JP2004315559A - Method for producing metal supporting polymer porous product - Google Patents

Method for producing metal supporting polymer porous product Download PDF

Info

Publication number
JP2004315559A
JP2004315559A JP2003107452A JP2003107452A JP2004315559A JP 2004315559 A JP2004315559 A JP 2004315559A JP 2003107452 A JP2003107452 A JP 2003107452A JP 2003107452 A JP2003107452 A JP 2003107452A JP 2004315559 A JP2004315559 A JP 2004315559A
Authority
JP
Japan
Prior art keywords
metal
polymer
fluid
porous
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107452A
Other languages
Japanese (ja)
Other versions
JP4169626B2 (en
Inventor
Mai Kitahara
麻衣 北原
Shigeki Hirata
滋己 平田
Tetsuo Ban
哲夫 伴
Toru Sawaki
透 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003107452A priority Critical patent/JP4169626B2/en
Publication of JP2004315559A publication Critical patent/JP2004315559A/en
Application granted granted Critical
Publication of JP4169626B2 publication Critical patent/JP4169626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal supporting polymer porous product, and its manufacturing method. <P>SOLUTION: The metal supporting polymer porous product having a metal dispersed and supported on the pore surface is produced by placing a polymer in a precursor fluid composed of a supercritical fluid or subcritical fluid and a metal precursor to allow the precursor fluid to infiltrate into the polymer, and then expanding the resulting polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は金属担持ポリマー多孔体を製造する方法に関し、より詳しくは、超臨界流体を金属前駆体の溶剤ならびに発泡剤として用い、気孔表面に金属が分散担持された金属担持ポリマー多孔体を製造する方法、および該方法により得られる微細孔内部まで金属が分散した金属担持ポリマー多孔体に関する。
【0002】
【従来の技術】
金属担持多孔体は、触媒、電池用電極材料、メンブレンリアクター、導電性または帯電防止プラスチック、電磁気シールド材料等の各種の機能性材料として有用であり、その製造方法の確立が望まれている。触媒はこのような機能性材料の代表例であり、その反応性を上げるためには金属を高分散させて比表面積を増大させることが望ましい。また、高分散であれば、前処理または反応中に金属同士が凝集して粒成長するのを抑制でき、活性の耐久性も向上する。ここで高分散担持するためには担体が比表面積の大きい微多孔体であることが好ましく、従来シリカゲル、活性炭、アルミナ等の無機材料の使用が幅広く検討されてきた。しかし、これら無機材料は基本的にはそれ自身が粉体であるためその成形性・加工性に難がある。このため、フィルムや膜、不織布の形態として用いるためにも、これら無機材料ではなくポリマー微多孔体の担体が注目されてきている。
【0003】
金属担持ポリマー多孔体の製造工程は、一般的にポリマー多孔体の製造工程とポリマーへの金属担持工程との二段階工程から成る。即ち、別途用意した多孔質ポリマー支持体表面(空孔壁面)に金属微粒子を担持して製造される。
【0004】
ポリマー多孔体の製造方法としては発泡剤分解法・溶剤気散法等の発泡法、相分離法等があるが、発泡法は発泡剤としてクロロフルオロカーボン類、塩化メチレンなどの低沸点有機化合物を用いるため、コストが高いだけでなく、可燃性や毒性等の危険性を有しており、大気汚染の問題を生じる可能性を持っている。例えばジクロロジフロロメタンをはじめとするフロン系ガス等は、オゾン層破壊の環境問題から全廃の方向へ進んでいる。また微多孔体の製造に多く用いられる相分離法も、有機溶媒等を使用するため環境上好ましくないだけでなく、ポリマー成分を溶媒で溶出除去させて孔を形成するため、その孔を大きくすると「す」の状態となり、金属を高分散担持させるための微多孔体としての機能低下の原因となる。
【0005】
また、これらのポリマー多孔体に金属を担持する方法としては、金属を溶解した溶液を用いて担持する方法が一般的であり、金属のハロゲン化物、硝酸塩水溶液等の薬液が使用され、それを大気圧下で担体に吸着または含浸させて固定する。しかしながら、上記吸着または含浸法では、比表面積の高い多孔体の表面全体にわたって均一に金属薬液を固定することは極めて困難である。即ち、これらの薬液は微多孔体の細孔の内部まで容易に到達することはできず、細孔の入口近傍により多くの薬液が固定される傾向がある。他の金属超微粒子の担持方法としては、各種金属イオンの無電解メッキ(化学メッキ)により安定に担持する方法が報告されている(特許文献1参照)。しかしこの方法は工程が複雑である上に、含浸法と同様に細孔を覆う形での金属析出が起こりやすいため、メッキ液の濃度を薄くする、予め真空処理を施して細孔内の空気を抜く等の煩雑な条件コントロールが必要となっていた。
【0006】
上記のように従来の金属担持ポリマー多孔体製造方法は、多孔体製造工程、金属担持工程が各々問題点を有する上に、全体の工程が長く煩雑であり、多大なコストがかかっていた。金属担持多孔体を同時工程で製造する方法としては、金属微粒子とブロックコポリマーとによる金属・有機ポリマー複合体をミクロ相分離により多孔化し、一方の相にのみ金属超微粒子が含有されている金属・有機ポリマー複合体の製造方法が報告されている(特許文献2参照)。しかしこの方法も、クロロホルム、ベンゼン、ヘキサン等の有機溶媒を多量に用いるため、環境に対しては好ましくない技術となっていた。以上のことより、第一に工程が簡便で低コストであり、かつ環境に負荷をかけない金属担持ポリマー多孔体の製法が強く要望されていた。
【0007】
【特許文献1】
特開平10−330528号公報(第1−4頁)
【0008】
【特許文献2】
特開平10−330492号公報(第1−6頁)
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術が有していた問題点を解決し、簡便かつ効率的に、環境に負荷をかけることなく、金属担持ポリマー多孔体を製造する方法を提供することにある。また該方法により得られる微細孔表面に金属が分散した金属担持ポリマー多孔体を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、金属担持多孔体を製造する方法について鋭意検討を重ねた結果、金属前駆体が溶解した超臨界流体をポリマー中に浸透、発泡させることで上記目的を達成できることを見出し、本発明を完成するに至った。本発明において最も注目すべき点は、超臨界流体に金属前駆体の溶剤ならびに発泡剤という二つの働きを同時にもたせる点である。これにより、非常に簡便に、同時工程で金属担持ポリマー多孔体を得ることができる。
【0011】
すなわち、本発明は以下のとおりである。
1.金属が分散担持されたポリマー多孔体を製造する方法であって、超臨界流体若しくは亜臨界流体と金属前駆体とからなる前駆体流体中にポリマーを配置して前駆体流体をポリマーに浸透させた後、発泡させて、気孔表面に金属が分散担持されたポリマー多孔体を得る、金属担持ポリマー多孔体の製造方法。
2.金属前駆体が有機金属化合物である、上記に記載の金属担持ポリマー多孔体の製造方法。
3.有機金属化合物が金属のアセチルアセトナートまたはアルコキシドである、上記に記載の金属担持ポリマー多孔体の製造方法。
4.ポリマーが熱可塑性ポリマーである、上記に記載の金属担持ポリマー多孔体の製造方法。
5.発泡を、ポリマーのガラス転移温度の−100℃以上、+100℃未満の温度条件で行う、上記に記載の金属担持ポリマー多孔体の製造方法。
6.超臨界流体として二酸化炭素の超臨界流体を用いる、上記に記載の金属担持ポリマー多孔体の製造方法。
7.二酸化炭素の超臨界流体を圧力7.5〜20.0MPaの条件で用いる、上記に記載の金属担持ポリマー多孔体の製造方法。
8.超臨界流体若しくは亜臨界流体に金属前駆体を溶解させた前駆体流体中にポリマーを配置して流体を浸透させた後、発泡させ、気孔表面に金属を分散担持して得られる、金属担持ポリマー多孔体。
9.空隙率が10%以上70%未満の範囲内にある上記に記載の金属担持ポリマー多孔体。
10.担持された金属の粒径が1nm以上100nm未満の範囲内にある上記に記載の金属担持ポリマー多孔体。
11.上記に記載の金属担持ポリマー多孔体から構成される機能性材料。
【0012】
【発明の実施の形態】
本発明は上記のとおりの特徴をもつ全く新規な金属担持ポリマー多孔体の製造方法、および金属担持ポリマー多孔体に関するものである。以下にその実施の形態を説明する。
【0013】
超臨界流体若しくは亜臨界流体と金属前駆体からなる前駆体流体について説明する。該前駆体流体は超臨界流体若しくは亜臨界流体に金属前駆体が溶解したものである。超臨界流体とは臨界温度、臨界圧力を超えた状態の物質を示し液体と気体の両方の特性をもつが、金属溶解能力をもつ超臨界流体としては二酸化炭素、亜酸化窒素、エタン、エチレン、メタノール、エタノール等が挙げられる。超臨界流体の溶解能力は温度、圧力、エントレーナー等により調整でき、また、該溶解能力および金属前駆体の量を調整することにより、多孔体に担持される金属濃度、分散状態、粒径等の制御が可能である。なお、本発明でいう金属前駆体の溶解とは、金属前駆体を含んだ超臨界流体が一つの相として観察されることを意味し、これを前駆体流体と表現する。
【0014】
本発明において使用される金属前駆体としては、上記の超臨界流体に溶解させることができる任意のものが使用可能であるが、有機金属化合物が好ましく、特に金属のアセチルアセトナートまたはアルコキシドはその超臨界流体への溶解性が高いため、好ましい。例えば、下記式(1)
【0015】
【化1】

Figure 2004315559
(ここでMeは金属元素、pは金属元素の価数であり、好ましくはp=1〜4)で表されるアセチルアセトナート、あるいは下記式(2)
【0016】
【化2】
(C2m+1O)Me (2)
(ここでMeは金属元素、mは1〜10、nは1〜8である)
で表されるアルコキシド等が使用可能である。式(2)において好ましくはm=1〜4、n=1〜5である。Meとしては、s−ブロック金属元素、d−ブロック金属元素、p−ブロック金属元素、f−ブロック金属元素から広範囲に選択することができ、具体的には、Pt、Pd、Rh、Ti、Si、Au、Al、Zr、Ce、W、Ga、Mo、Nb、Sn、Hf、K、Na、Mg、Ca、Ba、Co、Ni等を挙げることができる。
【0017】
上記有機金属化合物として、具体的には、白金アセチルアセトナート、パラジウムアセチルアセトナート、ロジウムアセチルアセトナート、ジルコニウムアセチルアセトナート、イリジウムアセチルアセトナートのようなアセチルアセトナート、チタン、イソプロポキシド、タングステンエトキシド、のようなアルコキシドが挙げられ、この他ビスアセテートトリフェニルフォスフェートパラジウム、パラジウムアセテート等も使用可能である。
【0018】
また、金属前駆体の超臨界流体への溶解度ならびに金属の分散担持状態を制御するためのエントレーナーとしては、メタノール、エタノール、プロパノール等のアルコール、アセトン、エチルメチルケトン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることができる。
【0019】
本発明で用いられるポリマーには特に制限がないが、熱可塑性ポリマーが好ましい。本発明では、目的に応じて複数の熱可塑性ポリマーのアロイでもよい。例えば、ポリマーとして、ポリカーボネート、ポリアミド、ポリイミド、ポリアリレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリメチルペンテン、ポリアセタール、ポリエーテル、ポリエチレンテレフタレート、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルニトリル、アクリロニトリル−ブタジエン−スチレンコポリマー(ABS)、各種熱可塑性エラストマー、液晶ポリマー、生分解性ポリマー等を例示できる。なお、本発明に供するポリマーとしては、シートやフィルム、繊維に限らず、柱状、球状等、他の形状の成形品であってもよい。
【0020】
次に、多孔体製造過程について説明する。超臨界流体を用いたポリマー多孔体の製造は、二酸化炭素や窒素、アルゴン等の不活性ガスを加圧下にてポリマーに含浸させるガス含浸過程、圧力を減少させる圧力減少過程(圧力解放過程)、気泡核を成長させる発泡過程、より構成される。具体的には、ガラス転移温度の−100℃以上、+100℃未満の温度で前駆体流体を浸透させた後、温度を保持したまま急速減圧することで気泡を形成させ、金属担持ポリマー多孔体を得ればよい。超臨界流体はポリマーの可塑化効果をもつため、超臨界流体が浸透したポリマーは通常よりも遥かに温和な条件で可塑化し、粘度が低下する。このため、通常のガラス転移温度以下の温度においても発泡が可能となる。また、加熱温度は低い方がエネルギーコスト面で有利であるため、ガラス転移温度+50℃未満の温度がより好ましい。さらに若しくは、加圧下でポリマーに前駆体流体を浸透させた後、降圧し、次いでポリマーのガラス転移温度の−100℃以上、+100℃未満の温度まで加熱することにより気泡を成長させてもよく、これも本発明において好ましい一様態である。該超臨界発泡法は、熱力学的不安定な状態から核を形成し、この核を膨張成長させることで気泡を形成するものであり、ガスの熱力学的不安定性が相分離を誘起することにより今までにない微孔質の多孔体が得られるという利点がある。また、有機溶剤を用いる発泡法や相分離法と異なり環境に優しく、かつ、腐食性ガスや不純物による多孔体の汚染が起こらない。
【0021】
本発明で使用する超臨界流体としては、上記のように金属前駆体の溶解能力をもち、かつ超臨界状態においてポリマーに浸透するものであれば特に限定する必要はないが、これらの要求を満たすものとしては二酸化炭素が好ましい。二酸化炭素は、臨界温度、圧力ともに低いため超臨界状態を得やすく、水に次いで安価であり、無毒、難燃性、無腐食性であるため取り扱い易く、かつ環境に対する負荷が少ない。また、二酸化炭素はポリマーへの含浸量が多く、含浸速度も速い。
【0022】
二酸化炭素は臨界圧力が7.48MPa、臨界温度が31.1℃であり、圧力7.48MPa、温度31.1℃以上の超臨界状態にすると、二酸化炭素への金属前駆体の溶解度およびポリマーへの二酸化炭素の浸透度が著しく増大し、高濃度の金属担持が可能となる上、ポリマー中への含浸速度が速まる。また、ポリマーへの二酸化炭素の浸透度の増大によって気泡核が多量に発生し、その気泡核が成長してできる気泡の密度が空隙率が同じであっても大きくなり、非常に微細な気泡を得ることができる。従って本発明において、圧力は臨界圧力である7.48MPa以上が好ましく、7.5〜20.0MPaが特に好ましい。過度の加圧は工業的に多量なエネルギーコストを要し、安全面、経済面においても多大な負荷がかかるため、好ましくない。また、亜臨界条件すなわち臨界点付近の条件下の二酸化炭素流体である亜臨界二酸化炭素流体を用いることも本発明において可能な一態様である。本発明において亜臨界二酸化炭素流体とは圧力7.0MPa以上、かつ温度25℃以上であって、超臨界状態ではない二酸化炭素流体を示す。
【0023】
超臨界流体への金属前駆体の溶解および前駆体流体のポリマーへの浸透の実施形態としては、例えば金属前駆体とポリマーを耐圧容器に入れ、容器内を超臨界流体で満たすことで行うことができる。ここで併せて機械的撹拌手段を利用して超臨界流体を撹拌することで、金属前駆体の溶解および前駆体流体の浸透を促進することができる。また、金属前駆体を超臨界流体に溶解させるのに、金属前駆体と超臨界流体の組み合わせによっては非常に長い時間を要することがある。この場合、別な圧力容器内で予め金属前駆体を超臨界流体に溶解させ、その耐圧容器から、ポリマー基材を入れた耐圧容器に前駆体流体を導入することで、工程に要する時間を短縮することができる。さらに、前駆体流体を、ポリマーを入れた耐圧容器に連続的に流通させて接触させることも、工程を簡略化する上で有効である。また、押出成形機を用いた連続成形プロセスを用いてもよい。この場合、ポリマーを押出機中に供給し溶融させ、溶融したポリマー中へ前駆体流体を送液、合流させた後、急激な圧力低下により発泡させればよい。さらに同様にして、射出成形機やブロー成形機等を用いた連続発泡成形プロセスも可能である。
【0024】
上記本発明の方法により、金属が高分散担持された金属担持ポリマー多孔体を、非常に簡便に、かつ環境に負荷をかけずに得ることができる。すなわち、従来は2段階工程で行われていたポリマー多孔体製造と多孔体への金属担持とを、超臨界二酸化炭素に金属前駆体の溶剤ならびに発泡剤としての二つの働きをもたせることにより同時工程で行うことができる。このことにより、金属担持ポリマー多孔体の製造工程は大幅に簡略化され、それに伴って製造コストも大幅に削減される。また、上記連続成形プロセスを用いれば、大量に製造することも可能である。
【0025】
上記発明の方法より得られた多孔体の空隙率は10%以上70%未満の範囲内であることが好ましく、ポリマーへの超臨界流体の含浸量・速度、または降圧速度、または気泡を成長させる際の加熱温度・時間等により、用途に応じて容易に制御することができる。空隙率が10%未満であると担持金属が外界と接触し難くなり有効な比表面積を最大限に活用できないことがある。また70%以上であると「す」の状態となり、金属を高分散担持させるための微多孔体としての機能低下の原因となる上、構造材料としての機械物性も低下することがある。本発明の方法では、ガスの熱力学的不安定性による相分離を利用して多孔体を製造するため、従来の有機溶剤を用いた発泡法では得られない微孔質の多孔体が得られる。さらに発泡剤の残存による多孔体の汚染可能性がないため、低汚染性の要求が高い電子部品用途などにも適用可能である。
【0026】
金属粒径は1nm以上100nm未満の大きさが好ましく、先に示したように温度、圧力、エントレーナー、金属前駆体量により制御が可能である。粒径が100nm以上であると、金属の機能性が発現しにくくなることがある。本発明の金属担持方法は従来の方法とは全く異なり予めポリマー中へ金属を浸透させるため、細孔の入口近傍により多くの金属が担持されるようなことは起こらず、多孔体内部も含め全体にわたって均一に担持することが可能である。また、金属微粒子の担体への保持性の観点からは金属が担体内部に保持されていることが好ましいが、本発明では一度金属が担体内部に浸透するため、その後の発泡条件によって金属の担持深さをコントロールすることも可能である。
【0027】
このようにして得られた金属担持ポリマー多孔体は、触媒、電池用電極材料、メンブレンリアクター、導電性または帯電防止プラスチック、電磁気シールド材料等の各種の機能性材料として非常に有用である。
【0028】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれにより何等限定を受けるものではない。
【0029】
[実施例1]
幅10mm、長さ60mm、厚さ5mmのポリカーボネート成形品(帝人化成製、AD5503、Tg=147℃)と白金アセチルアセトナート20mgを容積100mLの耐圧容器に入れ、150℃、25MPaの二酸化炭素雰囲気中に5時間保持することにより、白金が溶存した超臨界二酸化炭素流体をポリカーボネートに含浸させた。その後減圧することで気泡を成長させ、白金担持ポリカーボネート多孔体を得た。走査型電子顕微鏡(SEM)画像より、得られた多孔体の孔径は0.5〜2μmであり、空隙率は40%であった。また、透過型電子顕微鏡(TEM)により、白金がポリカーボネート多孔体表面に、多孔内部も含め均一に分散して存在していることが確認され、その粒径は20〜50nmであった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous metal-carrying polymer, and more particularly, to use a supercritical fluid as a solvent and a foaming agent for a metal precursor to produce a porous metal-carrying polymer having a metal dispersed and supported on pore surfaces. The present invention relates to a method and a porous metal-carrying polymer in which a metal is dispersed to the inside of micropores obtained by the method.
[0002]
[Prior art]
The metal-supported porous material is useful as various functional materials such as a catalyst, an electrode material for a battery, a membrane reactor, a conductive or antistatic plastic, and an electromagnetic shielding material, and it is desired to establish a production method thereof. A catalyst is a typical example of such a functional material, and it is desirable to increase the specific surface area by highly dispersing a metal in order to increase the reactivity. In addition, if the dispersion is high, it is possible to prevent the metals from aggregating and growing as particles during the pretreatment or the reaction, and the durability of the activity is also improved. Here, in order to highly disperse and support the carrier, the carrier is preferably a microporous body having a large specific surface area. Conventionally, the use of inorganic materials such as silica gel, activated carbon, and alumina has been widely studied. However, since these inorganic materials are basically powders themselves, they are difficult to form and work. Therefore, not only inorganic materials but also microporous polymer carriers have been attracting attention for use as films, membranes and nonwoven fabrics.
[0003]
The manufacturing process of the porous metal-supported polymer generally includes a two-step process of manufacturing the porous polymer and supporting the metal on the polymer. That is, it is manufactured by supporting metal fine particles on the surface (hole wall surface) of a separately prepared porous polymer support.
[0004]
Examples of the method for producing the polymer porous body include a foaming method such as a foaming agent decomposition method and a solvent diffusion method, and a phase separation method. The foaming method uses a low boiling organic compound such as chlorofluorocarbons or methylene chloride as a foaming agent. Therefore, in addition to the high cost, there is a danger of flammability and toxicity, and there is a possibility of causing a problem of air pollution. For example, chlorofluorocarbon-based gases such as dichlorodifluoromethane are being completely eliminated from the environmental problem of depletion of the ozone layer. In addition, the phase separation method often used in the production of microporous materials is not only environmentally unfavorable because it uses an organic solvent and the like, but also because the polymer component is eluted and removed with a solvent to form pores, the pores are enlarged. It becomes a state of "su", which causes a decrease in the function as a microporous body for highly dispersing and supporting a metal.
[0005]
In addition, as a method of supporting a metal on these polymer porous bodies, a method of supporting the metal using a solution in which the metal is dissolved is generally used. A chemical solution such as an aqueous solution of a metal halide or a nitrate is used. The carrier is adsorbed or impregnated under atmospheric pressure and fixed. However, it is extremely difficult with the above-mentioned adsorption or impregnation method to fix a metal chemical uniformly over the entire surface of a porous body having a high specific surface area. That is, these chemicals cannot easily reach the inside of the pores of the microporous body, and more chemicals tend to be fixed near the entrance of the pores. As a method for supporting other metal ultrafine particles, a method of stably supporting various metal ions by electroless plating (chemical plating) has been reported (see Patent Document 1). However, this method is complicated and the metal deposition easily covers the pores as in the impregnation method.Therefore, the concentration of the plating solution is reduced, and the air in the pores is subjected to a vacuum treatment in advance to reduce the concentration. Complicated condition control such as pulling out is necessary.
[0006]
As described above, in the conventional method for producing a porous metal-supported polymer, the porous body production process and the metal-supporting process each have problems, and the entire process is long and complicated, resulting in high costs. As a method for producing a metal-supporting porous body in a simultaneous step, a metal / organic polymer composite made of metal fine particles and a block copolymer is made porous by microphase separation, and only one phase contains metal / fine organic particles. A method for producing an organic polymer composite has been reported (see Patent Document 2). However, this method is also unfavorable for the environment because it uses a large amount of an organic solvent such as chloroform, benzene, and hexane. From the above, firstly, there has been a strong demand for a method for producing a porous metal-carrying polymer which is simple and inexpensive and does not impose an environmental burden.
[0007]
[Patent Document 1]
JP-A-10-330528 (pages 1-4)
[0008]
[Patent Document 2]
JP-A-10-330492 (pages 1-6)
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide a method for easily and efficiently producing a porous metal-carrying polymer without imposing any burden on the environment. Another object of the present invention is to provide a porous metal-carrying polymer in which a metal is dispersed on the surface of micropores obtained by the method.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing a metal-supported porous body, and as a result, have found that the above object can be achieved by infiltrating and foaming a supercritical fluid in which a metal precursor is dissolved into a polymer and foaming the polymer. The invention has been completed. The most remarkable point in the present invention is that the supercritical fluid simultaneously has two functions, that is, a solvent for the metal precursor and a blowing agent. This makes it possible to obtain a metal-supported polymer porous body very simply and simultaneously.
[0011]
That is, the present invention is as follows.
1. A method for producing a polymer porous body in which metal is dispersed and supported, wherein a polymer is arranged in a precursor fluid composed of a supercritical fluid or a subcritical fluid and a metal precursor, and the precursor fluid is impregnated in the polymer. Thereafter, foaming is performed to obtain a porous polymer body in which a metal is dispersed and supported on the pore surface.
2. The method for producing a porous metal-carrying polymer according to the above, wherein the metal precursor is an organometallic compound.
3. The method for producing a porous metal-carrying polymer according to the above, wherein the organometallic compound is a metal acetylacetonate or alkoxide.
4. The method for producing a porous metal-carrying polymer according to the above, wherein the polymer is a thermoplastic polymer.
5. The method for producing a porous metal-carrying polymer described above, wherein the foaming is performed under a temperature condition of a glass transition temperature of the polymer of −100 ° C. or more and less than + 100 ° C.
6. The method for producing a porous metal-carrying polymer according to the above, wherein a supercritical fluid of carbon dioxide is used as the supercritical fluid.
7. The method for producing a porous metal-carrying polymer according to the above, wherein a supercritical fluid of carbon dioxide is used at a pressure of 7.5 to 20.0 MPa.
8. A metal-carrying polymer obtained by disposing a polymer in a precursor fluid in which a metal precursor is dissolved in a supercritical fluid or a subcritical fluid, allowing the fluid to permeate, foaming, and dispersing and supporting the metal on the pore surface Porous body.
9. The porous metal-carrying polymer according to the above, wherein the porosity is in the range of 10% or more and less than 70%.
10. The metal-supported polymer porous body according to the above, wherein the supported metal has a particle size of 1 nm or more and less than 100 nm.
11. A functional material comprising the porous metal-carrying polymer described above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a completely novel method for producing a porous metal-supported polymer having the features described above, and a porous metal-supported polymer. The embodiment will be described below.
[0013]
A precursor fluid composed of a supercritical fluid or subcritical fluid and a metal precursor will be described. The precursor fluid is obtained by dissolving a metal precursor in a supercritical fluid or a subcritical fluid. A supercritical fluid refers to a substance that has exceeded the critical temperature and critical pressure and has both liquid and gas characteristics.However, supercritical fluids that have the ability to dissolve metals include carbon dioxide, nitrous oxide, ethane, ethylene, Methanol, ethanol and the like can be mentioned. The dissolving ability of the supercritical fluid can be adjusted by temperature, pressure, entrainer, etc., and by adjusting the dissolving ability and the amount of the metal precursor, the concentration of the metal supported on the porous body, the dispersion state, the particle size, etc. Can be controlled. The term “dissolution of a metal precursor” as used in the present invention means that a supercritical fluid containing a metal precursor is observed as one phase, which is referred to as a precursor fluid.
[0014]
As the metal precursor used in the present invention, any one that can be dissolved in the above-described supercritical fluid can be used, but an organometallic compound is preferable, and particularly, acetylacetonate or alkoxide of a metal is preferably used. This is preferable because of its high solubility in a critical fluid. For example, the following equation (1)
[0015]
Embedded image
Figure 2004315559
(Where Me is a metal element and p is a valence of the metal element, preferably p = 1 to 4), or acetylacetonate represented by the following formula (2):
[0016]
Embedded image
(C m H 2m + 1 O) n Me (2)
(Where Me is a metal element, m is 1 to 10, and n is 1 to 8)
And the like. In the formula (2), m = 1 to 4 and n = 1 to 5 are preferable. Me can be selected from a wide range of s-block metal elements, d-block metal elements, p-block metal elements, and f-block metal elements. Specifically, Pt, Pd, Rh, Ti, Si , Au, Al, Zr, Ce, W, Ga, Mo, Nb, Sn, Hf, K, Na, Mg, Ca, Ba, Co, Ni and the like.
[0017]
As the organometallic compound, specifically, acetylacetonate such as platinum acetylacetonate, palladium acetylacetonate, rhodium acetylacetonate, zirconium acetylacetonate, iridium acetylacetonate, titanium, isopropoxide, tungsten ethoxy And alkoxides such as, for example, bis-acetate triphenyl phosphate palladium and palladium acetate.
[0018]
Examples of the entrainer for controlling the solubility of the metal precursor in the supercritical fluid and the dispersion and support state of the metal include alcohols such as methanol, ethanol and propanol, ketones such as acetone and ethyl methyl ketone, benzene and toluene. And aromatic hydrocarbons such as xylene.
[0019]
The polymer used in the present invention is not particularly limited, but a thermoplastic polymer is preferred. In the present invention, an alloy of a plurality of thermoplastic polymers may be used according to the purpose. For example, as a polymer, polycarbonate, polyamide, polyimide, polyarylate, polyethylene, polystyrene, polypropylene, polymethylpentene, polyacetal, polyether, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, polyetherimide, polysulfone, polyether Examples include sulfone, polyether nitrile, acrylonitrile-butadiene-styrene copolymer (ABS), various thermoplastic elastomers, liquid crystal polymers, biodegradable polymers, and the like. The polymer used in the present invention is not limited to a sheet, a film, or a fiber, and may be a molded article having another shape such as a columnar shape or a spherical shape.
[0020]
Next, the porous body manufacturing process will be described. The production of a polymer porous body using a supercritical fluid includes a gas impregnation process in which an inert gas such as carbon dioxide, nitrogen, or argon is impregnated into a polymer under pressure, a pressure reduction process in which pressure is reduced (pressure release process), It consists of a foaming process of growing cell nuclei. Specifically, after infiltrating the precursor fluid at a temperature of −100 ° C. or higher and lower than + 100 ° C. of the glass transition temperature, bubbles are formed by rapidly reducing the pressure while maintaining the temperature, thereby forming a porous metal-carrying polymer. Just get it. Since the supercritical fluid has a plasticizing effect on the polymer, the polymer impregnated with the supercritical fluid plasticizes under much milder conditions than usual, and the viscosity decreases. For this reason, foaming is possible even at a temperature lower than the normal glass transition temperature. Since a lower heating temperature is more advantageous in terms of energy cost, a temperature lower than the glass transition temperature + 50 ° C is more preferable. Further alternatively, after infiltrating the precursor fluid into the polymer under pressure, the pressure may be reduced, and then the polymer may be heated to a glass transition temperature of −100 ° C. or higher and lower than + 100 ° C. to grow bubbles, This is also a preferred embodiment in the present invention. In the supercritical foaming method, a nucleus is formed from a thermodynamically unstable state, and bubbles are formed by expanding and growing the nucleus.The thermodynamic instability of gas induces phase separation. Thereby, there is an advantage that an unprecedented microporous body can be obtained. Unlike the foaming method and the phase separation method using an organic solvent, the method is environmentally friendly and does not cause contamination of the porous body by corrosive gas or impurities.
[0021]
The supercritical fluid used in the present invention does not need to be particularly limited as long as it has a dissolving ability of the metal precursor as described above and penetrates the polymer in the supercritical state, but satisfies these requirements. Carbon dioxide is preferred. Carbon dioxide is low in both critical temperature and pressure so that it is easy to obtain a supercritical state, is second only to water, and is inexpensive. Since it is nontoxic, flame-retardant, and non-corrosive, it is easy to handle and has little environmental impact. In addition, carbon dioxide impregnates the polymer in a large amount and has a high impregnation rate.
[0022]
Carbon dioxide has a critical pressure of 7.48 MPa and a critical temperature of 31.1 ° C. When it is brought into a supercritical state at a pressure of 7.48 MPa and a temperature of 31.1 ° C. or higher, the solubility of the metal precursor in carbon dioxide and the polymer The carbon dioxide permeation of the polymer significantly increases, a high concentration of metal can be supported, and the rate of impregnation into the polymer is increased. In addition, a large amount of bubble nuclei are generated due to an increase in the degree of penetration of carbon dioxide into the polymer, and the density of the bubbles formed by the growth of the bubble nuclei increases even if the porosity is the same. Obtainable. Therefore, in the present invention, the pressure is preferably equal to or higher than the critical pressure of 7.48 MPa, particularly preferably 7.5 to 20.0 MPa. Excessive pressurization undesirably requires a large amount of energy cost industrially and places a large load on safety and economy. It is also possible in the present invention to use a subcritical carbon dioxide fluid that is a carbon dioxide fluid under subcritical conditions, that is, a condition near a critical point. In the present invention, the subcritical carbon dioxide fluid refers to a carbon dioxide fluid that has a pressure of 7.0 MPa or more and a temperature of 25 ° C. or more and is not in a supercritical state.
[0023]
As an embodiment of dissolution of the metal precursor in the supercritical fluid and penetration of the precursor fluid into the polymer, for example, the metal precursor and the polymer are placed in a pressure-resistant container, and the container is filled with the supercritical fluid. it can. In this case, the supercritical fluid is stirred by using the mechanical stirring means, so that the dissolution of the metal precursor and the permeation of the precursor fluid can be promoted. In addition, it may take a very long time to dissolve the metal precursor in the supercritical fluid depending on the combination of the metal precursor and the supercritical fluid. In this case, the time required for the process is reduced by dissolving the metal precursor in a supercritical fluid in advance in another pressure vessel and introducing the precursor fluid from the pressure vessel to the pressure vessel containing the polymer substrate. can do. Further, it is also effective to continuously flow the precursor fluid into the pressure-resistant container containing the polymer to make the precursor fluid come into contact with the pressure-resistant container in order to simplify the process. Further, a continuous molding process using an extruder may be used. In this case, the polymer may be fed into the extruder and melted, and the precursor fluid may be fed into the melted polymer and merged, and then foamed due to a rapid pressure drop. In the same manner, a continuous foam molding process using an injection molding machine, a blow molding machine, or the like is also possible.
[0024]
According to the method of the present invention, a metal-supported polymer porous body on which a metal is highly dispersed and supported can be obtained very simply and without imposing any load on the environment. That is, the production of the porous polymer and the loading of the metal on the porous body, which were conventionally performed in a two-step process, are carried out simultaneously by making the supercritical carbon dioxide have two functions as a solvent and a foaming agent for the metal precursor. Can be done with This greatly simplifies the manufacturing process of the porous metal-carrying polymer, and accordingly significantly reduces the manufacturing cost. Further, if the above-mentioned continuous molding process is used, it is possible to produce a large amount.
[0025]
The porosity of the porous body obtained by the method of the present invention is preferably in the range of 10% or more and less than 70%, and the impregnation amount / rate of the supercritical fluid into the polymer, or the pressure reduction rate, or the growth of bubbles. It can be easily controlled according to the application by the heating temperature and time. If the porosity is less than 10%, the supported metal may not easily come into contact with the outside world, and the effective specific surface area may not be fully utilized. On the other hand, if it is 70% or more, it will be in a state of "su", which may cause a decrease in the function as a microporous body for highly dispersing and supporting a metal, and may also deteriorate the mechanical properties as a structural material. In the method of the present invention, a porous body is produced by utilizing phase separation due to thermodynamic instability of gas, so that a microporous porous body that cannot be obtained by a conventional foaming method using an organic solvent is obtained. Furthermore, since there is no possibility of contamination of the porous body due to the remaining foaming agent, the present invention can be applied to electronic parts and the like that require a high degree of low contamination.
[0026]
The metal particle size is preferably 1 nm or more and less than 100 nm, and can be controlled by the temperature, pressure, entrainer, and amount of metal precursor as described above. When the particle size is 100 nm or more, the functionality of the metal may not be easily exhibited. Since the metal supporting method of the present invention is completely different from the conventional method, the metal is pre-permeated into the polymer, so that more metal is not supported near the entrance of the pore, and the whole including the inside of the porous body does not occur. It is possible to carry uniformly. Further, it is preferable that the metal is held inside the carrier from the viewpoint of the retention of the metal fine particles on the carrier. However, in the present invention, the metal once permeates the inside of the carrier. It is also possible to control the length.
[0027]
The porous metal-carrying polymer obtained in this way is very useful as various functional materials such as catalysts, electrode materials for batteries, membrane reactors, conductive or antistatic plastics, and electromagnetic shielding materials.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0029]
[Example 1]
A polycarbonate molded product having a width of 10 mm, a length of 60 mm, and a thickness of 5 mm (manufactured by Teijin Chemicals Ltd., AD5503, Tg = 147 ° C) and 20 mg of platinum acetylacetonate are placed in a pressure-resistant container having a volume of 100 mL. For 5 hours to impregnate the polycarbonate with a supercritical carbon dioxide fluid in which platinum was dissolved. Thereafter, the pressure was reduced to grow bubbles, and a platinum-supported polycarbonate porous body was obtained. From a scanning electron microscope (SEM) image, the pore size of the obtained porous body was 0.5 to 2 μm, and the porosity was 40%. Further, it was confirmed by a transmission electron microscope (TEM) that platinum was uniformly dispersed on the surface of the porous polycarbonate body including the inside of the porous body, and the particle diameter was 20 to 50 nm.

Claims (11)

金属が分散担持されたポリマー多孔体を製造する方法であって、超臨界流体若しくは亜臨界流体と金属前駆体とからなる前駆体流体中にポリマーを配置して前駆体流体をポリマーに浸透させた後、発泡させて、気孔表面に金属が分散担持されたポリマー多孔体を得る、金属担持ポリマー多孔体の製造方法。A method for producing a polymer porous body in which a metal is dispersed and supported, wherein a polymer is arranged in a precursor fluid composed of a supercritical fluid or a subcritical fluid and a metal precursor, and the precursor fluid permeates the polymer. Then, foaming is performed to obtain a porous polymer body in which a metal is dispersed and supported on the pore surface. 金属前駆体が有機金属化合物である、請求項1に記載の金属担持ポリマー多孔体の製造方法。The method for producing a porous metal-carrying polymer according to claim 1, wherein the metal precursor is an organometallic compound. 有機金属化合物が金属のアセチルアセトナートまたはアルコキシドである、請求項2に記載の金属担持ポリマー多孔体の製造方法。The method for producing a porous metal-carrying polymer according to claim 2, wherein the organometallic compound is a metal acetylacetonate or alkoxide. ポリマーが熱可塑性ポリマーである、請求項1〜3のいずれかに記載の金属担持ポリマー多孔体の製造方法。The method for producing a porous metal-carrying polymer according to any one of claims 1 to 3, wherein the polymer is a thermoplastic polymer. 発泡を、ポリマーのガラス転移温度の−100℃以上、+100℃未満の温度条件で行う、請求項1〜4のいずれかに記載の金属担持ポリマー多孔体の製造方法。The method for producing a porous metal-carrying polymer according to any one of claims 1 to 4, wherein the foaming is performed under a temperature condition of a glass transition temperature of the polymer of -100C or more and less than + 100C. 超臨界流体として二酸化炭素の超臨界流体を用いる、請求項1〜5のいずれかに記載の金属担持ポリマー多孔体の製造方法。The method for producing a porous metal-carrying polymer according to any one of claims 1 to 5, wherein a supercritical fluid of carbon dioxide is used as the supercritical fluid. 二酸化炭素の超臨界流体を圧力7.5〜20.0MPaの条件で用いる、請求項6に記載の金属担持ポリマー多孔体の製造方法。The method for producing a metal-supported polymer porous body according to claim 6, wherein a supercritical fluid of carbon dioxide is used at a pressure of 7.5 to 20.0 MPa. 超臨界流体若しくは亜臨界流体に金属前駆体を溶解させた前駆体流体中にポリマーを配置して流体を浸透させた後、発泡させ、気孔表面に金属を分散担持して得られる、金属担持ポリマー多孔体。A metal-carrying polymer obtained by disposing a polymer in a precursor fluid in which a metal precursor is dissolved in a supercritical fluid or a subcritical fluid, infiltrating the fluid, foaming, and dispersing and supporting the metal on the pore surface Porous body. 空隙率が10%以上70%未満の範囲内にある請求項8に記載の金属担持ポリマー多孔体。The porous metal-carrying polymer according to claim 8, wherein the porosity is in a range of 10% or more and less than 70%. 担持された金属の粒径が1nm以上100nm未満の範囲内にある請求項8〜9のいずれかに記載の金属担持ポリマー多孔体。The metal-supported polymer porous body according to any one of claims 8 to 9, wherein the supported metal has a particle size of 1 nm or more and less than 100 nm. 請求項8〜10のいずれかに記載の金属担持ポリマー多孔体から構成される機能性材料。A functional material comprising the metal-supported polymer porous body according to claim 8.
JP2003107452A 2003-04-11 2003-04-11 Method for producing metal-supported polymer porous body Expired - Fee Related JP4169626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107452A JP4169626B2 (en) 2003-04-11 2003-04-11 Method for producing metal-supported polymer porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107452A JP4169626B2 (en) 2003-04-11 2003-04-11 Method for producing metal-supported polymer porous body

Publications (2)

Publication Number Publication Date
JP2004315559A true JP2004315559A (en) 2004-11-11
JP4169626B2 JP4169626B2 (en) 2008-10-22

Family

ID=33469278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107452A Expired - Fee Related JP4169626B2 (en) 2003-04-11 2003-04-11 Method for producing metal-supported polymer porous body

Country Status (1)

Country Link
JP (1) JP4169626B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119900A (en) * 2005-09-06 2007-05-17 Central Res Inst Of Electric Power Ind Composite material of metal and porous substrate, and production method therefor
JP2007326094A (en) * 2005-11-29 2007-12-20 Denso Corp Method for manufacturing mesoporous structure
JP2007332242A (en) * 2006-06-14 2007-12-27 National Institute Of Advanced Industrial & Technology Method for producing inorganic substance polymer composite and inorganic substance polymer composite
JP2008045013A (en) * 2006-08-14 2008-02-28 National Institute Of Advanced Industrial & Technology Light-transmitting flexible heat insulating material and method for producing the same
JP2009138160A (en) * 2007-12-10 2009-06-25 National Institute Of Advanced Industrial & Technology Method for manufacturing microfoam
JP2009172782A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Method of manufacturing inorganic material-polymer composite with molding machine and inorganic material-polymer composite
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
EP3138680A1 (en) * 2015-09-02 2017-03-08 Plastron S.à.r.l. Method for the production of hollow articles in a blow-moulding process with reduced cycle time

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119900A (en) * 2005-09-06 2007-05-17 Central Res Inst Of Electric Power Ind Composite material of metal and porous substrate, and production method therefor
JP2007326094A (en) * 2005-11-29 2007-12-20 Denso Corp Method for manufacturing mesoporous structure
JP2007332242A (en) * 2006-06-14 2007-12-27 National Institute Of Advanced Industrial & Technology Method for producing inorganic substance polymer composite and inorganic substance polymer composite
JP2008045013A (en) * 2006-08-14 2008-02-28 National Institute Of Advanced Industrial & Technology Light-transmitting flexible heat insulating material and method for producing the same
JP2009138160A (en) * 2007-12-10 2009-06-25 National Institute Of Advanced Industrial & Technology Method for manufacturing microfoam
JP2009172782A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Method of manufacturing inorganic material-polymer composite with molding machine and inorganic material-polymer composite
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
EP3138680A1 (en) * 2015-09-02 2017-03-08 Plastron S.à.r.l. Method for the production of hollow articles in a blow-moulding process with reduced cycle time

Also Published As

Publication number Publication date
JP4169626B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation of supported metallic nanoparticles using supercritical fluids: a review
Bozbağ et al. Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures
Su et al. Porous noble metal electrocatalysts: synthesis, performance, and development
Chan et al. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells
Chen et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite
US8048192B2 (en) Method of manufacturing nanoparticles
US20090075157A1 (en) Carbon nanotube for fuel cell, nanocomposite comprising the same, method for making the same, and fuel cell using the same
US20190217517A1 (en) Polymer composites for fused filament fabrication and methods of making the same
Islam et al. A review on chemical synthesis process of platinum nanoparticles
US20120001354A1 (en) Making nanostructured porous hollow spheres with tunable structure
JP2004315559A (en) Method for producing metal supporting polymer porous product
KR101583593B1 (en) Nano Porous Films Composed Carbon Nano Structure-Metal Composite or Carbon Nano Structure-Metal Oxide Composite and a process for preparing the same
Wang et al. Metal− organic frameworks: Why make them small?
WO2008027024A2 (en) Preparing nanosize platinum-titanium alloys
KR101355726B1 (en) Method for manufacturing supported metal nanoparticles on the surface of substrates using plasma
CN110589802A (en) Three-dimensional MXene in-situ growth carbon nano tube and general synthesis method thereof
CN114602497B (en) Preparation method and application of N-doped porous carbon material supported bimetallic catalyst
Xie et al. Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst
Chen et al. Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol
US7381240B2 (en) Platinum particles with varying morphology
KR101261994B1 (en) Filmy self-supporting thin metal film for hydrogen separation and process for producing the same
KR101452397B1 (en) Manufacturing method for graphene hollow particle and graphene hollow particle using the same
Wang et al. Shaping of metal-organic frameworks at the interface
Wei et al. Sharp size-selective catalysis in a liquid solution over Pd nanoparticles encapsulated in hollow silicalite-1 zeolite crystals
Gong et al. Directed inorganic modification of bi-component polymer fibers by selective vapor reaction and atomic layer deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees