。
【0043】
本発明のICカードによれば、上記発明の半導体装置による作用効果と同様の作用効果を奏することができる。例えば、ICカードは、不揮発性メモリとその周辺回路部、論理回路部及びSRAM部等を容易に混載し低コスト化できた半導体装置を有する。それゆえ、コスト削減できたICカードが提供できる。
【0044】
また、本発明の携帯電子機器は、上記発明の半導体装置を備えたことを特徴としている。
【0045】
本発明の携帯電子機器によれば、上記発明の半導体装置による作用効果と同様の作用効果を奏することができる。例えば、携帯電話は、不揮発性メモリとその周辺回路部、論理回路部及びSRAM部等を容易に混載し低コスト化できた半導体装置を有する。それゆえ、コスト削減できた携帯電話が提供できる。
【0046】
また、本発明の半導体装置の製造方法は、半導体基板上に設定された論理回路領域に半導体スイッチング素子を形成するのと並行して、上記半導体基板上に設定されたメモリ領域に半導体記憶素子を形成する半導体装置の製造方法であって、
上記論理回路領域及びメモリ領域の半導体基板表面上に、それぞれゲート絶縁膜を介してゲート電極を形成する工程と、
上記メモリ領域に不純物が導入されないようにマスクを設けた状態で上記論理回路領域に上記ゲート電極をマスクとして不純物を導入して、上記論理回路領域に、ソース/ドレイン領域の一部となる第1の不純物領域を形成する工程と、
少なくとも上記メモリ領域の上記ゲート電極の側面に、電荷を蓄積する機能を有するメモリ機能体を形成する工程と、
上記論理回路領域及びメモリ領域に、上記ゲート電極及び上記メモリ機能体をマスクとして上記不純物と同じ導電型の不純物をそれぞれ導入して、ソース/ドレイン領域の少なくとも一部となる第2の不純物領域を形成する工程と
を有することを特徴としている。
【0047】
本発明の半導体装置の製造方法によれば、半導体スイッチング素子と半導体記憶素子とを混載した半導体装置を、簡単なプロセスで容易に作製でき、低コスト化できる。具体的には、半導体基板上に設定された論理回路領域に半導体スイッチング素子を形成するのと並行して、上記半導体基板上に設定されたメモリ領域に半導体記憶素子が形成される。形成された半導体スイッチング素子は、上記ゲート電極の両側に相当する半導体基板表面に上記第1の不純物領域が配置されて、チャネル方向に関してゲート電極とソース/ドレイン領域との間に間隔が存しないものとなる。一方、形成された半導体記憶素子は、チャネル方向に関して上記ゲート電極と上記ソース/ドレイン領域との間に間隔(オフセット領域)が設けられ、半導体基板表面上の上記間隔を覆うように、電荷を蓄積する機能を有するメモリ機能体が設けられたものとなる。さらに、上記オフセット領域を有しない半導体スイッチング素子は比較的駆動電流が大きく、上記オフセット領域を有する半導体記憶素子は比較的メモリ効果が大きくなるので、駆動電流が大きい論理回路とメモリ効果が大きい不揮発性メモリが容易に混載される。
【0048】
また、一実施形態の半導体装置の製造方法は、上記メモリ機能体を形成する工程は、
上記ゲート電極の上面および側面と上記ゲート電極の両側に相当する上記半導体基板表面とを覆うように、電荷を蓄積する機能を有する材料および蓄積された電荷の散逸を防止する機能を有する材料を堆積する工程と、
上記材料を選択的にエッチングバックして、上記ゲート電極の側面に上記材料からなるサイドウォールスペーサを形成する工程と
を含むことを特徴としている。
【0049】
この一実施形態の半導体装置の製造方法によれば、この一実施形態の半導体装置の製造方法では、選択的なエッチングバックにより、自己整合的にサイドウォールスペーサを形成している。このようにした場合、上記オフセット領域を有しない半導体スイッチング素子が自己整合プロセスを用いてより簡易に形成でき、さらに、上記オフセット領域を有する半導体記憶素子も自己整合プロセスを用いて簡易に形成できる。したがって、不揮発性メモリの半導体記憶素子と論理回路部等の半導体スイッチング素子との混載が極めて容易に可能となる。
【0050】
また、一実施形態の半導体装置の製造方法は、上記メモリ機能体を形成する工程は、
上記論理回路領域及びメモリ領域の上記ゲート電極の上面および側面と上記ゲート電極の両側に相当する上記半導体基板表面とを覆うように、第1絶縁膜を堆積する工程と、
上記第1絶縁膜上の全面に、電荷を蓄積する機能を有する材料を堆積する工程と、
上記材料を選択的にエッチングバックして、上記論理回路領域及びメモリ領域の上記ゲート電極の側面に上記第1絶縁膜及び上記材料からなるサイドウォールスペーサを形成する工程と
を有することを特徴としている。
【0051】
この一実施形態の半導体装置の製造方法によれば、電荷を蓄積する機能を有する材料は、ゲート電極および半導体基板とは、第1絶縁膜(加工後は第1の絶縁体と呼ぶ)を介して接しているため、上記材料から上記ゲート電極及び半導体基板への蓄積電荷のリークを抑制することができる。それにより、電荷保持特性がよくなって、長期信頼性が高まる。
【0052】
また、一実施形態の半導体装置の製造方法は、上記メモリ機能体を形成する工程は、
上記論理回路領域及びメモリ領域の上記ゲート電極の上面および側面と上記ゲート電極の両側に相当する上記半導体基板表面とを覆うように、第1絶縁膜を堆積する工程と、
上記第1絶縁膜上の全面に、電荷を蓄積する機能を有する材料を堆積する工程と、
上記材料上の全面に第2絶縁膜を堆積する工程と、
上記第2絶縁膜及び上記材料を選択的にエッチングバックして、上記論理回路領域及びメモリ領域の上記ゲート電極の側面に上記第1絶縁膜及び上記材料及び上記第2絶縁膜からなるサイドウォールスペーサを形成する工程と
を有することを特徴としている。
【0053】
この一実施形態の半導体装置の製造方法によれば、上記電荷を蓄積する機能を有する材料は、ゲート電極および半導体基板とは、第1絶縁膜(加工後は第1の絶縁体と呼ぶ)を介して接しているため、上記材料から上記ゲート電極及び半導体基板への蓄積電荷のリークを抑制することができる。それにより、電荷保持特性がよくなって、長期信頼性が高まる。更に、電荷を蓄積する機能を有する材料は、上記第1絶縁膜と第2絶縁膜(加工後は第2の絶縁体と呼ぶ)とに挟まれているため、ソース/ドレイン領域に繋げる配線とサイドウォールスペーサーとの短絡の抑制及び寄生容量の低減が可能となり、容易に微細化が可能な半導体装置を形成することができる。
【0054】
また、一実施形態の半導体装置の製造方法は、上記第1の不純物領域における不純物濃度は、上記第2の不純物領域における不純物濃度より低いことを特徴としている。
【0055】
この一実施形態の半導体装置の製造方法によれば、半導体スイッチング素子のソース/ドレイン領域のうち第1の不純物領域における不純物濃度は、第2の不純物領域における不純物濃度より低いので、ドレイン耐圧が向上する。一方、半導体記憶素子では、チャネル方向に関してゲート電極と上記ソース/ドレイン領域との間に間隔が設けられているため、ホットキャリヤが効率的に発生し、充分に早い書き込み/消去速度が得られる。よって、信頼性の高い半導体スイッチング素子と、充分に早い書き込み/消去速度を有する半導体記憶素子とを同時に形成することができる。
【0056】
【発明の実施の形態】
以下、本発明を図示の実施の形態により詳細に説明する。
【0057】
(第1の実施形態)
図20は、本発明の半導体装置の一実施形態であるメモリユニット200の平面レイアウトを示している。このメモリユニット200では、同一の半導体基板1上に、半導体スイッチング素子を備えた論理回路領域202と、半導体記憶素子を備えたメモリ領域201とが配置されている。メモリ領域201には、後述する半導体記憶素子をアレイ状に配置してなるメモリセルアレイが形成されている。(一点鎖線にて囲まれた部分の)論理回路領域202には、デコーダ203、書き込み/消去回路204、読み出し回路205、アナログ回路206、制御回路207、各種のI/O回路208等、通常のMOSFET(電界効果トランジスタ)により構成できる周辺回路が形成されている。
【0058】
さらに、図21に示すように、パーソナルコンピュータや携帯電話等の情報処理システムの記憶装置300を1チップで構成するためには、上記メモリユニット200に加えた、MPU(マイクロ・プロセッシング・ユニット)301、キャッシュ(SRAM(スタティックRAM))302、ロジック回路303、アナログ回路304等の論理回路領域202を、同一の半導体基板1上に配置することが必要である。
【0059】
従来はこれらのメモリ領域201と論理回路領域202を混載するのに標準のCMOSを形成する場合と比べて製造コストが大幅に増大していたが、以下の説明から明らかになるように、本発明により、製造コストの増大を抑制することができる。
【0060】
そして、本発明の半導体装置は、電池駆動の携帯電子機器、特に携帯情報端末に用いることができる。携帯電子機器としては、携帯情報端末、携帯電話、ゲーム機器等が挙げられる。
【0061】
図1は、上記メモリ領域201を構成する半導体記憶素子32のチャネル方向に沿った断面を例示している。図1における左右方向がチャネル方向に相当する。
【0062】
この半導体記憶素子32は、図1に示したように、半導体基板1上に、ゲート絶縁膜2を介して、ゲート電極3を備えている。ゲート電極3の両側に相当する半導体基板表面1aには、一対のソース/ドレイン(拡散)領域13,13が形成されている。このソース/ドレイン領域13は、ゲート電極3の端部3eに対してオフセットされている。つまり、チャネル方向に関してゲート電極3とソース/ドレイン領域13との間には間隔(これを「オフセット領域」と呼ぶ。)20が設けられている。ゲート絶縁膜2及びゲート電極3よりなるゲートスタック8の両側には、それぞれオフセット領域20を覆って重なるように、電荷を蓄積する機能を有するメモリ機能体25が形成されている。
【0063】
ここで、メモリ機能体及びその各部の名称を以下のように定義する。
すなわち、図1(a)から図1(d)に示すようにメモリ機能体25とはゲート電極3の側方に形成された電荷を蓄積する機能を有する領域を指す。ここで、メモリ機能体25は、電荷保持部及び散逸防止絶縁体から成る。例えば、図1(c)に示すように、メモリ機能体25は、電荷を蓄積できる領域である電荷保持部11と、電荷の散逸を防止することのできる第1の絶縁体12とから構成され、また、図1(d)に示すように、メモリ機能体25は、電荷を保持することができる部分である電荷保持部11と、電荷の散逸を防止することのできる第1の絶縁体12及び第2の絶縁体18とから構成されている。ここで、第1の絶縁体12、または、第1の絶縁体12及び第2の絶縁体18を、散逸防止絶縁体と呼ぶ。
【0064】
ただし、第1の絶縁体12と第2の絶縁体18に特に境界を必要とするわけではなく、便宜上境界を分けているだけである。つまり、同様の材料で形成されている場合は、実質上、それらは区別できないものである。しかしながら、そうであっても本発明の効果を遜色なく奏すことができることは言うまでもない。
【0065】
また、図1(c)、図1(d)に示すように、第1の絶縁体12は、均一な膜厚となるわけではなく、上部が下部に比べて厚くなる場合がある。また、その逆もある。そうなった場合も本発明の効果を遜色なく奏すことができることは言うまでもない。ただし、上部が下部に比べて厚くなる場合は、均一な膜に比べて上部でのゲート電極からの余分な電荷の注入が抑制され、かつ、オフセット領域に保持電荷が及ぼす影響が強くなるように下部では絶縁膜が薄くなる効果が奏される。
【0066】
また、半導体記憶素子32における、ソース/ドレイン領域13がゲート電極3からオフセットされていることにより、ゲート電極3に電圧を印加したときのメモリ機能体25下のオフセット領域の反転しやすさを、メモリ機能体25に蓄積された電荷量によって大きく変化させることができ、メモリ効果を増大させることが可能となる。さらに、通常構造のMOSFETと比較して、短チャネル効果を抑制することができ、ゲート長の微細化を図ることができる。また、上記理由より構造的に短チャネル効果抑制に適しているため、オフセットしていないロジックトランジスタと比較して膜厚の厚いゲート絶縁膜を採用することができ、信頼性を向上させることが可能となる。
【0067】
また、半導体記憶素子32のメモリ機能体25は、ゲート絶縁膜2とは独立した材料によって形成されている。したがって、メモリ機能体25が担うメモリ機能と、ゲート絶縁膜2が担うトランジスタ動作機能とは互いに独立に実現されている。また、同様の理由により、メモリ機能体25としてメモリ機能に好適な材料を選択して形成することができる。
【0068】
この半導体記憶素子32は、1つのメモリ機能体25に2値又はそれ以上の情報を記憶することにより、4値又はそれ以上の情報を記憶する半導体記憶素子32として機能し、また、メモリ機能体25による可変抵抗効果により、選択トランジスタとメモリトランジスタとの機能を兼ね備えたメモリセルとしても機能する。しかしながら、この半導体記憶素子32は、必ずしも4値又はそれ以上の情報を記憶して機能させる必要はなく、例えば、2値の情報を記憶して機能させてもよい。
【0069】
ここで、1トランジスタ当り2ビットの記憶を実現するための、書き込み/消去、読み出しの方法の原理の例を以下に示す。ここでは、メモリ素子がNチャネル型である場合を説明する。そこで、メモリ素子がPチャネル型の場合は電圧の符号を逆にして同様に適応すれば良い。なお、印加電圧を特に指定していないノード(ソース、ドレイン、ゲート、基板)においては、接地電位を与えれば良い。
【0070】
この半導体記憶素子32に書き込みを行う場合には、ゲートに正電圧を、ドレインにゲートと同程度かそれ以上の正電圧を加える。この時ソースから供給された電荷(電子)は、ドレイン端付近で加速され、ホットエレクトロンとなってドレイン側のメモリ機能体25に注入される。このとき、ソース側に存在するメモリ機能体25には電子は注入されない。このようにして特定の側のメモリ機能体25に書き込みをすることができる。また、ソースとドレインを入れ替えることで、容易に2ビットの書き込みを行うことができる。
【0071】
この半導体記憶素子32に書き込まれた情報を消去するためには、ホットホール注入を利用する。消去したいメモリ機能体25のある側の拡散層領域(ソース/ドレイン)に正電圧を、ゲートに負電圧をくわえればよい。このとき、半導体基板1と正電圧を与えられた拡散層領域におけるPN接合において、バンド間トンネルにより正孔が発生し、負電位をもつゲートに引き寄せられて、消去したいメモリ機能体25に注入される。このようにして、特定の側の情報を消去することができる。なお、反対の側のメモリ機能体25に書き込まれた情報を消去するためには、反対側のメモリ機能体25に正電圧を加えればよい。
【0072】
次に、この半導体記憶素子32に書きこまれた情報を読み出すためには、読み出したいメモリ機能体25の側の拡散領域をソースとし、反対側の拡散領域をドレインとする。すなわち、ゲートに正電圧を、ドレイン(書き込みの時はソースとしていた)にゲートと同程度かそれ以上の正電圧を与えればよい。ただし、このときの電圧は書き込みが行われないよう充分小さくしておく必要がある。メモリ機能体25に蓄積された電荷の多寡により、ドレイン電流が変化し、記憶情報を検出することができる。なお、反対側のメモリ機能体25に書き込まれた情報を読み出すためには、ソースとドレインを入れ替えればよい。
【0073】
上記書き込み消去と読み出しの方法は、メモリ機能体25に窒化膜を用いた場合の1例であり、それ以外の方法を用いることができる。さらにまた、それ以外の材料を用いた場合であっても、上記方法かもしくは異なる書き込みと消去の方法を用いることができる。
【0074】
さらに、メモリ機能体25が、ゲート電極3下ではなく、ゲート電極3の両側に配置されるため、ゲート絶縁膜2をメモリ機能体25として機能させる必要がなく、ゲート絶縁膜2を、メモリ機能体25とは独立して、単純にゲート絶縁膜としての機能のみに使用することが可能となり、LSIのスケーリング則に応じた設計を行うことが可能となる。このため、フラッシュメモリのようにフローティングゲートをチャネルとコントロールゲートとの間に挿入する必要がなく、さらに、ゲート絶縁膜2としてメモリ機能をもたせたONO膜を採用する必要がなく、微細化に応じたゲート絶縁膜を採用することが可能となるとともに、ゲート電極3の電界がチャネルに及ぼす影響が強くなり、短チャネル効果に強いメモリ機能を有する半導体記憶素子32を実現することができる。よって、微細化して集積度を向上させることができるとともに、安価な不揮発性メモリ素子を提供することができる。さらに、同時に形成された論理回路部のMOSFETにおけるゲート絶縁膜2も、半導体記憶素子32におけるのと同様に、微細化に応じたゲート絶縁膜を採用することが可能となるため、短チャネル効果に強いMOSFETも同時に形成される。以上より、高性能な不揮発性メモリ素子と論理回路部等のMOSFETを自己整合による簡易な工程で形成することができる。
【0075】
このように、この半導体記憶素子32によれば、1トランジスタ当り2ビットの記憶を実現しながら、短チャネル効果が極めて抑制され、微細化が可能となる。また、高速動作と低消費電力化が可能である。また、メモリ機能体25に電荷を保持した場合に、チャネル形成領域19の一部が電荷による影響を強く受けるため、ドレイン電流値が変化する。それにより電荷の有無を区別する不揮発性メモリ素子が形成される。
【0076】
なお、半導体記憶素子32は、半導体基板上に限らず、第1導電型の半導体基板内に形成された第2導電型のウエル領域上に形成されていても良い。
【0077】
