JP2004329092A - Method for isolating/refining cyclic inulooligosaccharide - Google Patents

Method for isolating/refining cyclic inulooligosaccharide Download PDF

Info

Publication number
JP2004329092A
JP2004329092A JP2003128566A JP2003128566A JP2004329092A JP 2004329092 A JP2004329092 A JP 2004329092A JP 2003128566 A JP2003128566 A JP 2003128566A JP 2003128566 A JP2003128566 A JP 2003128566A JP 2004329092 A JP2004329092 A JP 2004329092A
Authority
JP
Japan
Prior art keywords
cyclic
oligosaccharide
inulin
enzyme
fructose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003128566A
Other languages
Japanese (ja)
Other versions
JP3956366B2 (en
Inventor
Fumio Nanjo
文雄 南条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Original Assignee
Mitsui Norin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP2003128566A priority Critical patent/JP3956366B2/en
Publication of JP2004329092A publication Critical patent/JP2004329092A/en
Application granted granted Critical
Publication of JP3956366B2 publication Critical patent/JP3956366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently isolating/refining a cyclic inulooligosaccharide from a syrup comprising the cyclic inulooligosaccharide, a monosaccharide, a disaccharide, a straight-chain oligosaccharide and inulin. <P>SOLUTION: The method for efficiently and selectively isolating the cyclic inulooligosaccharide comprises oligomerizing the disaccharide, straight-chain oligosaccharide and unreacted inulin in the syrup comprising the cyclic inulooligosaccharide, monosaccharide, disaccharide, straight-chain oligosaccharide and inulin to the corresponding monosaccharides using exo- and endo-type hydrolases. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は環状イヌロオリゴ糖の分離・精製方法に関し、詳細にはエキソ型及びエンド型酵素で処理をすることにより効率よく目的とする環状イヌロオリゴ糖を分離精製する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
環状イヌロオリゴ糖は、イヌリンからバチルス サーキュランス(Bacillus circulans) MZNo.31由来の酵素、サイクロイヌロオリゴサッカライドフラクタノトランスフェラーゼ(以下、「CFTase」と略記する)の作用によりその生産が初めて報告された物質である(下記の特許文献1および特許文献2を参照)。環状イヌロオリゴ糖は、フルクトース分子がβ−(2→1)結合で環状に結合した糖であり、フルクトース残基がそれぞれ6個からなるサイクロイヌロヘキサオース、7個からなるサイクロイヌロヘプタオース、8個からなるサイクロイヌロオクタオースの存在が知られている。
【0003】
環状のオリゴ糖としては、グルコースが6〜8個結合したサイクロデキストリンが知られている。しかしサイクロデキストリンが水に溶けにくい性質を有しているのに対し、環状イヌロオリゴ糖は水に対する溶解性が極めて高い。構造的には、サイクロデキストリンがバケツ型の円筒構造をなしているのに対し、環状イヌロオリゴ糖は分子内空洞も小さく、分子内に形成されたβ−(2→1)フルクトシド結合部分を有したクラウン環を形成している(下記の非特許文献1を参照)。そして、該環状イヌロオリゴ糖がクラウンエーテル様の選択的な金属イオンの捕捉能を有することも明らかになった(下記の非特許文献2を参照)。
【0004】
このように、上記環状イヌロオリゴ糖は非常に高価で且つ安全性に問題があるクラウンエーテルに替わるクラウンエーテル様の用途が期待され、新しい機能糖として注目を浴びている。したがって、新しい機能性が期待される環状イヌロオリゴ糖の効率的且つ安価に生産する方法を確立することも重要な要素になってきている。従来、イヌリン等にCFTaseを作用させることにより環状イヌロオリゴ糖を製造しようとした場合、反応液中に存在する未反応のイヌリン、イヌロオリゴ糖、スクロースやフルクトース、グルコース等の副生は避けられず、環状イヌロオリゴ糖の分離・精製を複雑なものにしていた。これは、従来より糖の分離・精製に用いられてきたゲル型樹脂が低分子の単糖類、2糖類及び/または未反応のイヌリンは除去できるものの、直鎖オリゴ糖は樹脂に対する親和性が環状イヌロオリゴ糖に近似しているため分離が困難であることによる。また、環状イヌロオリゴ糖を含有する糖液より環状イヌロオリゴ糖のみを分離精製する方法としては、活性炭を用いて分画する方法(下記の特許文献3を参照)およびシロキサン系のシリカ担体を用いて分画する方法(下記の非特許文献3を参照)が知られているが、これらの方法でも環状イヌロオリゴ糖を直鎖のイヌロオリゴ糖から分離・精製することは簡単なことではなかった。
【0005】
そこで、環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンからなる糖液より環状オリゴ糖を精製する方法として、該糖液にエキソ型酵素を作用させ共存する未反応のイヌリン、直鎖オリゴ糖、2糖を単糖のグルコースとフルクトースに分解後、環状イヌロオリゴ糖を常法のクロマトなどを用いて分離する方法が開示されている(下記の特許文献4を参照)。この方法は優れた環状イヌロオリゴ糖の分離・精製方法ではあるが、エキソ型酵素だけで処理する場合、イヌリンに対する分解速度が極めて遅く反応に長時間を必要とする。また添加する酵素量が少ない場合にはイヌリンが未分解のまま反応液中に残存してしまう。残存したイヌリンはその後の分離工程でも除去可能ではあるが、環状イヌロオリゴ糖の分離・精製工程を非常に複雑なものとしてしまうという欠点があった。
【0006】
【特許文献1】
特開平2−252701号公報
【特許文献2】
特開平2−255085号公報
【非特許文献1】
Masami Sawada et al.,Carbohydr.Res.,vl.217,p.7−17,1991
【非特許文献2】
Naoko Yoshie et al.,Chem.Lett.,p.353−356,1993
【特許文献3】
特開平2−252701号公報
【非特許文献3】
日本生物工学会 平成4年度大会
【特許文献4】
特開平7−274990号公報
【0007】
【課題を解決するための手段】
そこで本発明者らは効率よく環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンからなる糖液より、環状オリゴ糖を分離・精製する方法の開発をすべく鋭意研究を進めた結果、該糖液中に存在する2糖、直鎖オリゴ糖及び未反応のイヌリンをエキソ型及びエンド型の加水分解酵素を併用して単糖まで低分子化することにより、目的とする環状イヌロオリゴ糖のみを効率良く選択的に分離できることを見出し、本発明を完成するに至った。
【0008】
即ち、請求項1記載の本発明はフルクトース分子がβ−(2→1)結合で環状に結合した環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンを含有する糖液に、β−(2→1)フルクトシド結合を切断する能力を有するエキソ型酵素及びエンド型酵素の混合物またはこれらの酵素を産生する一種或いは二種以上の微生物を作用させ、ついで得られる糖液から該環状イヌロオリゴ糖を採取すること特徴とする環状イヌロオリゴ糖の分離・精製方法である。請求項2記載の本発明はβ−(2→1)フルクトシド結合を切断する能力を有するエキソ型酵素及びエンド型酵素の混合物またはこれらの酵素を産生する一種或いは二種以上微生物の作用により、糖液中の2糖、直鎖オリゴ糖及びイヌリンが単糖及び/または2糖に分解されることを特徴とする請求項1記載の分離・精製方法である。さらに、請求項3記載の本発明はフルクトース分子がβ−(2→1)結合で環状に結合した環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンを含有してなる糖液が、β−(2→1)結合フルクトースポリマーに作用して分子内転移反応によりフルクトース6〜8分子からなる環状オリゴ糖を生じさせる酵素または該酵素を産生する微生物をイヌリンに作用させて得られたものであることを特徴とする請求項1または2に記載の分離・精製方法である。
【0009】
【発明の実施の形態】
以下、本発明につき詳細に説明する。本発明により精製することができる環状オリゴ糖としては、サイクロイヌロヘキサオース(フルクトース6分子がβ−(2→1)結合で環状に結合したもの)、サイクロイヌロヘプタオース(フルクトース7分子がβ−(2→1)結合で環状に結合したもの)、サイクロイヌロオクタオース(フルクトース8分子がβ−(2→1)結合で環状に結合したもの)などの、フルクトース分子がβ−(2→1)結合で環状に結合した環状イヌロオリゴ糖である。
【0010】
本発明で定義する直鎖オリゴ糖とは、構成糖が3〜十数個程度結合したものであり、末端にグルコースが結合したフルクトースが2〜十数個程度結合したフラクトオリゴ糖やフルクトースが2〜数十個程度結合したイヌロオリゴ糖、フルクトースポリマー等が挙げられる。また2糖としてはシュークロース、イヌロビオース等を挙げることができる。単糖としては、フルクトース、グルコースが挙げられる。なお、イヌリンとはフラクトオリゴ糖よりも鎖長の長いポリマーをさす。
【0011】
環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンからなる糖液(以下、「環状イヌロオリゴ糖含有糖液」と称する)は、キクイモ、ゴボウ、チコリ、ヤーコン等のイヌリン含有量の高い植物の抽出液、該植物抽出物より精製したイヌリン、スクロースからイヌリン合成酵素により酵素合成したイヌリンを含む溶液中でCFTase、またはCFTaseを産生する菌、例えばバチルスポリミキサMG−CF6 (生命研菌寄第19158号)、バチルス サーキュランス MZ No.31(生命研菌寄第9943号)、バチルス サーキュランス MCI−2554(生命研菌寄第11940号)等由来のCFTaseを作用させることにより、得ることができる。その際、該微生物の菌体そのものを作用させてもよいし、また該菌体からCFTaseを抽出し、そのまま、あるいは固定化等を行ってから作用させてもよい。またCFTaseは、遺伝子工学的に製造された組換えCFTaseを用いることもできる。その際、組換えCFTaseは天然物CFTaseと同様にして反応に供することができ、さらには組換えCFTaseを産生する形質転換体を反応させることもできる。
【0012】
また環状イヌロオリゴ糖含有糖液は、上記したイヌリン含有量の高い植物の抽出液、該抽出液から精製したイヌリン、及び/またはイヌリンを炭素源として含む培養液で上記菌株を培養し、その培養上清中から得ることもできる。その場合、例えば炭素源としてイヌリンを1〜40%含有させ、そのほか窒素源として大豆粉、小麦胚芽、コーンスティープリカー、綿実粕、肉エキス、ペプトン、酵母エキス、硫酸アンモニウム、硝酸ソーダ、尿素等が使用できる。その他必要に応じて、ナトリウム、カリウム、カルシウム、マグネシウム、コバルト、塩素、燐酸、硫酸、その他のイオンを生成する無機塩類等を添加した培地に生産菌を接種し、振とう培養を行う。この際、培養温度は20〜40℃が、また培養時間は使用する菌に応じた至適時間、すなわちCFTaseを生産させ、その培養上清中に環状イヌロオリゴ糖を生産させるのに至適となる時間培養させれば良い。得られた培養液を遠心分離、限外濾過膜等により除菌し、得られた溶液中の酵素を加熱処理により失活させる。こうして得られた液が環状イヌロオリゴ糖含有糖液である。
【0013】
またCFTaseを作用させる場合、例えば前記の方法により培養を行った培養液を遠心分離、限外濾過膜等により除菌し、得られた培養液を作用させてもよいし、あるいは該培養液からさらに精製し、部分精製酵素または精製酵素として作用させてもよい。この培養液、部分精製酵素、精製酵素を作用させる場合、例えばpHを6〜9に調整した緩衝液中で約0.5%以上の濃度のイヌリンに30〜70℃で30分以上作用させる等によって、所望とする環状イヌロオリゴ糖含有糖液が得られる。
【0014】
これらの環状イヌロオリゴ糖含有糖液から環状イヌロオリゴ糖を分離・精製するには、環状イヌロオリゴ糖含有糖液にβ−(2→1)フルクトシド結合を切断する能力を有するエキソ型及びエンド型酵素の混合物またはこれらの酵素を産生する微生物を作用させて、環状イヌロオリゴ糖含有糖液中の環状イヌロオリゴ糖以外の成分、具体的には2糖、直鎖オリゴ糖及び未反応のイヌリン等のフルクタンを単糖まで酵素分解する。これらの酵素としては、2糖、直鎖オリゴ糖及びイヌリン等のフルクタンに作用してこれらのβ−(2→1)フルクトシド結合を切断することのできるエキソ型及びエンド型酵素の混合物であれば特に制限はない。このような作用を有するエキソ型酵素の例を上げればβ−フルクトフラノシダーゼ(インベルターゼ、サッカラーゼ)、エキソ型イヌリナーゼ等である。また、エンド型の酵素としてはエンド型イヌリナーゼやエンド型イヌリナーゼ活性を有するレバナーゼを例示することができる。これらの酵素はいずれも由来は問わず、市販されているものでもよく、これらの酵素を生産する菌体または菌体外に分泌された酵素等をそのまま作用させてもよく、あるいは菌体、菌体外に分泌された酵素等を精製して作用させてもよい。たとえばβ−フルクトフラノシダーゼを生産する菌としては、サッカロマイセス(Saccharomyces)属、キャンディダ(Candida)属、バチルス(Bacillus)属、フザリウム(Fusarium)属、ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、ザイモモナス(Zymomonas)属に属する微生物等が知られている(TheEnzymes(3rded.),vl.5,p.291−305,1971)。エキソ型イヌリナーゼを生産する菌としては、アスペルギルス(Aspergillus)属に属する微生物等が知られている(特開昭62−208277号)。エンド型酵素生産菌としては、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillium)属に属する微生物等が知られている(特開昭62−208277号公報、特開昭62−228293号公報、特開平3−83581号公報、特開平3−198774号公報および特開平4−190789号公報)。なお、上記のエンド型酵素生産菌の中には、エキソ型酵素を同時に生産する菌も存在するため、これらの生産菌ではエキソ型酵素を添加しなくとも本発明の目的とするエキソ型及びエンド型酵素の混合物として使用できる。
【0015】
環状イヌロオリゴ糖含有糖液にエキソ型及びエンド型酵素の混合物またはこれらの酵素を生産する微生物を作用させる方法としては、オリゴ糖切断酵素、当該酵素を産生する微生物、当該酵素を産生する微生物の培養上清、さらにはこれらを適当な担体に固定化した固定化酵素、固定化菌体等を、例えばpH3〜8.5程度に調整した0.01−0.3Mの緩衝液中で、ブリックス(糖度)約0.5〜70の濃度の環状イヌロオリゴ糖含有糖液を30〜80℃で10分以上作用させる等により、環状イヌロオリゴ糖含有糖液中の直鎖オリゴ糖、イヌリン等のフルクタンを低分子化することができる。上述したように、エキソ型及びエンド型酵素量の混合物と該酵素の反応時間は適宜選択することができるが、酵素量が多すぎたり反応時間が長すぎた場合にはエンド型酵素の作用により環状イヌロオリゴ糖も分解されてしまうことから、エンド型酵素の添加量は環状イヌロオリゴ糖含有液糖の固形分1g当たり1単位から1000単位とし、反応時間を添加する酵素単位に応じて10分から10時間とすることが好ましい。このとき、エキソ型酵素の量は、環状イヌロオリゴ糖を分解できないことから過剰量に添加しても差し支えない。なお、ここでいう酵素単位1単位は、イヌリンを基質としたとき1分間に1マイクロモルのグルコースに相当する還元力を示す酵素量である。反応温度とpHについては、pH3〜4において50〜80℃で長時間酵素反応を行うとイヌリンやオリゴ糖だけでなく環状イヌロオリゴ糖の酸加水分解が進んでしまうことから好ましくなく、これらの条件下で酵素反応を行う場合には、50℃を越えない温度範囲でできる限り短時間の反応(2時間以内)にとどめることが、環状イヌロオリゴ糖の回収効率の点からも好ましい。
【0016】
目的とする環状イヌロオリゴ糖は、上述のエキソ型及びエンド型酵素処理後の反応溶液から公知の手段を用いて分離、精製することができる。例えば、得られた反応溶液を活性炭を充填したカラムに通液し、水で十分に洗浄後エタノール水溶液を用いて溶出することにより、環状イヌロオリゴ糖と単糖類を簡単に分離することができる。また、得られた反応溶液を適当なゲル型濾過材に接触させることにより、環状イヌロオリゴ糖と単糖類とを効率良く分離することもできる。この場合のゲル型濾過材としては市販のデキストラン系ゲル、ポリスチレン系ゲル、ポリアクリルアミド系ゲル、セルロース系ゲル、カチオン系ゲル型イオン交換体が好適に利用できる。
【0017】
具体的な精製手段としては、例えば以下のような方法を挙げることができる。まず上記した活性炭或いは活性炭とセライトの混合物を脱塩水にてスラリー化し、十分に気泡を除去した後分離カラムに充填する。該カラムに、充填した活性炭重量の1/2〜1/100、好ましくは1/5〜1/20重量の環状イヌロオリゴ糖含有酵素分解溶液(固形分換算)を送入し、次いでカラム容積の2〜10倍量の水で洗浄後、カラム容積の2〜10倍量の20〜50%(v/v)エタノール水溶液を用いて環状イヌロオリゴ糖画分を溶出する。この環状イヌロオリゴ糖画分を濃縮後、凍結乾燥機或いはスプレードライヤーなどを用いて粉末化することにより所望の環状イヌロオリゴ糖を得ることができる。さらに、環状イヌロオリゴ糖含有酵素分解溶液(固形分換算)に対し5〜20倍重量の活性炭粉末を加えてよく攪拌後、吸引或いは加圧濾過により活性炭を回収し、これを活性炭量の10倍以上の水で洗浄後、20〜50%(v/v)エタノール水溶液に懸濁する。適当な時間攪拌後、濾過により活性炭を除去してろ液を回収する。このろ液を減圧濃縮し、粉末化して環状イヌロオリゴ糖を得ることも可能である。また、上記に示したゲル濾過材を充填したカラムに、カラム容量の1/10〜1/100容量の環状イヌロオリゴ糖含有酵素分解溶液を送入し、水で溶出することによって環状イヌロオリゴ糖画分を単糖類や2糖類と分離後、濃縮し粉末化することもできる。
【0018】
また分離効率を上げ、溶離水の使用量を減らす目的で、公知の種々のクロマト分離手法や擬似移動床法を用いることにより、更に効果的な分画を行うこともできる。
【0019】
【実施例】
以下に実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)イヌリン4%、イーストエキストラクト0.2%、硝酸ナトリウム0.5%、硫酸マグネシウム0.05%、塩化カリウム0.05%、燐酸1カリウム0.05%、塩化第二鉄0.001%を含んだ培地200mlをpH7.5に調整して、120℃で15分間蒸気滅菌した。この滅菌した培地にバチルスポリミキサMG−CF6 (生命研菌寄第19158号) を接種し、200rpmで35℃、48時間振とう培養を行った。培養終了後遠心分離により菌体を除菌し、培養上清液を得た。上記の操作を繰り返して培養上清液4000mlを得、これを減圧濃縮して粗環状イヌロオリゴ糖含有液糖(約500ml、固形分として72g)とした。
【0020】
この粗環状イヌロオリゴ糖含有糖液のpHを1Mクエン酸で4.5に調整後、エキソ型及びエンド型イヌリナーゼ混合酵素(商品名Fructozyme L、 Novo Nordisk社製)を0.5ml(約1000単位)加え、60℃で1時間作用させた。これを100℃で10分間加熱して酵素を失活させ、遠心分離により変性蛋白を除いた。得られた反応溶液を高速液体クロマトグラフィーで分析したところ、糖分としては環状イヌロオリゴ糖、フルクトース、グルコースのみであった。
【0021】
この環状イヌロオリゴ糖含有酵素処理溶液をそのまま水で平衡化した活性炭カラム(40×900mm)に供した。カラムを6000mlの水で洗浄後、同量の30%(v/v)エタノール水溶液で溶出した。エタノール水溶液画分を減圧濃縮し、凍結乾燥して環状イヌロオリゴ糖混合物約30gを得た。
【0022】
(実施例2)イヌリン4%、イーストエキストラクト0.2%、硝酸ナトリウム0.5%、硫酸マグネシウム0.05%、塩化カリウム0.05%、燐酸1カリウム0.05%、塩化第二鉄0.001%を含んだ培地200mlをpH7.5に調整して、120℃で15分間蒸気滅菌した。この滅菌した培地にバチルスポリミキサ MG−CF6 (生命研菌寄第19158号) を接種し、200rpmで35℃、48時間振とう培養を行った。培養終了後遠心分離により菌体を除菌し、培養上清液を得た。得られた培養上清180mlを水に対して一晩透析し粗酵素液とした。これに最終濃度が10%となるように20%イヌリン溶液を加え、35℃で60時間反応させた。得られた反応液を環状イヌロオリゴ糖含有糖液として次の操作を行った。
【0023】
実施例1と同様に、上記環状イヌロオリゴ糖含有糖液のpHを4.5に調整後、エキソ型及びエンド型イヌリナーゼ混合酵素(商品名Fructozyme L、 Novo Nordisk社製)を0.5ml(約1000単位)加え、60℃で30分間作用させた。これを100℃で10分間加熱して酵素を失活させた後、遠心分離により変成蛋白を除いた。得られた環状イヌロオリゴ糖含有反応溶液を高速液体クロマトグラフィーで分析したところ、糖分としては環状イヌロオリゴ糖、フルクトース及びグルコースのみであった。
【0024】
この環状イヌロオリゴ糖含有酵素処理溶液をそのまま水で平衡化した活性炭カラム(40×475mm)に供した。カラムを3000mlの水で洗浄後、同量の30%(v/v)エタノール水溶液で溶出した。エタノール水溶液画分を減圧濃縮し、凍結乾燥して環状イヌロオリゴ糖混合物約15gを得た。
【0025】
(実施例3)実施例2と同様にして環状イヌロオリゴ糖含有糖液を得た。この環状イヌロオリゴ糖含有糖液のpHを4.5に調整後、エキソ型及びエンド型イヌリナーゼ混合酵素(商品名Fructozyme L、 Novo Nordisk社製)を0.1ml(約400単位)加え、60℃で3時間作用させた。これを100℃で10分間加熱して酵素を失活させた後、遠心分離により変成蛋白を除いた。得られた環状イヌロオリゴ糖含有反応溶液を高速液体クロマトグラフィーで分析したところ、糖分としては環状イヌロオリゴ糖、フルクトース及びグルコースのみであった。
【0026】
この環状イヌロオリゴ糖含有反応溶液10mlをトーヨーパールHW−40S(東ソー社製)カラム(50×900mm)に供した。カラムを水で溶出し示差屈折計で糖を検出した。環状イヌロオリゴ糖含有画分を集めて、高速液体クロマトグラフィーで分析したところ、環状イヌロオリゴ糖だけが検出された。上記の操作を10回繰り返して環状イヌロオリゴ糖の凍結乾燥粉末3.8gを得た。
【0027】
【発明の効果】
本発明方法によれば、環状イヌロオリゴ糖、イヌリン、直鎖オリゴ糖、2糖類、グルコース、フルクトース等を含有する溶液から目的とする環状イヌロオリゴ糖を高収率で分離・精製できる。得られた環状イヌロオリゴ糖は、食品・化学品分野をはじめその他の広い分野での利用が期待できる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for separating and purifying a cyclic inulo-oligosaccharide, and more particularly to a method for efficiently separating and purifying a target cyclic inulo-oligosaccharide by treating with an exo-type and an endo-type enzyme.
[0002]
Problems to be solved by the prior art and the invention
Cyclic inulooligosaccharides can be obtained from inulin from Bacillus circulans MZNo. It is a substance whose production has been reported for the first time by the action of an enzyme derived from No.31, cycloinulooligosaccharide fractanotransferase (hereinafter abbreviated as “CFTase”) (see Patent Documents 1 and 2 below). The cyclic inulooligosaccharide is a sugar in which a fructose molecule is cyclically linked by a β- (2 → 1) bond, and cycloinulohexaose composed of six fructose residues, cycloinuloheptaose composed of seven fructose residues, The presence of eight cycloinulooctaose is known.
[0003]
As a cyclic oligosaccharide, a cyclodextrin in which 6 to 8 glucoses are bound is known. However, while cyclodextrin has the property of being hardly soluble in water, cyclic inulooligosaccharide has extremely high solubility in water. Structurally, cyclodextrin has a bucket-shaped cylindrical structure, whereas cyclic inulooligosaccharide has a small intramolecular cavity and has a β- (2 → 1) fructoside binding moiety formed in the molecule. A crown ring is formed (see Non-Patent Document 1 below). It has also been found that the cyclic inulooligosaccharide has a selective ability to capture metal ions like crown ether (see Non-Patent Document 2 below).
[0004]
As described above, the cyclic inulooligosaccharide is expected to be used as a crown ether-like substitute for a crown ether which is very expensive and has a problem in safety, and is attracting attention as a new functional sugar. Therefore, establishing an efficient and inexpensive method for producing cyclic inulooligosaccharides, which are expected to have new functionality, has also become an important factor. Conventionally, when trying to produce a cyclic inulo-oligosaccharide by acting CFTase on inulin or the like, by-products such as unreacted inulin, inulo-oligosaccharide, sucrose and fructose, and glucose present in the reaction solution are inevitable. Separation and purification of inulooligosaccharides were complicated. This is because gel-type resins conventionally used for sugar separation and purification can remove low-molecular monosaccharides, disaccharides and / or unreacted inulin, but linear oligosaccharides have a cyclic affinity to the resin. This is because separation is difficult because it is similar to inulooligosaccharide. As a method for separating and purifying only cyclic inulo-oligosaccharides from a sugar solution containing cyclic inulo-oligosaccharides, a method involving fractionation using activated carbon (see Patent Document 3 below) and a method using a siloxane-based silica carrier are used. (See Non-Patent Document 3 below), however, it has not been easy to separate and purify cyclic inulooligosaccharides from linear inulooligosaccharides even with these methods.
[0005]
Therefore, as a method for purifying a cyclic oligosaccharide from a sugar solution comprising a cyclic inulooligosaccharide, a monosaccharide, a disaccharide, a linear oligosaccharide and inulin, an unreacted inulin, which is present by reacting an exo-type enzyme on the sugar solution, There is disclosed a method of decomposing a chain oligosaccharide or disaccharide into monosaccharides glucose and fructose and then separating the cyclic inulooligosaccharide using a conventional method such as chromatography (see Patent Document 4 below). This method is an excellent method for separating and purifying cyclic inulo-oligosaccharides, but when treated only with an exo-type enzyme, the rate of decomposition of inulin is extremely slow and a long time is required for the reaction. When the amount of the enzyme to be added is small, inulin remains in the reaction solution without being decomposed. Although the remaining inulin can be removed in the subsequent separation step, there is a drawback that the step of separating and purifying the cyclic inulooligosaccharide becomes very complicated.
[0006]
[Patent Document 1]
JP-A-2-252701 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2-255085 [Non-Patent Document 1]
Masami Sawada et al. , Carbohydr. Res. , Vl. 217, p. 7-17, 1991
[Non-patent document 2]
See Naoko Yoshie et al. Chem. Lett. , P. 353-356, 1993
[Patent Document 3]
JP-A-2-252701 [Non-Patent Document 3]
Japan Society for Biotechnology 1992 Conference [Patent Document 4]
JP-A-7-274990
[Means for Solving the Problems]
Therefore, the present inventors have conducted intensive studies to efficiently develop a method for separating and purifying cyclic oligosaccharides from a sugar solution comprising cyclic inulooligosaccharides, monosaccharides, disaccharides, linear oligosaccharides and inulin. A disaccharide, linear oligosaccharide and unreacted inulin present in the sugar solution are reduced to monosaccharides by using exo-type and endo-type hydrolases in combination to obtain a target cyclic inulo-oligosaccharide. Have been found to be able to separate them efficiently and selectively, and have completed the present invention.
[0008]
That is, the present invention according to claim 1 provides a sugar solution containing a cyclic inulooligosaccharide, a monosaccharide, a disaccharide, a linear oligosaccharide, and an inulin in which a fructose molecule is cyclically bound by a β- (2 → 1) bond; -(2 → 1) A mixture of exo- and endo-enzymes having the ability to cleave fructoside bonds, or one or more microorganisms producing these enzymes is acted on. A method for separating and purifying a cyclic inulo-oligosaccharide characterized by collecting sugar. The present invention according to claim 2 is a method for producing a sugar by the action of a mixture of an exo-type enzyme and an endo-type enzyme capable of cleaving a β- (2 → 1) fructoside bond or one or more microorganisms producing these enzymes. 2. The method according to claim 1, wherein the disaccharide, linear oligosaccharide and inulin in the liquid are decomposed into monosaccharide and / or disaccharide. Furthermore, the present invention according to claim 3 provides a sugar solution comprising a cyclic inulooligosaccharide, a monosaccharide, a disaccharide, a linear oligosaccharide and an inulin in which fructose molecules are cyclically linked by a β- (2 → 1) bond. , An enzyme that acts on a β- (2 → 1) -linked fructose polymer to generate a cyclic oligosaccharide consisting of 6 to 8 molecules of fructose by an intramolecular transfer reaction, or a microorganism producing the enzyme, which is obtained by acting on inulin. The method for separation and purification according to claim 1 or 2, wherein the separation and purification are performed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. Examples of the cyclic oligosaccharides that can be purified according to the present invention include cycloinurohexaose (6 fructose molecules linked in a cyclic manner by β- (2 → 1) bond), cycloinuroheptaose (7 fructose molecules). fructose molecules such as cycloinurooctaose (in which 8 molecules of fructose are cyclically bonded in a β- (2 → 1) bond) such as cyclo-inourooctose (in which they are cyclically linked by β- (2 → 1) bond); 2 → 1) Cyclic inulooligosaccharide linked cyclically by a bond.
[0010]
The linear oligosaccharides defined in the present invention are those in which about 3 to more than 10 constituent sugars are bonded, and 2 to about 10 or more fructose oligosaccharides and fructose in which fructose having glucose bound to the terminal are 2 to 10 or more. Examples include inulooligosaccharides and fructose polymers having about several tens of bonds. Examples of the disaccharide include sucrose and inurobiose. Monosaccharides include fructose and glucose. Inulin refers to a polymer having a longer chain length than fructooligosaccharide.
[0011]
A sugar solution comprising cyclic inulooligosaccharide, monosaccharide, disaccharide, linear oligosaccharide and inulin (hereinafter referred to as "cyclic inulooligosaccharide-containing sugar solution") has a high inulin content such as Jerusalem artichoke, burdock, chicory, and yacon. Bacterium that produces CFTase or CFTase in a solution containing plant extract, inulin purified from the plant extract, and inulin enzymatically synthesized from sucrose with inulin synthase, such as Bacillus polymixer MG-CF6 (manufactured by Nippon Life Science Co., Ltd.) No. 19158), Bacillus circulans MZ No. No. 31 (Life Science Research Bacteria No. 9943), Bacillus circulans MCI-2554 (Life Science Research Bacteria No. 11940) or the like can be obtained by acting on it. At this time, the cells of the microorganism may be allowed to act, or CFTase may be extracted from the cells and act as such or after immobilization or the like. As CFTase, a recombinant CFTase produced by genetic engineering can also be used. At that time, the recombinant CFTase can be subjected to the reaction in the same manner as the natural product CFTase, and further, a transformant producing the recombinant CFTase can be reacted.
[0012]
The cyclic inulooligosaccharide-containing sugar solution is obtained by culturing the above strain in an extract of a plant having a high inulin content, inulin purified from the extract, and / or a culture solution containing inulin as a carbon source. It can also be obtained from Seinaka. In that case, for example, 1-40% of inulin is contained as a carbon source, and as a nitrogen source, soybean flour, wheat germ, corn steep liquor, cottonseed meal, meat extract, peptone, yeast extract, ammonium sulfate, sodium nitrate, urea, etc. Can be used. In addition, if necessary, a production bacterium is inoculated into a medium supplemented with sodium, potassium, calcium, magnesium, cobalt, chlorine, phosphoric acid, sulfuric acid, or other inorganic salts that generate ions, and shake culture is performed. At this time, the culturing temperature is 20 to 40 ° C., and the culturing time is the optimal time according to the bacterium to be used, that is, it is optimal for producing CFTase and producing cyclic inulooligosaccharide in the culture supernatant. What is necessary is just to culture for hours. The obtained culture is sterilized by centrifugation, an ultrafiltration membrane or the like, and the enzyme in the obtained solution is inactivated by heat treatment. The liquid thus obtained is a cyclic inulo-oligosaccharide-containing saccharide liquid.
[0013]
When CFTase is allowed to act, for example, a culture solution cultured by the above-described method may be centrifuged, bacteria removed by an ultrafiltration membrane or the like, and the resulting culture solution may be allowed to act, or the culture solution may be used. It may be further purified to act as a partially purified enzyme or a purified enzyme. When this culture solution, partially purified enzyme, or purified enzyme is allowed to act, for example, it is allowed to act on inulin having a concentration of about 0.5% or more in a buffer adjusted to pH 6 to 9 at 30 to 70 ° C. for 30 minutes or more. Thus, a desired cyclic inulo-oligosaccharide-containing saccharide solution is obtained.
[0014]
In order to separate and purify the cyclic inulo-oligosaccharide-containing sugar solution from the cyclic inulo-oligosaccharide-containing sugar solution, a mixture of an exo-type enzyme and an endo-type enzyme having an ability to cleave a β- (2 → 1) fructoside bond in the cyclic inulo-oligosaccharide-containing sugar solution is used. Alternatively, by reacting a microorganism producing these enzymes, components other than cyclic inulo-oligosaccharide in the cyclic inulo-oligosaccharide-containing saccharide solution, specifically, fructans such as disaccharides, linear oligosaccharides and unreacted inulin, are converted into monosaccharides. Enzymatic degradation until. As these enzymes, a mixture of exo-type and endo-type enzymes capable of acting on fructans such as disaccharides, linear oligosaccharides and inulin to cleave these β- (2 → 1) fructoside bonds can be used. There is no particular limitation. Examples of exo-type enzymes having such an action include β-fructofuranosidase (invertase, saccharase), exo-inulinase and the like. In addition, examples of the endo-type enzyme include endo-inulinase and levanase having endo-inulinase activity. Any of these enzymes may be commercially available, regardless of their origin, or may be a cell producing these enzymes or an enzyme secreted outside the cells, or the like may be allowed to act as it is, or cells, bacteria, An enzyme or the like secreted outside the body may be purified and allowed to act. For example, bacteria that produce β-fructofuranosidase include Saccharomyces, Candida, Bacillus, Fusarium, Neurospora, and Aspergillus Asus. And microorganisms belonging to the genus Zymomonas (The Enzymes (3rded.), Vl. 5, p. 291-305, 1971). As a bacterium that produces exo-type inulinase, a microorganism belonging to the genus Aspergillus is known (Japanese Patent Application Laid-Open No. 62-208277). As endo-enzyme-producing bacteria, microorganisms belonging to the genus Aspergillus, the genus Penicillium and the like are known (JP-A-62-208277, JP-A-62-228293, JP-A-6-228293, -83581, JP-A-3-198774 and JP-A-4-190789). In addition, among the above endo-enzyme-producing bacteria, there are bacteria that simultaneously produce an exo-enzyme. It can be used as a mixture of type enzymes.
[0015]
As a method of causing a mixture of exo-type and endo-type enzymes or a microorganism producing these enzymes to act on a cyclic inulo-oligosaccharide-containing sugar solution, an oligosaccharide-cleaving enzyme, a microorganism producing the enzyme, and a culture of a microorganism producing the enzyme are used. The supernatant, and further, an immobilized enzyme, immobilized cells, and the like, which are immobilized on a suitable carrier, are mixed with a Brix (0.01-0.3 M buffer adjusted to about pH 3-8.5, for example). Fractions such as linear oligosaccharides and inulin in the cyclic inulo-oligosaccharide-containing saccharide solution are reduced by, for example, allowing a saccharide solution containing cyclic inulo-oligosaccharide at a concentration of about 0.5 to 70 to act at 30 to 80 ° C. for 10 minutes or more. Can be molecularized. As described above, the reaction time of the mixture of the exo-type and endo-type enzymes and the reaction time of the enzymes can be appropriately selected, but when the amount of the enzymes is too large or the reaction time is too long, the action of the endo-type enzyme may Since the cyclic inulooligosaccharide is also decomposed, the addition amount of the endo-type enzyme is from 1 unit to 1000 units per 1 g of the solid content of the cyclic inulooligosaccharide-containing liquid sugar, and the reaction time is from 10 minutes to 10 hours depending on the enzyme unit to be added. It is preferable that At this time, the amount of the exo-type enzyme may be added in an excessive amount since the cyclic inulooligosaccharide cannot be decomposed. Here, one unit of the enzyme unit is an amount of an enzyme showing a reducing power corresponding to 1 micromol of glucose per minute when inulin is used as a substrate. Regarding the reaction temperature and pH, if an enzyme reaction is carried out at 50 to 80 ° C. for a long time at pH 3 to 4, not only inulin and oligosaccharides but also acid hydrolysis of cyclic inulooligosaccharides are not preferred. When the enzymatic reaction is carried out at a temperature of not more than 50 ° C., it is preferable to keep the reaction as short as possible (within 2 hours) from the viewpoint of the recovery efficiency of cyclic inulooligosaccharides.
[0016]
The target cyclic inulo-oligosaccharide can be separated and purified from the reaction solution after the above-mentioned exo-type and endo-type enzyme treatment by a known means. For example, the obtained reaction solution is passed through a column filled with activated carbon, washed sufficiently with water, and eluted with an aqueous ethanol solution, whereby the cyclic inulooligosaccharide and the monosaccharide can be easily separated. Further, by bringing the obtained reaction solution into contact with an appropriate gel-type filter material, cyclic inulooligosaccharides and monosaccharides can be efficiently separated. In this case, commercially available dextran-based gels, polystyrene-based gels, polyacrylamide-based gels, cellulose-based gels, and cationic gel-type ion exchangers can be suitably used as the gel-type filter material.
[0017]
Specific purification means include, for example, the following methods. First, the above-mentioned activated carbon or a mixture of activated carbon and celite is slurried with demineralized water, air bubbles are sufficiently removed, and then packed into a separation column. The enzymatic digestion solution (in terms of solid content) of cyclic inulooligosaccharide containing 1/2 to 1/100, preferably 1/5 to 1/20, of the weight of the packed activated carbon is fed into the column, and then the column volume is reduced to 2%. After washing with 10 to 10 times the volume of water, the cyclic inulooligosaccharide fraction is eluted with 2 to 10 times the column volume of a 20 to 50% (v / v) aqueous ethanol solution. The desired cyclic inulo-oligosaccharide can be obtained by concentrating the cyclic inulo-oligosaccharide fraction and then pulverizing the fraction using a freeze dryer or a spray drier. Furthermore, 5 to 20 times the weight of activated carbon powder is added to the enzymatic decomposition solution containing cyclic inulooligosaccharide (in terms of solid content), and after stirring well, activated carbon is collected by suction or pressure filtration, and this is at least 10 times the amount of activated carbon. And then suspended in an aqueous solution of 20 to 50% (v / v) ethanol. After stirring for an appropriate time, the activated carbon is removed by filtration, and the filtrate is recovered. The filtrate can be concentrated under reduced pressure and powdered to obtain a cyclic inulooligosaccharide. Further, a 1/10 to 1/100 volume of the enzymatic degradation solution containing a cyclic inulooligosaccharide is fed into a column packed with the gel filtration material shown above, and the cyclic inulooligosaccharide fraction is eluted with water. May be separated from monosaccharides and disaccharides, and then concentrated and powdered.
[0018]
Further, for the purpose of increasing the separation efficiency and reducing the amount of eluted water used, more effective fractionation can be performed by using various known chromatographic separation techniques or simulated moving bed methods.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
(Example 1) Inulin 4%, yeast extract 0.2%, sodium nitrate 0.5%, magnesium sulfate 0.05%, potassium chloride 0.05%, monopotassium phosphate 0.05%, ferric chloride 200 ml of a medium containing 0.001% was adjusted to pH 7.5 and steam-sterilized at 120 ° C. for 15 minutes. The sterilized medium was inoculated with Bacillus polymixer MG-CF6 (manufactured by Seikagaku Kenkyusho No. 19158), and shaking culture was performed at 200 rpm at 35 ° C for 48 hours. After completion of the culture, the cells were removed by centrifugation to obtain a culture supernatant. The above operation was repeated to obtain 4000 ml of the culture supernatant liquid, which was concentrated under reduced pressure to obtain a crude cyclic inulooligosaccharide-containing liquid sugar (about 500 ml, a solid content of 72 g).
[0020]
After adjusting the pH of the crude cyclic inulooligosaccharide-containing saccharide solution to 4.5 with 1 M citric acid, 0.5 ml (about 1000 units) of a mixed enzyme of exo-type and endo-type inulinase (product name: Fructozyme L, manufactured by Novo Nordisk) is used. In addition, it was operated at 60 ° C. for 1 hour. This was heated at 100 ° C. for 10 minutes to inactivate the enzyme, and the denatured protein was removed by centrifugation. When the obtained reaction solution was analyzed by high performance liquid chromatography, the sugar content was only cyclic inulooligosaccharide, fructose, and glucose.
[0021]
This enzymatically treated solution containing cyclic inulo-oligosaccharide was directly supplied to an activated carbon column (40 × 900 mm) equilibrated with water. After washing the column with 6000 ml of water, the column was eluted with the same amount of a 30% (v / v) aqueous ethanol solution. The aqueous ethanol fraction was concentrated under reduced pressure and freeze-dried to obtain about 30 g of a cyclic inulooligosaccharide mixture.
[0022]
(Example 2) Inulin 4%, yeast extract 0.2%, sodium nitrate 0.5%, magnesium sulfate 0.05%, potassium chloride 0.05%, monopotassium phosphate 0.05%, ferric chloride 200 ml of a medium containing 0.001% was adjusted to pH 7.5 and steam-sterilized at 120 ° C. for 15 minutes. The sterilized medium was inoculated with Bacillus polymixer MG-CF6 (manufactured by Seikagaku Kenkyu No. 19158), and shake-cultured at 200 rpm at 35 ° C. for 48 hours. After completion of the culture, the cells were removed by centrifugation to obtain a culture supernatant. 180 ml of the obtained culture supernatant was dialyzed against water overnight to obtain a crude enzyme solution. To this, a 20% inulin solution was added so that the final concentration became 10%, and the mixture was reacted at 35 ° C. for 60 hours. The following operation was performed using the obtained reaction solution as a sugar solution containing a cyclic inulooligosaccharide.
[0023]
As in Example 1, after adjusting the pH of the above-mentioned cyclic inulo-oligosaccharide-containing saccharide solution to 4.5, 0.5 ml (about 1000) of an exo-type and an endo-type inulinase mixed enzyme (product name: Fructozyme L, manufactured by Novo Nordisk) was used. (Unit) and acted at 60 ° C. for 30 minutes. After heating at 100 ° C. for 10 minutes to inactivate the enzyme, the denatured protein was removed by centrifugation. When the obtained cyclic inulo-oligosaccharide-containing reaction solution was analyzed by high-performance liquid chromatography, only the cyclic inulo-oligosaccharide, fructose and glucose were contained as sugars.
[0024]
This enzymatically treated solution containing cyclic inulo-oligosaccharide was directly supplied to an activated carbon column (40 × 475 mm) equilibrated with water. After washing the column with 3000 ml of water, the column was eluted with the same amount of a 30% (v / v) aqueous ethanol solution. The aqueous ethanol fraction was concentrated under reduced pressure and freeze-dried to obtain about 15 g of a cyclic inulooligosaccharide mixture.
[0025]
(Example 3) A cyclic inulo-oligosaccharide-containing saccharide solution was obtained in the same manner as in Example 2. After adjusting the pH of the sugar solution containing cyclic inulooligosaccharide to 4.5, 0.1 ml (about 400 units) of a mixed enzyme of exo-type and endo-type inulinase (product name: Fructozyme L, manufactured by Novo Nordisk) was added, and the mixture was added at 60 ° C. Acted for 3 hours. After heating at 100 ° C. for 10 minutes to inactivate the enzyme, the denatured protein was removed by centrifugation. When the obtained cyclic inulo-oligosaccharide-containing reaction solution was analyzed by high-performance liquid chromatography, only the cyclic inulo-oligosaccharide, fructose and glucose were contained as sugars.
[0026]
10 ml of this cyclic inulooligosaccharide-containing reaction solution was applied to a Toyopearl HW-40S (manufactured by Tosoh Corporation) column (50 × 900 mm). The column was eluted with water and sugar was detected with a differential refractometer. When the cyclic inulo-oligosaccharide-containing fractions were collected and analyzed by high performance liquid chromatography, only the cyclic inulo-oligosaccharide was detected. The above operation was repeated 10 times to obtain 3.8 g of freeze-dried cyclic inulooligosaccharide.
