JP2004335627A - Tool for thermal compression bonding and manufacturing method thereof - Google Patents

Tool for thermal compression bonding and manufacturing method thereof Download PDF

Info

Publication number
JP2004335627A
JP2004335627A JP2003127700A JP2003127700A JP2004335627A JP 2004335627 A JP2004335627 A JP 2004335627A JP 2003127700 A JP2003127700 A JP 2003127700A JP 2003127700 A JP2003127700 A JP 2003127700A JP 2004335627 A JP2004335627 A JP 2004335627A
Authority
JP
Japan
Prior art keywords
tool
crimping
resistant
heat
compression bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003127700A
Other languages
Japanese (ja)
Other versions
JP4101695B2 (en
Inventor
Norimitsu Koe
規充 向江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2003127700A priority Critical patent/JP4101695B2/en
Publication of JP2004335627A publication Critical patent/JP2004335627A/en
Application granted granted Critical
Publication of JP4101695B2 publication Critical patent/JP4101695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize heating melting bonding and improve its economical efficiency by providing a tool for thermal compression bonding and a manufacturing method thereof capable of obtaining better flatness by preventing a molten metal or a resin from adhering on a compression-bonding surface. <P>SOLUTION: A tool for thermal compression bonding for joining a connector is arranged on a semiconductor element to an inner lead or a tool for thermal compression bonding for thermal compression bonding, for joining a liquid crystal driver or an ACF (anisotropic conductive film) to a liquid crystal glass substrate. A heat-resistant and sticking-resistant resin film made of a fluororesin or a silicon resin is formed on the compression bonding surface of the compression bonding tool. After that, the flatness is improved by grinding the heat-resistant and sticking-resistant resin film by a grinding machine. Since welding resistance of the heat-resistant and sticking-resistant resin film having high flatness is dramatically increased compared with a state before being formed, and thermal compression bonding efficiency can be improved. Also, the flatness can be dramatically improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、フリップチップと搭載基盤の圧着、液晶ドライバと液晶ガラス板の圧着など加熱圧着を行う際に使用する加熱圧着用ツール及びその製造方法に関し、詳しくは、その圧着面の改良に関するものである。