また、1つのメモリセルに対して必要な、ゲート電極3と接続されている又はゲート電極3そのものの機能を有するワード線に関し、1本配置するのみで、従来の選択トランジスタとメモリセルトランジスタの機能を兼ねることができるため、半導体装置のさらなる高集積化が可能となる。
【0078】
さらに、メモリ機能体25中の電荷の有無をソース/ドレイン領域13の一方からソース/ドレイン領域13の他方へ流れる電流量の変化により検知すれば、メモリ機能体25中のわずかな電荷の違いを大きな電流差として判別することができる。
【0079】
また、メモリ機能体25の下に位置する可変抵抗部の抵抗値が、メモリ機能体25中の電荷の有無により変化し、メモリ機能体25中の電荷の有無をソース/ドレイン領域13の一方からソース/ドレイン領域13の他方へ流れる電流量の変化により検知すれば、メモリ機能体25中のわずかな電荷の違いを大きな電流差として判別することができる。
【0080】
また、メモリセル1つあたり、単一のゲート電極3が、その両側に形成された2つのメモリ機能体25,25にはさまれた構造であって、メモリ機能体25中の電荷の有無をソース/ドレイン領域13の一方からソース/ドレイン領域13の他方へ流れる電流量の変化により検知する検知方法、つまり、わずかな電荷の違いを大きな電流差として判別することができる検知方法に必要な電極数を最低限にする。したがって、メモリセル占有面積を小さくすることができる。
【0081】
本発明の半導体装置を構成する半導体記憶素子は、半導体基板上、又は半導体基板内に形成されたチャネル形成領域と同導電型のウェル領域上に形成されることが好ましい。
【0082】
半導体基板としては、半導体装置に使用されるものであれば特に限定されるものではなく、例えば、シリコン、ゲルマニウム等の元素半導体、シリコンゲルマニウム、GaAs、InGaAs、ZnSe、GaN等の化合物半導体による基板が挙げられる。また、表面に半導体層を有するものとして、SOI(Silicon on Insulator;シリコン・オン・インシュレータ)基板又は多層SOI基板等の種々の基板、ガラスやプラスチック基板上に半導体層を有するものを用いてもよい。なかでもシリコン基板又は表面にシリコン層が形成されたSOI基板等が好ましい。半導体基板又は半導体層は、内部を流れる電流量に多少が生ずるが、単結晶(例えば、エピタキシャル成長による)、多結晶又はアモルファスのいずれであってもよい。
【0083】
この半導体基板又は半導体層上には、素子分離領域が形成されていることが好ましく、さらにトランジスタ、キャパシタ、抵抗等の素子、これらによる回路、半導体装置や層間絶縁膜が組み合わせられて、シングル又はマルチレイヤー構造で形成されていてもよい。なお、素子分離領域は、LOCOS(局所酸化)膜、トレンチ酸化膜、STI(Shallow Trench Isolation;浅い溝分離法)膜等種々の素子分離膜により形成することができる。半導体基板は、P型又はN型の導電型を有していてもよく、半導体基板には、少なくとも1つの第1導電型(P型又はN型)のウェル領域が形成されていることが好ましい。半導体基板及びウェル領域の不純物濃度は、当該分野で公知の範囲のものが使用できる。なお、半導体基板としてSOI基板を用いる場合には、表面半導体層には、ウェル領域が形成されていてもよいが、チャネル形成領域下にボディ領域を有していてもよい。
【0084】
ゲート絶縁膜は、通常、半導体装置に使用されるものであれば特に限定されるものではなく、例えば、シリコン酸化膜、シリコン窒化膜等の絶縁膜;酸化アルミニウム膜、酸化チタニウム膜、酸化タンタル膜、酸化ハフニウム膜などの高誘電体膜の単層膜又は積層膜を使用することができる。なかでも、シリコン酸化膜が好ましい。ゲート絶縁膜は、例えば、等価酸化膜厚で1nm〜20nm程度、好ましくは1nm〜6nm程度の膜厚とすることが適当である。ゲート絶縁膜は、ゲート電極直下にのみ形成されていてもよいし、ゲート電極よりも大きく(幅広)で形成されていてもよい。
【0085】
ゲート電極又は電極は、ゲート絶縁膜上に、通常半導体装置に使用されるような形状又は下端部に凹部を有した形状で形成されている。なお、単一のゲート電極とは、ゲート電極としては、単層又は多層の導電膜によって分離されることなく、一体形状として形成されているゲート電極を意味する。また、ゲート電極は、側壁に側壁絶縁膜を有していてもよい。ゲート電極は、通常、半導体装置に使用されるものであれば特に限定されるものではなく、導電膜、例えば、ポリシリコン:銅、アルミニウム等の金属:タングステン、チタン、タンタル等の高融点金属:高融点金属とのシリサイド等の単層膜又は積層膜等が挙げられる。ゲート電極の膜厚は、例えば50nm〜400nm程度の膜厚で形成することが適当である。なお、ゲート電極の下にはチャネル形成領域が形成されている。
【0086】
メモリ機能体は、少なくとも、電荷を保持するか、電荷を蓄え・保持する機能を有するか、電荷をトラップするか又は電荷分極状態を保持する機能を有する膜若しくは領域を含んで構成される。これらの機能を果たすものとしては、シリコン窒化物;シリコン;リン、ボロン等の不純物を含むシリケートガラス;シリコンカーバイド;アルミナ;ハフニウムオキサイド、ジルコニウムオキサイド、タンタルオキサイド等の高誘電体;酸化亜鉛;強誘電体;金属等が挙げられる。メモリ機能体は、例えば、シリコン窒化膜を含む絶縁体膜;導電膜もしくは半導体層を内部に含む絶縁体膜;導電体もしくは半導体ドットを1つ以上含む絶縁体膜;電界により内部電荷が分極し、その状態が保持される強誘電体膜を含む絶縁膜等の単層又は積層構造によって形成することができる。なかでも、シリコン窒化膜は、電荷をトラップする準位が多数存在するため大きなヒステリシス特性を得ることができ、また、電荷保持時間が長く、リークパスの発生による電荷漏れの問題が生じないため保持特性が良好であり、さらに、LSIプロセスではごく標準的に用いられる材料であるため、好ましい。
【0087】
シリコン窒化膜などの電荷保持機能を有する絶縁膜を内部に含む絶縁膜をメモリ機能体として用いることにより、記憶保持に関する信頼性を高めることができる。シリコン窒化膜は絶縁体であるから、その一部に電荷のリークが生じた場合でも、直ちにシリコン窒化膜全体の電荷が失われることがないからである。更には、複数の半導体記憶素子を配列する場合、半導体記憶素子間の距離が縮まって隣接するメモリ機能体が接触しても、メモリ機能体が導電体からなる場合のように夫々のメモリ機能体に記憶された情報が失われることがない。また、コンタクトプラグをよりメモリ機能体と接近して配置することができ、場合によってはメモリ機能体と重なるように配置することができるので、半導体記憶素子の微細化が容易となる。
【0088】
さらに記憶保持に関する信頼性を高めるためには、電荷を保持する機能を有する絶縁膜は、必ずしも膜状である必要はなく、電荷を保持する機能を有する絶縁体が絶縁膜に離散的に存在することが好ましい。具体的には、電荷を保持しにくい材料、例えば、シリコン酸化物中にドット状に分散していることが好ましい。また、導電膜もしくは半導体層を内部に含む絶縁体膜をメモリ機能体として用いることにより、導電体もしくは半導体中への電荷の注入量を自由に制御できるため、多値化しやすい効果がある。
【0089】
さらに、導電体もしくは半導体ドットを1つ以上含む絶縁体膜をメモリ機能体として用いることにより、電荷の直接トンネリングによる書込・消去が行ないやすくなり、低消費電力化の効果がある。
【0090】
また、メモリ機能体として、電界により分極方向が変化するPZT、PLZT等の強誘電体膜を用いてもよい。この場合、分極により強誘電体膜の表面に実質的に電荷が発生し、その状態で保持される。従って、メモリ機能を有する膜外から電荷を供給され電荷をトラップする膜と同様なヒステリシス特性を得ることができ、かつ、強誘電体膜の電荷保持は、膜外からの電荷注入の必要がなく、膜内の電荷の分極のみによってヒステリシス特性を得ることができるため、高速に書込・消去ができる効果がある。
【0091】
つまり、メモリ機能体は、電荷を逃げにくくする領域又は電荷を逃げにくくする機能を有する膜をさらに含むことが好ましい。電荷を逃げにくくする機能を果たすものとしては、シリコン酸化膜等が挙げられる。
【0092】
メモリ機能体に含まれる電荷保持部は、直接又は絶縁膜を介してゲート電極の両側に形成されており、また、直接、ゲート絶縁膜又は絶縁膜を介して半導体基板(ウェル領域、ボディ領域又はソース/ドレイン領域もしくは拡散領域)上に配置している。ゲート電極の両側の電荷保持部は、直接又は絶縁膜を介してゲート電極の側壁の全て又は一部を覆うように形成されていることが好ましい。応用例としては、ゲート電極が下端部に凹部を有する場合には、直接又は絶縁膜を介して凹部を完全に又は凹部の一部を埋め込むように形成されていてもよい。
【0093】
ゲート電極は、メモリ機能体の側壁のみに形成されるか、あるいはメモリ機能体の上部を覆わないことが好ましい。このような配置により、コンタクトプラグをよりゲート電極と接近して配置することができるので、半導体記憶素子の微細化が容易となる。また、このような単純な配置を有する半導体記憶素子は製造が容易であり、歩留まりを向上することができる。
【0094】
電荷保持部として導電膜を用いる場合には、電荷保持部が半導体基板(ウェル領域、ボディ領域又はソース/ドレイン領域もしくは拡散領域)又はゲート電極と直接接触しないように、絶縁膜を介して配置させることが好ましい。例えば、導電膜と絶縁膜との積層構造、絶縁膜内に導電膜をドット状等に分散させた構造、ゲートの側壁に形成された側壁絶縁膜内の一部に配置した構造等が挙げられる。
【0095】
ソース/ドレイン領域は、半導体基板又はウェル領域と逆導電型の拡散領域として、メモリ機能体のゲート電極と反対側のそれぞれに配置されている。ソース/ドレイン領域と半導体基板又はウェル領域との接合は、不純物濃度が急峻であることが好ましい。ホットエレクトロンやホットホールが低電圧で効率良く発生し、より低電圧で高速な動作が可能となるからである。ソース/ドレイン領域の接合深さは、特に限定されるものではなく、得ようとする半導体記憶装置の性能等に応じて、適宜調整することができる。なお、半導体基板としてSOI基板を用いる場合には、ソース/ドレイン領域は、表面半導体層の膜厚よりも小さな接合深さを有していてもよいが、表面半導体層の膜厚とほぼ同程度の接合深さを有していることが好ましい。
【0096】
ソース/ドレイン領域は、ゲート電極端とオーバーラップするように配置していてもよいし、ゲート電極端と一致するように配置してもよいし、ゲート電極端に対してオフセットされて配置されていてもよい。特に、オフセットされている場合には、ゲート電極に電圧を印加したとき、電荷保持部下のオフセット領域の反転しやすさが、メモリ機能体に蓄積された電荷量によって大きく変化し、メモリ効果が増大するとともに、短チャネル効果の低減をもたらすため、好ましい。ただし、あまりオフセットしすぎると、ソース・ドレイン間の駆動電流が著しく小さくなるため、ゲート長方向に対する電荷保持部の厚さよりもオフセット量つまり、ゲート長方向における一方のゲート電極端から近い方のソース・ドレイン領域までの距離は短い方が好ましい。特に重要なことは、メモリ機能体中の電荷保持部の少なくとも一部が、拡散領域であるソース/ドレイン領域の一部とオーバーラップしていることである。本発明の半導体記憶装置を構成する半導体記憶素子の本質は、メモリ機能体の側壁部にのみ存在するゲート電極とソース/ドレイン領域間の電圧差によりメモリ機能体を横切る電界によって記憶を書き換えることであるためである。
【0097】
ソース/ドレイン領域は、その一部が、チャネル形成領域表面、つまり、ゲート絶縁膜下面よりも高い位置に延設されていてもよい。この場合には、半導体基板内に形成されたソース/ドレイン領域上に、このソース/ドレイン領域と一体化した導電膜が積層されて構成されていることが適当である。導電膜としては、例えば、ポリシリコン、アモルファスシリコン等の半導体、シリサイド、上述した金属、高融点金属等が挙げられる。なかでも、ポリシリコンが好ましい。ポリシリコンは、不純物拡散速度が半導体基板に比べて非常に大きいために、半導体基板内におけるソース/ドレイン領域の接合深さを浅くするのが容易で、短チャネル効果の抑制がしやすいためである。なお、この場合には、このソース/ドレイン領域の一部は、ゲート電極とともに、メモリ機能体の少なくとも一部を挟持するように配置することが好ましい。
【0098】
本発明の半導体記憶素子は、通常の半導体プロセスによって、例えば、ゲート電極の側壁に単層又は積層構造のサイドウォールスペーサを形成する方法と同様の方法によって形成することができる。具体的には、ゲート電極又は電極を形成した後、電荷保持部、電荷保持部/絶縁膜、絶縁膜/電荷保持部、絶縁膜/電荷保持部/絶縁膜等の電荷保持部を含む単層膜又は積層膜を形成し、適当な条件下でエッチバックしてこれらの膜をサイドウォールスペーサとして残す方法;絶縁膜又は電荷保持部を形成し、適当な条件下でエッチバックしてサイドウォールスペーサとして残し、さらに電荷保持部又は絶縁膜を形成し、同様にエッチバックしてサイドウォールスペーサとして残す方法;粒子状の電荷保持材料を分散させた絶縁膜材料をゲート電極を含む半導体基板上に塗布または堆積し、適当な条件下でエッチバックして、絶縁膜材料をサイドウォールスペーサとして残す方法;ゲート電極を形成した後、前記単層膜又は積層膜を形成し、マスクを用いてパターニングする方法等が挙げられる。また、ゲート電極又は電極を形成する前に、電荷保持部、電荷保持部/絶縁膜、絶縁膜/電荷保持部、絶縁膜/電荷保持部/絶縁膜等を形成し、これらの膜のチャネル形成領域となる領域に開口を形成し、その上全面にゲート電極材料膜を形成し、このゲート電極材料膜を、開口を含み、開口よりも大きな形状でパターニングする方法等が挙げられる。
【0099】
本発明の半導体記憶素子を配列してメモリセルアレイを構成した場合、半導体記憶素子の最良の形態は、例えば、
(i) 複数の半導体記憶素子のゲート電極が一体となってワード線の機能を有する、
(ii) 上記ワード線の両側にはメモリ機能体が形成されている、
(iii) メモリ機能体内で電荷を保持するのは絶縁体、特にシリコン窒化膜である、
(iv) メモリ機能体はONO(Oxide Nitride Oxide)膜で構成されており、シリコン窒化膜はゲート絶縁膜の表面と略並行な表面を有している、
(v) メモリ機能体中のシリコン窒化膜はワード線及びチャネル形成領域とシリコン酸化膜で隔てられている、
(vi) メモリ機能体内のシリコン窒化膜と拡散層とがオーバーラップしている、
(vii) ゲート絶縁膜の表面と略並行な表面を有するシリコン窒化膜とチャネル形成領域又は半導体層とを隔てる絶縁膜の厚さと、ゲート絶縁膜の厚さが異なる、
(viii) 1個の半導体記憶素子の書込み及び消去動作は単一のワード線により行なう、
(ix) メモリ機能体の上には書込み及び消去動作を補助する機能を有する電極(ワード線)がない、
(x) メモリ機能体の直下で拡散領域と接する部分に拡散領域の導電型と反対導電型の不純物濃度が濃い領域を有する、
なる要件を満たすものである。前記要件を全て満たす場合が最良の形態となるが、無論、必ずしも上記要件を全て満たす必要はない。
【0100】
前記要件を複数満たす場合、特に好ましい組み合わせが存在する。例えば、(iii) メモリ機能体内で電荷を保持するのが絶縁体、特にシリコン窒化膜であり、(ix) メモリ機能体の上には書込み及び消去動作を補助する機能を有する電極(ワード線)がなく、(vi) メモリ機能体内の絶縁膜(シリコン窒化膜)と拡散層とがオーバーラップしている、場合である。メモリ機能体内で電荷を保持しているのが絶縁体であり、且つ、メモリ機能体の上には書込み及び消去動作を補助する機能を有する電極がない場合には、メモリ機能体内の絶縁膜(シリコン窒化膜)と拡散層とがオーバーラップしている場合にのみ、書込み動作が良好に行なわれることを発見した。すなわち、要件(iii)及び(ix)を満たす場合は、要件(vi)を満たすことが特に好ましい。一方、メモリ機能体内で電荷を保持するのが導電体であり、又はメモリ機能体の上には書込み及び消去動作を補助する機能を有する電極がある場合は、メモリ機能体内の絶縁膜と拡散層がオーバーラップしていない場合でも、書込み動作を行なうことができた。しかしながら、メモリ機能体内で電荷を保持するのが導電体ではなく絶縁体であり、又はメモリ機能体の上には書込み及び消去動作を補助する機能を有する電極がない場合には、以下のような非常に大きな効果を得ることができる。すなわち、コンタクトプラグをよりメモリ機能体と接近して配置することができ、又は半導体記憶素子間の距離が接近して複数のメモリ機能体が干渉しても記憶情報を保持できるので、半導体記憶素子の微細化が容易となる。また、素子構造が単純であるから工程数が減少し、歩留まりを向上し、論理回路やアナログ回路を構成するトランジスタとの混載を容易にすることができる。更には、5V以下という低電圧により書込み及び消去動作が行なわれることを確認した。以上より、要件(iii)、(ix)および(vi)を満たすことが特に好ましいのである。
【0101】
本発明の半導体記憶素子及び論理素子を組み合わせた半導体記憶装置は、電池駆動の携帯電子機器、特に携帯情報端末に用いることができる。携帯電子機器としては、携帯情報端末、携帯電話、ゲーム機器等が挙げられる。
【0102】
ところで、本実施形態では、Nチャネル型素子の場合について述べているが、Pチャネル型素子でもよい。その場合は、不純物の導電型を全て逆にすれば良い。
【0103】
また、図面の記載において、同一の材料及び物質を用いている部分においては、同一の符号を付しており、必ずしも同一の形状を示すものではない。
【0104】
また、図面は模式的なものであり、厚みと平面寸法の関係、各層や各部の厚みや大きさの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや大きさの寸法は、以下の説明を斟酌して判断すべきものである。また図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
【0105】
また、本特許に記載の各層や各部の厚みや大きさは、特に説明がない場合は、半導体装置の形成を完了した段階での最終形状の寸法である。よって、膜や不純物領域等を形成した直後の寸法と比較して最終形状の寸法は、後の工程の熱履歴等によって多少変化することに留意すべきである。
【0106】
次に、図2(a)〜図2(d)に、通常構造のMOSFETである半導体スイッチング素子31により構成される論理回路領域4と、上記半導体記憶素子32からなるメモリ領域5とを、同一の半導体基板(チップ)1上に混載する手順を示す。ここで、図2において、左側が周辺回路領域4における通常構造の1個のMOSFETに対応する領域を示し、右側がメモリ領域5における1個の不揮発性メモリ素子に対応する領域を示している(後述する図3〜図18において同様とする。)。論理回路領域4とは、メモリ周辺回路部、論理回路部及びSRAM部等を含む領域のことを総称している。
【0107】
メモリ領域5の半導体記憶素子32は、ゲートスタック8の側面にメモリ機能体25を有しているため、混載プロセスが非常に簡単になる。より具体的には、ゲート電極3形成後の工程にフォトリソグラフィ工程を加え、LDD(Lightly Doped Drain;ライトリ・ドープト・ドレイン)拡散領域を形成する領域と形成しない領域とを設けることにより、同一基板上で自動的に、論理回路領域4とメモリ領域5を作製することができることを示す。
【0108】
まず、図2(a)に示すように、半導体基板1上に、膜厚1nm〜6nm程度のシリコン酸窒化膜からなるゲート絶縁膜2と、膜厚50nm〜400nm程度のゲート電極3形成のための材料膜とを形成し、これらを所望の形状にパターニングすることによりゲートスタック8を形成する。
【0109】
なお、ゲート電極3形成のための材料膜としては、ポリシリコン、又は、ポリシリコンと高融点金属シリサイドの積層膜、又は、ポリシリコンと金属との積層膜が挙げられる。ゲート絶縁膜2及びゲート電極3の材料は、上述したように、その時代のスケーリング則に則ったロジックプロセスにおいて使われる材料を用いればよく、上記材料に限定されるものではない。
【0110】
次に、図2(b)に示すように、フォトレジストを塗布して、メモリ領域5をフォトレジスト7で覆い、論理回路領域4における半導体スイッチング素子31を形成すべき部位にレジスト開口部を設けるようにパターニングする(図2(b)の左半分はレジスト開口部に相当する。)。その後フォトレジスト7及びゲートスタック8をマスクとして不純物を注入し、論理回路領域4における、ゲートスタック8の両側に相当する半導体基板表面にLDD領域6を形成する。ここで、メモリ領域5にはLDD領域6が形成されずに、通常構造のトランジスタを形成すべき論理回路領域4にLDD領域6を形成することができた。
【0111】
続いて、図2(c)に示すように、得られた半導体基板1、及び、ゲートスタック8の露出面上に、膜厚20nm〜100nm程度のシリコン窒化膜を形成し、異方性エッチングによりエッチバックすることにより、記憶に最適なメモリ機能体25を、ゲート電極3の側面に沿ってサイドウォールとして形成する。なお、シリコン窒化膜から成る単層膜の代わりに、膜厚1〜20nm程度のシリコン酸化膜と膜厚2〜100nm程度のシリコン窒化膜を順次堆積し、異方性エッチングによりエッチバックして記憶に最適なメモリ機能体25を、ゲート電極の側壁にサイドウォール状に形成することがより好ましい。
【0112】
ここでは、メモリ機能体25の材料としてシリコン窒化膜をもちいたが、上記している通り、メモリ機能体25は、電荷を蓄積又はトラップ又は電荷分極状態を保持する機能を有する物質によって形成されていればよく、例えば、シリコン窒化膜を含む絶縁体;導電体もしくは半導体を内部に含む絶縁体;導電体もしくは半導体ドットを1つ以上含む絶縁体等の単層又は積層構造によって形成することができる。また、メモリ機能体25の一形態として、電界により分極方向が変化するPZT、PLZT等の強誘電体を用いてもよい。
【0113】
ただし、メモリ機能体25の材料として導体もしくは半導体、または、導体もしくは半導体を内部に含む絶縁体等の、電気的に導電性を有する物質を含む材料を用いた場合、メモリ機能体25形成後に、ゲート電極3の外周面を囲むメモリ機能体25を、相互に電気的に絶縁された、ゲート電極3の左右のメモリ機能体25,25とする必要がある。
【0114】
そこで、図19(a)に示すように、電気的に絶縁された左右のメモリ機能体25,25を形成する場合、環状のメモリ機能体25の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状メモリ機能体25の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外のメモリ機能体25をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行いメモリ機能体25の露出部(除去領域21)を除去する。該エッチングはメモリ機能体25を選択的にエッチングでき、ゲート電極3および半導体基板1とのエッチング選択比の大きな条件で行うと良い。ただし、上記の除去領域21は、素子分離領域上に位置することが好ましい。
【0115】
その後、図2(d)に示すように、ゲート電極3及びメモリ機能体25をマスクとして不純物をイオン注入することにより、ゲート電極3及びメモリ機能体25の両側に相当する半導体基板表面にソース/ドレイン領域13を形成する。
【0116】
上記したような方法を用いて半導体スイッチング素子31、及び、半導体記憶素子32を、同一基板1上に並行して同時に形成することができる。
【0117】
上記手順から分かるように、上記半導体記憶素子32を形成するための手順は、通常構造のMOSFET形成プロセスと非常に親和性の高いものとなっている。上記半導体記憶素子32の構成は、公知の一般的なMOSFETに近い。上記一般的なMOSFETを上記半導体記憶素子32に変更するためには、例えば、公知の一般的なMOSFETのサイドウォールスペーサにメモリ機能体25としての機能を有する材料を用いて、LDD領域6を形成しないだけでよい。上記メモリ周辺回路部、論理回路部及びSRAM部等を構成する通常構造MOSFETのサイドウォールスペーサがメモリ機能体25としての機能をもっていたとしても、サイドウォールスペーサ幅が適切であって、書き換え動作が起こらない電圧範囲で動作させる限り、トランジスタ性能を損なうことが無い。従って、通常構造MOSFETで構成される半導体スイッチング素子31と半導体記憶素子32とは、共通のサイドウォールスペーサを用いることができる。また、上記メモリ周辺回路部、論理回路部及びSRAM部等を構成する通常構造MOSFETで構成される半導体スイッチング素子31と上記半導体記憶素子32とを混載させるためには、更に、上記メモリ周辺回路部、論理回路部及びSRAM部等にLDD構造を形成する必要がある。LDD構造を形成するためには、上記ゲート電極3を形成した後であって、上記メモリ機能体25を構成する材料を堆積するまえに、LDD領域形成のための不純物注入を行えばよい。従って、上記LDD形成のための不純物注入を行う際に、上記メモリ領域5にフォトレジスト7でマスクするだけで、上記半導体記憶素子32(不揮発性メモリ素子)と上記メモリ周辺回路部、論理回路部及びSRAM部等を構成する通常構造MOSFETとを容易に混載することが可能である。さらに、上記半導体記憶素子32と上記メモリ周辺回路部、論理回路部及びSRAM部等を構成する通常構造MOSFETによってSRAMを構成すれば、不揮発性メモリ、論理回路、SRAMを容易に混載することができる。
【0118】
ところで、上記半導体記憶素子32において、上記論理回路部及びSRAM部等で許容されるよりも、高い電圧を印加する必要がある場合、高耐圧ウエル形成用マスク及び高耐圧ゲート絶縁膜形成用マスクを標準MOSFET形成用マスクに追加するだけでよい。従来、EEPROM(書き込み消去が電気的に可能なプログラブルROM)と論理回路部とを1つのチップ上に混載するプロセスは標準MOSFETプロセスと大きく異なり、必要マスク枚数、プロセス工数が著しく増大した。ゆえに、EEPROMとメモリ周辺回路部、論理回路部及びSRAM部等の回路と混載した従来の場合に比べて、飛躍的にマスク枚数及びプロセス工数を削減することが可能になる。従って、メモリ周辺回路部、論理回路部及びSRAM部等の通常構造MOSFETと半導体記憶素子32とを混載したチップの歩留まりが向上し、コストが削減される。
【0119】
(第2の実施形態)
図3(a)〜図4(f)に、論理回路領域4における半導体スイッチング素子31と、メモリ領域5における半導体記憶素子32とを、同一の半導体基板1上に混載する別の手順を示す。より詳しくは、ゲート電極3を形成した後であって、ゲート側面に電荷保持部11を構成する材料10を堆積する前にフォトリソグラフィ工程及びそれに続く不純物注入工程を行うことにより、通常構造MOSFETを形成する領域に選択的にLDD領域を形成し、半導体スイッチング素子31と半導体記憶素子32とを、複雑なプロセスを必要とせず簡易に並行して形成できることを示す。
【0120】
図3(a)に示すように、p型の導電型を有する半導体基板1上にMOS(金属―酸化膜―半導体)形成プロセスを経た、MOS構造を有するゲート絶縁膜2及びゲート電極3、つまりゲートスタック8を形成する。
【0121】
代表的なMOS形成プロセスは、次のようなものである。
【0122】
まず、p型の半導体領域を有する半導体基板1に既知の方法により素子分離領域(図示せず)を形成する。素子分離領域は隣り合ったデバイス間において、基板を通じてリーク電流が流れることを防止することができる。ただし、隣り合ったデバイス同士であっても、ソース/ドレイン領域13を共通にするものであれば、このような素子分離領域を形成しなくても良い。既知の素子分離領域形成方法とは、既知のロコス酸化膜を用いたものでも、既知のトレンチ分離領域を用いたものでも、その他の既知の方法を用いて素子を分離するという目的を達成することができるものであれば良い。
【0123】
次に、半導体領域の露出面全面に絶縁膜2を形成する(ただし、図3(a)は既にパターン加工された状態を示している。)。この絶縁膜2はMOSFETのゲート絶縁膜となるため、NO酸化や、NO酸化、酸化後の窒化処理等を含んだ工程を用いること等により、ゲート絶縁膜2としての性能の良い膜を形成することが望まれる。ゲート絶縁膜2としての性能の良い膜とは、MOSFETの短チャネル効果の抑制、ゲート絶縁膜2を不必要に流れる電流であるリーク電流の抑制、ゲート電極3の不純物の空乏化を抑制しつつMOSFETのチャネル形成領域へのゲート電極3不純物の拡散を抑制する等々の、MOSFETの微細化や高性能化を進めるに当たってのあらゆる不都合な要因を抑制することができる絶縁膜のことである。代表的な膜は熱酸化膜、NO酸化膜、NO酸化膜等の酸化膜であり、膜厚は1nmから6nmの範囲内であることが適当である。
【0124】
次に、上記絶縁膜2上にゲート電極3のための材料(以下、「ゲート電極材料」と呼び、簡単のため、ゲート電極と同じ符号3を用いて説明する。)を全面に形成する。ゲート電極材料3としては、ポリシリコン、ドープドポリシリコン等の半導体や、Al、Ti、W等の金属や、これらの金属とシリコンとの化合物等、MOSFETとしての性能を有することのできる材料であればどんな材料を用いることも可能である。
【0125】
次に、ゲート電極材料3上に、フォトリソグラフィ工程により、所望のフォトレジストパターンを形成し、そのフォトレジストパターンをマスクとして、ゲート電極材料3及びゲート絶縁膜2をエッチングして、図3(a)中に示すようにパターン加工する。これによりゲートスタック8を形成する。この時、ゲート絶縁膜2はエッチングしなくても良い。エッチングせずに次工程である不純物注入時に注入保護膜として利用した場合、注入保護膜を形成する工程を略することができる。
【0126】
また、次に示すような方法で、ゲートスタック8を形成しても良い。p型の半導体領域を有する半導体基板1の露出面全面に上記同様の機能を有するゲート絶縁膜2を形成する。次に、該ゲート絶縁膜2上に上記同様の機能を有するゲート電極材料3を形成する。次に該ゲート電極材料3上に酸化膜、窒化膜、酸窒化膜等からなるマスク絶縁膜を形成する。次に、該マスク絶縁膜上に上記同様の機能を有するフォトレジストパターンを形成し、このフォトレジストパターンの通りに該マスク絶縁膜をエッチングしてパターン化する。次にフォトレジストパターンを除去し、該マスク絶縁膜をエッチングマスクとしてゲート電極材料3をエッチングする。次に、該マスク絶縁膜、及び、ゲート絶縁膜2の露出部をエッチングすることによって、図3(a)中に示すようにゲートスタック8を形成する。この時、ゲート絶縁膜2はエッチングしなくても良い。エッチングせずに次工程である不純物注入時に注入保護膜として利用した場合、注入保護膜を形成する工程を略することができる。
【0127】
次に、図3(b)に示すように論理回路領域4にLDD領域6を形成する。この際、メモリ領域5には、フォトレジスト7が形成されており、LDD領域は形成されない。ここで、メモリ領域5にはLDD領域6が形成されずに、通常構造のトランジスタを形成する論理回路領域4にLDD領域を形成することができた。該フォトレジストは、注入を阻止するものであり、選択的に除去できるものであれば良い。したがって、フォトレジストに代えて、窒化膜等の絶縁膜を用いることもできる。
【0128】
次に、図3(c)に示すように、ゲートスタック8及び半導体基板1の露出面上に第1絶縁膜15を形成する。この第1絶縁膜15の形成方法について示す。ゲートスタック8及び半導体基板1の露出面上に形成される第1絶縁膜15は、電子が通過する絶縁膜となるため、耐圧が高く、リーク電流が少なく、信頼性の高い膜が良い。例えば、上記ゲート絶縁膜2の材料と同様に、熱酸化膜、NO酸化膜、NO酸化膜等の酸化膜を用いる。該酸化膜を用いる場合、膜厚は、1nmから20nm程度が良い。更に、該絶縁膜15をトンネル電流が流れる程度に薄く形成した場合は、電荷の注入/消去に必要とする電圧を低くすることができ、それによって、低消費電力化ができる。その場合の典型的な膜厚は、1nm〜5nm程度が良い。ここで第1絶縁膜15を形成することにより、電荷保持部11は、半導体基板1及びゲート電極3に第1絶縁膜15を介して接することになるので、保持電荷のリークをこの絶縁膜により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い半導体記憶素子32が形成される。
【0129】
次に、上記第1絶縁膜15上の全面に、電荷保持部を構成する材料10(即ち、電荷を蓄積する機能を有する材料)を、略均一の厚みで堆積する。電荷保持部の材料10は、電子、および、ホールを保持することができる窒化膜、酸窒化膜や電荷トラップを有する酸化膜のような材料や、分極等の現象により電荷保持部11の表面に電荷を誘起することができる強誘電体のような材料や、酸化膜中にフローティングのポリシリコンやシリコンドットのような電荷を保持できるような物質を有している構造をもつ材料等であり、電荷を保持、誘起できるような材料であれば良い。電荷保持部を構成する材料10の膜厚は、例えば窒化膜を用いる場合、2nm〜100nm程度であれば良い。
【0130】
次に、図4(d)に示すように、電荷保持部を構成する材料10を異方性エッチングすることにより、ゲートスタック8の側面に電荷保持部11を形成する。該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1絶縁膜15とのエッチング選択比の大きな条件で行うと良い。
【0131】
ただし、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(b)に示すように、環状の電荷保持部11の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状電荷保持部11の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の電荷保持部11をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い電荷保持部11の露出部(除去領域21)を除去する。該エッチングは電荷保持部11を選択的にエッチングでき、ゲート電極3および半導体基板1とのエッチング選択比の大きな条件で行うと良い。ただし、上記の除去領域21は、素子分離領域上に位置することが好ましい。
【0132】
次に、図4(e)に示すように、第1絶縁膜15に対して異方性エッチングを行うことにより、露出部分のみ、選択的にエッチングして、第1絶縁膜15の一部からなるL字型(ここでL字型とは、単に角を有する形状のことを意味しているものであり、完全に直角に交わる角を有していることを意味するものではない。以下L字型の記載はすべて同じ)の第1の絶縁体12を形成する。該エッチングは第1絶縁膜15を選択的にエッチングでき、電荷保持部を構成する材料10、及び、ゲート電極3材料、及び、半導体基板1材料とのエッチング選択比の大きな条件で行うと良い。これにより、第1の絶縁体12(第1絶縁膜15)及び電荷保持部11からなるメモリ機能体25を形成することができた。ただし、当工程は異方性エッチングを用いているため、電荷保持部11に覆われていない部分の第1の絶縁体12の一部はエッチングされる。しかし一部は図19(e)のような状態で残存する。ここで、第1の絶縁体12の一部が図19(e)のような状態でのこり、ゲート電極の外周を覆うため、ソース/ドレインのコンタクトとゲート電極3との短絡を抑制することができる。それによって、微細化が容易になり、メモリの高集積化が可能となる。
【0133】
また、図3(c)に示す構造から、図4(e)に示す構造まで、1工程で進めてもよい。つまり、第1絶縁膜15及び電荷保持部を構成する材料10をともに選択的にエッチングでき、ゲート電極3材料、及び、半導体基板1材料とのエッチング選択比の大きな条件を用いた異方性エッチングを行うことにより、通常2工程必要なところを1工程で進めても良い。そのようにした場合、工程数を減少させることができる。ただし、その場合、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(e)に示すように、環状の電荷保持部11の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状電荷保持部11の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の電荷保持部11をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い電荷保持部11の露出部である除去領域21を除去する。該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1の絶縁体12及びゲート電極3とのエッチング選択比の大きな条件で行うと良い。
【0134】
次に、図4(f)に示すように、ゲート電極3及びその両側のメモリ機能体25,25を一体のマスク14として用いてソース/ドレイン注入を行い、さらに所定の熱処理を行う。これにより、ソース/ドレイン領域13を自己整合的に形成することができる。
【0135】
以上のプロセスを用いることにより、論理回路領域4に用いるLDD領域を形成した通常構造MOSFETの半導体スイッチング素子31、及び、メモリ領域5に用いる不揮発性メモリ素子の半導体記憶素子32を、同一基板上で並行して、特別複雑な工程を用いることなく簡易な工程を追加するだけで、容易に形成することができる。
【0136】
また、電荷保持部11に電荷を保持した場合に、チャネル形成領域の一部が電荷による影響を強く受けるため、ドレイン電流値が変化する。それにより半導体記憶素子32は、保持電荷の有無に応じて情報を記憶することができる。
【0137】
ゲート絶縁膜2と電荷保持部11とを独立して設けることにより、通常構造MOSFETの半導体スイッチング素子31と不揮発性メモリ素子の半導体記憶素子32とを、標準MOSFETプロセスと比べて大幅なプロセス変更やプロセス工数の増加なしに1つのチップ上に混載することが可能となった。それゆえメモリ周辺回路部等4と、メモリ領域5を1つの半導体基板(チップ)1上に混載するための製造コストを大幅に削減することができる。
【0138】
ゲート電極3とソース/ドレイン領域13とがオフセットした半導体記憶素子32と、オフセットしていない論理回路における半導体スイッチング素子31を自己整合的な工程で同一基板上に形成することにより、メモリ効果の高い不揮発性メモリ素子と、電流駆動力の高い論理回路における通常MOSFETを複雑なプロセスを必要とせず簡易に混載できる。
【0139】
更には、この半導体記憶素子32によれば、1トランジスタ当り2ビットの記憶を実現することができるので、1ビットあたりのメモリ素子の占有面積を縮小することができ、大容量の不揮発性メモリ素子を実現できる。
【0140】
また、電荷保持部11は、半導体基板1およびゲート電極3に第1の絶縁体12を介して接しているため、保持電荷のリークをこの絶縁体12により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子を実現できる。
【0141】
(第3の実施形態)
図5(a)〜図5(d)に、論理回路領域4における半導体スイッチング素子31と、メモリ領域5における半導体記憶素子32とを、同一の半導体基板1上に混載する他の手順を示す。より詳しくは、ゲート電極3を形成した後であって、ゲート側面に電荷保持部11を構成する材料10を堆積する前にフォトリソグラフィ工程及びそれに続く不純物注入工程を行うことにより、通常構造MOSFETを形成する領域に選択的にLDD領域を形成し、半導体スイッチング素子31と半導体記憶素子32とを、複雑なプロセスを必要とせず簡易に並行して形成できることを示す。
【0142】
LDD領域形成工程までは、上記第2の実施形態と同様の工程を用いても良い。そこで、同様の工程は、改めて図示及び説明しない。つまり、上記第2の実施形態に示した工程を用いて、図3(b)に示す構造を形成し、その後フォトレジストを除去する。
【0143】
次に、図5(a)に示すように、ゲートスタック8及び半導体基板1の露出面上に第1絶縁膜15を略均一の厚みで形成する。この第1絶縁膜15は、電子が通過する絶縁膜となるため、耐圧が高く、リーク電流が少なく、信頼性の高い膜が良い。例えば、上記ゲート絶縁膜2の材料と同様に、熱酸化膜、NO酸化膜、NO酸化膜等の酸化膜を用いる。該酸化膜を用いる場合、膜厚は、1nmから20nm程度が良い。更に、該絶縁膜15をトンネル電流が流れる程度に薄く形成した場合は、電荷の注入/消去に必要とする電圧を低くすることができ、それによって、低消費電力化ができる。その場合の典型的な膜厚は、1nm〜5nm程度が良い。ここで第1絶縁膜15を形成することにより、電荷保持部11は、半導体基板1及びゲート電極3に第1絶縁膜15を介して接することになるので、保持電荷のリークをこの絶縁膜により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い半導体記憶素子32が形成される。
【0144】
次に、上記第1絶縁膜15上の全面に、電荷保持部を構成する材料10(即ち、電荷を蓄積する機能を有する材料)を、略均一の厚みで堆積する。電荷保持部の材料10は、電子、および、ホールを保持することができる窒化膜、酸窒化膜や電荷トラップを有する酸化膜のような材料や、分極等の現象により電荷保持部11の表面に電荷を誘起することができる強誘電体のような材料や、酸化膜中にフローティングのポリシリコンやシリコンドットのような電荷を保持できるような物質を有している構造をもつ材料等であり、電荷を保持、誘起できるような材料であれば良い。電荷保持部を構成する材料10の膜厚は、例えば窒化膜を用いる場合、2nm〜100nm程度であれば良い。
【0145】
さらに、上記電荷保持部を構成する材料10上の全面に、第2絶縁膜16を略均一の厚みで形成する。この第2絶縁膜はHTO(High Temperature Oxide)等のCVD(Camical Vaper Deposition)をもちいたステップカバレッジの良い膜を用いると良い。HTO膜を用いる場合、膜厚は5nm〜100nm程度であれば良い。
【0146】
次に、図5(b)に示すように、第2絶縁膜16を異方性エッチングすることにより、ゲートスタック8の側面に第1絶縁膜15および電荷保持部を構成する材料10を介して側壁状の第2の絶縁体18を形成する。該エッチングは第2絶縁膜16を選択的にエッチングでき、電荷保持部を構成する材料10とのエッチング選択比の大きな条件で行うと良い。
【0147】
ただし、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(c)に示すように、環状の第2の絶縁体18の一部(除去領域22)をエッチングにより除去する。この除去領域22は、環状第2の絶縁体18の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の第2の絶縁体18をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い第2の絶縁体18の露出部である除去領域22を除去する。該エッチングは第2の絶縁体18を選択的にエッチングでき、電荷保持部を構成する材料10とのエッチング選択比の大きな条件で行うと良い。ただし、上記の除去領域22は、素子分離領域上に位置することが好ましい。
【0148】
次に、図5(c)に示すように、電荷保持部を構成する材料10を、第2の絶縁体18をエッチングマスクにして、等方性エッチングすることにより、ゲートスタック8の側面に第1絶縁膜15を介して電荷保持部11を形成する。この場合、該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1絶縁膜15、および、第2の絶縁体18とのエッチング選択比の大きな条件で行うと良い。図19(c)に示す前の工程において、第2の絶縁体18の一部(除去領域22)がエッチングにより除去されており、さらに、当工程のエッチングは等方性エッチングを用いているため、当工程により、電荷保持部11の一部(除去領域21)も除去され、図19(d)に示すような形状となる。よって、左右の電荷保持部11,11を電気的に絶縁することができる。
【0149】
次に、第1絶縁膜15を異方性エッチングすることにより、ゲートスタック8の側面に第1の絶縁体12を形成する。この場合、該エッチングは第1の絶縁体12を選択的にエッチングでき、第2の絶縁体18、電荷保持部11、ゲート電極3、及び、半導体基板1とのエッチング選択比の大きな条件で行うと良い。これにより、第1の絶縁体12(第1絶縁膜15)及び電荷保持部11及び第2の絶縁体18(第2絶縁膜16)からなるメモリ機能体25を形成することができた。この際、電荷保持部11の除去領域21、及び、第2の絶縁体18の除去領域22がエッチングにより除去されているが、当工程は異方性エッチングを用いているため、電荷保持部11に覆われていない部分の第1の絶縁体12の一部はエッチングされる。しかし、一部は図19(d)のような状態で残存する。ここで、第1の絶縁体12の一部が図19(d)のような状態でのこり、ゲート電極3の外周を覆うため、ソース/ドレインのコンタクトとゲート電極3との短絡を抑制することができる。それによって、微細化が容易になり、メモリの高集積化が可能となる。
【0150】
ただし、第1の絶縁体12、および、第2の絶縁体18がともに酸化膜というような同じ材料で形成されている場合があり、その場合は大きなエッチング選択比を得ることができない。そこでこの場合は、第1絶縁膜15をエッチングする際の第2の絶縁体18のエッチング量を考慮し、第2の絶縁体18形成の際のエッチング量をその分適宜減らしておくことが必要である。
【0151】
また、図5(a)に示す構造から、図5(c)に示す構造まで、1工程で進めてもよい。つまり、第1絶縁膜15、第2絶縁膜16及び電荷保持部を構成する材料10をともに選択的にエッチングでき、ゲート電極3材料、及び、半導体基板1材料とのエッチング選択比の大きな条件を用いた異方性エッチングを行うことにより、通常3工程必要なところを1工程で進めても良い。そのようにした場合、工程数を減少させることができる。ただし、その場合、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(c)に示すように、環状の第2の絶縁体18の一部(除去領域22)をエッチングにより除去する。この除去領域22は、環状第2の絶縁体18の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の第2の絶縁体18をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い第2の絶縁体18の露出部である除去領域22を除去する。該エッチングは第2の絶縁体18を選択的にエッチングでき、電荷保持部を構成する材料10とのエッチング選択比の大きな条件で行うと良い。さらに、図19(d)に示すように、環状の電荷保持部11の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状電荷保持部11の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の電荷保持部11をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い電荷保持部11の露出部である除去領域21を除去する。該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1の絶縁体12とのエッチング選択比の大きな条件で行うと良い。当工程において第1の絶縁体12はゲート電極3の外周を覆うように残るため、ソース/ドレインのコンタクトとゲート電極3との短絡を抑制することができる。それによって、微細化が容易になり、メモリの高集積化が可能となる。
【0152】
次に、図5(d)に示すように、ゲート電極3及びその両側のメモリ機能体25,25を一体のマスク14として用いてソース/ドレイン注入を行うことにより、ソース/ドレイン領域13を自己整合的に形成することができる。
【0153】
以上のプロセスを用いることにより、論理回路領域4に用いるLDD領域を形成した通常構造MOSFETの半導体スイッチング素子31、及び、メモリ領域5に用いる不揮発性メモリ素子の半導体記憶素子32を、同一基板上で並行して、特別複雑な工程を用いることなく簡易な工程を追加するだけで、容易に形成することができる。
【0154】
また、電荷保持部11に電荷を保持した場合に、チャネル形成領域の一部が電荷による影響を強く受けるため、ドレイン電流値が変化する。それにより電荷の有無を区別する不揮発性メモリ素子を実現できる。
【0155】
また、ゲート絶縁膜2と電荷保持部11とを独立して設けることにより、通常構造MOSFETと同じ製造工程で、同時に、同じ程度の短チャネル効果を有するメモリセルトランジスタを形成できる。それゆえ、論理回路領域4とメモリ領域5との混載プロセスを非常に簡単に実施することができる。
【0156】
この不揮発性メモリ素子によれば、1トランジスタ当り2ビットの記憶を実現しながら、短チャネル効果が極めて抑制され、微細化が可能となる。また、高速動作と低消費電力化を実現できる。
【0157】
また、電荷保持部11は、半導体基板1およびゲート電極3に第1絶縁膜15を介して接しているため、保持電荷のリークをこの絶縁膜15により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子を実現できる。
【0158】
また、電荷保持部11がL字型になっているため、電荷保持部をより微小化にすることができる。よって、電荷保持部11をチャネル近傍に形成できるため、書き込みによって注入した電子を消去によって除去しやすくなる。それゆえ、誤消去を防止できる。また、電荷保持部を微小化することにより、効率的に電荷の消去を行うことができ、読み出しと消去スピードが早く信頼性の高い不揮発性メモリ素子を実現できる。
【0159】
また、電荷保持部11として導電体や半導体を用いた場合、ゲート電極3に正電位を印加すると、電荷保持部11内で分極し、ゲート電極3の側面付近に電子が誘起され、チャネル形成領域近傍の電子が減少する。それによって、基板1もしくはソース/ドレイン領域13からの電子の注入を促進させることができ、書き込みのスピードが早く信頼性の高い不揮発性メモリ素子が形成できる。
【0160】
(第4の実施形態)
本発明の第4の実施形態を、図6を用いて説明する。
【0161】
本実施形態は、第4の実施形態における図5(d)に記載のゲート電極の側方にメモリ機能体を有する構造の半導体記憶素子の構成の態様を示すものである。第4の実施形態の効果に加えて後述する効果を有すものである。
【0162】
この実施形態の半導体記憶素子は、メモリ機能体161、162が電荷保持部(電荷を蓄える領域であって、電荷を保持する機能を有する膜であってもよい)と電荷を逃げにくくする領域(電荷を逃げにくくする機能を有する膜であってもよい)から構成される。例えば、図6に示すように、ONO構造を有している。すなわち、シリコン酸化膜141とシリコン酸化膜143との間にシリコン窒化膜142が挟まれ、メモリ機能体161、162を構成している。ここで、シリコン窒化膜は電荷を保持する機能を果たす。また、シリコン酸化膜141、143はシリコン窒化膜中に蓄えられた電荷を逃げにくくする機能を有する膜の役割を果たす。
【0163】
また、メモリ機能体161、162における電荷保持部(シリコン窒化膜142)は、ソース/ドレイン領域112、113とそれぞれオーバーラップしている。ここで、オーバーラップするとは、ソース/ドレイン領域112、113の少なくとも一部の領域上に、電荷保持部(シリコン窒化膜142)の少なくとも一部が存在することを意味する。なお、111は半導体基板、114はゲート絶縁膜、117はゲート電極、171は(ゲート電極とソース/ドレイン領域との)オフセット領域である。図示しないが、ゲート絶縁膜114下であって半導体基板111最表面部はチャネル形成領域となる。
【0164】
メモリ機能体161、162における電荷保持部142とソース/ドレイン領域112、113とがオーバーラップすることによる効果を説明する。
【0165】
図7は、図6の右側のメモリ機能体162周辺部の拡大図である。W1はゲート電極114とソース/ドレイン領域113とのオフセット量を示す。また、W2はゲート電極のゲート長方向の切断面におけるメモリ機能体162の幅を示しているが、メモリ機能体162のうちシリコン窒化膜142のゲート電極117と離れた側の端が、ゲート電極117から離れた側のメモリ機能体162の端と一致しているため、メモリ機能体162の幅をW2として定義した。W2−W1が、メモリ機能体162とソース/ドレイン領域113とのオーバーラップ量である。メモリ機能体162とソース/ドレイン領域113とのオーバーラップ量はW2−W1で表される。特に重要なことは、メモリ機能体162のうちシリコン窒化膜142で構成されたメモリ機能体162が、ソース/ドレイン領域113とオーバーラップする、つまり、W2>W1なる関係を満たすことである。
【0166】
なお、図8に示すように、メモリ機能体162aのうちシリコン窒化膜142aのゲート電極と離れた側の端が、ゲート電極から離れた側のメモリ機能体162aの端と一致していない場合は、W2をゲート電極端からシリコン窒化膜142aのゲート電極と遠い側の端までと定義すればよい。なお、図8中の要素には、図7中の対応する要素の符号にaを付した符号を用いている。
【0167】
図9は、図7の構造において、メモリ機能体162の幅W2を100nmに固定し、オフセット量W1を変化させたときのドレイン電流Idを示している。ここで、ドレイン電流は、メモリ機能体162を消去状態(ホールが蓄積されている)とし、ソース/ドレイン領域112、113をそれぞれソース電極、ドレイン電極として、デバイスシミュレーションにより求めた。
【0168】
図9から明らかなように、W1が100nm以上(すなわち、シリコン窒化膜142とソース/ドレイン領域113とがオーバーラップしない)では、ドレイン電流が急速に減少している。ドレイン電流値は、読出し動作速度にほぼ比例するので、W1が100nm以上ではメモリの性能は急速に劣化する。一方、シリコン窒化膜142とソース/ドレイン領域113とがオーバーラップする範囲においては、ドレイン電流の減少は緩やかである。したがって、量産製造においてばらつきも考慮した場合、電荷を保持する機能を有する膜であるシリコン窒化膜142の少なくとも一部とソース/ドレイン領域とがオーバーラップしなければ、事実上メモリ機能を得ることが困難である。
【0169】
上述したデバイスシミュレーションの結果を踏まえて、W2を100nm固定とし、W1を設計値として60nm及び100nmとして、メモリセルアレイを作製した。W1が60nmの場合、シリコン窒化膜142とソース/ドレイン領域112、113とは設計値として40nmオーバーラップし、W1が100nmの場合、設計値としてオーバーラップしない。これらのメモリセルアレイの読出し時間を測定した結果、ばらつきを考慮したワーストケースで比較して、W1を設計値として60nmとした場合の方が、読出しアクセス時間で100倍高速であった。実用上、読み出しアクセス時間は1ビットあたり100ナノ秒以下であることが好ましいが、W1=W2では、この条件を到底達成できないことが分かった。また、製造ばらつきまで考慮した場合、W2−W1>10nmであることがより好ましいことが判明した。
【0170】
メモリ機能体161(領域181)に記憶された情報の読み出しは、ソース/ドレイン領域112をソース電極とし、ソース/ドレイン領域113をドレイン領域としてチャネル形成領域中のドレイン領域に近い側にピンチオフ点を形成するのが好ましい。すなわち、2つのメモリ機能体のうち一方に記憶された情報を読み出す時に、ピンチオフ点をチャネル形成領域内であって、他方のメモリ機能体に近い領域に形成させるのが好ましい。これにより、メモリ機能体162の記憶状況の如何にかかわらず、メモリ機能体161の記憶情報を感度よく検出することができ、2ビット動作を可能にする大きな要因となる。
【0171】
一方、2つのメモリ機能体の片側のみに情報を記憶させる場合又は2つのメモリ機能体を同じ記憶状態にして使用する場合には、読出し時に必ずしもピンチオフ点を形成しなくてもよい。
【0172】
なお、図6には図示していないが、半導体基板111の表面にウェル領域(Nチャネル素子の場合はP型ウェル)を形成することが好ましい。ウェル領域を形成することにより、チャネル形成領域の不純物濃度をメモリ動作(書換え動作及び読出し動作)に最適にしつつ、その他の電気特性(耐圧、接合容量、短チャネル効果)を制御するのが容易になる。
【0173】
メモリ機能体は、メモリの保持特性を向上させる観点から、電荷を保持する機能を有する電荷保持部と絶縁膜(散逸防止絶縁体)とを含んでいるのが好ましい。この実施形態では、電荷保持部として電荷をトラップする準位を有するシリコン窒化膜142、絶縁膜として電荷保持部に蓄積された電荷の散逸を防ぐ働きのあるシリコン酸化膜141、143を用いている。メモリ機能体が電荷保持部と絶縁膜とを含むことにより電荷の散逸を防いで保持特性を向上させることができる。さらに、メモリ機能体が電荷保持部のみで構成される場合に比べて電荷保持部の体積を適度に小さくすることができる。電荷保持部の体積を適度に小さくすることにより電荷保持部内での電荷の移動を制限し、記憶保持中に電荷移動による特性変化が起こるのを抑制することができる。
【0174】
また、メモリ機能体は、ゲート絶縁膜表面と略平行に配置されるな電荷保持部を含むことが好ましい。いいかえると、メモリ機能体における電荷保持部の上面が、ゲート絶縁膜上面から等しい距離に位置するように配置されることが好ましい。具体的には、図10に示したように、メモリ機能体162の電荷保持部142aが、ゲート絶縁膜114表面と略平行な面を有している。言い換えると、電荷保持部142aは、ゲート絶縁膜114表面に対応する高さから、均一な高さに形成されることが好ましい。メモリ機能体162中に、ゲート絶縁膜114表面と略平行な電荷保持部142aがあることにより、電荷保持部142aに蓄積された電荷の多寡によりオフセット領域171での反転層の形成されやすさを効果的に制御することができ、ひいてはメモリ効果を大きくすることができる。また、電荷保持部142aをゲート絶縁膜114の表面と略平行とすることにより、オフセット量(W1)がばらついた場合でもメモリ効果の変化を比較的小さく保つことができ、メモリ効果のばらつきを抑制することができる。しかも、電荷保持部142a上部方向への電荷の移動が抑制され、記憶保持中に電荷移動による特性変化が起こるのを抑制することができる。
【0175】
さらに、メモリ機能体162は、ゲート絶縁膜114の表面と略平行な電荷保持部142aとチャネル形成領域(又はウェル領域)とを隔てる絶縁膜(例えば、シリコン酸化膜144のうちオフセット領域171上の部分)を含むことが好ましい。この絶縁膜により、電荷保持部に蓄積された電荷の散逸が抑制され、さらに保持特性の良い半導体記憶素子を得ることができる。
【0176】
なお、電荷保持部142aの膜厚を制御すると共に、電荷保持部142a下の絶縁膜(シリコン酸化膜144のうちオフセット領域171上の部分)の膜厚を一定に制御することにより、半導体基板表面から電荷保持部中に蓄えられる電荷までの距離を概ね一定に保つことが可能となる。つまり、半導体基板表面から電荷保持部中に蓄えられる電荷までの距離を、電荷保持部142a下の絶縁膜の最小膜厚値から、電荷保持部142a下の絶縁膜の最大膜厚値と電荷保持部142aの最大膜厚値との和までの間に制御することができる。これにより、電荷保持部142aに蓄えられた電荷により発生する電気力線の密度を概ね制御することが可能となり、半導体記憶素子のメモリ効果の大きさばらつきを非常に小さくすることが可能となる。
【0177】
(第5の実施形態)
この実施形態は、メモリ機能体162の電荷保持部142が、図11に示すように、略均一な膜厚で、ゲート絶縁膜114の表面と略平行に配置され(矢印181)、さらに、ゲート電極117側面と略平行に配置された(矢印182)形状を有している。
【0178】
ゲート電極117に正電圧が印加された場合には、メモリ機能体162中での電気力線は矢印183のように、シリコン窒化膜142を2回(矢印182及び矢印181が示す部分)通過する。なお、ゲート電極117に負電圧が印加された時は電気力線の向きは反対側となる。ここで、シリコン窒化膜142の比誘電率は約6であり、シリコン酸化膜141、143の比誘電率は約4である。したがって、矢印181で示す電荷保持部のみが存在する場合よりも、電気力線183方向におけるメモリ機能体162の実効的な比誘電率が大きくなり、電気力線の両端での電位差をより小さくすることができる。すなわち、ゲート電極117に印加された電圧の多くの部分が、オフセット領域171における電界を強くするために使われることになる。
【0179】
書換え動作時に電荷がシリコン窒化膜142に注入されるのは、発生した電荷がオフセット領域171における電界により引き込まれるためである。したがって、矢印182で示される電荷保持部を含むことにより、書換え動作時にメモリ機能体162に注入される電荷が増加し、書換え速度が増大する。
【0180】
なお、シリコン酸化膜143の部分もシリコン窒化膜であった場合、つまり、電荷保持部がゲート絶縁膜114の表面に対応する高さに対して均一でない場合、シリコン窒化膜の上方向への電荷の移動が顕著になって、保持特性が悪化する。
【0181】
電荷保持部は、シリコン窒化膜に代えて、比誘電率が非常大きい酸化ハフニウムなどの高誘電体により形成されることがより好ましい。
【0182】
さらに、メモリ機能体は、ゲート絶縁膜表面と略平行な電荷保持部とチャネル形成領域(又はウェル領域)とを隔てる絶縁膜(シリコン酸化膜141のうちオフセット領域171上の部分)をさらに含むことが好ましい。この絶縁膜により、電荷保持部に蓄積された電荷の散逸が抑制され、さらに保持特性を向上させることができる。
【0183】
また、メモリ機能体は、ゲート電極と、ゲート電極側面と略平行な向きに延びた電荷保持部とを隔てる絶縁膜(シリコン酸化膜141のうちゲート電極117に接した部分)をさらに含むことが好ましい。この絶縁膜により、ゲート電極から電荷保持部へ電荷が注入されて電気的特性が変化することを防止し、半導体記憶素子の信頼性を向上させることができる。
【0184】
さらに、実施形態2と同様に、電荷保持部142下の絶縁膜(シリコン酸化膜141のうちオフセット領域171上の部分)の膜厚を一定に制御すること、さらにゲート電極側面上に配置する絶縁膜(シリコン酸化膜141のうちゲート電極117に接した部分)の膜厚を一定に制御することが好ましい。これにより、電荷保持部142に蓄えられた電荷により発生する電気力線の密度を概ね制御することができるとともに、電荷リークを防止することができる。
【0185】
(第6の実施形態)
この実施形態は、ゲート電極、メモリ機能体及びソース/ドレイン領域間距離の最適化に関する。
【0186】
図12に示したように、Aはゲート長方向の切断面におけるゲート電極長、Bはソース/ドレイン領域間の距離(チャネル長)、Cは一方のメモリ機能体の端から他方のメモリ機能体の端までの距離、つまり、ゲート長方向の切断面における一方のメモリ機能体内の電荷を保持する機能を有する膜の端(ゲート電極と離れている側)から他方のメモリ機能体内の電荷を保持する機能を有する膜の端(ゲート電極と離れている側)までの距離を示す。
【0187】
まず、B<Cであることが好ましい。チャネル形成領域のうちゲート電極117下の部分とソース/ドレイン領域112、113との間にはオフセット領域171が存する。B<Cにより、メモリ機能体161、162(シリコン窒化膜142)に蓄積された電荷により、オフセット領域171の全領域において、反転の容易性が効果的に変動する。したがって、メモリ効果が増大し、特に読出し動作の高速化が実現する。
【0188】
また、ゲート電極117とソース/ドレイン領域112、113がオフセットしている場合、つまり、A<Bが成立する場合には、ゲート電極に電圧を印加したときのオフセット領域の反転のしやすさがメモリ機能体に蓄積された電荷量によって大きく変化し、メモリ効果が増大するとともに、短チャネル効果を低減することができる。ただし、メモリ効果が発現する限りにおいては、必ずしも存在する必要はない。オフセット領域171がない場合においても、ソース/ドレイン領域112、113の不純物濃度が十分に薄ければ、メモリ機能体161、162(シリコン窒化膜142)においてメモリ効果が発現し得る。したがって、A<B<Cであるのが最も好ましい。
【0189】
(第7の実施形態)
この実施形態の半導体記憶素子は、図13に示すように、第4の実施形態における半導体基板をSOI基板とする以外は、実質的に同様の構成を有する。
【0190】
この半導体記憶素子は、半導体基板186上に埋め込み酸化膜188が形成され、さらにその上にSOI層が形成されている。SOI層内にはソース/ドレイン領域112、113が形成され、それ以外の領域はボディ領域187となっている。
【0191】
この半導体記憶素子によっても、第4の実施形態の半導体記憶素子と同様の作用効果を奏する。さらに、ソース/ドレイン領域112、113とボディ領域187との接合容量を著しく小さくすることができるので、素子の高速化や低消費電力化が可能となる。
【0192】
(第8の実施形態)
この実施形態の半導体記憶素子は、図14に示すように、第4の実施形態において、N型のソース/ドレイン領域112、113のチャネル側に隣接して、P型高濃度領域191を追加した以外は、実質的に同様の構成を有する。
【0193】
すなわち、P型高濃度領域191におけるP型を与える不純物(例えばボロン)濃度が、領域192におけるP型を与える不純物濃度より高い。P型高濃度領域191におけるP型の不純物濃度は、例えば、5×1017〜1×1019cm−3程度が適当である。また、領域192のP型の不純物濃度は、例えば、5×1016〜1×1018cm−3とすることができる。
【0194】
このように、P型高濃度領域191を設けることにより、ソース/ドレイン領域112、113と半導体基板111との接合が、メモリ機能体161、162の直下で急峻となる。そのため、書込み及び消去動作時にホットキャリアが発生し易くなり、書込み動作及び消去動作の電圧を低下させ、あるいは書込み動作及び消去動作を高速にすることが可能となる。さらに、領域192の不純物濃度は比較的薄いので、メモリが消去状態にあるときの閾値が低く、ドレイン電流は大きくなる。そのため、読出し速度が向上する。したがって、書換え電圧が低く又は書換え速度が高速で、かつ、読出し速度が高速な半導体記憶素子を得ることができる。
【0195】
また、図14において、ソース/ドレイン領域近傍であってメモリ機能体の下(すなわち、ゲート電極の直下ではない)において、P型高濃度領域191を設けることにより、トランジスタ全体としての閾値は著しく上昇する。この上昇の程度は、P型高濃度領域191がゲート電極の直下にある場合に比べて著しく大きい。メモリ機能体に書込み電荷(トランジスタがNチャネル型の場合は電子)が蓄積した場合は、この差がいっそう大きくなる。一方、メモリ機能体に十分な消去電荷(トランジスタがNチャネル型の場合は正孔)が蓄積された場合は、トランジスタ全体としての閾値は、ゲート電極下のチャネル形成領域(領域192)の不純物濃度で決まる閾値まで低下する。すなわち、消去時の閾値は、P型高濃度領域191の不純物濃度には依存せず、一方で、書込み時の閾値は非常に大きな影響を受ける。よって、P型高濃度領域191をメモリ機能体の下であってソース/ドレイン領域近傍に配置することにより、書込み時の閾値のみが非常に大きく変動し、メモリ効果(書込み時と消去時での閾値の差)を著しく増大させることができる。
【0196】
(第9の実施形態)
この実施形態の半導体記憶素子は、図15に示すように、第4の実施形態において、電荷保持部(シリコン窒化膜142)とチャネル形成領域又はウェル領域とを隔てる絶縁膜の厚さ(T1)が、ゲート絶縁膜の厚さ(T2)よりも薄いこと以外は、実質的に同様の構成を有する。
【0197】
ゲート絶縁膜114は、メモリの書換え動作時における耐圧の要請から、その厚さT2には下限値が存在する。しかし、絶縁膜の厚さT1は、耐圧の要請にかかわらず、T2よりも薄くすることが可能である。
【0198】
本実施形態の半導体記憶素子において、上述のようにT1に対する設計の自由度が高いのは以下の理由による。本実施形態の半導体記憶素子においては、電荷保持部とチャネル形成領域又はウェル領域とを隔てる絶縁膜は、ゲート電極とチャネル形成領域又はウェル領域とに挟まれていない。そのため、電荷保持部とチャネル形成領域又はウェル領域とを隔てる絶縁膜には、ゲート電極とチャネル形成領域又はウェル領域間に働く高電界が直接作用せず、ゲート電極から横方向に広がる比較的弱い電界が作用する。そのため、ゲート絶縁膜に対する耐圧の要請にかかわらず、T1をT2より薄くすることが可能になるのである。一方、例えば、フラッシュメモリに代表されるEEPROMにおいては、フローティングゲートとチャネル形成領域又はウェル領域とを隔てる絶縁膜は、ゲート電極(コントロールゲート)とチャネル形成領域又はウェル領域に挟まれているので、ゲート電極からの高電界が直接作用する。それゆえ、EEPROMにおいては、フローティングゲートとチャネル形成領域又はウェル領域とを隔てる絶縁膜の厚さが制限され、半導体記憶素子の機能の最適化が阻害されるのである。以上より明らかなように、本実施形態の半導体記憶素子において電荷保持部とチャネル形成領域又はウェル領域とを隔てる絶縁膜が、ゲート電極とチャネル形成領域又はウェル領域とに挟まれていないことが、T1の自由度を高くする本質的な理由となっている。
【0199】
T1を薄くすることにより、メモリ機能体への電荷の注入が容易になり、書込み動作及び消去動作の電圧を低下させ、又は書込み動作及び消去動作を高速にすることが可能となり、また、シリコン窒化膜142に電荷が蓄積された時にチャネル形成領域又はウェル領域に誘起される電荷量が増えるため、メモリ効果を増大させることができる。
【0200】
ところで、メモリ機能体中での電気力線は、図15の矢印184で示すように、シリコン窒化膜142を通過しない短いものもある。このような短い電気力線上では比較的電界強度が大きいので、書換え動作時においては大きな役割を果たしている。T1を薄くすることによりシリコン窒化膜142が図の下側に移動し、矢印183で示す電気力線がシリコン窒化膜を通過するようになる。それゆえ、電気力線184に沿ったメモリ機能体中の実効的な比誘電率が大きくなり、電気力線の両端での電位差をより小さくすることができる。したがって、ゲート電極117に印加された電圧の多くの部分が、オフセット領域における電界を強くするために使われ、書込み動作及び消去動作が高速になる。
【0201】
以上より明らかなように、T1<T2とすることにより、メモリの耐圧性能を低下させることなく、書込み動作及び消去動作の電圧を低下させ、又は書込み動作及び消去動作を高速にし、さらにメモリ効果を増大することが可能となる。
【0202】
なお、絶縁膜の厚さT1は、製造プロセスによる均一性や膜質が一定の水準を維持することが可能であり、かつ保持特性が極端に劣化しない限界となる0.8nm以上であることがより好ましい。
【0203】
(第10の実施形態)
この実施形態の半導体記憶素子は、図16に示すように、第4の実施形態において、電荷保持部(シリコン窒化膜142)とチャネル形成領域又はウェル領域とを隔てる絶縁膜の厚さ(T1)が、ゲート絶縁膜の厚さ(T2)よりも厚いこと以外は、実質的に同様の構成を有する。
【0204】
ゲート絶縁膜114は、素子の短チャネル効果防止の要請から、その厚さT2には上限値が存在する。しかし、絶縁膜の厚さT1は、短チャネル効果防止の要請かかわらず、T2よりも厚くすることが可能である。
【0205】
本実施形態の半導体記憶素子において、上述のようにT1に対する設計の自由度が高い理由は、既に述べた通り、電荷保持部とチャネル形成領域又はウェル領域とを隔てる絶縁膜が、ゲート電極とチャネル形成領域又はウェル領域とに挟まれていないことによる。そのため、ゲート絶縁膜に対する短チャネル効果防止の要請にかかわらず、T1をT2より厚くすることが可能になるのである。
【0206】
T1を厚くすることにより、メモリ機能体に蓄積された電荷が散逸するのを防ぎ、メモリの保持特性を改善することが可能となる。
【0207】
したがって、T1>T2とすることにより、メモリの短チャネル効果を悪化させることなく保持特性を改善することが可能となる。
【0208】
なお、絶縁膜の厚さT1は、書換え速度の低下を考慮して、20nm以下であることが好ましい。
【0209】
(第11の実施形態)
図17(a)〜図17(d)に、論理回路領域4における半導体スイッチング素子31と、メモリ領域5における半導体記憶素子32とを、同一の半導体基板1上に混載するさらに別の手順を示す。より詳しくは、ゲート電極3を形成した後であって、ゲート側面に電荷保持部11を構成する材料10を堆積する前にフォトリソグラフィ工程及びそれに続く不純物注入工程を行うことにより、通常構造MOSFETを形成する領域に選択的にLDD領域を形成し、半導体スイッチング素子31と半導体記憶素子32とを、複雑なプロセスを必要とせず簡易に並行して形成できることを示す。
【0210】
LDD領域形成工程までは、上記第2の実施形態と同様の工程を用いても良い。そこで、同様の工程は、改めて図示及び説明しない。つまり上記第2の実施形態に示した工程を用いて、図3(b)に示す構造を形成し、その後フォトレジストを除去する。
【0211】
次に、図17(a)に示すように、ゲートスタック8及び半導体基板1の露出面上に第1絶縁膜15を略均一の厚みで形成する。この第1絶縁膜15は、電子が通過する絶縁膜となるため、耐圧が高く、リーク電流が少なく、信頼性の高い膜が良い。例えば、上記ゲート絶縁膜2の材料と同様に、熱酸化膜、NO酸化膜、NO酸化膜等の酸化膜を用いる。該酸化膜を用いる場合、膜厚は、1nmから20nm程度が良い。更に、該絶縁膜15をトンネル電流が流れる程度に薄く形成した場合は、電荷の注入/消去に必要とする電圧を低くすることができ、それによって、低消費電力化ができる。その場合の典型的な膜厚は、1nm〜5nm程度が良い。ここで第1絶縁膜15を形成することにより、電荷保持部11は、半導体基板1及びゲート電極3に第1絶縁膜15を介して接することになるので、保持電荷のリークをこの絶縁膜により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い半導体記憶素子32が形成される。
【0212】
次に、上記第1絶縁膜15上の全面に、窒化膜10を、略均一の厚みで堆積する。この窒化膜は、酸窒化膜や電荷トラップを有する酸化膜のような材料や、分極等の現象により電荷保持部の表面に電荷を誘起することができる強誘電体のような材料や、酸化膜中にフローティングのポリシリコンやシリコンドットのような材料等であり、電荷を保持、誘起できるような材料であれば良い。窒化膜10の膜厚は、2nm〜100nm程度であれば良い。
【0213】
次に、図17(b)に示すように、ゲートスタック8の側壁に第1絶縁膜15を介して電荷保持部11を形成し、さらに、第2絶縁膜16を堆積させる。電荷保持部11の形成方法および第2絶縁膜16の堆積方法の1例を次に説明する。
【0214】
まず、電荷保持部を構成する材料10を、異方性エッチングすることにより、ゲートスタック8の側壁に第1絶縁膜15を介してサイドウォール形状の電荷保持部11を形成する。この場合、該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1絶縁膜15とのエッチング選択比の大きな条件で行うと良い。次に、第1絶縁膜15、及び、電荷保持部11の露出面全面に第2絶縁膜16を略均一の厚みで形成する。この第2絶縁膜16はHTO(High Temperature Oxide)等のCVD(Camical Vaper Deposition)をもちいたステップカバレッジの良い膜を用いると良い。HTO膜を用いる場合、膜厚は5nm〜100nm程度であれば良い。
【0215】
ただし、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(b)に示すように、環状の電荷保持部11の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状電荷保持部11の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の電荷保持部11をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い電荷保持部11の露出部である除去領域21を除去する。該エッチングは電荷保持部11を選択的にエッチングでき、第1絶縁膜15とのエッチング選択比の大きな条件で行うと良い。ただし、上記の除去領域21は、素子分離領域上に位置することが好ましい。
【0216】
次に、図17(c)に示すように、第1絶縁膜15および第2絶縁膜16を異方性エッチングすることにより、ゲートスタック8の側面に第1の絶縁体12を形成し、また、第1の絶縁体12および電荷保持部11を介して、第2の絶縁体18を形成する。これにより、第1の絶縁体12(第1絶縁膜15)及び電荷保持部11及び第2の絶縁体18(第2絶縁膜16)からなるメモリ機能体25を形成することができる。この場合、該エッチングは第1絶縁膜15および第2絶縁膜16を選択的にエッチングでき、ゲート電極3、および、半導体基板1とのエッチング選択比の大きな条件で行うと良い。また、図示しないが、電荷保持部11を露出するまで第2絶縁膜16を異方性エッチングしても良い。その場合は、前記条件、もしくは、第1絶縁膜15および第2絶縁膜16を選択的にエッチングでき、電荷保持部11、ゲート電極3、および、半導体基板1とのエッチング選択比の大きな条件で行うと良い。
【0217】
次に、図17(d)に示すように、ゲート電極3及びその両側のメモリ機能体25,25を一体のマスク14として用いてソース/ドレイン注入を行うことにより、ソース/ドレイン領域13を自己整合的に形成することができる。
【0218】
以上のプロセスを用いることにより、論理回路領域4に用いるLDD領域を形成した通常構造MOSFETの半導体スイッチング素子31、及び、メモリ領域5に用いる不揮発性メモリ素子の半導体記憶素子32を、同一基板上で並行して、特別複雑な工程を用いることなく簡易な工程を追加するだけで、容易に形成することができる。
【0219】
また、電荷保持部11に電荷を保持した場合に、チャネル形成領域の一部が電荷による影響を強く受けるため、ドレイン電流値が変化する。それにより電荷の有無を区別する不揮発性メモリ素子を実現できる。
【0220】
また、ゲート絶縁膜2と電荷保持部11とを独立して設けることにより、通常構造MOSFETと同じ製造工程で、同時に、同じ程度の短チャネル効果を有するメモリセルトランジスタを形成できる。それゆえ、論理回路領域4とメモリ領域5との混載プロセスを非常に簡単に実施することができる。
【0221】
この不揮発性メモリ素子によれば、1トランジスタ当り2ビットの記憶を実現しながら、短チャネル効果が極めて抑制され、微細化が可能となる。また、高速動作と低消費電力化を実現できる。
【0222】
また、電荷保持部11は、半導体基板1およびゲート電極3に第1絶縁膜15を介して接しているため、保持電荷のリークをこの絶縁膜15により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子を実現できる。
【0223】
また、電荷保持部11がI字型になっているため、電荷保持部をより微小化にすることができる。よって、電荷保持部11をチャネル近傍に形成できるため、書き込みによって注入した電子を消去によって除去しやすくなる。それゆえ、誤消去を防止できる。また、電荷保持部を微小化することにより、効率的に電荷の消去を行うことができ、読み出しと消去スピードが早く信頼性の高い不揮発性メモリ素子を実現できる。
【0224】
また、電荷保持部11として導電体や半導体を用いた場合、ゲート電極3に正電位を印加すると、電荷保持部11内で分極し、ゲート電極3の側面付近に電子が誘起され、チャネル形成領域近傍の電子が減少する。それによって、基板1もしくはソース/ドレイン領域13からの電子の注入を促進させることができ、書き込みのスピードが早く信頼性の高い不揮発性メモリ素子が形成できる。
【0225】
(第12実施形態)
図18(a)〜図18(d)に、論理回路領域4における半導体スイッチング素子31と、メモリ領域5における半導体記憶素子32とを、同一の半導体基板1上に混載するさらに他の手順を示す。より詳しくは、ゲート電極3を形成した後であって、ゲート側面に電荷保持部11を構成する材料10を堆積する前にフォトリソグラフィ工程及びそれに続く不純物注入工程を行うことにより、通常構造MOSFETを形成する領域に選択的にLDD領域を形成し、半導体スイッチング素子31と半導体記憶素子32とを、複雑なプロセスを必要とせず簡易に並行して形成できることを示す。
【0226】
LDD領域形成工程までは、上記第2の実施形態と同様の工程を用いても良い。そこで、同様の工程は、改めて図示せず、第2の実施形態の説明で用いた図を使って説明する。
【0227】
LDD領域形成工程までは、上記第2の実施形態と同様の工程を用いても良い。そこで、同様の工程は、改めて図示及び説明しない。つまり上記第2の実施形態に示した工程を用いて、図3(b)に示す構造を形成し、その後フォトレジストを除去する。また、その後、第11の実施形態に記載しているように、図17(a)に示した構造を形成する。
【0228】
次に、図18(a)に示すように、電荷保持部を構成する材料10を、異方性エッチングすることにより、ゲートスタック8の側面に第1絶縁膜15を介してサイドウォール形状の電荷保持部11を形成する。ただし、この実施形態の電荷保持部11は第4の実施の形態における電荷保持部11と比較してエッチング量が多い、つまり高さを低く形成していることが特徴である。即ち、ゲート電極3の最上部位置より、電荷保持部11の最上部位置が下方になるようにする。望ましくは、エッチング後の電荷保持部11の高さは、1nm〜12nm程度が良い。さらに、その左右方向の幅も、望ましくは1nm〜12nm程度が良い。また、この場合、該エッチングは電荷保持部を構成する材料10を選択的にエッチングでき、第1絶縁膜15とのエッチング選択比の大きな条件で行うと良い。ここで第1絶縁膜15を形成することにより、電荷保持部11は、半導体基板1およびゲート電極3に第1絶縁膜15を介して接することになるので、保持電荷のリークをこの第1絶縁膜15により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子が実現できる。
【0229】
ただし、電荷保持部の材料10として、導体もしくは半導体等の電気的に導電性を有する物質を含む材料を用いた場合、電荷保持部11形成後に、ゲート電極3の外周面を囲む電荷保持部11を、相互に電気的に絶縁された、ゲート電極3の左右の電荷保持部11,11とする必要がある。そこで、図19(b)に示すように、環状の電荷保持部11の一部(除去領域21)をエッチングにより除去する。この除去領域21は、環状電荷保持部11の前部及び後部における仮想線のハッチング部分を示す。除去方法は、既知のフォトリソグラフィ工程を用いて、除去領域以外の電荷保持部11をカバーするように、フォトレジストをパターニングする。その後、異方性エッチングを行い電荷保持部11の露出部である除去領域21を除去する。該エッチングは電荷保持部11を選択的にエッチングでき、第1絶縁膜15とのエッチング選択比の大きな条件で行うと良い。ただし、上記の除去領域21は、素子分離領域上に位置することが好ましい。
【0230】
次に、図18(b)に示すように、第1絶縁膜15及び電荷保持部11の露出面全面に第2絶縁膜16を略均一の厚みで形成する。この第2絶縁膜16はHTO(High Temperature Oxide)等のCVD(Camical Vaper Deposition)をもちいたステップカバレッジの良い膜を用いると良い。HTO膜を用いる場合、膜厚は5nm〜100nm程度であれば良い。
【0231】
次に、図18(c)に示すように、第1絶縁膜15および第2絶縁膜16を異方性エッチングすることにより、ゲートスタック8の側面に第1の絶縁体12を形成し、また、第1の絶縁体12および電荷保持部11を介して、第2の絶縁体18を形成する。これにより、第1の絶縁体12(第1絶縁膜15)及び電荷保持部11及び第2の絶縁体18(第2絶縁膜16)からなるメモリ機能体25を形成することができる。この場合、該エッチングは第1絶縁膜15および第2絶縁膜16を選択的にエッチングでき、ゲート電極3、および、半導体基板1とのエッチング選択比の大きな条件で行うと良い。このとき、第1の絶縁体12(第1絶縁膜15)の最上部位置より、電荷保持部11の最上部位置が下方になるようにする。
【0232】
次に、図18(d)に示すように、ゲート電極3及びその両側のメモリ機能体25,25を一体のマスク14として用いてソース/ドレイン注入を行うことにより、ソース/ドレイン領域13を自己整合的に形成することができる。
【0233】
以上のプロセスを用いることにより、論理回路領域4に用いるLDD領域を形成した通常構造MOSFETの半導体スイッチング素子31、及び、メモリ領域5に用いる不揮発性メモリ素子の半導体記憶素子32を、同一基板上で並行して、特別複雑な工程を用いることなく簡易な工程を追加するだけで、容易に形成することができる。
【0234】
また、電荷保持部11に電荷を保持した場合に、チャネル形成領域の一部が電荷による影響を強く受けるため、ドレイン電流値が変化する。それにより電荷の有無を区別する不揮発性メモリ素子を実現できる。
【0235】
また、ゲート絶縁膜2と電荷保持部11とを独立して設けることにより、通常構造MOSFETと同じ製造工程で、同時に、同じ程度の短チャネル効果を有するメモリセルトランジスタを形成できる。それゆえ、論理回路領域4とメモリ領域5との混載プロセスを非常に簡単に実施することができる。
【0236】
この不揮発性メモリ素子によれば、1トランジスタ当り2ビットの記憶を実現しながら、短チャネル効果が極めて抑制され、微細化が可能となる。また、高速動作と低消費電力化を実現できる。
【0237】
また、電荷保持部11は、半導体基板1およびゲート電極3に第1絶縁膜15を介して接しているため、保持電荷のリークをこの絶縁膜15により抑制することができる。それにより、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子を実現できる。
【0238】
また、電荷保持部11がI字型またはドット状になっているため、電荷保持部をより微小化にすることができる。よって、電荷保持部11をチャネル近傍に形成できるため、書き込みによって注入した電子を消去によって除去しやすくなる。それゆえ、誤消去を防止できる。また、電荷保持部を微小化することにより、効率的に電荷の消去を行うことができ、読み出しと消去スピードが早く信頼性の高い不揮発性メモリ素子を実現できる。
【0239】
また、電荷保持部11として導電体や半導体を用いた場合、ゲート電極3に正電位を印加すると、電荷保持部11内で分極し、ゲート電極3の側面付近に電子が誘起され、チャネル形成領域近傍の電子が減少する。それによって、基板1もしくはソース/ドレイン領域13からの電子の注入を促進させることができ、書き込みのスピードが早く信頼性の高い不揮発性メモリ素子が形成できる。
【0240】
また、この実施形態によると電荷保持部11をナノドット状に形成することができる。即ち、メモリ機能体25は、電荷を蓄積する機能を有する材料からなる微粒子と、蓄積された電荷の散逸を防止する機能を有する絶縁体とからなる。ここで、微粒子とは、電荷保持部11をいい、絶縁体とは、第1の絶縁体12(第1絶縁膜15)及び第2の絶縁体18(第2絶縁膜16)をいう。よって、電荷保持部をさらに微小化にして、電荷保持部11をチャネル近傍に形成できるため、書き込みによって注入した電子を消去によって除去しやすくなる。それゆえ、誤消去を防止できる。さらに、電荷保持部11がナノドット状になっているため、クーロンブロッケード効果により極めてメモリ効果が向上する。これにより、極めて、読み出しスピードが早く信頼性の高く、電荷保持特性がよく、長期信頼性の高い不揮発性メモリ素子を実現できる。
【0241】
(第13の実施形態)
図22(a),図22(b)は、それぞれ本発明の一実施形態のICカード400A,400Bの構成を示している。
【0242】
図22(a)に示すICカード400A内には、MPU(Micro Processing Unit;マイクロ・プロセシング・ユニット)部401、及び、コネクト部408が内蔵されている。MPU部401内には、データメモリ部404、演算部402、制御部403、ROM(Read Only Memory;読み出し専用メモリ)405及びRAM(Random Access Memory;ランダム・アクセス・メモリ)406があり、これらが1つのチップに形成されている。ROM405には、MPU部401を駆動するためのプログラムが格納されている。RAM406はワークエリアとして用いられ、演算データを一時的に記憶する。MPU部401には、本発明の半導体装置が組み込まれている。上記各部401,403,403,404,405,406,408は、配線(データバス、電源線等を含む)407で接続されている。また、コネクト部408と外部のリーダライタ409は、このICカード400Aがリードライタ409に装着されたときに接続され、カード400Aに電力が供給されるとともにデータの交換が行なわれる。
【0243】
本ICカード400Aの特徴は、MPU部401にデータメモリ部404が内蔵され、1つの半導体チップ上に半導体スイッチング素子と半導体記憶素子とが混載されている点である。
【0244】
データメモリ部404には、既述のような製造コストを削減することが可能な半導体記憶素子30,31,41,51A〜51Cまたは61A〜61Dを用いている。これらの半導体記憶素子は微細化が容易であり、かつ2ビット動作が可能であるから、これを配列したメモリセルアレイの面積を縮小するのも容易となる。したがって、メモリセルアレイのコストを削減することができる。このメモリセルアレイをICカード400Aのデータメモリ部404に用いれば、ICカードのコストが削減される。
【0245】
また、MPU部401にデータメモリ部404を内蔵し、1つのチップ上に形成しているので、ICカードのコストを大きく低減することができる。
【0246】
さらに、MPU部401を本発明の半導体装置で構成しているので、つまりデータメモリ部404に半導体記憶素子を用いており、他の回路部には半導体スイッチング素子を用いているので、例えばデータメモリ部404にフラッシュメモリを用いた場合に比べて、製造プロセスが著しく簡略化される。この理由は、データメモリ部404の半導体記憶素子の形成プロセスと、論理回路部(演算部402及び制御部403)を構成する半導体スイッチング素子の形成プロセスとが、互いに非常に似ており、それらを1チップ上に混載するのが非常に容易だからである。したがって、MPU部401とデータメモリ部404を1つのチップ上に形成することによるコスト削減効果が特に大きくなる。
【0247】
なお、ROM405を上記半導体記憶素子で構成してもよい。このようにすれば、ROM405を外部から書き換えることが可能となり、ICカードの機能を飛躍的に高くすることができる。上記記憶素子は微細化が容易で、かつ2ビット動作が可能であるから、マスクROMを上記記憶素子で置き換えてもチップ面積の増大をほとんど招かない。また、上記半導体記憶素子を形成するプロセスは、通常のCMOS形成プロセスとほとんど変わらないので、論理回路部との混載が容易である。
【0248】
次に図22(b)に示すICカード400B内には、MPU部401、RFインターフェース部410、及び、アンテナ部411が内蔵されている。MPU部401内には、データメモリ部404、演算部402、制御部403、ROM405及びRAM406があり、これらが1つのチップに形成されている。上記各部401,402,403,404,405,406,410,411は、配線(データバス、電源線等を含む)407で接続されている。
【0249】
この図22(b)のICカード400Bが、図22(a)のICカード400Aと異なるのは、非接触型であるという点である。そのため、制御部403は、コネクト部ではなく、RFインターフェース部410を介してアンテナ部411に接続されている。アンテナ部411は、外部機器との通信及び集電機能を有する。RFインターフェース部410は、アンテナ部411から伝達された高周波信号を整流し電力を供給する機能と、信号の変調及び復調機能を有する。なお、RFインターフェース部410及びアンテナ部411は、MPU部401と1つのチップ上に混載されていてもよい。
【0250】
本ICカード400Bは非接触型であるから、コネクタ部を通じた静電破壊を防止することができる。また、外部機器と必ずしも密着する必要がないので、使用形態の自由度が大きくなる。更には、データメモリ部404を構成する半導体記憶素子は、従来のフラッシュメモリ(約12Vの電源電圧)に比べて低い電源電圧(例えば約9V)で動作するので、RFインターフェース部410の回路を小型化し、コストを削減することができる。
【0251】
(第14の実施形態)
本発明の半導体装置は、電池駆動の携帯電子機器、特に携帯情報端末に用いることができる。携帯電子機器としては、携帯情報端末、携帯電話、ゲーム機器等が挙げられる。
【0252】
図23は本発明を適用した一実施形態の携帯電話500のブロック構成を示している。
【0253】
この携帯電話500内には、MPU部501、マン・マシンインターフェース部508、RF回路部510、及び、アンテナ部511が内蔵されている。MPU部501内には、データメモリ部504、演算部502、制御部503、ROM505及びRAM506があり、これらが1つのチップに形成されている。ROM505には、MPU部501を駆動するためのプログラムが格納されている。RAM506はワークエリアとして用いられ、演算データを一時的に記憶する。MPU部501には、本発明の半導体装置が組み込まれている。上記各部501,502,503,504,505,506,508,510,511は、配線(データバス、電源線等を含む)507で接続されている。
【0254】
本携帯電話500の特徴は、MPU部501にデータメモリ部504が内蔵され、1つの半導体チップ上に半導体スイッチング素子と半導体記憶素子とが混載されている点である。
【0255】
データメモリ部504には、既述のような製造コストを削減することが可能な半導体記憶素子30,31,41,51A〜51Cまたは61A〜61Dを用いている。これらの半導体記憶素子は微細化が容易であり、かつ2ビット動作が可能であるから、これを配列したメモリセルアレイの面積を縮小するのも容易となる。したがって、メモリセルアレイのコストを削減することができる。このメモリセルアレイを携帯電話500のデータメモリ部504に用いれば、携帯電話のコストが削減される。
【0256】
また、MPU部501にデータメモリ部504を内蔵し、1つのチップ上に形成しているので、携帯電話のコストを大きく低減することができる。
【0257】
さらに、MPU部501を本発明の半導体装置で構成しているので、つまりデータメモリ部504に半導体記憶素子を用いており、他の回路部には半導体スイッチング素子を用いているので、例えばデータメモリ部504にフラッシュメモリを用いた場合に比べて、製造プロセスが著しく簡略化される。この理由は、データメモリ部504の半導体記憶素子の形成プロセスと、論理回路部(演算部502及び制御部503)を構成する半導体スイッチング素子の形成プロセスとが、互いに非常に似ており、それらを1チップ上に混載するのが非常に容易だからである。したがって、MPU部501とデータメモリ部504を1つのチップ上に形成することによるコスト削減効果が特に大きくなる。
【0258】
なお、ROM505を上記半導体記憶素子で構成してもよい。このようにすれば、ROM505を外部から書き換えることが可能となり、携帯電話の機能を飛躍的に高くすることができる。上記記憶素子は微細化が容易で、かつ2ビット動作が可能であるから、マスクROMを上記記憶素子で置き換えてもチップ面積の増大をほとんど招かない。また、上記半導体記憶素子を形成するプロセスは、通常のCMOS形成プロセスとほとんど変わらないので、論理回路部との混載が容易である。
【0259】
このように、本発明の半導体装置を携帯電話500に代表されるような携帯電子機器に用いることにより、制御回路の製造コストが削減されるから、携帯電子機器自体のコストを削減することができる。もしくは、制御回路に含まれる半導体記憶素子を大容量化して、携帯電子機器の機能を高度化することができる。
【0260】
【発明の効果】
以上より明らかなように、本発明の半導体装置は、半導体スイッチング素子と半導体記憶素子とを混載した半導体装置であって、簡単なプロセスで容易に作製でき、低コスト化することができる。
【0261】
また、本発明の半導体装置の製造方法は、半導体スイッチング素子と半導体記憶素子とを混載した半導体装置を、簡単なプロセスで容易に作製でき、低コスト化できる。
【0262】
また、本発明の携帯電子機器及びICカードは、そのような半導体装置を備えているので、コスト削減できる。
【図面の簡単な説明】
【図1】本発明の半導体記憶素子の構造の概要を示す概略断面図である。
【図2】本発明の第1の実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図3】本発明の第2の実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図4】本発明の第2の実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図5】本発明の第3の実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図6】本発明の第4の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図7】図6の半導体記憶素子が有するメモリ機能体及びその周辺部の拡大図である。
【図8】図7に対応して、メモリ機能体のうちシリコン窒化膜のゲート電極から遠い側の端が、ゲート電極から遠い側のメモリ機能体の端と一致していない態様を示す図である。
【図9】横軸にオフセット量W1、縦軸にドレイン電流Idを示しているプロット図である。
【図10】メモリ機能体のシリコン窒化膜が、ゲート絶縁膜表面と略平行に配列している態様を示す図である。
【図11】本発明の第5の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図12】本発明の第6の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図13】本発明の第7の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図14】本発明の第8の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図15】本発明の第9の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図16】本発明の第10の実施形態に係る半導体記憶素子の構造の概要を示す概略断面図である。
【図17】本発明の第11の実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図18】本発明の第12実施形態に係る半導体装置の製造工程を示す概略断面図である。
【図19】本発明の半導体装置の製造工程の一部を示す概略平面図である。
【図20】本発明の第1の実施形態に係る半導体装置の構成図である。
【図21】本発明の第1の実施形態に係る別の半導体装置の構成図である。
【図22】本発明の第13の実施形態に係るICカードを示す概略ブロック図である。
【図23】本発明の第14の実施形態に係る携帯電話を示す概略ブロック図である。
【図24】従来の不揮発性メモリ素子の構造の概要を示す概略断面図である。
【符号の説明】
1 半導体基板
2 ゲート絶縁膜
3 ゲート電極
4 論理回路領域
5 メモリ領域
6 LDD領域
11 電荷保持部
12 第1の絶縁体
13 ソース/ドレイン領域
18 第2の絶縁体
19 チャネル形成領域
20 オフセット領域
25 メモリ機能体
31 半導体スイッチング素子
32 半導体記憶素子

Claims (19)

  1. 半導体基板上に、半導体スイッチング素子を有する論理回路領域と半導体記憶素子を有するメモリ領域とが配置され、
    上記半導体スイッチング素子及び半導体記憶素子は、夫々、ゲート電極と、このゲート電極の両側に相当する上記半導体基板表面に形成された第1導電型を有する一対のソース/ドレイン領域と、この一対のソース/ドレイン領域の間に形成された第2導電型を有するチャネル形成領域とを有し、
    上記半導体記憶素子のゲート電極の両側に、電荷を蓄積する機能を有するメモリ機能体が設けられ、
    上記半導体記憶素子においては、上記メモリ機能体に保持された電荷の多寡により、上記ゲート電極に電圧を印加した際の一方の上記ソース/ドレイン領域から他方の上記ソース/ドレイン領域に流れる電流量を変化させ得るように構成されていることを特徴とする半導体装置。
  2. 半導体基板上に、半導体スイッチング素子を有する論理回路領域と半導体記憶素子を有するメモリ領域とが配置され、
    上記半導体スイッチング素子及び半導体記憶素子は、夫々、ゲート電極と、このゲート電極の両側に相当する上記半導体基板表面に形成された第1導電型を有する一対のソース/ドレイン領域と、この一対のソース/ドレイン領域の間に形成された第2導電型を有するチャネル形成領域とを有し、
    上記半導体スイッチング素子では、上記チャネル方向に関して上記ゲート電極下に上記ソース/ドレイン領域が延在して重なり、
    上記半導体記憶素子では、上記チャネル方向に関して上記ゲート電極と上記ソース/ドレイン領域との間に間隔が設けられると共に、上記半導体基板表面上の上記間隔に重なるように、電荷を蓄積する機能を有するメモリ機能体が、上記ゲート電極の両側に配置されていることを特徴とする半導体装置。
  3. 請求項2に記載の半導体装置において、
    上記半導体スイッチング素子のゲート電極の両側に、上記半導体記憶素子のメモリ機能体と同じものが設けられていることを特徴とする半導体装置。
  4. 請求項2に記載の半導体装置において、
    上記メモリ機能体が、上記ゲート電極の側面に設けられたサイドウォールスペーサであることを特徴とする半導体装置。
  5. 請求項2に記載の半導体装置において、
    上記メモリ機能体は、電荷を蓄積する機能を有する材料からなる電荷保持部と、蓄積された電荷の散逸を防止する機能を有する散逸防止絶縁体とからなり、
    上記散逸防止絶縁体は、上記電荷保持部と上記ゲート電極との間、及び、上記電荷保持部と上記半導体基板との間に介在する第1の絶縁体を有することを特徴とする半導体装置。
  6. 請求項2記載の半導体装置において、
    上記メモリ機能体は、電荷を蓄積する機能を有する材料からなる電荷保持部と、蓄積された電荷の散逸を防止する機能を有する散逸防止絶縁体とからなり、
    上記散逸防止絶縁体は、上記電荷保持部と上記ゲート電極との間、及び、上記電荷保持部と上記半導体基板との間に介在する第1の絶縁体と、この第1の絶縁体と共働きして上記電荷保持部を挟持する第2の絶縁体とからなることを特徴とする半導体装置。
  7. 請求項5または6に記載の半導体装置において、
    上記電荷保持部の最上部位置は、上記ゲート電極の最上部位置より下方であることを特徴とする半導体装置。
  8. 請求項5または6に記載の半導体装置において、
    上記電荷保持部の最上部位置は、上記第1の絶縁体の最上部位置より下方であることを特徴とする半導体装置。
  9. 請求項5または6に記載の半導体装置において、
    上記電荷保持部は、電荷を蓄積する機能を有する複数の微粒子からなることを特徴とする半導体装置。
  10. 請求項2に記載の半導体装置において、
    上記半導体スイッチング素子の上記ソース/ドレイン領域のうち上記ゲート電極下に延在する部分は、該ソース/ドレイン領域のうち上記ゲート電極及びメモリ機能体の外側に相当する部分よりも不純物濃度が低いことを特徴とする半導体装置。
  11. 請求項5または6に記載の半導体装置において、
    上記半導体記憶素子では、上記電荷保持部の少なくとも一部が前記ソース/ドレイン領域の一部にオーバーラップしていることを特徴とする半導体装置。
  12. 請求項5または6に記載の半導体装置において、
    上記電荷保持部が、上記ゲート電極の直下に形成されたゲート絶縁膜の表面と略平行な表面を有することを特徴とする半導体装置。
  13. 請求項5または6に記載の半導体装置において、
    上記電荷保持部が、上記ゲート電極の側面と略平行な表面を有することを特徴とする半導体装置。
  14. 請求項5または6に記載の半導体装置において、
    上記第1の絶縁体の膜厚が、上記ゲート電極の直下に形成されたゲート絶縁膜の膜厚より薄く、かつ0.8nm以上であることを特徴とする半導体装置。
  15. 請求項5または6に記載の半導体装置において、
    上記第1の絶縁体の膜厚が、上記ゲート電極の直下に形成されたゲート絶縁膜の膜厚より厚く、かつ20nm以下であることを特徴とする半導体装置。
  16. 請求項1または2に記載の半導体装置を備えたことを特徴とするICカード。
  17. 請求項1または2に記載の半導体装置を備えたことを特徴とする携帯電子機器。
  18. 半導体基板上に設定された論理回路領域に半導体スイッチング素子を形成するのと並行して、上記半導体基板上に設定されたメモリ領域に半導体記憶素子を形成する半導体装置の製造方法であって、
    上記論理回路領域及びメモリ領域の半導体基板表面上に、それぞれゲート絶縁膜を介してゲート電極を形成する工程と、
    上記メモリ領域に不純物が導入されないようにマスクを設けた状態で上記論理回路領域に上記ゲート電極をマスクとして不純物を導入して、上記論理回路領域に、ソース/ドレイン領域の一部となる第1の不純物領域を形成する工程と、
    少なくとも上記メモリ領域の上記ゲート電極の側面に、電荷を蓄積する機能を有するメモリ機能体を形成する工程と、
    上記論理回路領域及びメモリ領域に、上記ゲート電極及び上記メモリ機能体をマスクとして上記不純物と同じ導電型の不純物をそれぞれ導入して、ソース/ドレイン領域の少なくとも一部となる第2の不純物領域を形成する工程と
    を有することを特徴とする半導体装置の製造方法。
  19. 請求項18に記載の半導体装置の製造方法において、
    上記第1の不純物領域における不純物濃度は、上記第2の不純物領域における不純物濃度より低いことを特徴とする半導体装置の製造方法。
JP2003134642A 2003-05-13 2003-05-13 半導体装置及びその製造方法、携帯電子機器、並びにicカード Pending JP2004342682A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003134642A JP2004342682A (ja) 2003-05-13 2003-05-13 半導体装置及びその製造方法、携帯電子機器、並びにicカード
US10/842,424 US7301198B2 (en) 2003-05-13 2004-05-11 Semiconductor device having logic circuitry and memory circuitry on the same substrate, and its use in portable electronic equipment and IC card
CNB2004100431865A CN1303691C (zh) 2003-05-13 2004-05-13 半导体器件及其制造方法,便携式电子设备和集成电路卡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134642A JP2004342682A (ja) 2003-05-13 2003-05-13 半導体装置及びその製造方法、携帯電子機器、並びにicカード

Publications (1)

Publication Number Publication Date
JP2004342682A true JP2004342682A (ja) 2004-12-02

Family

ID=33516067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134642A Pending JP2004342682A (ja) 2003-05-13 2003-05-13 半導体装置及びその製造方法、携帯電子機器、並びにicカード

Country Status (3)

Country Link
US (1) US7301198B2 (ja)
JP (1) JP2004342682A (ja)
CN (1) CN1303691C (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217061A (ja) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2008205185A (ja) * 2007-02-20 2008-09-04 Oki Electric Ind Co Ltd 半導体記憶装置の製造方法、及び半導体記憶装置
CN104600076A (zh) * 2013-10-31 2015-05-06 骆志炯 连接存储栅存储单元及其操作和制造方法
CN114005873A (zh) * 2020-07-28 2022-02-01 格芯新加坡私人有限公司 具有共享导电字线的紧凑存储器单元及其制造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2370976C (en) 1999-04-20 2009-10-20 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
DE60136335D1 (de) 2000-02-16 2008-12-11 Illumina Inc Parallele genotypisierung mehrerer patientenproben
US20040259100A1 (en) 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
WO2005003304A2 (en) 2003-06-20 2005-01-13 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
JP2006024680A (ja) * 2004-07-07 2006-01-26 Oki Electric Ind Co Ltd 半導体不揮発性メモリへの情報の記録方法
US20060094170A1 (en) * 2004-10-29 2006-05-04 Jeng Erik S Memory capable of storing information and the method of forming and operating the same
DE102005009019B4 (de) * 2005-02-28 2008-01-10 Qimonda Ag Transistoranordnung mit Gate-Spacerstrukturen und Verfahren zu deren Herstellung
TWI284979B (en) * 2005-05-19 2007-08-01 Powerchip Semiconductor Corp P-channel memory and operating method thereof
TWI311796B (en) * 2005-11-17 2009-07-01 Ememory Technology Inc Semiconductor device and manufacturing method thereof
JP4906329B2 (ja) * 2005-12-02 2012-03-28 ラピスセミコンダクタ株式会社 不揮発性半導体記憶装置及びその製造方法
KR100660720B1 (ko) * 2005-12-29 2006-12-21 동부일렉트로닉스 주식회사 수평 구조의 게이트 커패시터 및 그 제조 방법
JP4799217B2 (ja) * 2006-03-03 2011-10-26 Okiセミコンダクタ株式会社 半導体装置の製造方法
KR100763556B1 (ko) * 2006-07-10 2007-10-04 삼성전자주식회사 마스크롬 셀, 이를 포함하는 노아형 마스크롬 소자 및 그제조 방법.
JP5190189B2 (ja) * 2006-08-09 2013-04-24 パナソニック株式会社 半導体装置及びその製造方法
KR100890613B1 (ko) * 2007-01-26 2009-03-27 삼성전자주식회사 마스크롬 소자 및 그 제조 방법
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
KR101563770B1 (ko) * 2009-02-18 2015-10-27 난징 유니버시티 복합 절연 게이트 mosfet 구조를 가진 광감지 디텍터 및 그것의 신호 출력방법
JP5404149B2 (ja) * 2009-04-16 2014-01-29 ルネサスエレクトロニクス株式会社 半導体記憶装置
KR101337101B1 (ko) * 2009-09-25 2013-12-05 가부시끼가이샤 도시바 불휘발성 반도체 메모리
JP2013077603A (ja) 2011-09-29 2013-04-25 Toshiba Corp メモリ装置
US9484072B1 (en) 2015-10-06 2016-11-01 Nscore, Inc. MIS transistors configured to be placed in programmed state and erased state
US9966141B2 (en) 2016-02-19 2018-05-08 Nscore, Inc. Nonvolatile memory cell employing hot carrier effect for data storage
KR20210077319A (ko) * 2019-12-17 2021-06-25 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US11437392B2 (en) * 2020-07-28 2022-09-06 Globalfoundries Singapore Pte. Ltd. Compact memory cell with a shared conductive select gate and methods of making such a memory cell
US11575043B1 (en) * 2021-07-23 2023-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997500A (ja) * 1995-09-29 1997-04-08 Toshiba Corp 不揮発性半導体記憶装置
US5838041A (en) * 1995-10-02 1998-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having memory cell transistor provided with offset region acting as a charge carrier injecting region
US5898223A (en) * 1997-10-08 1999-04-27 Lucent Technologies Inc. Chip-on-chip IC packages
US6008087A (en) * 1998-01-05 1999-12-28 Texas Instruments - Acer Incorporated Method to form high density NAND structure nonvolatile memories
JP2000077618A (ja) 1998-06-15 2000-03-14 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP3973819B2 (ja) 1999-03-08 2007-09-12 株式会社東芝 半導体記憶装置およびその製造方法
US6836617B1 (en) * 2000-03-24 2004-12-28 Eastman Kodak Company Purchasing configured photographic film products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217061A (ja) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2008205185A (ja) * 2007-02-20 2008-09-04 Oki Electric Ind Co Ltd 半導体記憶装置の製造方法、及び半導体記憶装置
CN104600076A (zh) * 2013-10-31 2015-05-06 骆志炯 连接存储栅存储单元及其操作和制造方法
CN114005873A (zh) * 2020-07-28 2022-02-01 格芯新加坡私人有限公司 具有共享导电字线的紧凑存储器单元及其制造方法

Also Published As

Publication number Publication date
US20040256653A1 (en) 2004-12-23
CN1303691C (zh) 2007-03-07
US7301198B2 (en) 2007-11-27
CN1551352A (zh) 2004-12-01

Similar Documents

Publication Publication Date Title
JP2004342682A (ja) 半導体装置及びその製造方法、携帯電子機器、並びにicカード
US7312499B2 (en) Semiconductor storage device and manufacturing method therefor, semiconductor device, portable electronic equipment and IC card
JP4620334B2 (ja) 半導体記憶装置、半導体装置及びそれらを備える携帯電子機器、並びにicカード
US7582926B2 (en) Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
US20040245564A1 (en) Semiconductor storage device, semiconductor device and their manufacturing methods, and portable electronic equipment, and IC card
US7315060B2 (en) Semiconductor storage device, manufacturing method therefor and portable electronic equipment
US20050242391A1 (en) Two bit/four bit SONOS flash memory cell
JP2004047936A (ja) 半導体記憶装置
JP2004186663A (ja) 半導体記憶装置
US7544993B2 (en) Semiconductor storage device and portable electronic equipment
US7238984B2 (en) Semiconductor memory device, semiconductor device, and portable electronic apparatus
TWI228684B (en) IC card
JP2004342889A (ja) 半導体記憶装置、半導体装置、半導体記憶装置の製造方法、および携帯電子機器
US7262458B2 (en) Semiconductor memory device and portable electronic apparatus
JP2004349341A (ja) 半導体記憶素子、半導体装置およびそれらの製造方法、携帯電子機器並びにicカード
JP5014591B2 (ja) 半導体装置及びその製造方法
JP2004343536A (ja) 補聴器
JP2005150765A (ja) 半導体記憶装置、その製造方法及び動作方法、並びに携帯電子機器
JP2004342852A (ja) 半導体記憶装置及びその製造方法、半導体装置、携帯電子機器、並びにicカード
JP2004342881A (ja) 半導体記憶装置および半導体装置およびicカードおよび携帯電子機器および半導体記憶装置の製造方法
JP2004349304A (ja) 半導体記憶装置、半導体装置及びそれらの製造方法、並びに携帯電子機器、並びにicカード
JP2004342730A (ja) 半導体記憶装置、半導体装置及びそれらの製造方法、並びに携帯電子機器、並びにicカード
KR20040101002A (ko) 반도체 메모리 장치, 반도체 장치 및 그것들의 제조방법,휴대전자기기, 및 ic카드
JP2004342659A (ja) 半導体装置及びその製造方法、携帯電子機器、並びにicカード
JP2004349353A (ja) 半導体記憶装置及びその動作方法、並びに、携帯電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020