JP2004296967A - Method for producing compound soft magnetic sintered material having high density and high resistance - Google Patents

Method for producing compound soft magnetic sintered material having high density and high resistance Download PDF

Info

Publication number
JP2004296967A
JP2004296967A JP2003089760A JP2003089760A JP2004296967A JP 2004296967 A JP2004296967 A JP 2004296967A JP 2003089760 A JP2003089760 A JP 2003089760A JP 2003089760 A JP2003089760 A JP 2003089760A JP 2004296967 A JP2004296967 A JP 2004296967A
Authority
JP
Japan
Prior art keywords
soft magnetic
alloy powder
magnetic alloy
layer
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003089760A
Other languages
Japanese (ja)
Inventor
Ryoji Nakayama
亮治 中山
Muneaki Watanabe
宗明 渡辺
Yoshinori Sone
佳紀 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003089760A priority Critical patent/JP2004296967A/en
Publication of JP2004296967A publication Critical patent/JP2004296967A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound soft magnetic sintered material having a high density, a high resistance, a high flux density and a relative permeability in high frequencies. <P>SOLUTION: An Ni layer is formed on the surface of Fe-Co based soft magnetic alloy powder and a ferrite layer is formed on the Ni layer to produce a multilayer film coated Fe-Co based soft magnetic alloy powder. The multilayer film coated Fe-Co based soft magnetic alloy powder is then compacted and sintered at a temperature of 700-1100°C in a non-oxidizing atmosphere or an oxygen partial pressure controlled atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、モータ、アクチュエータ、磁気センサなどの製造に使用される
高密度、高抵抗および高磁束密度を有する複合軟磁性焼結材の製造方法に関するものである。
【0002】
【従来の技術】
一般に、モータ、アクチュエータ、磁気センサなどの磁心にはFe−Co系鉄基軟磁性合金粉末を燒結して得られた軟磁性焼結材料が用いられることは知られており、さらに、この軟磁性焼結材料の一つとしてフェライトが知られている。前記Fe−Co系鉄基軟磁性合金粉末などを燒結して得られた軟磁性焼結材料は、飽和磁束密度が高いが、高周波特性が悪く、一方、フェライトなど鉄酸化物粉末を焼結して得られた酸化物軟磁性焼結材料は、抵抗が高いために高周波特性に優れ、初透磁率が比較的高いが、飽和磁束密度が低い欠点があり、これらを改善するために、Fe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を被覆してなるフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末が提案されており、このフェライト膜被覆鉄軟磁性粉末を焼結して得られた焼結材料は高抵抗を有し、飽和磁束密度および高周波特性に共に優れると言われている。
【0003】
このフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末を製造するための方法として、Fe−Co系鉄基軟磁性合金粉末の表面に湿式フェライトメッキによりフェライト膜を形成する方法(特許文献1または2参照)、
Fe−Co系鉄基軟磁性合金粉末およびフェライト粉末をメカノフュージョン装置に入れて高速回転させることによりFe−Co系鉄基軟磁性合金粉末の表面にフェライト粉末を埋め込み、それによってFe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を形成する方法(特許文献3参照)などが知られており、これらフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末を圧粉、成形し、焼結することにより複合軟磁性焼結材を製造する方法も知られている。
【0004】
【特許文献1】
特開昭56−38402号公報
【特許文献2】
特開平11−1702号公報
【特許文献3】
特開平4−226003号公報
【0005】
【発明が解決しようとする課題】
しかし、前記Fe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を被覆してなるフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末を原料粉末とし、これを圧粉、成形、焼結して複合軟磁性焼結材を製造すると、焼結時に、芯部のFe−Co系鉄基軟磁性合金粉末とフェライト間でフェライトの還元反応が起こり、フェライト(Fe)層はウスタイト(FeO)層に変化するなどして酸素不足のフェライト膜がFe−Co系鉄基軟磁性合金粉末表面に形成され、この酸素不足のフェライト膜は固有抵抗値が低く、したがって得られた複合軟磁性焼結材の抵抗値が十分なものではない。
【0006】
【課題を解決するための手段】
そこで、本発明者らは、かかる課題を解決すべく研究を行った結果、
Fe−Co系鉄基軟磁性合金粉末の表面に電解メッキまたは無電解メッキにより第1層としてNi層が形成し、このNi層が形成されたFe−Co系鉄基軟磁性合金粉末の表面に第2層としてフェライト層を被覆して積層膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層膜被覆Fe−Co系鉄基軟磁性合金粉末を原料粉末として圧粉、成形した後、非酸化雰囲気中または酸素分圧制御雰囲気中、温度:700〜1100℃で焼結すると、Fe−Co系鉄基軟磁性合金粉末とフェライト層の間にNi層が介在することによりフェライトの還元が防止され、したがって酸素不足のフェライト膜が形成されないために高抵抗を有する複合軟磁性焼結材が得られ、さらにこの積層膜被覆Fe−Co系鉄基軟磁性合金粉末を原料粉末として作製した複合軟磁性焼結材は密度が一層向上する、という研究結果が得られたのである。
【0007】
この発明は、かかる研究結果に基づいてなされたものであって、
Fe−Co系鉄基軟磁性合金粉末の表面に、第1層としてNi層、第2層としてフェライト層を被覆してなる積層膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層膜被覆Fe−Co系鉄基軟磁性合金粉末を圧粉、成形した後、非酸化雰囲気中または酸素分圧制御雰囲気中、温度:700〜1100℃で焼結する高密度および高抵抗を有する複合軟磁性焼結材の製造方法、に特徴を有するものである。
【0008】
この発明の高密度および高抵抗を有する複合軟磁性焼結材の製造方法をさらに一層具体的に説明する。
この発明の高密度および高抵抗を有する複合軟磁性焼結材の製造方法において使用するFe−Co系鉄基軟磁性合金粉末は、従来から一般に知られているCo:25〜60質量%を含有し、残部がFeおよび不可避不純物からなる組成、またはCo:25〜60質量%、V:0.5〜5質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するFe−Co系軟磁性合金粉末を使用することが好ましい。しかし、この発明の高密度および高透磁性を有する複合軟磁性焼結材の製造方法において使用する前記Fe−Co系軟磁性合金粉末は、前記成分組成を有するFe−Co系軟磁性合金粉末に限定されるものではなく、その他のFe−Co系軟磁性合金粉末を使用することができる。そして、これらFe−Co系鉄基軟磁性合金粉末は平均粒径:5〜150μmの範囲内にあるFe−Co系鉄基軟磁性合金粉末を使用することが好ましい。その理由は、平均粒径が5μmよりも小さすぎると、粉末の圧縮性が低下し、Fe−Co系鉄基軟磁性合金の体積割合が低くなるために飽和磁束密度の値が低下するので好ましくなく、一方、平均粒径が150μmより大きすぎると、Fe−Co系鉄基軟磁性合金粉末内部の渦電流が増大して高周波における透磁率が低下するので好ましくないことによるものである。
【0009】
これらFe−Co系鉄基軟磁性合金粉末の表面に電解メッキまたは無電解メッキにより第1層として厚さ:2〜5μmのNi層を被覆し、このNi層の上に第2層としてのフェライト層を被覆することによりNi層およびフェライト層で構成された積層膜を形成してなる積層膜被覆Fe−Co系鉄基軟磁性合金粉末を作製することができる。このNi膜の上に形成するフェライト層は、化学メッキ法、高速衝撃撹拌被覆法またはバインダー被覆法など一般に知られている方法で作製することができる。
【0010】
このようにして得られた積層膜被覆Fe−Co系鉄基軟磁性合金粉末を圧粉、成形した後、非酸化雰囲気中または酸素分圧制御雰囲気中、温度:700〜1100℃(好ましくは、700〜900℃)で焼結すると高密度および高抵抗を有する複合軟磁性焼結材が得られる。かかる温度で焼結すると、NiはFe−Co系鉄基軟磁性合金粉末に拡散してFe−Co−Ni合金を形成し、軟磁性合金としての特性を向上させ、さらにNi層の介在によりFe−Co系鉄基合金とフェライトの還元反応を防止し、磁気特性を向上させ、高密度および高抵抗を有する複合軟磁性焼結材が得られる。この場合、焼結温度が700℃未満ではNiが芯材であるFe−Co系軟磁性合金粉末に十分拡散されずにNi層として残存するので磁気特性が低下するので好ましくなく、一方、1100℃を越える温度で焼結すると、Fe−Co相とフェライト相の反応により比抵抗の低下が起こるので好ましくない。また、この発明において非酸化雰囲気とは水素ガス、Coガスなどの還元ガス雰囲気、またはArガスもしくは窒素ガスなどの不活性ガス雰囲気を言い、また酸素分圧制御雰囲気とは窒素がスと酸素ガスとの混合ガスあるいは炭酸ガス雰囲気を言う。
【0011】
【発明の実施の形態】
原料粉末として、いずれも平均粒径:70μmを有するCo:30質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するアトマイズFe−Co系軟磁性合金粉末、並びにCo:49質量%、V:2質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するアトマイズFe−Co−V系軟磁性合金粉末を用意した。
【0012】
実施例1〜5および比較例1〜2
このFe−Co系軟磁性合金粉末に対して電解メッキを施すことによりFe−Co系軟磁性合金粉末の表面にNi層を形成し、Ni被覆Fe−Co系軟磁性合金粉末を作製した。
さらに平均粒径:0.7μmのフェライト粉末を1〜5質量%分散被覆することによりこのNi被覆Fe−Co系合金粉末のNi層の上にフェライト層を形成して積層膜被覆Fe−Co系合金粉末を作製した。
得られた積層膜被覆Fe−Co系合金粉末を金型に入れ、プレス成形することにより外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表1に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の密度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサにて磁束密度を測定し、その結果を表1に示した。
【0013】
従来例1
高速衝撃撹拌法により作製した市販のフェライト膜被覆純Fe−Co系鉄基軟磁性合金粉末を用意し、この粉末を用いて実施例1と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の密度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサにて磁束密度を測定し、その結果を表1に示した。
【0014】
【表1】

Figure 2004296967
【0015】
表1に示される結果から、実施例1〜5で作製した複合軟磁性焼結材は、従来例1で製造した複合軟磁性焼結材と比べて密度及び比抵抗に優れた特性を示すことが分かる。しかし、比較例1〜2で作製した複合軟磁性焼結材は密度、比抵抗および磁束密度のうちの少なくともいずれか一つが劣るので好ましくないことが分かる。
【0016】
実施例6〜10および比較例3〜4
先に用意したアトマイズFe−Co−V系鉄基軟磁性合金粉末に対して電解メッキを施すことによりFe−Co−V系軟磁性合金粉末の表面にNi層を形成し、Ni被覆Fe−Co−V系軟磁性合金粉末を作製した。
さらに平均粒径:0.7μmのフェライト粉末を1〜5質量%分散被覆することによりこのNi被覆Fe−Co−V系合金粉末のNi層の上にフェライト層を形成して積層膜被覆Fe−Co−V系合金粉末を作製した。
得られた積層膜被覆Fe−Co−V系合金粉末を金型に入れ、プレス成形により外径:35mm、内径:25mm、高さ:5mmのリング状圧粉体を成形し、得られたリング状圧粉体を不活性ガス雰囲気中、表1に示される温度で焼結することによりリング状焼結体からなる複合軟磁性焼結材を作製した。このようにして得られた複合軟磁性焼結材の密度および比抵抗を測定してその結果を表2に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサにて磁束密度を測定し、その結果を表2に示した。
【0017】
従来例2
高速衝撃撹拌法により作製した市販のフェライト膜被覆純Fe−Co−V系鉄基軟磁性合金粉末を用意し、この粉末を用いて実施例6と同様にしてリング焼結体からなる複合軟磁性焼結材を得た。このようにして得られた複合軟磁性焼結材の密度および比抵抗を測定してその結果を表2に示した。さらに複合軟磁性焼結材に巻き線を施し、BHトレーサにて磁束密度を測定し、その結果を表2に示した。
【0018】
【表2】
Figure 2004296967
【0019】
表2に示される結果から、実施例6〜10で作製した複合軟磁性焼結材は、従来例2で作製した複合軟磁性焼結材と比べて密度及び比抵抗に優れた特性を示すことが分かる。しかし、比較例3〜4で作製した複合軟磁性焼結材は密度、比抵抗および磁束密度の少なくともいずれか一つが劣るので好ましくないことが分かる。
【0020】
【発明の効果】
この発明によると、簡単な方法により高密度、高抵抗および高磁束密度を有する複合軟磁性焼結材を提供することができ、電気および電子産業において優れた効果をもたらすものである。[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a composite soft magnetic sintered material having a high density, a high resistance and a high magnetic flux density used for manufacturing a motor, an actuator, a magnetic sensor and the like.
[0002]
[Prior art]
In general, it is known that a soft magnetic sintered material obtained by sintering Fe-Co based iron-based soft magnetic alloy powder is used for a magnetic core of a motor, an actuator, a magnetic sensor, and the like. Ferrite is known as one of the sintered materials. The soft magnetic sintered material obtained by sintering the Fe-Co-based iron-based soft magnetic alloy powder or the like has a high saturation magnetic flux density, but has poor high frequency characteristics. The resulting oxide soft magnetic sintered material has excellent high frequency characteristics due to high resistance and relatively high initial permeability, but has a drawback of low saturation magnetic flux density. A ferrite film-coated Fe-Co-based iron-based soft magnetic alloy powder in which a ferrite film is coated on the surface of a Co-based iron-based soft magnetic alloy powder has been proposed. It is said that the obtained sintered material has high resistance and is excellent in both saturation magnetic flux density and high frequency characteristics.
[0003]
As a method for producing the ferrite film-coated Fe-Co-based iron-based soft magnetic alloy powder, a method of forming a ferrite film on the surface of the Fe-Co-based iron-based soft magnetic alloy powder by wet ferrite plating (Patent Document 1 or 2),
The ferrite powder is embedded in the surface of the Fe-Co-based iron-based soft magnetic alloy powder by putting the Fe-Co-based iron-based soft-magnetic alloy powder and the ferrite powder in a mechanofusion device and rotating at a high speed, whereby the Fe-Co-based iron A method of forming a ferrite film on the surface of a base soft magnetic alloy powder (see Patent Document 3) and the like are known. These ferrite film-coated Fe—Co iron-based soft magnetic alloy powders are compacted, molded, and sintered. There is also known a method of producing a composite soft magnetic sintered material.
[0004]
[Patent Document 1]
JP-A-56-38402 [Patent Document 2]
JP-A-11-1702 [Patent Document 3]
JP-A-4-226003
[Problems to be solved by the invention]
However, a ferrite film-coated Fe-Co-based iron-based soft magnetic alloy powder obtained by coating a surface of the Fe-Co-based iron-based soft magnetic alloy powder with a ferrite film is used as a raw material powder, which is compacted, molded, and sintered. When the composite soft magnetic sintered material is manufactured by the above method, a reduction reaction of ferrite occurs between the Fe—Co-based iron-based soft magnetic alloy powder of the core and the ferrite during sintering, and the ferrite (Fe 3 O 4 ) layer becomes wustite. An oxygen-deficient ferrite film is formed on the surface of the Fe—Co-based iron-based soft magnetic alloy powder by changing to a (FeO) layer, and the oxygen-deficient ferrite film has a low specific resistance value. The resistance value of the magnetic sintered material is not sufficient.
[0006]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to solve this problem,
A Ni layer is formed as a first layer on the surface of the Fe-Co-based iron-based soft magnetic alloy powder by electrolytic plating or electroless plating, and the Ni-layer is formed on the surface of the Fe-Co-based iron-based soft magnetic alloy powder. A ferrite layer was coated as a second layer to produce a laminated film-coated Fe-Co-based iron-based soft magnetic alloy powder, and the laminated film-coated Fe-Co-based iron-based soft magnetic alloy powder was pressed and molded as a raw material powder. Thereafter, when sintering is performed in a non-oxidizing atmosphere or an oxygen partial pressure control atmosphere at a temperature of 700 to 1100 ° C., the Ni-layer intervenes between the Fe—Co-based iron-based soft magnetic alloy powder and the ferrite layer. Since reduction is prevented, and thus an oxygen-deficient ferrite film is not formed, a composite soft magnetic sintered material having high resistance can be obtained. Further, this laminated film-coated Fe-Co-based iron-based soft magnetic alloy powder is used as a raw material powder. Composite soft magnetic sintered material is the density is further improved, finding that were obtained.
[0007]
The present invention has been made based on such research results,
On the surface of the Fe-Co-based iron-based soft magnetic alloy powder, a Ni-layer as a first layer and a ferrite layer as a second layer are coated to produce a laminated film-coated Fe-Co-based iron-based soft magnetic alloy powder. After laminating and molding the laminated film-coated Fe—Co-based iron-based soft magnetic alloy powder, it is sintered at a temperature of 700 to 1100 ° C. in a non-oxidizing atmosphere or an oxygen partial pressure control atmosphere. The method is characterized by a method for producing a composite soft magnetic sintered material.
[0008]
The method for producing a composite soft magnetic sintered material having high density and high resistance according to the present invention will be described more specifically.
The Fe—Co-based iron-based soft magnetic alloy powder used in the method for producing a composite soft magnetic sintered material having a high density and a high resistance according to the present invention contains 25 to 60% by mass of Co, which is conventionally generally known. And a balance composed of Fe and unavoidable impurities, or a Fe-Co-based soft alloy containing Co: 25 to 60% by mass and V: 0.5 to 5% by mass and a balance composed of Fe and unavoidable impurities. It is preferable to use a magnetic alloy powder. However, the Fe-Co-based soft magnetic alloy powder used in the method for producing a composite soft magnetic sintered material having high density and high magnetic permeability of the present invention is different from the Fe-Co-based soft magnetic alloy powder having the component composition described above. It is not limited, and other Fe—Co-based soft magnetic alloy powders can be used. It is preferable that the Fe-Co-based iron-based soft magnetic alloy powder has an average particle diameter of 5 to 150 µm. The reason is that when the average particle size is smaller than 5 μm, the compressibility of the powder is reduced, and the volume ratio of the Fe-Co-based iron-based soft magnetic alloy is reduced, so that the value of the saturation magnetic flux density is reduced. On the other hand, if the average particle size is too large, the eddy current inside the Fe-Co-based iron-based soft magnetic alloy powder increases and the magnetic permeability at high frequencies decreases, which is not preferable.
[0009]
The surface of these Fe—Co-based iron-based soft magnetic alloy powders is coated with a Ni layer having a thickness of 2 to 5 μm as a first layer by electrolytic plating or electroless plating, and a ferrite as a second layer is formed on the Ni layer. By coating the layers, a laminated film-coated Fe—Co-based iron-based soft magnetic alloy powder formed by forming a laminated film composed of a Ni layer and a ferrite layer can be produced. The ferrite layer formed on the Ni film can be manufactured by a generally known method such as a chemical plating method, a high-speed impact stirring coating method or a binder coating method.
[0010]
After the thus-obtained laminated film-coated Fe—Co-based iron-based soft magnetic alloy powder is compacted and formed, the temperature is 700 to 1100 ° C. (preferably, in a non-oxidizing atmosphere or an oxygen partial pressure controlling atmosphere). (700-900 ° C.), a composite soft magnetic sintered material having high density and high resistance is obtained. When sintering at such a temperature, Ni diffuses into the Fe-Co-based iron-based soft magnetic alloy powder to form an Fe-Co-Ni alloy, thereby improving the characteristics as a soft magnetic alloy, and further, by interposing a Ni layer, -A composite soft magnetic sintered material having a high density and a high resistance can be obtained by preventing a reduction reaction between a Co-based iron-based alloy and ferrite, improving magnetic properties, and having a high density. In this case, if the sintering temperature is less than 700 ° C., Ni is not sufficiently diffused into the core material, ie, the Fe—Co-based soft magnetic alloy powder, and remains as a Ni layer. If the sintering is performed at a temperature higher than the above, the specific resistance is lowered due to the reaction between the Fe-Co phase and the ferrite phase, which is not preferable. In the present invention, the non-oxidizing atmosphere refers to a reducing gas atmosphere such as a hydrogen gas or a Co gas, or an inert gas atmosphere such as an Ar gas or a nitrogen gas, and the oxygen partial pressure control atmosphere refers to a nitrogen gas and an oxygen gas. Gas atmosphere or carbon dioxide gas atmosphere.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Atomized Fe—Co-based soft magnetic alloy powder containing 30% by mass of Co having an average particle diameter of 70 μm and the balance of Fe and unavoidable impurities, and 49% by mass of Co as raw material powders; V: An atomized Fe—Co—V soft magnetic alloy powder containing 2% by mass and having a balance of Fe and inevitable impurities was prepared.
[0012]
Examples 1 to 5 and Comparative Examples 1 and 2
By subjecting the Fe-Co-based soft magnetic alloy powder to electrolytic plating, a Ni layer was formed on the surface of the Fe-Co-based soft magnetic alloy powder to prepare a Ni-coated Fe-Co-based soft magnetic alloy powder.
Further, a ferrite layer having an average particle size of 0.7 μm is dispersed and coated in an amount of 1 to 5% by mass to form a ferrite layer on the Ni layer of the Ni-coated Fe—Co alloy powder, thereby forming a laminated film-coated Fe—Co alloy. An alloy powder was produced.
The obtained laminated film-coated Fe—Co-based alloy powder was put into a mold and press-molded to form a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm, and the obtained ring was formed. By sintering the green compact in an inert gas atmosphere at the temperature shown in Table 1, a composite soft magnetic sintered material composed of a ring-shaped sintered body was produced. The density and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 1. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.
[0013]
Conventional example 1
A commercially available ferrite film-coated pure Fe-Co iron-based soft magnetic alloy powder prepared by a high-speed impact stirring method was prepared, and a composite soft magnetic sinter comprising a ring sintered body was prepared using this powder in the same manner as in Example 1. Wood was obtained. The density and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 1. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.
[0014]
[Table 1]
Figure 2004296967
[0015]
From the results shown in Table 1, the composite soft magnetic sintered materials produced in Examples 1 to 5 show characteristics superior in density and specific resistance as compared with the composite soft magnetic sintered material produced in Conventional Example 1. I understand. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 1 and 2 are not preferable because at least one of density, specific resistance and magnetic flux density is inferior.
[0016]
Examples 6 to 10 and Comparative Examples 3 to 4
An Ni layer is formed on the surface of the Fe-Co-V-based soft magnetic alloy powder by subjecting the previously prepared atomized Fe-Co-V-based iron-based soft magnetic alloy powder to electrolytic plating, and the Ni-coated Fe-Co A -V soft magnetic alloy powder was produced.
Further, a ferrite powder having an average particle size of 0.7 μm is dispersed and coated in an amount of 1 to 5% by mass to form a ferrite layer on the Ni layer of the Ni-coated Fe—Co—V-based alloy powder so that the laminated film-coated Fe— A Co-V alloy powder was produced.
The obtained laminated film-coated Fe—Co—V-based alloy powder is put into a mold, and a ring-shaped green compact having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm is formed by press molding, and the obtained ring is formed. By sintering the green compact in an inert gas atmosphere at the temperature shown in Table 1, a composite soft magnetic sintered material composed of a ring-shaped sintered body was produced. The density and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 2. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 2.
[0017]
Conventional example 2
A commercially available ferrite film-coated pure Fe-Co-V-based iron-based soft magnetic alloy powder prepared by a high-speed impact stirring method was prepared, and a composite soft magnetic material comprising a ring sintered body was prepared using this powder in the same manner as in Example 6. A sintered material was obtained. The density and specific resistance of the composite soft magnetic sintered material thus obtained were measured, and the results are shown in Table 2. Further, the composite soft magnetic sintered material was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 2.
[0018]
[Table 2]
Figure 2004296967
[0019]
From the results shown in Table 2, the composite soft magnetic sintered materials manufactured in Examples 6 to 10 show characteristics superior in density and specific resistance as compared with the composite soft magnetic sintered material manufactured in Conventional Example 2. I understand. However, it can be seen that the composite soft magnetic sintered materials produced in Comparative Examples 3 and 4 are not preferable because at least one of the density, the specific resistance and the magnetic flux density is inferior.
[0020]
【The invention's effect】
According to the present invention, it is possible to provide a composite soft magnetic sintered material having a high density, a high resistance and a high magnetic flux density by a simple method, and to provide excellent effects in the electric and electronic industries.

Claims (3)

Fe−Co系鉄基軟磁性合金粉末の表面に、Ni層を形成し、Ni層の上にフェライト層を形成してなる積層膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層膜被覆Fe−Co系鉄基軟磁性合金粉末を圧粉、成形した後、非酸化雰囲気中または酸素分圧制御雰囲気中、温度:700〜1100℃で焼結することを特徴とする高密度および高抵抗を有する複合軟磁性焼結材の製造方法。A Ni-layer is formed on the surface of the Fe-Co-based iron-based soft magnetic alloy powder, and a laminated film-coated Fe-Co-based iron-based soft-magnetic alloy powder is formed by forming a ferrite layer on the Ni layer. High density characterized by sintering a laminated film-coated Fe-Co-based iron-based soft magnetic alloy powder in a non-oxidizing atmosphere or an oxygen partial pressure control atmosphere at a temperature of 700 to 1100 ° C after compacting and molding. And a method for producing a composite soft magnetic sintered material having high resistance. 前記Fe−Co系鉄基軟磁性合金粉末は、Co:25〜60質量%を含有し、残部がFeおよび不可避不純物からなる組成、またはCo:25〜60質量%、V:0.5〜5質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するFe−Co系鉄基軟磁性合金粉末であることを特徴とする請求項1記載の高密度および高抵抗を有する複合軟磁性焼結材の製造方法。The Fe-Co-based iron-based soft magnetic alloy powder contains Co: 25 to 60% by mass, and the balance is Fe and unavoidable impurities, or Co: 25 to 60% by mass, V: 0.5 to 5%. 2. A composite soft magnetic sintered body having high density and high resistance according to claim 1, wherein the powder is Fe-Co-based iron-based soft magnetic alloy powder having a composition consisting of Fe and an unavoidable impurity. The method of manufacturing the binder. 請求項1または2記載の方法で製造した高密度および高抵抗を有する複合軟磁性焼結材。A composite soft magnetic sintered material having high density and high resistance produced by the method according to claim 1.
JP2003089760A 2003-03-28 2003-03-28 Method for producing compound soft magnetic sintered material having high density and high resistance Withdrawn JP2004296967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089760A JP2004296967A (en) 2003-03-28 2003-03-28 Method for producing compound soft magnetic sintered material having high density and high resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089760A JP2004296967A (en) 2003-03-28 2003-03-28 Method for producing compound soft magnetic sintered material having high density and high resistance

Publications (1)

Publication Number Publication Date
JP2004296967A true JP2004296967A (en) 2004-10-21

Family

ID=33403540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089760A Withdrawn JP2004296967A (en) 2003-03-28 2003-03-28 Method for producing compound soft magnetic sintered material having high density and high resistance

Country Status (1)

Country Link
JP (1) JP2004296967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156433A (en) * 2011-03-04 2011-08-17 南京恒创磁电科技有限公司 System for automatically controlling sintering of soft magnetic ferrite
JP2018181888A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156433A (en) * 2011-03-04 2011-08-17 南京恒创磁电科技有限公司 System for automatically controlling sintering of soft magnetic ferrite
JP2018181888A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2687683B2 (en) Composite material and method for producing the same
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
WO2011068169A1 (en) Powder for magnet
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JPH04226003A (en) Composite soft magnetic material and coated particles for composite soft magnetic material
WO2002081129A1 (en) Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
JP2005133168A (en) Method for manufacturing compound soft magnetic material having excellent magnetic characteristic, high strength and low core loss
JP2004297036A (en) Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP2019178402A (en) Soft magnetic powder
JP2009060050A (en) High specific resistance and low loss composite soft magnetic material, and manufacturing method thereof
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2004296967A (en) Method for producing compound soft magnetic sintered material having high density and high resistance
JPH0547541A (en) Manufacture of magnetic core
JP6563348B2 (en) Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2004197115A (en) Method for producing complex soft magnetic material having high density and high resistance
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606