【0002】
【従来の技術】
加熱圧着用ツールには、圧着面にダイヤモンド膜をコーティングしたものがあるが、従来の加熱圧着用ツールでは、耐熱性樹脂膜を形成したままの状態にて使用するために、平面度が充分でなく、また付着した溶融合金を除去する際の耐摩耗性は向上できるものの、根本原因である溶融合金の付着は防止することができず、加熱圧着用ツールの維持管理費が増大し、不経済なものとなる欠点があった。
また、特許文献1に示すように、圧着ツールの表面にフッ素樹脂コーティングを施して、半田などの溶融金属の付着を防止する技術が開示されている。しかし、コーティングされた圧着面は平面度が充分に高くなく、近年求められている高精度の圧着には不十分である。また、フッ素樹脂コーティング後のフッ素樹脂被膜の表面には、化学的に不安定な反応基を有するので金属溶着の対策を行わないと、半田などの溶融金属の付着を防止するには充分でなく、使用直後より溶着が目立つようになる。
【特許文献1】特開平07−302818号公報
【0003】
【発明が解決しようとする課題】
本発明は、上記状況に鑑みてなされたもので、圧着面の平面度を上げるとともに、加熱時に半田や樹脂などとの溶着を防いだ加熱圧着用ツール及びその製造方法を提供し、加熱溶融接着の安定化、経済性の向上を図ることを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するための本発明に係る加熱圧着用ツールの構成は、フリップチップ上に配設された接続端子と基板とを接合する加熱圧着用ツールや、液晶ドライバと液晶ガラス板との接合に使用する加熱圧着用ツールなどにおいて、耐熱耐付着性樹脂膜を圧着ツールの圧着面に形成したことを特徴とするものである。本発明に係る加熱圧着用ツールは、シルク印刷技術などを用いて耐熱耐付着性樹脂膜を圧着ツールの圧着面に形成する加熱圧着用ツールであって、塗着したフッ素樹脂またはシリコン樹脂を固化し、その表面に加工を行ったことを特徴とするものである。
耐熱耐付着性の被膜は、溶融金属や樹脂と反応性が極めて小さく濡れない、本発明に示すフッ素樹脂またはシリコン樹脂のいずれかが最も適している。
また、本発明は形成された樹脂の表面を除去していることを特徴とする。除去することにより、被膜形成時の化学的に不安定な被膜表面の付着性反応基が除かれ、他の材料と付着しにくくなり、被膜の面状態を均一にすると共にその平面度を向上させることができる。ツールの平面度は接合加工の精度や、速度に直接影響するために、高ければ高いほどよい。また、被膜表面の除去方法としては水などの冷却媒体を被膜に吹き付けながらの平面研削、平面研磨すれば、付着性の反応基が被膜表面に形成されず好適である。
【0005】
さらに、その皮膜の面粗度は算術平均粗さがRa10μm以下(JIS規格1994年度版)である必要がある。面粗度がこれより粗ければ、被膜と溶融金属、樹脂との接触面積が大きくなり、溶融金属、樹脂が溶融、冷却の際に面の凹凸に合わせて変形して冷却ムラが起こりやすくなる。
【0006】
加熱圧着用ツールでは、圧着面に耐熱性樹脂膜が形成され、溶融金属や樹脂と濡れない性質が圧着作業面に生じることになり、圧着ツールの加熱圧着作業時、溶融金属や樹脂が圧着作業面に付着しなくなる。加熱圧着用ツールの製造方法では、シルク印刷技術を利用することによって、耐熱性樹脂膜が圧着ツールの所定の領域に、均一化された膜厚で形成される。
【0007】
【発明の実施の形態】
本発明の加熱圧着用ツールは表面の少なくとも圧着部にフッ素樹脂もしくはシリコン樹脂の耐熱性樹脂膜を有す。
フッ素樹脂は、ポリエチレンの分子構造における単量体であるエチレンの四つの水素が全部、または三つだけフッ素となるものである。従って、フッ素樹脂には、例えば、PTFE(ポリ4フッ化エチレン)も含まれる。
また、シリコン樹脂は樹脂や溶融金属などの融点以上(使用温度以上)での耐熱性を持つものであれば、その種類は特に問わない。
このように、圧着面にフッ素樹脂からなる耐熱耐付着性樹脂膜が形成された圧着ツールでは、圧着作業面に溶融金属をはじく性質が生じることになり、圧着ツールの加熱圧着作業時、溶融金属や樹脂が圧着作業面に付着しなくなる。
本発明に用いる耐熱耐付着性樹脂膜は、圧着ツール基材にプリント配線板などの製造に用いられるシルク印刷技術によって形成することができる。その後に加熱乾燥を行い固化させることにより、表面にフッ素樹脂を得ることができる。なお、耐熱耐付着性樹脂膜の形成方法としては、上述のシルク印刷技術による他、蒸着によって形成する方法などでであってもよく、その方法は問わない。
また、圧着ツールの基材としては、鉄材、ステンレス材料、窒化珪素、炭化珪素、窒化アルミ、酸化アルミ、酸化珪素など、用途に応じてさまざまな材料から選択することができ、それらを表面にコーティングした材料も同様に好適する。
次に、得られた耐熱耐付着性樹脂被膜表面に加工を加える。加工はダイヤモンド砥石などを用いた研削加工、セラミックスやダイヤモンドの砥粒を用いた砥粒加工などが好適し、その場合の平面度は従来のコーティングのみでは得られなかった圧着面に対して0.1μ以下も可能である。この加工により、本発明の加熱圧着用ツールは充分な平面度を得ることができ、より精密な接合に対応できる。
除去する厚さは0.05μm以上の必要がある。0.05μm未満であれば反応基が表面に残る可能性がある。
また、本発明に示す耐熱耐付着樹脂被膜が圧着面に形成された圧着ツールは、圧着作業面に半田などの溶融金属と濡れない性質が生じることになり、溶融金属が圧着作業面に付着しなくなる。
以下実施例により、より詳細に本発明を説明する。
【0008】
【実施例】
(実施例1)
窒化アルミを主原料とする、フリップチップ用圧着ツールに耐熱耐付着性樹脂被膜として、シルク印刷技術によってPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)膜を形成した。その後に50℃の大気中にて加熱乾燥を行い固化させることにより表面にPFA膜を得ることができた。膜の厚さは約30μmであった。
次に、得られた耐熱耐付着樹脂被膜表面に加工を加えた。加工はカップ形状のダイヤモンド砥石を有す平面研削盤で行い、砥石は#1000番のものを用いた。研削加工後に膜厚を測定したところ、約20μmであった。
この圧着ツールを、フリップチップ用圧着ツールに装着し稼働し、温度を250℃まで上げた状態で加熱圧着したところ、平面度が高いために良好な接合を行うことができた。加熱圧着した面は、算術平均粗さがRa0.3μmであり平面度は圧着面の8mm×8mmの大きさに対して0.02μmであった。また、使用時の半田の溶着も全く起きなかった。
【0009】
(比較例1)
実施例1と同様にして圧着ツール試料を作製し、PFA膜表面の加工は行わなかった。
実施例1と同様の実験を行った結果、面粗さは算術平均粗さRa1.0μmと良好であったが、平面度は22μmであり、圧着面に均等に圧力を加えることはできず、精度の高い圧着はできなかった。
【0010】
(比較例2)
実施例1と同様の試料にPFAの膜を形成していない試料を作製した。
窒化アルミ部の加工により、平面度は0.05μmと優れていたが、接合の際に半田がツールの圧着面に付着し、頻繁に除去する必要が生じた。
【0011】
(比較例3)
実施例1と同様にして圧着ツール試料を作製し、PFA膜表面の加工を高速度鋼製のスローアウェーチップを複数装着したフライス盤にて行なった。
実施例1と同様の実験を行った結果、面粗さは算術平均粗さRa12μmと粗い面であった。圧着面に均等に圧力を加えることはできず、その結果、精度の高い圧着はできなかった。
【0012】
(実施例2)
窒化珪素を主原料とする、液晶ドライバ用圧着ツールに、耐熱耐溶着樹脂被膜としてPTFE(ポリ4フッ化エチレン)の蒸着膜を形成した。その後に80℃の大気中にて加熱乾燥を行い固化させることにより表面にPTFE膜を得ることができた。膜の厚さは約10μmであった。
次に、得られたPTFE膜に加工を加えた。加工は炭化珪素砥粒にて砥粒研削を行った。研削加工後に膜厚を測定したところ、約5μmであった。
この圧着ツールを、液晶ドライバ用圧着ツールとして装着し、温度を265℃まで上げた状態で、液晶ドライバとガラス基板を両者間の半田により加圧圧着したところ、圧着ツール平面度が高いために良好な接合を行うことができた。面粗さは算術平均粗さRa0.6μmと良好であり、また、平面度は圧着面の50mm×3mmの大きさに対して2.0μmとやはり良好であった。
使用時のPTFEの溶着も全く起きなかった。
【0013】
(実施例3)
窒化珪素を主原料とするACF(異方導電性フィルム)貼り付け用圧着ツールに、耐熱耐付着性樹脂被膜としてシリコン樹脂の蒸着膜を形成した。その後に50℃の大気中にて加熱乾燥を行い固化させることにより表面にシリコン樹脂膜を得ることができた。膜の厚さは約10μmであった。
次に、得られたシリコン樹脂膜に加工を加えた。加工は炭化珪素砥粒にて砥粒研削を行った。研削加工後に膜厚を測定したところ、約5μmであった。
この圧着ツールを、ACFをガラス基板に貼り付けるための圧着ツールとして装着し、温度を200℃まで上げた状態で、ACFを融かし、ガラス基板と加熱圧着したところ、平面度が高いために良好な接合を行うことができた。平面度は圧着面の50mm×3mmの大きさに対して2.5μmであった。算術平均粗さはRa0.02μmと良好であり、また、圧着ツールへのACFの溶着も全く起きなかった。
【0014】
【発明の効果】
以上詳細に説明したように、本発明に係る加熱圧着用ツールによれば、平面度が極めて高く、精密な接合が可能であり、また、従来のフッ素樹脂被膜を有する加熱圧着用ツールと比較しても、溶融金属や樹脂が圧着作業面に付着しないので、圧着作業面と半導体素子との平行度が良好であり、押圧力が均一に作用し、加熱溶融接着を安定化させることができる。
この技術は特にフリップチップの基板への接合や、ACFの圧着、液晶ドライバの接合などに好適する。
[0001]
[Industrial applications]
The present invention relates to a thermocompression bonding tool used when performing thermocompression bonding such as crimping of a flip chip and a mounting board, and crimping of a liquid crystal driver and a liquid crystal glass plate, and a method of manufacturing the same. is there.
[0002]
[Prior art]
Some thermocompression bonding tools have a diamond film coated on the crimping surface.However, with conventional thermocompression bonding tools, the flatness is sufficient because the tool is used with the heat-resistant resin film formed. Although the abrasion resistance when removing the adhered molten alloy can be improved, the adhesion of the molten alloy, which is the root cause, cannot be prevented, and the maintenance and management costs of the heat and pressure bonding tool increase, which is uneconomical There was a drawback that would be.
Further, as disclosed in Patent Literature 1, a technique is disclosed in which a surface of a pressure bonding tool is coated with a fluororesin to prevent adhesion of molten metal such as solder. However, the coated crimping surface does not have a sufficiently high flatness, which is insufficient for the high precision crimping required in recent years. In addition, since the surface of the fluororesin coating after the fluororesin coating has a chemically unstable reactive group, it is not enough to prevent the adhesion of molten metal such as solder unless taking measures for metal welding. , Welding becomes noticeable immediately after use.
[Patent Document 1] Japanese Patent Application Laid-Open No. 07-302818
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a thermocompression bonding tool that increases the flatness of a crimping surface and prevents welding with solder or resin during heating and a method for manufacturing the same. The aim is to stabilize and improve the economic efficiency.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the configuration of the thermocompression bonding tool according to the present invention includes a thermocompression bonding tool for bonding a connection terminal provided on a flip chip to a substrate, and a bonding between a liquid crystal driver and a liquid crystal glass plate. In the heat-compression bonding tool used in the above, a heat-resistant and adhesion-resistant resin film is formed on the pressure-bonded surface of the pressure-bonding tool. The thermocompression bonding tool according to the present invention is a thermocompression bonding tool for forming a heat-resistant and adhesion-resistant resin film on a compression surface of a compression bonding tool by using a silk printing technique or the like, and solidifies applied fluororesin or silicon resin. In addition, the surface is processed.
For the heat-resistant and adhesion-resistant film, any of the fluororesin and the silicone resin shown in the present invention, which has extremely low reactivity with molten metal or resin and does not wet, is most suitable.
Further, the present invention is characterized in that the surface of the formed resin is removed. The removal removes the adhesive reactive groups on the surface of the chemically unstable film at the time of film formation, makes it difficult to adhere to other materials, makes the surface state of the film uniform and improves its flatness. be able to. The higher the flatness of the tool is, the more directly it affects the accuracy and speed of the joining process. As a method for removing the surface of the film, it is preferable to perform surface grinding or surface polishing while spraying a cooling medium such as water onto the film, since an adhesive reactive group is not formed on the film surface.
[0005]
Further, the surface roughness of the film must be such that the arithmetic average roughness is Ra 10 μm or less (JIS standard 1994 version). If the surface roughness is rougher than this, the contact area between the coating and the molten metal or resin becomes large, and the molten metal or resin is deformed according to the surface irregularities during melting and cooling, so that cooling unevenness easily occurs. .
[0006]
With the heat-compression bonding tool, a heat-resistant resin film is formed on the pressure-bonding surface, and the property that does not wet with the molten metal or resin occurs on the pressure-bonding work surface. No longer adheres to the surface. In the method of manufacturing a thermocompression bonding tool, a heat-resistant resin film is formed in a predetermined region of the crimping tool with a uniform thickness by using silk printing technology.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermocompression bonding tool according to the present invention has a heat-resistant resin film made of a fluororesin or a silicon resin at least on the press-bonded portion on the surface.
Fluororesin is a resin in which all or only three hydrogens of ethylene, which is a monomer in the molecular structure of polyethylene, become fluorine. Therefore, the fluororesin also includes, for example, PTFE (polytetrafluoroethylene).
The type of the silicon resin is not particularly limited as long as it has heat resistance at a temperature higher than or equal to the melting point of the resin or the molten metal (above the use temperature).
As described above, in a crimping tool in which a heat-resistant and adhesive resin film made of a fluororesin is formed on the crimping surface, a property of repelling molten metal is generated on the crimping work surface. And resin do not adhere to the work surface.
The heat-resistant and adhesion-resistant resin film used in the present invention can be formed on a press-bonded tool substrate by a silk printing technique used for manufacturing a printed wiring board and the like. Thereafter, by heating and drying to solidify, a fluororesin can be obtained on the surface. The method for forming the heat-resistant and adhesion-resistant resin film may be a method of forming by vapor deposition in addition to the above-described silk printing technique, and any method may be used.
In addition, the base material of the crimping tool can be selected from various materials depending on the application, such as iron material, stainless steel material, silicon nitride, silicon carbide, aluminum nitride, aluminum oxide, silicon oxide, etc. Such materials are likewise suitable.
Next, processing is applied to the surface of the obtained heat-resistant and adhesion-resistant resin film. The processing is preferably grinding using a diamond grindstone or the like, or abrasive processing using ceramics or diamond abrasive grains. In this case, the flatness is set at 0. 1 μm or less is possible. By this processing, the thermocompression bonding tool of the present invention can obtain a sufficient flatness and can cope with more precise joining.
The thickness to be removed needs to be 0.05 μm or more. If it is less than 0.05 μm, the reactive group may remain on the surface.
Further, the crimping tool in which the heat-resistant and anti-adhesive resin film shown in the present invention is formed on the crimping surface has a property that the crimping surface does not get wet with molten metal such as solder, and the molten metal adheres to the crimping surface. Disappears.
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0008]
【Example】
(Example 1)
A PFA (tetrafluoroethylene-perfluoroalkylvinyl ether copolymer) film was formed as a heat-resistant and adhesion-resistant resin film on a flip-chip crimping tool using aluminum nitride as a main material by a silk printing technique. Thereafter, by heating and drying in the air at 50 ° C. to solidify, a PFA film could be obtained on the surface. The thickness of the film was about 30 μm.
Next, the surface of the obtained heat-resistant and anti-adhesive resin film was processed. The processing was performed with a surface grinder having a cup-shaped diamond grindstone, and a grindstone of # 1000 was used. When the film thickness was measured after the grinding, it was about 20 μm.
The crimping tool was mounted on a flip-chip crimping tool, operated, and heated and crimped while the temperature was raised to 250 ° C. As a result, good bonding was achieved due to high flatness. The heat-pressed surface had an arithmetic average roughness of Ra 0.3 μm and a flatness of 0.02 μm with respect to the size of the pressed surface of 8 mm × 8 mm. Also, no solder welding occurred during use.
[0009]
(Comparative Example 1)
A crimping tool sample was prepared in the same manner as in Example 1, and the surface of the PFA film was not processed.
As a result of conducting the same experiment as in Example 1, the surface roughness was good as arithmetic average roughness Ra of 1.0 μm, but the flatness was 22 μm, and pressure could not be evenly applied to the pressure-bonded surface. High-precision crimping was not possible.
[0010]
(Comparative Example 2)
A sample in which a PFA film was not formed on the same sample as in Example 1 was produced.
Although the flatness was excellent at 0.05 μm due to the processing of the aluminum nitride portion, the solder adhered to the crimping surface of the tool at the time of joining, and it was necessary to frequently remove the solder.
[0011]
(Comparative Example 3)
A crimping tool sample was prepared in the same manner as in Example 1, and the surface of the PFA film was processed by a milling machine equipped with a plurality of high-speed steel throw-away tips.
As a result of performing the same experiment as in Example 1, the surface roughness was a rough surface with an arithmetic average roughness Ra of 12 μm. Pressure could not be evenly applied to the crimping surface, and as a result, high-precision crimping could not be performed.
[0012]
(Example 2)
A vapor-deposited film of PTFE (polytetrafluoroethylene) was formed as a heat-resistant and welding-resistant resin film on a pressure bonding tool for a liquid crystal driver using silicon nitride as a main material. Thereafter, the resultant was heated and dried in the air at 80 ° C. and solidified, whereby a PTFE film could be obtained on the surface. The thickness of the film was about 10 μm.
Next, the obtained PTFE film was processed. Processing was performed by abrasive grinding with silicon carbide abrasives. When the film thickness was measured after the grinding, it was about 5 μm.
This crimping tool was mounted as a crimping tool for a liquid crystal driver, and when the temperature was raised to 265 ° C., the liquid crystal driver and the glass substrate were press-compressed with solder between the two. Could be joined. The surface roughness was as good as the arithmetic average roughness Ra of 0.6 μm, and the flatness was also as good as 2.0 μm for the size of 50 mm × 3 mm of the crimped surface.
No PTFE welding occurred during use.
[0013]
(Example 3)
A vapor-deposited silicon resin film was formed as a heat-resistant and adhesion-resistant resin coating on an ACF (anisotropically conductive film) bonding pressure bonding tool mainly made of silicon nitride. Thereafter, by heating and drying in the air at 50 ° C. to solidify, a silicon resin film could be obtained on the surface. The thickness of the film was about 10 μm.
Next, processing was applied to the obtained silicon resin film. Processing was performed by abrasive grinding with silicon carbide abrasives. When the film thickness was measured after the grinding, it was about 5 μm.
When this crimping tool was mounted as a crimping tool for attaching the ACF to the glass substrate, and the temperature was raised to 200 ° C., the ACF was melted and heated and crimped to the glass substrate. Good joining could be performed. The flatness was 2.5 μm for the size of 50 mm × 3 mm of the crimped surface. The arithmetic average roughness was as good as Ra 0.02 μm, and no ACF was deposited on the crimping tool.
[0014]
【The invention's effect】
As described in detail above, according to the thermocompression bonding tool according to the present invention, the flatness is extremely high, precise bonding is possible, and compared with a conventional thermocompression bonding tool having a fluororesin coating. However, since the molten metal or the resin does not adhere to the press-bonding work surface, the parallelism between the press-bonding work surface and the semiconductor element is good, the pressing force acts uniformly, and the heat-fusion bonding can be stabilized.
This technique is particularly suitable for joining a flip chip to a substrate, crimping an ACF, joining a liquid crystal driver, and the like.

Claims (5)

複数の部品を圧着するための一対の圧着面とその圧着面を加熱するための加熱部とを有する加熱圧着用ツールにおいて、
その圧着面に表面の付着性反応基を有する層が除かれた耐熱耐付着性のフッ素樹脂またはシリコン樹脂のいずれかの皮膜を有し、
その皮膜の算術平均面粗さがRa10μm以下であることを特徴とする加熱圧着用ツール。
In a thermocompression bonding tool having a pair of crimping surfaces for crimping a plurality of components and a heating unit for heating the crimping surface,
The crimping surface has a heat-resistant and adhesion-resistant fluororesin or silicon resin film from which a layer having an adhesive reactive group on the surface has been removed,
A thermocompression bonding tool, wherein the arithmetic average surface roughness of the coating is Ra 10 μm or less.
特にフリップチップとフリップチップ搭載基盤の加熱圧着に使用する請求項1に記載の加熱圧着用ツール。2. The thermocompression bonding tool according to claim 1, which is used for thermocompression bonding of a flip chip and a flip chip mounting board. 特に異方導電性フィルムと金属板、樹脂板またはガラス板との加熱圧着用ツールとして使用する請求項1に記載の加熱圧着用ツール。2. The thermocompression bonding tool according to claim 1, which is used as a thermocompression bonding tool between an anisotropic conductive film and a metal plate, a resin plate or a glass plate. 特に液晶ドライバと液晶ガラス板、または有機フィルムとの加熱圧着用ツールとして使用する請求項1に記載の加熱圧着用ツール。2. The thermocompression tool according to claim 1, which is used as a thermocompression tool between a liquid crystal driver and a liquid crystal glass plate or an organic film. 複数の部品を圧着するための圧着面と、その圧着面を加熱するための加熱部とを有する加熱圧着ツールの圧着面に耐熱耐付着性のフッ素樹脂またはシリコン樹脂を被覆した後、平面研削または平面研磨によりその表面層を少なくとも0.05μm以上除去し、その算術平均面粗さをRa10μm以下にすることを特徴とする加熱圧着用ツールの製造方法。A crimping surface for crimping a plurality of parts and a crimping surface of a heat crimping tool having a heating unit for heating the crimping surface are coated with a heat-resistant and anti-adhesive fluororesin or silicon resin, and then ground or ground. A method for producing a thermocompression bonding tool, characterized in that at least 0.05 μm or more of a surface layer is removed by plane polishing, and the arithmetic average surface roughness is reduced to 10 μm or less.
JP2003127700A 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof Expired - Fee Related JP4101695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127700A JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127700A JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004335627A true JP2004335627A (en) 2004-11-25
JP4101695B2 JP4101695B2 (en) 2008-06-18

Family

ID=33504105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127700A Expired - Fee Related JP4101695B2 (en) 2003-05-06 2003-05-06 Tool for thermocompression bonding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4101695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062921A1 (en) * 2022-09-20 2024-03-28 株式会社村田製作所 Press head, press apparatus, semiconductor manufacturing apparatus, and electronic component manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062921A1 (en) * 2022-09-20 2024-03-28 株式会社村田製作所 Press head, press apparatus, semiconductor manufacturing apparatus, and electronic component manufacturing apparatus

Also Published As

Publication number Publication date
JP4101695B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US7338842B2 (en) Process for exposing solder bumps on an underfill coated semiconductor
US8531026B2 (en) Diamond particle mololayer heat spreaders and associated methods
CN101427367B (en) Aluminum/silicon carbide composite and radiating part comprising the same
JP6099453B2 (en) Electronic component mounting substrate and manufacturing method thereof
KR20010072620A (en) Transterrable compliant fibrous thermal interface
CN1813349A (en) Multi-layer polymer-solder hybrid thermal interface material for integrated heat spreader and method of making same
US20030020159A1 (en) Heat-conducting adhesive compound and a method for producing a heat-conducting adhesive compound
CN1257607A (en) Method for making a patterned array of solder bumps
JP2016131082A (en) Anisotropically conductive film, method for manufacturing the same and connection structure
TWI710294B (en) installation method
US20030071264A1 (en) Method and apparatus for bonding substrates
RU2696910C2 (en) Sputtering target
JPH06283537A (en) Forming method of rough surfaced bump, packaging method of semiconductor device having the bump and semiconductor unit
JP2004335627A (en) Tool for thermal compression bonding and manufacturing method thereof
JP2008108957A (en) Production method of junction structure
CN1462067A (en) Welding stage
JP6032667B2 (en) Joining method
CN102092007B (en) Method for preparing trimmer
JP4325816B2 (en) IC chip connection method
TWI726529B (en) Thinning process of indium bismuth alloy
JP2002280705A (en) Method of forming circuit on composite substrate and composite substrate
JP2812304B2 (en) Repair method for flip-chip type semiconductor device
CN109454557B (en) Polishing pad dresser and method of manufacturing the same
US20060289092A1 (en) Heat dissipation device having low melting point alloy coating and a method thereof
JP3898504B2 (en) Heater for contact heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees