JP2004301155A - オイルフローコントロールバルブ - Google Patents

オイルフローコントロールバルブ Download PDF

Info

Publication number
JP2004301155A
JP2004301155A JP2003091890A JP2003091890A JP2004301155A JP 2004301155 A JP2004301155 A JP 2004301155A JP 2003091890 A JP2003091890 A JP 2003091890A JP 2003091890 A JP2003091890 A JP 2003091890A JP 2004301155 A JP2004301155 A JP 2004301155A
Authority
JP
Japan
Prior art keywords
coil
moving core
sleeve
flow control
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003091890A
Other languages
English (en)
Inventor
Jiro Kondo
二郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003091890A priority Critical patent/JP2004301155A/ja
Publication of JP2004301155A publication Critical patent/JP2004301155A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

【課題】コイルOFF 時のストッパは、スリーブの反コイル側の内径に形成された段差であった。このため、スリーブの加工が難しく、コストアップの要因になっていた。また、段差を形成するためにスリーブが長くなり、体格が大型化する問題があった。
【解決手段】スリーブ11のコイル側の端面と、ムービングコア14の反コイル側の端面とが当接することによって、スプール12およびムービングコア14が反コイル側に変位した際のストッパSが構成される。このため、スリーブ11内に段差を設ける必要がなくなり、スリーブ11の内径を軸方向へ一定にできる。この結果、スリーブ11の加工が容易になり、コストを抑えることができる。また、段差を形成するための長さが不要になり、軸方向寸法を短くでき、体格を小型化できる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、オイルの流れを電磁アクチュエータの作動によって切り替えるオイルフローコントロールバルブ(OCV)に関するものであり、油圧によってカムシャフトの進角位相を可変するバルブタイミング可変装置等に用いられて好適な技術である。
【0002】
【従来の技術】
従来のオイルフローコントロールバルブを図5を参照して説明する。
このオイルフローコントロールバルブJ1 は、バルブタイミング可変装置に用いられるもので、入出力ポート(この図では、油圧供給ポートJ2 、進角室連通ポートJ3 、遅角室連通ポートJ4 、ドレーンポートJ5 )が形成されたスリーブJ6 と、このスリーブJ6 の内部で軸方向へ変位して入出力ポートJ2 〜J5 の切り替えを行うスプールJ7 と、このスプールJ7 を軸方向へ駆動する電磁アクチュエータJ8 とによって構成されている。
【0003】
スプールJ7 と、電磁アクチュエータJ8 のムービングコアJ11とは、結合されており、電磁アクチュエータJ8 のコイルJ12に与えられる電流量(通電割合)が調整されることによって、ムービングコアJ11とともにスプールJ7 の軸方向の変位量が調整される。この作動によって、進角室と遅角室に与えられる油圧の割合がリニアに可変されて、カムシャフトの進角量がリニアに可変される(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2002−310324号公報
【0005】
【発明が解決しようとする課題】
オイルフローコントロールバルブJ1 は、コイルJ12のOFF 時、スプールJ7 とムービングコアJ11が、スプリングJ13の付勢力によって反コイル側(図5左側)へ変位して停止する。
この停止状態で、ムービングコアJ11とステータの最大距離、即ちメインギャップの最大ギャップが決定されるとともに、スリーブJ6 に対するスプールJ7 の位置決めが成される。
スプールJ7 およびムービングコアJ11が反コイル側へ変位した際のストッパSは、スリーブJ6 の反コイル側の端部の内径に形成されており、その内径に形成された段差J14にスプールJ7 の端面J15が当接することで、コイルJ12のOFF 時におけるスリーブJ6 とムービングコアJ11の位置が設定される。
【0006】
このようなストッパSの構造では、スリーブJ6 の反コイル側の内径に段差J14を形成する必要があるために、スリーブJ6 の加工が難しくなり、コストアップの要因になってしまう。
また、スリーブJ6 の反コイル側に、段差J14を形成するための長さLが必要になるためにスリーブJ6 の軸方向寸法が長くなり、オイルフローコントロールバルブJ1 の体格が大きくなってしまう。
【0007】
一方、図5に示すオイルフローコントロールバルブJ1 は、ムービングコアJ11の外径寸法が、コイルJ12の内径寸法よりも小さく設けられていた。
そこで、従来のオイルフローコントロールバルブJ1 では、ヨークJ16の磁束をムービングコアJ11の周囲に受渡す目的で、スリーブJ6 とコイルJ12の間にサイドギャップ用ステータJ17を配置するとともに、そのサイドギャップ用ステータJ17の内周に筒状体J18を設け、サイドギャップでの磁束の受渡し面積を大きくしていた。
しかし、筒状体J18は、十分な磁束の受渡し面積を確保する目的で軸方向寸法が長くなり、コイルJ12とムービングコアJ11との間に配置される結果となっていた。このため、コイルJ12の外径寸法が大きくなる、あるいはコイルJ12の外径寸法を抑えるとコイルJ12の巻数を確保するためにコイルJ12の軸方向寸法が長くなり、オイルフローコントロールバルブJ1 の体格が大きくなる問題があった。
【0008】
【発明の目的】
本発明は、上記の事情に鑑みてなされたものであり、その目的は、ストッパの加工が容易で、且つ体格の小型化が可能なオイルフローコントロールバルブの提供にある。
【0009】
【課題を解決するための手段】
〔請求項1の手段〕
請求項1を採用するオイルフローコントロールバルブは、スプールとムービングコアが反コイル側に変位した際に、スリーブのコイル側の端面と、ムービングコアの反コイル側の端面とが当接することによって、ストッパが構成されるものである。
このように設けられることによって、従来のようにスリーブの内径にストッパのための段差を設ける必要がなくなり、スリーブの内径を一定にできる。この結果、スリーブの加工が容易になる。
また、スリーブの内径に段差を形成するための軸方向の長さが不要になるため、スリーブの軸方向寸法を短くでき、結果的にオイルフローコントロールバルブの体格を従来より小型化できる。
【0010】
〔請求項2の手段〕
請求項2の手段を採用するオイルフローコントロールバルブは、ムービングコアの外径寸法が、コイルの外径寸法とほぼ同じに設けられるとともに、コイルの外周を覆うヨークが、ムービングコアの外周も覆って設けられるもので、ムービングコアの外周と、それを覆うヨークとの間に、ヨークとムービングコアとの磁束の受渡しを行うサイドギャップが形成されるものである。
このようにムービングコアの外径が大きく設けられることにより、サイドギャップの磁束の受渡し面積が大きくなり、サイドギャップの軸方向寸法を短くできる。そして、コイルの軸方向の隣部のサイドギャップで磁束の受渡しが行われる構造であるため、コイルの内周に従来技術のようなサイドギャップ用の筒状体が配置されない。
このため、コイルの外径寸法を小さくでき、結果的にオイルフローコントロールバルブの体格を従来より小型化できる。
【0011】
〔請求項3の手段〕
請求項3の手段を採用するオイルフローコントロールバルブは、バルブタイミング可変機構の油圧アクチュエータに組み合わされるものであり、内燃機関の作動中に、油圧源で発生した油圧を、進角室および遅角室に相対的に給排させるものである。
【0012】
【発明の実施の形態】
本発明の実施の形態を、2つの実施例と変形例を用いて説明する。
〔第1実施例〕
第1実施例を図1〜図3を参照して説明する。なお、図1、図2はオイルフローコントロールバルブの構造を示す断面図であり、図3はオイルフローコントロールバルブが用いられるバルブタイミング可変装置の概略図である。
【0013】
先ず、図3を参照してバルブタイミング可変装置を説明する。
本実施例で示すバルブタイミング可変装置は、内燃機関(以下、エンジン)のカムシャフト(吸気バルブ用、排気バルブ用、吸排気兼用カムシャフトのいずれか)に取り付けられるものであり、バルブの開閉タイミングを連続的に可変可能なものである。
バルブタイミング可変装置は、バルブタイミング可変機構1と、オイルフローコントロールバルブ2を有する油圧回路3と、オイルフローコントロールバルブ2を制御するECU4(エンジン・コントロール・ユニットの略)とから構成されている。
【0014】
(バルブタイミング可変機構1の説明)
バルブタイミング可変機構1は、エンジンのクランクシャフトに同期して回転駆動されるシューハウジング5(回転駆動体に相当する)と、このシューハウジング5に対して相対回転可能に設けられ、カムシャフトと一体に回転するベーンロータ6(回転従動体に相当する)とを備えるものであり、シューハウジング5内に構成される油圧アクチュエータによってシューハウジング5に対してベーンロータ6を相対的に回転駆動して、カムシャフトを進角側あるいは遅角側へ変化させるものである。
【0015】
シューハウジング5は、エンジンのクランクシャフトにタイミングベルトやタイミングチェーン等を介して回転駆動されるスプロケットにボルト等によって結合されて、スプロケットと一体回転するものである。このシューハウジング5の内部には、図3に示すように、略扇状の凹部7が複数(この実施例では3つ)形成されている。なお、シューハウジング5は、図3において時計方向に回転するものであり、この回転方向が進角方向である。
一方、ベーンロータ6は、カムシャフトの端部に位置決めピン等で位置決めされて、ボルト等によってカムシャフトの端部に固定されるものであり、カムシャフトと一体に回転する。
【0016】
ベーンロータ6は、シューハウジング5の凹部7内を進角室7aと遅角室7bに区画するベーン6aを備えるものであり、ベーンロータ6はシューハウジング5に対して所定角度内で回動可能に設けられている。
進角室7aは、油圧によってベーン6aを進角側へ駆動するための油圧室であってベーン6aの反回転方向側の凹部7内に形成されるものであり、逆に、遅角室7bは油圧によってベーン6aを遅角側へ駆動するための油圧室である。なお、各室7a、7b内の液密性は、シール部材8等によって保たれる。
【0017】
(油圧回路3の説明)
油圧回路3は、進角室7aおよび遅角室7bにオイルを給排して、進角室7aと遅角室7bに油圧差を発生させてベーンロータ6をシューハウジング5に対して相対回転させるための手段であり、クランクシャフト等によって駆動されるオイルポンプ9と、このオイルポンプ9によって圧送されるオイルを進角室7aまたは遅角室7bに切り替えて供給するオイルフローコントロールバルブ2とを備える。
【0018】
オイルフローコントロールバルブ2を図1を参照して説明する。
オイルフローコントロールバルブ2は、スリーブ11、スプール12および電磁アクチュエータ13で構成されている。
スリーブ11は、略円筒形状を呈するものであり、複数の入出力ポートが形成されている。具体的に本実施例のスリーブ11には、軸方向に段差がなく、スプール12を軸方向へ摺動自在に支持する貫通穴11a、オイルポンプ9のオイル吐出口に連通する油圧供給ポート11b、進角室7aに連通する進角室連通ポート11c、遅角室7bに連通する遅角室連通ポート11d、オイルパン10内にオイルを戻すドレーンポート11eが形成されている。
【0019】
油圧供給ポート11b、進角室連通ポート11cおよび遅角室連通ポート11dは、スリーブ11の直径方向に貫通した穴であり、図1の左側(反コイル側)から右側(コイル側)に向けて、遅角室連通ポート11d、油圧供給ポート11b、進角室連通ポート11cが形成されている。
また、ドレーンポート11eは、スリーブ11の図1の左側(反コイル側)の端部に形成されている。
【0020】
スプール12は、スリーブ11の内径寸法(貫通穴11aの径)にほぼ一致した外径寸法のパイプ部材(例えば円筒パイプを加工したもの)であり、スリーブ11の貫通穴11aの内部において軸方向に摺動自在に支持される。
このスプール12の略中央の外周には油圧切替溝12aが全周に亘って形成されている。この油圧切替溝12aは、常に油圧供給ポート11bに連通するとともに、図1のように遅角室連通ポート11dと連通して遅角室7bに油圧を供給する状態の時に進角室連通ポート11cと遮断され、逆に進角室連通ポート11cと連通して進角室7aに油圧を供給する状態の時に遅角室連通ポート11dと遮断されるように設けられている。
【0021】
また、油圧切替溝12aの軸方向の両側には、それぞれ内外周が連通したドレーン穴12bが形成されている。このドレーン穴12bは、図1のように油圧供給ポート11bと進角室連通ポート11cの連通が遮断されている状態の時に進角室連通ポート11cに連通して、進角室7aの油圧を排圧するものであり、逆に油圧供給ポート11bと遅角室連通ポート11dの連通が遮断されている状態の時に遅角室連通ポート11dに連通して、遅角室7bの油圧を排圧するものである。
【0022】
電磁アクチュエータ13は、ムービングコア14、スプリング15(付勢手段に相当する)、ステータ16、コイル17、ヨーク18、コネクタ19から構成される。
ムービングコア14は、ステータ16に磁気吸引される磁性体金属(例えば、鉄)によって設けられたものであり、スプール12のコイル側(図1右側)に圧入固定されたものである。このため、ムービングコア14は、スプール12と一体に軸方向へ移動可能なものである。
スプリング15は、ムービングコア14とコイル17との間に配置された圧縮コイルバネで、ムービングコア14とともにスプール12を反コイル側(図1左側)へ付勢する部材である。
【0023】
ステータ16は、コイル17の内側に配置された棒状部16aと、棒状部16aの図1右側において磁束をヨーク18に導く円盤部16bとからなる断面T字形を呈した磁性体金属(例えば、鉄)であり、ムービングコア14と棒状部16aとの間にメインギャップMG(磁気吸引ギャップ)が形成されるものである。コイル17は、通電されると磁力を発生して、ステータ16にムービングコア14を磁気吸引する磁力発生手段であり、樹脂性のボビン17aの周囲にエナメル線を多数巻回したものである。
【0024】
ヨーク18は、コイル17とムービングコア14を覆う略筒状の磁性体金属(例えば、鉄)であり、図1左側においてスリーブ11と結合されるものである。また、ヨーク18は、図1右側においてステータ16の円盤部16bと結合されているとともに、図1左側においてムービングコア14の周囲を軸方向に摺動自在に覆って、ムービングコア14と磁気の受渡しをするように設けられている。即ち、ムービングコア14の外周と、その周囲を覆うヨーク18との間にサイドギャップSG(磁束受渡しギャップ)が形成されている。
コネクタ19は、ECU4と接続線を介して電気的な接続を行う接続手段であり、その内部にコイル17の両端に接続される端子19aが配置されている。
【0025】
ここで、ムービングコア14がステータ16の端部に吸引された際に、ムービングコア14とステータ16の一部が軸方向に交差するように設けられている。具体的にこの実施例では、図2に示されるように、ステータ16の端面に筒状突起16cが設けられるとともに、それに対向するムービングコア14の端面に、筒状突起16cが接触しないで差し込まれることが可能なリング溝14aが設けられている。そして、ムービングコア14がステータ16の端部に吸引されると、リング溝14aの内部に筒状突起16cが侵入することで、ムービングコア14とステータ16の一部が軸方向に交差するものである。
また、ムービングコア14の中央には、軸方向に貫通した連通穴14bが形成されており、ムービングコア14とコイル17との間の室圧の変動を抑えている。
なお、図1、図2中に示す符号20は、シール用のOリングであり、オイルフローコントロールバルブ2内のオイルが外部に洩れるのを防いでいる。
【0026】
(ECU4の説明)
ECU4は、各種センサによって検出されるクランク角、エンジン回転速度、アクセル開度等のエンジンの運転状態に応じて電磁アクチュエータ13のコイル17に供給される電流量(通電割合)を制御することで、スプール12の軸方向の位置を制御して、エンジンの運転状態に応じた作動油圧を進角室7aと遅角室7bに発生させるものであり、ECU4は、PWM制御によってコイル17に供給する電流量を連続的に制御するものである。
【0027】
(バルブタイミング可変装置の作動説明)
車両の運転状態に応じてECU4がカムシャフトを進角させる際、ECU4はコイル17の通電量を増加させる。すると、コイル17の発生する磁力が増加し、ムービングコア14とスプール12がコイル側(図1右側:進角側)へ移動する。すると、油圧供給ポート11bと進角室連通ポート11cの連通割合が増加するとともに、遅角室連通ポート11dとドレーン穴12bの連通割合が増加する。この結果、進角室7aの油圧が増加し、逆に遅角室7bの油圧が減少して、ベーンロータ6がシューハウジング5に対して相対的に進角側へ変位し、カムシャフトが進角する。
【0028】
逆に、車両の運転状態に応じてECU4がカムシャフトを遅角させる際、ECU4はコイル17の通電量を減少させる。すると、コイル17の発生する磁力が減少し、ムービングコア14とスプール12が反コイル側(図1左側:遅角側)へ移動する。すると、油圧供給ポート11bと遅角室連通ポート11dの連通割合が増加するとともに、進角室連通ポート11cとドレーン穴12bの連通割合が増加する。この結果、遅角室7bの油圧が増加し、逆に進角室7aの油圧が減少して、ベーンロータ6がシューハウジング5に対して相対的に遅角側へ変位し、カムシャフトが遅角する。
【0029】
〔本発明にかかる実施例の特徴〕
オイルフローコントロールバルブ2は、コイル17のOFF 時、スプール12とムービングコア14が、スプリング15の付勢力によって反コイル側(図1左側)へ変位して停止する。
この停止状態で、メインギャップMGの最大ギャップが決定されるとともに、スリーブ11に対するスプール12の位置決めが成される。
【0030】
従来技術の項でも説明したように(符号は図5参照)、従来のオイルフローコントロールバルブJ1 のストッパSは、スリーブJ6 の反コイル側の端部の内径に形成された段差J14であり、その段差J14にスプールJ7 の端面J15が当接することで、コイルJ12のOFF 時におけるスリーブJ6 とムービングコアJ11の位置が設定される。
この段差J14は、スリーブJ6 の反コイル側の内径に形成する必要があるため、スリーブJ6 の加工が難しく、コストアップの要因になってしまう。また、スリーブJ6 の反コイル側に、段差J14を形成するための長さが必要になるためにスリーブJ6 の軸方向寸法が長くなり、オイルフローコントロールバルブJ1 の体格が大きくなってしまう。
【0031】
そこで、図2に示すように、本実施例のオイルフローコントロールバルブ2では、スリーブ11のコイル側(図1右側)の端面S1 と、ムービングコア14の反コイル側(図1左側)の端面S2 とが当接することによって、スプール12およびムービングコア14が反コイル側に変位した際のストッパSが構成される。このように設けられることによって、従来のようにスリーブ11の内径にストッパSのための段差J14(符号、図5参照)を設ける必要がなくなり、スリーブ11の内径を軸方向へ一定にできる。この結果、スリーブ11の加工が容易になり、オイルフローコントロールバルブ2のコストを抑えることができる。
また、スリーブ11には、段差J14(符号、図5参照)を形成するための軸方向の長さL(符号、図5参照)が必要ないため、スリーブ11の軸方向寸法を短くでき、結果的にオイルフローコントロールバルブ2の体格を従来より小型化できる。
【0032】
一方、従来技術の項でも説明したように(符号は図5参照)、従来のオイルフローコントロールバルブJ1 は、ムービングコアJ11の外径寸法が、コイルJ12の内径寸法よりも小さく設けられ、スリーブJ6 とコイルJ12の間にヨークJ16の磁束をムービングコアJ11の周囲に導くサイドギャップ用ステータJ17を配置し、さらにそのサイドギャップ用ステータJ17の内周に筒状体J18を配置して、サイドギャップでの磁束の受渡し面積を大きくしていた。このため、コイルJ12とムービングコアJ11との間に筒状体J18が配置され、コイルJ12の外径寸法が大きくなる、あるいはコイルJ12の外径寸法を抑えるとコイルJ12の巻数を確保するためにコイルJ12の軸方向寸法が長くなり、オイルフローコントロールバルブJ1 の体格が大きくなる問題があった。
【0033】
そこで、図2に示すように、本実施例のオイルフローコントロールバルブ2は、ムービングコア14の外径寸法が、コイル17の外径寸法とほぼ同じに設けられ、ヨーク18がコイル17とともにムービングコア14の外周も覆って設けられる。そして、ムービングコア14の外周と、それを覆うヨーク18との間にサイドギャップSGが形成される。即ち、コイル17の軸方向の隣部にサイドギャップSGが形成される。
このようにムービングコア14の外径が大きく設けられることにより、サイドギャップSGの磁束の受渡し面積が大きくなり、サイドギャップSGの軸方向寸法を短くできる。そして、コイル17の軸方向の隣部のサイドギャップSGで磁束の受渡しが行われる構造であるため、コイル17の内周に従来技術のようなサイドギャップ用の筒状体J18(符号、図5参照)が配置されない。この筒状体J18(符号、図5参照)の廃止によって、コイル17の外径寸法を小さくでき、結果的にオイルフローコントロールバルブ2の体格を従来より小型化できる。
【0034】
〔第2実施〕
図4を参照して第2実施例を説明する。この図4はオイルフローコントロールバルブ2の構造を示す断面図である。なお、この第2実施例において第1実施例と同一の符号は、第1実施例と同一機能物である。
上記の第1実施例では、スプリング15をムービングコア14とコイル17の間に配置した例を示した。それに対し、この第2実施例では、スプリング15をムービングコア14とステータ16の間に配置したものである。
【0035】
〔変形例〕
上記の実施例では、筒形状のスプール12を用いる例を示したが、スプール12の構造は限定されるものではなく、例えば従来技術と同じように、軸部と複数ランド(大径部)とからなるスプールを用いても良い。
上記の実施例では、スリーブ11に径方向の貫通穴を形成して複数の入出力ポート(実施例中、油圧供給ポート11b、進角室連通ポート11c、遅角室連通ポート11d等)を設けた例を示したが、スリーブ11の構造は限定されるものではなく、例えば従来技術と同じように、スリーブに貫通しない穴を形成することで複数の入出力ポートを形成しても良い。
【0036】
上記の実施例では、ムービングコア14の外径寸法をコイル17の外径寸法ほどに大きく設けた例を示したが、ストッパSの構造としては、スリーブ11の端面S1 とムービングコア14の端面S2 とが当接可能であれば良く、少なくともムービングコア14の端面S2 に当接する部分が、スリーブ11の内径寸法より大きければ良い。
【0037】
上記の実施例で示したバルブタイミング可変機構1は、実施例を説明する一例であって、バルブタイミング可変機構1の内部の油圧アクチュエータによって進角調整できる構造であれば他の構造であっても良い。
例えば、上記の実施例では、シューハウジング5内に3つの凹部7を形成し、ベーンロータ6の外周部に3つのベーン6aを設けた例を示したが、凹部7の数やベーン6aの数は構成上1つあるいはそれ以上であればいくつでも構わないものであり、凹部7およびベーン6aの数を他の数にしても良い。
また、シューハウジング5がクランクシャフトと同期回転し、ベーンロータ6がカムシャフトと一体回転する例を示したが、ベーンロータ6をクランクシャフトに同期回転させ、シューハウジング5がカムシャフトと一体回転するように構成しても良い。
【0038】
上記の実施例では、本発明が適用されたオイルフローコントロールバルブ2をバルブタイミング可変機構1と組み合わせた例を示したが、オイルの断続やオイルの流れ方向を切り替える全てのオイルフローコントロールバルブに本発明を適用可能なものである。
【図面の簡単な説明】
【図1】オイルフローコントロールバルブの軸方向に沿う断面図である(第1実施例)。
【図2】オイルフローコントロールバルブの要部断面図である(第1実施例)。
【図3】バルブタイミング可変装置の概略図である(第1実施例)。
【図4】オイルフローコントロールバルブの軸方向に沿う断面図である(第2実施例)。
【図5】オイルフローコントロールバルブの軸方向に沿う断面図である(従来例)。
【符号の説明】
1 バルブタイミング可変機構
2 オイルフローコントロールバルブ
5 シューハウジング(回転駆動体)
6 ベーンロータ(回転従動体)
7a 進角室
7b 遅角室
11 スリーブ
11b 油圧供給ポート(入出力ポート)
11c 進角室連通ポート(入出力ポート)
11d 遅角室連通ポート(入出力ポート)
11e ドレーンポート(入出力ポート)
12 スプール
13 電磁アクチュエータ
14 ムービングコア
15 スプリング(付勢手段)
17 コイル
18 ヨーク
SG サイドギャップ
S ストッパ
S1 スリーブのコイル側の端面
S2 ムービングコアの反コイル側の端面

Claims (3)

  1. オイルの入出力ポートが形成されたスリーブと、
    このスリーブの内部で軸方向へ変位することで前記入出力ポートの切り替えを行うスプールと、
    このスプールに結合されたムービングコア、このムービングコアを吸引駆動するコイル、前記ムービングコアとともに前記スプールを反コイル側へ付勢する付勢手段を備え、前記コイルが通電されると前記付勢手段の付勢力に打ち勝って前記ムービングコアとともに前記スプールをコイル側へ駆動する電磁アクチュエータと、を具備し、
    前記スプールおよび前記ムービングコアが反コイル側に変位した際に、前記スリーブのコイル側の端面と、前記ムービングコアの反コイル側の端面とが当接することによって、ストッパが構成されることを特徴とするオイルフローコントロールバルブ。
  2. 請求項1に記載のオイルフローコントロールバルブにおいて、
    前記ムービングコアの外径寸法は、前記コイルの外径寸法とほぼ同じに設けられるとともに、
    前記コイルの外周を覆うヨークは、前記ムービングコアの外周も覆って設けられ、
    前記ムービングコアの外周と、それを覆う前記ヨークとの間に、前記ヨークと前記ムービングコアとの磁束の受渡しを行うサイドギャップが形成されることを特徴とするオイルフローコントロールバルブ。
  3. 請求項1または請求項2に記載のオイルフローコントロールバルブにおいて、
    このオイルフローコントロールバルブは、
    内燃機関のクランクシャフトに同期して回転駆動される回転駆動体と、
    この回転駆動体に対して相対回転可能に設けられ、前記内燃機関のカムシャフトと一体に回転する回転従動体とを備え、
    前記回転駆動体と前記回転従動体の間に形成された進角室へ油圧を供給することによって、前記回転駆動体に対して前記回転従動体とともに前記カムシャフトを進角側へ変位させるとともに、前記回転駆動体と前記回転従動体の間に形成された遅角室へ油圧を供給することによって、前記回転駆動体に対して前記回転従動体とともに前記カムシャフトを遅角側へ変位させるバルブタイミング可変機構の油圧アクチュエータに組み合わされるものであり、
    前記内燃機関の作動中に、油圧源で発生した油圧を、前記進角室および前記遅角室に相対的に給排させることを特徴とするオイルフローコントロールバルブ。
JP2003091890A 2003-03-28 2003-03-28 オイルフローコントロールバルブ Pending JP2004301155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091890A JP2004301155A (ja) 2003-03-28 2003-03-28 オイルフローコントロールバルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091890A JP2004301155A (ja) 2003-03-28 2003-03-28 オイルフローコントロールバルブ

Publications (1)

Publication Number Publication Date
JP2004301155A true JP2004301155A (ja) 2004-10-28

Family

ID=33405145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091890A Pending JP2004301155A (ja) 2003-03-28 2003-03-28 オイルフローコントロールバルブ

Country Status (1)

Country Link
JP (1) JP2004301155A (ja)

Similar Documents

Publication Publication Date Title
JP4222205B2 (ja) 電磁スプール弁
US7114472B2 (en) Electromagnetic valve
JP5585832B2 (ja) 弁開閉時期制御装置
JP4545127B2 (ja) バルブタイミング調整装置
US6968816B2 (en) Oil flow control valve
JP4111135B2 (ja) 電磁スプール弁
JP5375562B2 (ja) バルブタイミング調整装置
JP2007138744A (ja) バルブタイミング調整装置
JP2004301224A (ja) デューティ比制御装置
JP4560736B2 (ja) バルブタイミング調整装置
JP2004301010A (ja) オイルフローコントロールバルブ
JP2015045282A (ja) 弁開閉時期制御装置
JP2008051203A (ja) 電磁弁
JP2004301155A (ja) オイルフローコントロールバルブ
JP2004301172A (ja) 電磁アクチュエータ
JP2004301165A (ja) オイルフローコントロールバルブ
JP5034869B2 (ja) 可変バルブタイミング装置
JP2008157074A (ja) 内燃機関のバルブタイミング制御装置
JP2004301233A (ja) 電動スプール弁の製造方法
JP2004304921A (ja) 電磁アクチュエータの制御装置
JP4165395B2 (ja) オイルフローコントロールバルブ
JP3371735B2 (ja) 内燃機関のバルブタイミング制御装置
JP4196825B2 (ja) 電磁弁
JP2003097229A (ja) 内燃機関のバルブタイミング制御装置
JP2015045280A (ja) 弁開閉時期制御装置