[0027]
【The invention's effect】
According to the method of the present invention, a target cyclic inulo-oligosaccharide can be separated and purified in a high yield from a solution containing cyclic inulo-oligosaccharide, inulin, linear oligosaccharide, disaccharide, glucose, fructose and the like. The obtained cyclic inulooligosaccharide can be expected to be used in a wide variety of fields including food and chemical products.

Claims (3)

フルクトース分子がβ−(2→1)結合で環状に結合した環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンを含有する糖液に、β−(2→1)フルクトシド結合を切断する能力を有するエキソ型酵素及びエンド型酵素の混合物またはこれらの酵素を産生する一種或いは二種以上の微生物を作用させ、ついで得られる糖液から該環状イヌロオリゴ糖を採取すること特徴とする環状イヌロオリゴ糖の分離・精製方法。Cleavage of β- (2 → 1) fructoside bond into sugar solution containing cyclic inulooligosaccharide, monosaccharide, disaccharide, linear oligosaccharide and inulin in which fructose molecule is cyclically linked by β- (2 → 1) bond A mixture of an exo-type enzyme and an endo-type enzyme having the ability to do so, or one or more microorganisms producing these enzymes, and then collecting the cyclic inulooligosaccharide from the obtained sugar solution. Sugar separation / purification method. β−(2→1)フルクトシド結合を切断する能力を有するエキソ型酵素及びエンド型酵素の混合物またはこれらの酵素を産生する一種或いは二種以上微生物の作用により、糖液中の2糖、直鎖オリゴ糖及びイヌリンが単糖類に分解されることを特徴とする請求項1記載の分離・精製方法。A mixture of exo-type enzymes and endo-type enzymes having the ability to cleave β- (2 → 1) fructoside bonds, or one or more microorganisms producing these enzymes, the disaccharides in the sugar solution, linear chains 2. The method according to claim 1, wherein the oligosaccharide and inulin are decomposed into monosaccharides. フルクトース分子がβ−(2→1)結合で環状に結合した環状イヌロオリゴ糖、単糖、2糖、直鎖オリゴ糖及びイヌリンを含有してなる糖液が、β−(2→1)結合フルクトースポリマーに作用して分子内転移反応によりフルクトース6〜8分子からなる環状オリゴ糖を生じさせる酵素または該酵素を産生する微生物をイヌリンに作用させて得られたものであることを特徴とする請求項1または2に記載の分離・精製方法。A sugar solution containing a cyclic inulo-oligosaccharide, a monosaccharide, a disaccharide, a linear oligosaccharide and an inulin in which fructose molecules are cyclically linked by β- (2 → 1) linkage is a β- (2 → 1) -linked fructose An enzyme which acts on a polymer to produce a cyclic oligosaccharide consisting of 6 to 8 molecules of fructose by an intramolecular transfer reaction, or a microorganism producing the enzyme, which is obtained by acting on inulin. 3. The separation / purification method according to 1 or 2.
JP2003128566A 2003-05-07 2003-05-07 Method for separation and purification of cyclic inulooligosaccharide Expired - Fee Related JP3956366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128566A JP3956366B2 (en) 2003-05-07 2003-05-07 Method for separation and purification of cyclic inulooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128566A JP3956366B2 (en) 2003-05-07 2003-05-07 Method for separation and purification of cyclic inulooligosaccharide

Publications (2)

Publication Number Publication Date
JP2004329092A true JP2004329092A (en) 2004-11-25
JP3956366B2 JP3956366B2 (en) 2007-08-08

Family

ID=33504647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128566A Expired - Fee Related JP3956366B2 (en) 2003-05-07 2003-05-07 Method for separation and purification of cyclic inulooligosaccharide

Country Status (1)

Country Link
JP (1) JP3956366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223283A (en) * 2005-02-17 2006-08-31 Mitsui Norin Co Ltd Composition comprising cyclic inulooligosaccharide and difructose dianhydride
JP2008005735A (en) * 2006-06-28 2008-01-17 Tatsuuma-Honke Brewing Co Ltd METHOD FOR PRODUCING alpha-D-GLUCOPYRANOSYLGLYCEROL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223283A (en) * 2005-02-17 2006-08-31 Mitsui Norin Co Ltd Composition comprising cyclic inulooligosaccharide and difructose dianhydride
JP4493021B2 (en) * 2005-02-17 2010-06-30 三井農林株式会社 Cyclic inulooligosaccharide and difructose dianhydride-containing composition
JP2008005735A (en) * 2006-06-28 2008-01-17 Tatsuuma-Honke Brewing Co Ltd METHOD FOR PRODUCING alpha-D-GLUCOPYRANOSYLGLYCEROL

Also Published As

Publication number Publication date
JP3956366B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US10533202B2 (en) Enzymatic production of D-tagatose
AU723674B2 (en) Process for producing N-acetyl-D-glucosamine
US20220127653A1 (en) Enzymatic production of mannose
KR101177218B1 (en) Preparation method of turanose using amylosucrase and sweetner using turanose
JP3956366B2 (en) Method for separation and purification of cyclic inulooligosaccharide
JPH03130086A (en) Production of cellobiose
US5672482A (en) Method for purifying cyclic inulooligosaccharide
Yang et al. Preparation of chitin oligosaccharides and its monomer
EP2186904B1 (en) Method for producing glucose derivatives
JP2001292792A (en) Method for recovering n-acetylglucosamine
JPH066064B2 (en) Method for producing difructose dianhydride
JP2001112496A (en) Production of cellooligosaccharide
JPH0430276B2 (en)
CN113430185B (en) Method for separating and purifying lactic acid bacteria dextran sucrase
Garcia-Gonzalez et al. Continuous production of honey oligosaccharides in packed-bed reactors with immobilized α-glucosidase from Metschnikowia reukaufii
JPH07327691A (en) Production of trehalose
JP2013252056A (en) Method of producing oligosaccharide using aspergillus hypha immobilization carrier
JP4819240B2 (en) Process for producing purified N-acetyllactosamine
JPH06113874A (en) Production of laminarioligosaccharide
JP4011496B2 (en) Method for producing L-glucose
WO2001079475A1 (en) Laminaribiose phosphorylase, process for producing the same and process for producing laminarioligosaccharide by using the enzyme
JP3594650B2 (en) Dextran production method
JP3601618B2 (en) Method for producing laminaripentaose-producing enzyme
CN117305280A (en) Method for preparing chitobiose by chitinase Ssch
JP2001292791A (en) Method for producing n-acetyllactosmine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees