JP2004296325A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2004296325A
JP2004296325A JP2003088839A JP2003088839A JP2004296325A JP 2004296325 A JP2004296325 A JP 2004296325A JP 2003088839 A JP2003088839 A JP 2003088839A JP 2003088839 A JP2003088839 A JP 2003088839A JP 2004296325 A JP2004296325 A JP 2004296325A
Authority
JP
Japan
Prior art keywords
battery
separator
secondary battery
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088839A
Other languages
Japanese (ja)
Other versions
JP4403447B2 (en
Inventor
Hiroyuki Tajiri
博幸 田尻
Shiro Kato
史朗 加藤
Takae Yokouchi
香江 横内
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003088839A priority Critical patent/JP4403447B2/en
Publication of JP2004296325A publication Critical patent/JP2004296325A/en
Application granted granted Critical
Publication of JP4403447B2 publication Critical patent/JP4403447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive nonaqueous secondary battery having a high safety using a specified nonwoven fabric or a paper as a separator. <P>SOLUTION: This is the nonaqueous secondary battery in which a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt are housed in a battery container, the thickness of the battery of a flat shape is less than 12 mm, its energy capacity is 30 Wh or more, and its volume energy density is 180 Wh/l or more, the separator is made of the nonwoven fabric or the paper having a thickness of 50 μm or less and 20 μm or more and air permeation of 20 sec/100 cc or more and 200 sec/100 cc or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特許文献1には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0002】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べて優れることから、その市場を飛躍的に延ばしている。
【0003】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、大型リチウムイオン電池の開発が進められている。
【0004】
しかし、これら大型リチウムイオン電池は、高エネルギー密度が得られるものの、円筒型、角型等の電池形状が一般的であり、電池内部に熱が蓄積されやすく信頼性、特に、安全性に問題が残されていた。
【0005】
上記問題を解決する目的で特許文献2には、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が開示されている。該電池は独特の電池形状(扁平形状)により、実用化の障壁となる上記蓄熱に起因する信頼性、安全性の問題点を解決する事を提案している。
【0006】
一方、大型リチウムイオン電池の実用化の妨げとなっているのが、電池のコストであり、セパレータに関しても、リチウムイオン電池に一般に用いられるポリエチレン製の微多孔膜は高価な材料である。セパレータ材料に関しては、小型リチウムイオン電池に関しては種々検討されており、例えば、特許文献3には電極間に介在するセパレータに、叩解可能な再生セルロース繊維の叩解原料を10重量%以上使用して抄造された紙を用いることを特徴とする非水系電池が提案されており、不織布あるいは紙といった安価なセパレータもリチウムイオン電池に利用可能である事が示されている。
【0007】
しかし、大型リチウムイオン電池においてセパレータは安全性確保の為に重要であり、不織布あるいは紙のセパレータを用いた場合、特許文献4に記載されている様に耐熱性はその材料の選択により向上させる事が可能となるが、ポリエチレン製の微多孔膜とは異なり、過充電時に負極上に電析したリチウムにより電池内短絡が生じ易い傾向にあり、破裂、発火するという安全性上の問題点も残されており、結果として耐熱性及び過充電における安全性確保の為、耐熱性の紙あるいは不織布と高価なポリエチレン製の微多孔膜を合わせ使用せざるを得ないのが現状である。(特許文献5等)。
【0008】
【特許文献1】
特開平6−86463号公報
【0009】
【特許文献2】
国際公開第99/60652号パンフレット
【0010】
【特許文献3】
特開平8−306352号公報
【0011】
【特許文献4】
特開2002−270242号公報
【0012】
【特許文献5】
特開2002−246067号公報
【0013】
【発明が解決しようとする課題】
本発明の目的は、特定の不織布又は紙をセパレータとして用いた安価でかつ安全性の高い非水系二次電池を提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは、鋭意研究をすすめてきた結果、特定の範囲の透気度を有する不織布又は紙のセパレータが、好ましい電池容量を維持しつつ、負極上に電析したリチウムによる電池内短絡を防止できることを見出し、これを発展させることにより本発明を完成するに至った。
【0015】
項1 正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を備えた厚さが12mm未満の扁平形状の非水系二次電池であって、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、前記セパレータが、厚み50μm以下20μm以上かつ透気度20sec/100cc以上200sec/100cc以下の不織布又は紙であることを特徴とする非水系二次電池。
【0016】
項2 前記正極が、組成式LiNiMn(Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、かつ1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1)で表されるリチウムニッケルマンガン複合酸化物を活物質とすることを特徴とする項1に記載の非水系二次電池。
【0017】
項3 前記セパレータが、150℃での熱収縮率が、面に沿う方向のいずれにおいても5%以下であることを特徴とする項1又は2に記載の非水系二次電池。
【0018】
項4 前記電池容器の板厚が、0.2mm以上1mm以下であることを特徴とする項1〜3のいずれかに記載の非水系二次電池。
【0019】
項5 前記セパレータが、セルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる不織布、及び/又はセルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる紙であることを特徴とする項1〜4のいずれかに記載の非水系二次電池。
【0020】
【発明の実施の形態】
以下、本発明の一実施形態に係る非水系二次電池について図面を参照しながら説明する。図1は、本実施形態の一例である扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図であり、図2は、図1に示す電池の内部に収納される電極積層体を示す側面図である。
【0021】
図1及び図2に示すように、本実施の形態の非水系二次電池は、上蓋1及び底容器2からなる電池容器と、前記電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1及び図2に示す非水系二次電池の形状は、例えば縦210mm×横150mm×厚さ6mmであり、正極101aにリチウム含有複合酸化物、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0022】
また、図1に示すように、電池容器の上蓋1には、正極端子3及び負極端子4が上蓋1と絶縁された状態で取り付けられており、正極端子3に図2に示す各正極101aの正極集電体106aが電気的に接続されるとともに、負極端子4に各負極101b、101cの負極集電体106bが電気的に接続されている。
【0023】
上蓋1及び底容器2は、図1中の拡大図に示したA点、つまり上蓋1の周縁部を溶かし込んで底容器2と溶接することにより電池容器を構成している。該溶接方法としては、例えば、レーザー溶接、アーク溶接、抵抗溶接等が挙げられる。そのうち、溶接面積が小さくエネルギーを集中できるため容器の変形歪みや周辺への熱影響が小さい点から、レーザー溶接が好ましい。上蓋1には、電解液の注液口5が開けられており、電解液注液後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。
【0024】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることがでる。中でも、電池のエネルギー密度、コスト、安全性の観点から、以下の式で表されるリチウムニッケルマンガン複合酸化物を用いる事が好ましく、また、過充電時において負極上にリチウムが電析しやすく、以下で説明する本発明のセパレータを用いた場合の効果が大きい。
【0025】
LiNiMn
[式中、Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、かつ1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1]
前記式:LiNiMnにおいて、Liのモル比を示すaは、通常1≦x≦1.1程度である。aがこの範囲を逸脱する場合には、サイクル特性の低下、あるいは活物質の容量が大きく低下する。
【0026】
Niのモル比を示すbは、通常0.3≦b<0.5程度である。bが大きすぎる場合には、電池の容量は大きくなるが、熱安定性が低下し電池の安全性も低下する。また、小さすぎる場合には電池の容量が低下する。
【0027】
Mnのモル比を示すcは、通常0.3≦c<0.5程度である。cが大きすぎる場合には、熱安定性が向上し電池の安全性も向上するが、電池の容量は小さくなる。また、小さすぎる場合には、電池の容量は大きくなるが、熱安定性が低下し電池の安全性も低下する。
式中のNi或いはMnと置換する元素Mとしては、Co、Al、Feなどが挙げられ、これらの中では、サイクル特性、安全性の面からCoおよびAlがより好ましい。置換元素Mのモル比を示すdは、通常0<d≦0.4程度である。Mが0の場合は、活物質の粉体が嵩高くなり、また高率放電特性も低下する。Mが大きすぎる場合は、活物質の熱安定性が低下する。
【0028】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物等が挙げられ、コスト面からは、例えば、天然黒鉛等の黒鉛系物質の表面に炭素材料が被覆された2重構造を有する黒鉛系材料が望ましい。
【0029】
本発明の正極活物質及び負極活物質を電極に成形する方法は、所望の非水系二次電池の特性等に応じて公知の手法から適宜選択することができる。例えば、正極活物質(又は負極活物質)とバインダー、必要に応じてN−メチル−2−ピロリドン(NMP)等の溶媒とを混合してスラリーとし、これを集電体に塗布し、乾燥後、圧縮等して成形される。
【0030】
バインダーとしては、特に限定されないが、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン等のフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのオレフィン類などが例示される。
【0031】
正極又は負極を集電体上に形成する場合には、集電体の材質などは材質の耐電圧性を考慮した上で選択すれば特に限定されず、銅箔、ステンレス鋼箔、チタン箔、アルミニウム箔等が例示される。
【0032】
セパレータ104は、厚みが50μm以下20μm以上、好ましくは40μm以下20μm以上、より好ましくは30μm以下20μm以上、かつ、透気度が20sec/100cc以上200sec/100cc以下、好ましくは60sec/100cc以上150sec/100cc以下、より好ましくは70sec/100cc以上100sec/100cc以下の不織布又は紙を用いる。厚みが50μmを超える場合、電池の容量が減少し、20μm未満の場合、製造が難しく実用的ではない。透気度が20sec/100cc未満の場合、本発明の目的である過充電時において負極上にリチウムが電析を防止することができず短絡が生じやすい。また、透気度が200sec/100ccを越える場合、本発明の扁平型電池では電解液の注液不良が生じやすく、また、内部抵抗が大きくなる。なお、透気度は、ガーレー試験機法(JIS P 8117)により測定したものを採用した。
【0033】
セパレータ104の材質は、上記の特性を有する限り特に限定されるものではないが、150℃での熱収縮率が、面に沿う方向のいずれにおいても5%以下であるものを用いることが、電池の耐熱性、安全性設計からは好ましい。例えば、セルロース系、ポリエステル系、ポリアミド系、ポリフェニレンサルファイド系、フッ素系、ポリオレフィン系等の樹脂、或いは、ガラス繊維のような無機繊維等を用いることが可能であり、更に、コスト面からセルロース、レーヨンを用いることが好ましい。また、セパレータの形態は、上記の材質を含む不織布、紙などが採用される。好ましくは、セルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる不織布、セルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる紙などが挙げられる。
【0034】
本発明の二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF、LiBF、LiClO等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、この電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0035】
本実施形態の非水系二次電池は、例えば、電池容器の扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0036】
本実施形態では、電池容器が平板形状の上蓋及び絞り加工を施した底容器より構成され、前記上蓋1及び前記底容器2が、例えば、ステンレス、アルミニウム、アルミニウム合金からなる部分を主要部材として備えている。中でも、コスト、電池重量の観点から、アルミニウム、アルミニウム合金を用いる事が好ましい。この場合、必ずしも電池容器全体をアルミニウム系材料で構成する必要はなく、アルミニウム系材料からなる部分を主要構成部材として備えていればよい。
【0037】
電池容器を構成する上蓋1及び底容器2の厚さは、電池の用途、電池ケースの材質等により適宜決定され、特に限定されるものではないが、好ましくは、その電池表面積の80%以上の部分の厚さ(電池容器を構成する一番面積が広い部分の厚さ)が0.2mm以上である。厚さが0.2mm未満では、電池の製造に必要な強度が得られないという問題があり、この観点から、より好ましくは厚さを0.3mm以上であり、更に、好ましくは0.4mm以上である。同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し十分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0038】
完成後の電池の内部圧力が大気圧未満になるようにするためには、正極101a、負極101b、101c、セパレータ104及び非水系電解質を電池容器内に収容し、電池容器内の圧力を大気圧未満にした状態で電池容器の最終封口工程を行う。この最終封口工程は、少なくとも一回の充電操作の後に行うことが好ましい。これは、1回目の充電初期に電解液の分解により内部にガスが発生することがあり、この場合に、充電操作を行わずに大気圧未満で最終封口工程を行うと、その後の1回目の充電操作により電池内部が加圧状態(大気圧以上)になり、電池の厚みが厚くなったり、電池の内部抵抗及び容量がばらつき、安定したサイクル特性が得られない場合があるからである。特に、負極に黒鉛、正極にリチウム複合酸化物を用いた液系の電解質を用いる場合は、ガスが発生しやすい。
【0039】
この充電操作は、電池に用いられる正極材料、負極材料、セパレータ、電解液等の種類、これらの材料の含水率及び不純物、電池が使用される電圧等に応じて種々の条件を採用することができるが、例えば電池の使用電圧まで4〜8時間率程度の速度で充電し、また必要に応じて定電圧を印加し、さらに通常の下限電圧まで8時間率程度の速度で放電してもよく、この充電操作の後に最終封口工程を行う。また、電池の容量以下の充電操作のみを行った後に封口してもよく、或いは2回以上の充放電を繰り返した後に封口する等の種々の充電操作も可能であるが、充放電操作完了後の電池の内圧を大気圧未満に維持することが肝要である。
【0040】
このように、本実施形態では、充電操作を行ってガスを発生させた後に、ガス抜きを施し最終封口工程を大気圧未満で行うことにより、扁平形電池容器に用いる場合に起きやすい容器が膨れてしまうという問題を解決することができる。この場合、1回目の充電操作を行うときは、電池内部の圧力については特に限定されないが、電池内を大気圧未満にして行うことが好ましい。
【0041】
ここまで本発明の扁平形状の非水系二次電池につき、一例を挙げ説明してきたが、電池形状、電池内の積層構造、端子構造等を限定するものではない。
【0042】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。本発明は、これら実施例の記載により限定されるものではない。
【0043】
実施例1
(1)まず、リチウムニッケルマンガン系複合酸化物としてLiNi1/3Mn1/3Co1/3、導電材である高比表面積天然黒鉛(BET法比表面積=250g/m)及びアセチレンブラックとを乾式混合した。バインダーであるポリフッ化ビニリデン(PVDF)を溶解させたN−メチル−2−ピロリドン(NMP)中に、得られた混合物を均一に分散させて、スラリー1を調製した。次いで、スラリー1を集電体となるアルミニウム箔の両面に塗布し、乾燥した後、プレスを行い、正極を得た。
【0044】
正極中の固形分重量比は、リチウムニッケルマンガン系複合酸化物:高比表面積天然黒鉛:アセチレンブラック:PVDF=92:3:2:3となるよう調製した。
【0045】
図3−(a)は、正極の説明図である。本実施例において、正極101aの塗布面積(W1×W2)は、177×130mmである。また、電極の短辺側には、スラリー1が塗布されていない集電部106aが設けられ、その中央に直径3mmの穴が開けられている。
【0046】
(2)二重構造黒鉛粒子は、天然黒鉛(平均粒径25μm、タップ密度0.86g/cm)と石油ピッチ(軟化点250℃、トルエン不溶分30%)を混合・焼成して得た。
【0047】
(3)上記(2)で作製した二重構造黒鉛粒子(黒鉛粒子コアの(002)面の面間隔(d002)=0.34nm未満、被覆層の(002)面の面間隔(d002)=0.34nmを越える)および導電材である人造黒鉛を乾式混合した後、バインダーであるPVDFを溶解させたNMP中に均一に分散させ、スラリー2を調製した。次いで、スラリー2を集電体となる銅箔の両面に塗布し、乾燥した後、プレスを行ない、負極を得た。
【0048】
負極中の固形分比率(重量比)は、二重構造黒鉛粒子:人造黒鉛:PVDF=93:2:5となるよう調製した。
【0049】
図3−(b)は、負極の説明図である。負極101bの塗布面積(W1×W2)は、133×181.5mmである。また、電極の短辺側には、スラリー2が塗布されていない集電部106bが設けられ、その中央に直径3mmの穴が開けられている。
【0050】
さらに、上記と同様の手法により片面だけにスラリー2を塗布し、片面電極を作製した。片面電極は、後述の(3)項の電極積層体において外側に配置される(図2中101c)。
【0051】
(4)図2に示すように、上記(1)項で得られた正極11枚と上記(2)項で得られた負極12枚(内片面2枚)とを、セパレータ104 (レーヨン抄紙:厚み:30μm、透気度:89sec/100cc)を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cのさらに外側に絶縁フィルム(ポリエステルフィルム:厚み:40μm)を介して交互に積層した。このセパレータ104の150℃での熱収縮率は、1.1%であった。
【0052】
(4)図4に示す様に、厚さ0.5mmのSUS304製薄板を深さ5.5mmに絞り、底容器2を作製し、上蓋1も厚さ0.5mmのSUS304製薄板により作製した。次いで、上蓋1にアルミニウム製の正極端子3および銅製の負極端子4(頭部直径6mm、先端M3のねじ部)を取り付けた。正極および負極端子3、4は、テフロン(登録商標)製ガスケットにより上蓋1と絶縁した。
【0053】
(5)上記(3)項で作製した電極積層体の各正極集電部106aの穴を正極端子3に、また各負極集電部106bの穴を負極端子4に入れ、それぞれアルミニウム製および銅製のボルトで接続した後、接続された電極積層体を絶縁テープで固定し、図1の角部Aを全周に亘りレーザー溶接した。次いで、注液口5(直径6mm)から、電解液(エチレンカーボネート、エチルメチルカーボネートを体積比30:70に混合した溶媒に、全溶媒重量の2重量%に相当する量のビニレンカーボネートを加えた後、1mol/lの濃度にLiPFを溶解した溶液)を注液した。次いで、大気圧下で仮止め用のボルトを用いて注液口5を一旦封口した。
【0054】
(6)25℃中でこの電池を3.4Aの電流で4.2Vまで充電した後、4.2Vの定電圧を印加する定電流定電圧充電を合計8時間行い、続いて2Aの定電流で2.5Vまで放電した。
【0055】
(7)次に、電池の仮止め用ボルトを取り外した後、容器内部が4×10Pa(300Torr)の減圧下となるように、直径12mmに打ち抜いた厚さ0.08mmのアルミニウム箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力1〜3kg/cm、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口して、幅148mm×高さ210mm×厚さ6.5mmの扁平形状のノート型電池を得た。
【0056】
(8)25℃中でこの電池を用いて、3Aの電流で4.2Vまで充電した後、4.2Vの定電圧を印加する定電流定電圧充電を合計8時間行い、続いて15Aの定電流で2.5Vまで放電し、容量を測定した所、14.5Ahの容量が得られた。この電池のエネルギーは52.2Whであり、エネルギー密度は258Wh/lであった。
【0057】
この電池を14Aの電流で12Vまで充電する過充電テストを実施したが、過充電中短絡もなく、破裂・発火もなかった。
比較例1
実施例1においてセパレータをポリプロピレン製不織布(厚み:30μm、透気度:10sec/100cc以下)を用いる以外は実施例1と同様に電池を組み立て、容量、過充電特性を評価した。容量は14.6Ahであり実施例と同等の値が得られたが、過充電テストでは充電率180%で短絡し、電池電圧が急下に低下した為、急激な発熱が観察された為、試験を中止した。
比較例2
実施例1においてセパレータをレーヨン製抄紙(厚み:55μm、透気度:320sec/100cc)を用いる以外は実施例1と同様に電池を組み立て、容量、過充電特性を評価した。実施例1に比べ、セパレータが厚いため電池厚みは6.8mmとなった。過充電テストでは過充電中短絡もなく、破裂・発火もなかったが、電池容量が13.8Ahと実施例1に比べ若干低下した。
実施例2
実施例1においてセパレータをレーヨン製抄紙(厚み:31μm、透気度:138sec/100cc)を用いる以外は実施例1と同様に電池を組み立て、容量、過充電特性を評価した。この電池の容量は14.4Ahであった。
【0058】
この電池を14Aの電流で12Vまで充電する過充電テストを実施したが、過充電中短絡もなく、破裂・発火もなかった。
比較例3
実施例1においてセパレータをレーヨン製抄紙(厚み:58μm、透気度:191sec/100cc)を用いる以外は実施例1と同様に電池を組み立て、容量、過充電特性を評価した。実施例1に比べ、セパレータが厚いため電池厚みは6.6mmとなった。過充電テストでは過充電中短絡もなく、破裂・発火もなかったが、電池容量が14.2 Ahと実施例1に比べ若干低下した。
【0059】
なお、上記で用いた透気度は、ガーレー試験機法(JIS P 8117)に準拠し、642mmの紙または板紙を空気 100mlが通過する時間をいう。
【0060】
【発明の効果】
本発明の非水系二次電池は、特定の厚み及び透気度を有する不織布又は紙をセパレータとして用いることにより、安価でかつ安全性の高いという特徴を有している。
【図面の簡単な説明】
【図1】本発明の一実施形態である蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図2】図1に示す電池の内部に収納される電極積層体の側面図を示す図である。
【図3】図2に示す電極積層体を構成する正極、負極、及びセパレータの平面図である。
【図4】図1に示す電池における、上蓋と底容器の断面図を示す図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104 セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電片
106b 負極集電片
[0001]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Patent Document 1 proposes a total system that combines electricity, gas cogeneration, a fuel cell, a storage battery, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery, and in most cases, lead batteries are used.
[0002]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. From that, the market has been dramatically extended.
[0003]
Accordingly, in the field of large batteries for power storage systems, large lithium ion batteries are being developed as candidates for high energy density batteries.
[0004]
However, although these large lithium ion batteries can obtain a high energy density, they are generally in the shape of a battery such as a cylindrical type or a square type, and heat is likely to accumulate inside the battery, and there is a problem in reliability, particularly safety. It was left.
[0005]
For the purpose of solving the above problem, Patent Document 2 discloses a non-aqueous secondary battery having a flat shape in which a non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is housed in a battery container. The secondary battery has a flat shape with a thickness of less than 12 mm, a nonaqueous secondary battery having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more is disclosed. The battery proposes to solve the problems of reliability and safety caused by the heat storage, which is a barrier to practical use, due to the unique battery shape (flat shape).
[0006]
On the other hand, it is the cost of the battery that hinders the practical use of a large-sized lithium ion battery, and the polyethylene microporous film generally used for lithium ion batteries is also an expensive material for the separator. Regarding separator materials, various studies have been made on small lithium ion batteries. For example, Patent Document 3 discloses that paper is made by using a beating raw material of regenerated cellulose fibers that can be beaten in a separator interposed between electrodes. A non-aqueous battery characterized in that the used paper is used has been proposed, and it has been shown that an inexpensive separator such as a nonwoven fabric or paper can also be used for a lithium ion battery.
[0007]
However, separators are important for ensuring safety in large-sized lithium ion batteries. When nonwoven fabrics or paper separators are used, heat resistance can be improved by selecting the materials as described in Patent Document 4. However, unlike polyethylene microporous membranes, lithium deposited on the negative electrode during overcharge tends to cause short-circuiting in the battery, and there is still a safety problem of explosion and ignition. As a result, in order to ensure heat resistance and safety in overcharging, it is necessary to use heat-resistant paper or nonwoven fabric and an expensive polyethylene microporous film together. (Patent Document 5 etc.).
[0008]
[Patent Document 1]
JP-A-6-86463
[0009]
[Patent Document 2]
WO99 / 60652 pamphlet
[0010]
[Patent Document 3]
JP-A-8-306352
[0011]
[Patent Document 4]
JP 2002-270242 A
[0012]
[Patent Document 5]
Japanese Patent Laid-Open No. 2002-246067
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive and highly safe non-aqueous secondary battery using a specific nonwoven fabric or paper as a separator.
[0014]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have confirmed that a non-woven fabric or paper separator having a specific range of air permeability is capable of short-circuiting in the battery due to lithium deposited on the negative electrode while maintaining a preferable battery capacity. The present invention has been completed by finding out that it can be prevented and developing it.
[0015]
Item 1 A flat nonaqueous secondary battery having a thickness of less than 12 mm, comprising a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt, having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l The non-aqueous secondary battery, wherein the separator is a nonwoven fabric or paper having a thickness of 50 μm or less and 20 μm or more and an air permeability of 20 sec / 100 cc or more and 200 sec / 100 cc or less.
[0016]
Item 2 The positive electrode has a composition formula LiaNibMncMdO2(M is at least one element selected from the group consisting of Co, Al and Fe, and 1 ≦ a ≦ 1.1, 0.3 ≦ b <0.5, 0.3 ≦ c <0. The non-aqueous secondary battery according to Item 1, wherein a lithium nickel manganese composite oxide represented by 5, 0 <d ≦ 0.4, b ≧ c, b + c + d = 1) is used as an active material.
[0017]
Item 3 The non-aqueous secondary battery according to Item 1 or 2, wherein the separator has a thermal shrinkage rate at 150 ° C. of 5% or less in any of the directions along the surface.
[0018]
Item 4 The nonaqueous secondary battery according to any one of Items 1 to 3, wherein the battery container has a plate thickness of 0.2 mm to 1 mm.
[0019]
Item 5: The separator is a non-woven fabric made of at least one selected from the group consisting of cellulose and rayon, and / or paper made of at least one selected from the group consisting of cellulose and rayon. 4. The nonaqueous secondary battery according to any one of 4 above.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for a power storage system as an example of the present embodiment, and FIG. 2 shows the inside of the battery shown in FIG. It is a side view which shows the electrode laminated body accommodated in.
[0021]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment includes a battery container composed of an upper lid 1 and a bottom container 2, a plurality of positive electrodes 101a and negative electrodes housed in the battery container. 101b, 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) are provided via a separator 104 as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of stacked layers can be variously changed depending on the required capacity. The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 210 mm long × 150 mm wide × 6 mm thick, and lithium-containing composite oxide is used for the positive electrode 101a and a carbon material is used for the negative electrodes 101b and 101c. In the case of a secondary battery, for example, it can be used in a power storage system.
[0022]
Moreover, as shown in FIG. 1, the positive electrode terminal 3 and the negative electrode terminal 4 are attached to the upper lid 1 of the battery container in a state insulated from the upper lid 1, and each positive electrode 101a shown in FIG. The positive electrode current collector 106 a is electrically connected, and the negative electrode current collector 106 b of each of the negative electrodes 101 b and 101 c is electrically connected to the negative electrode terminal 4.
[0023]
The top lid 1 and the bottom container 2 constitute a battery container by melting the point A shown in the enlarged view in FIG. 1, that is, the peripheral edge of the top lid 1 and welding it to the bottom container 2. Examples of the welding method include laser welding, arc welding, resistance welding and the like. Among them, laser welding is preferable because the welding area is small and energy can be concentrated, so that deformation deformation of the container and thermal influence on the periphery are small. The upper lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, is sealed using, for example, a sealing film 6 made of an aluminum-modified polypropylene laminate film.
[0024]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used. Among them, from the viewpoint of battery energy density, cost, and safety, it is preferable to use a lithium nickel manganese composite oxide represented by the following formula, and lithium is easily deposited on the negative electrode during overcharge, The effect of using the separator of the present invention described below is great.
[0025]
LiaNibMncMdO2
[Wherein M is at least one element selected from the group consisting of Co, Al and Fe, and 1 ≦ a ≦ 1.1, 0.3 ≦ b <0.5, 0.3 ≦ c. <0.5, 0 <d ≦ 0.4, b ≧ c, b + c + d = 1]
Formula: LiaNibMncMdO2In the above, a indicating the molar ratio of Li is usually about 1 ≦ x ≦ 1.1. When a deviates from this range, the cycle characteristics or the active material capacity is greatly reduced.
[0026]
The b indicating the molar ratio of Ni is usually about 0.3 ≦ b <0.5. When b is too large, the capacity of the battery increases, but the thermal stability decreases and the safety of the battery also decreases. Moreover, when too small, the capacity | capacitance of a battery will fall.
[0027]
C indicating the molar ratio of Mn is usually about 0.3 ≦ c <0.5. When c is too large, the thermal stability is improved and the safety of the battery is improved, but the capacity of the battery is reduced. On the other hand, if it is too small, the capacity of the battery is increased, but the thermal stability is lowered and the safety of the battery is also lowered.
Examples of the element M that substitutes for Ni or Mn in the formula include Co, Al, Fe, and the like. Among these, Co and Al are more preferable from the viewpoint of cycle characteristics and safety. The d indicating the molar ratio of the substitution element M is usually about 0 <d ≦ 0.4. When M is 0, the powder of the active material becomes bulky, and the high rate discharge characteristics also deteriorate. When M is too large, the thermal stability of the active material is lowered.
[0028]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, and silicon oxide-based metal oxides that are used as negative electrode materials for known lithium ion batteries. In terms of cost, for example, a graphite material having a double structure in which a carbon material is coated on the surface of a graphite material such as natural graphite is desirable.
[0029]
The method for forming the positive electrode active material and the negative electrode active material of the present invention into electrodes can be appropriately selected from known methods according to the desired characteristics of the nonaqueous secondary battery. For example, a positive electrode active material (or negative electrode active material), a binder, and optionally a solvent such as N-methyl-2-pyrrolidone (NMP) are mixed to form a slurry, which is applied to a current collector and dried. It is molded by compression.
[0030]
The binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene, and olefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene.
[0031]
When forming the positive electrode or the negative electrode on the current collector, the material of the current collector is not particularly limited as long as it is selected in consideration of the voltage resistance of the material, copper foil, stainless steel foil, titanium foil, An aluminum foil etc. are illustrated.
[0032]
The separator 104 has a thickness of 50 μm or less and 20 μm or more, preferably 40 μm or less and 20 μm or more, more preferably 30 μm or less and 20 μm or more, and an air permeability of 20 sec / 100 cc or more and 200 sec / 100 cc or less, preferably 60 sec / 100 cc or more and 150 sec / 100 cc. Hereinafter, a non-woven fabric or paper of 70 sec / 100 cc or more and 100 sec / 100 cc or less is more preferably used. When the thickness exceeds 50 μm, the capacity of the battery decreases. When the thickness is less than 20 μm, the production is difficult and impractical. When the air permeability is less than 20 sec / 100 cc, lithium cannot prevent electrodeposition on the negative electrode during overcharging, which is an object of the present invention, and a short circuit is likely to occur. Further, when the air permeability exceeds 200 sec / 100 cc, the flat battery of the present invention tends to cause poor injection of the electrolyte, and the internal resistance increases. The air permeability measured by the Gurley tester method (JIS P 8117) was used.
[0033]
The material of the separator 104 is not particularly limited as long as it has the above characteristics, but it is preferable to use a battery having a heat shrinkage rate at 150 ° C. of 5% or less in any direction along the surface. It is preferable from the heat resistance and safety design. For example, cellulose-based, polyester-based, polyamide-based, polyphenylene sulfide-based, fluorine-based, polyolefin-based resins, or inorganic fibers such as glass fibers can be used. Is preferably used. Moreover, the form of a separator employ | adopts the nonwoven fabric, paper, etc. containing said material. Preferably, the nonwoven fabric which consists of at least 1 sort (s) chosen from the group which consists of cellulose and rayon, the paper which consists of at least 1 sort (s) chosen from the group which consists of cellulose and rayon, etc. are mentioned.
[0034]
As the electrolyte of the secondary battery of the present invention, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined according to the use conditions such as the positive electrode material, the negative electrode material, the charging voltage, and more specifically, LiPF.6, LiBF4LiClO4Lithium salt such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these is dissolved. The thing etc. are illustrated. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and this electrolytic solution naturally has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0035]
In the non-aqueous secondary battery of the present embodiment, for example, the front and back surfaces of the flat shape of the battery container can be various shapes such as a square, a circle, an oval, etc. It can also be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0036]
In this embodiment, the battery container is composed of a flat top lid and a bottom container that has been subjected to drawing processing, and the top lid 1 and the bottom container 2 include, for example, a portion made of stainless steel, aluminum, or an aluminum alloy as a main member. ing. Among these, aluminum and aluminum alloys are preferably used from the viewpoint of cost and battery weight. In this case, the entire battery container does not necessarily need to be made of an aluminum-based material, and a portion made of an aluminum-based material may be provided as a main component.
[0037]
The thicknesses of the top cover 1 and the bottom container 2 constituting the battery container are appropriately determined depending on the use of the battery, the material of the battery case, etc., and are not particularly limited, but preferably 80% or more of the battery surface area. The thickness of the portion (thickness of the portion having the largest area constituting the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a problem that the strength required for battery production cannot be obtained. From this viewpoint, the thickness is more preferably 0.3 mm or more, and further preferably 0.4 mm or more. It is. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and sufficient capacity cannot be obtained, or the weight is increased. Preferably it is 0.7 mm or less.
[0038]
In order to reduce the internal pressure of the battery after completion to less than atmospheric pressure, the positive electrode 101a, the negative electrodes 101b and 101c, the separator 104, and the nonaqueous electrolyte are accommodated in the battery container, and the pressure in the battery container is set to atmospheric pressure. The final sealing step of the battery container is performed in a state of less than. This final sealing step is preferably performed after at least one charging operation. In this case, gas may be generated inside due to the decomposition of the electrolytic solution at the initial stage of the first charge. In this case, if the final sealing step is performed at less than atmospheric pressure without performing the charging operation, the subsequent first time This is because there is a case where the inside of the battery is pressurized (atmospheric pressure or more) by the charging operation, the thickness of the battery increases, the internal resistance and capacity of the battery vary, and stable cycle characteristics cannot be obtained. In particular, when a liquid electrolyte using graphite for the negative electrode and a lithium composite oxide for the positive electrode is used, gas is likely to be generated.
[0039]
This charging operation may employ various conditions depending on the types of positive electrode material, negative electrode material, separator, electrolyte, etc. used in the battery, the moisture content and impurities of these materials, the voltage at which the battery is used, etc. However, for example, the battery may be charged at a rate of about 4 to 8 hours to the working voltage of the battery, a constant voltage may be applied as necessary, and the battery may be discharged at a rate of about 8 hours to the normal lower limit voltage. The final sealing step is performed after this charging operation. In addition, sealing may be performed after performing only the charging operation below the capacity of the battery, or various charging operations such as sealing after repeating charging and discharging twice or more are possible. It is important to maintain the internal pressure of the battery below atmospheric pressure.
[0040]
As described above, in this embodiment, after the gas is generated by performing the charging operation, degassing is performed, and the final sealing step is performed at less than atmospheric pressure, so that the container that is likely to occur when used for a flat battery container is swollen. Can solve the problem. In this case, when the first charging operation is performed, the internal pressure of the battery is not particularly limited, but it is preferable that the internal pressure of the battery is lower than atmospheric pressure.
[0041]
So far, the flat non-aqueous secondary battery of the present invention has been described with an example, but the battery shape, the laminated structure in the battery, the terminal structure, etc. are not limited.
[0042]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the description of these examples.
[0043]
Example 1
(1) First, LiNi as a lithium nickel manganese composite oxide1/3Mn1/3Co1/3O2, High specific surface area natural graphite as a conductive material (BET specific surface area = 250 g / m2) And acetylene black. A slurry 1 was prepared by uniformly dispersing the obtained mixture in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) as a binder was dissolved. Next, slurry 1 was applied to both sides of an aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode.
[0044]
The solid content weight ratio in the positive electrode was adjusted to be lithium nickel manganese composite oxide: high specific surface area natural graphite: acetylene black: PVDF = 92: 3: 2: 3.
[0045]
FIG. 3A is an explanatory diagram of the positive electrode. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 177 × 130 mm.2It is. Further, on the short side of the electrode, a current collector 106a to which the slurry 1 is not applied is provided, and a hole having a diameter of 3 mm is formed in the center thereof.
[0046]
(2) Double-structured graphite particles are natural graphite (average particle size 25 μm, tap density 0.86 g / cm3) And petroleum pitch (softening point 250 ° C., toluene insoluble content 30%) were mixed and fired.
[0047]
(3) Double-structure graphite particles prepared in (2) above (interplanar spacing of (002) plane of graphite particle core (d002) = 0.34 nm, interplanar spacing of (002) plane of coating layer (d002) = After the dry blending of the artificial graphite as the conductive material and the conductive material, the slurry was uniformly dispersed in NMP in which PVDF as the binder was dissolved. Next, the slurry 2 was applied on both sides of a copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode.
[0048]
The solid content ratio (weight ratio) in the negative electrode was adjusted to be double-structured graphite particles: artificial graphite: PVDF = 93: 2: 5.
[0049]
FIG. 3B is an explanatory diagram of the negative electrode. The coating area (W1 × W2) of the negative electrode 101b is 133 × 181.5 mm.2It is. Further, a current collector 106b to which the slurry 2 is not applied is provided on the short side of the electrode, and a hole having a diameter of 3 mm is formed in the center thereof.
[0050]
Furthermore, the slurry 2 was apply | coated only to one side by the method similar to the above, and the single-sided electrode was produced. A single-sided electrode is arrange | positioned outside in the electrode laminated body of the below-mentioned (3) term (101c in FIG. 2).
[0051]
(4) As shown in FIG. 2, 11 sheets of the positive electrode obtained in the above item (1) and 12 sheets of the negative electrode obtained in the above item (2) (two inner surfaces) were separated into a separator 104 (rayon papermaking: (Thickness: 30 μm, air permeability: 89 sec / 100 cc), and for insulation from the battery container, an insulating film (polyester film: thickness: 40 μm) is further provided outside the outer negative electrode 101c. Alternately stacked. The thermal contraction rate of this separator 104 at 150 ° C. was 1.1%.
[0052]
(4) As shown in FIG. 4, a 0.5 mm thick SUS304 thin plate was squeezed to a depth of 5.5 mm to produce the bottom container 2, and the upper lid 1 was also made of a 0.5 mm thick SUS304 thin plate. . Next, the positive electrode terminal 3 made of aluminum and the negative electrode terminal 4 made of copper (head diameter 6 mm, screw portion of the tip M3) were attached to the upper lid 1. The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a Teflon (registered trademark) gasket.
[0053]
(5) The hole of each positive electrode current collector 106a of the electrode laminate produced in the above item (3) is inserted into the positive electrode terminal 3, and the hole of each negative electrode current collector 106b is inserted into the negative electrode terminal 4, and made of aluminum and copper, respectively. Then, the connected electrode laminate was fixed with an insulating tape, and the corner A in FIG. 1 was laser welded over the entire circumference. Next, vinylene carbonate in an amount corresponding to 2% by weight of the total solvent weight was added to the electrolyte solution (ethylene carbonate and ethylmethyl carbonate in a volume ratio of 30:70) from the injection port 5 (diameter 6 mm). After that, LiPF to a concentration of 1 mol / l6Was dissolved). Next, the liquid injection port 5 was once sealed using a temporary fixing bolt under atmospheric pressure.
[0054]
(6) The battery was charged to 4.2 V at a current of 3.4 A at 25 ° C., followed by constant current and constant voltage charging for applying a constant voltage of 4.2 V for a total of 8 hours, followed by a constant current of 2 A. Was discharged to 2.5V.
[0055]
(7) Next, after removing the temporary fixing bolt of the battery, the inside of the container is 4 × 104A sealing film 6 made of an aluminum foil-modified polypropylene laminate film having a thickness of 0.08 mm punched out to a diameter of 12 mm so as to be under a reduced pressure of Pa (300 Torr), a temperature of 250 to 350 ° C., a pressure of 1 to 3 kg / cm.2The liquid injection port 5 was finally sealed by heat-sealing under conditions of a pressurization time of 5 to 10 seconds to obtain a flat notebook battery having a width of 148 mm, a height of 210 mm, and a thickness of 6.5 mm. .
[0056]
(8) Using this battery at 25 ° C., charging to 4.2 V with a current of 3 A, followed by constant current and constant voltage charging for applying a constant voltage of 4.2 V for a total of 8 hours, followed by a constant current of 15 A When the current was discharged to 2.5 V and the capacity was measured, a capacity of 14.5 Ah was obtained. The energy of this battery was 52.2 Wh, and the energy density was 258 Wh / l.
[0057]
An overcharge test was performed in which this battery was charged to 12 V at a current of 14 A, but there was no short circuit during overcharge, and there was no rupture or ignition.
Comparative Example 1
A battery was assembled in the same manner as in Example 1 except that a polypropylene nonwoven fabric (thickness: 30 μm, air permeability: 10 sec / 100 cc or less) was used as the separator in Example 1, and the capacity and overcharge characteristics were evaluated. The capacity was 14.6 Ah, which was the same value as in the example. However, in the overcharge test, the battery was short-circuited at a charging rate of 180%, and the battery voltage dropped sharply. The study was discontinued.
Comparative Example 2
A battery was assembled in the same manner as in Example 1 except that rayon papermaking (thickness: 55 μm, air permeability: 320 sec / 100 cc) was used as the separator in Example 1, and the capacity and overcharge characteristics were evaluated. Since the separator was thicker than Example 1, the battery thickness was 6.8 mm. In the overcharge test, there was no short circuit during overcharge and no rupture / ignition, but the battery capacity was 13.8 Ah, which was slightly lower than that of Example 1.
Example 2
A battery was assembled in the same manner as in Example 1 except that rayon papermaking (thickness: 31 μm, air permeability: 138 sec / 100 cc) was used as the separator in Example 1, and the capacity and overcharge characteristics were evaluated. The capacity of this battery was 14.4 Ah.
[0058]
An overcharge test was performed in which this battery was charged to 12 V at a current of 14 A, but there was no short circuit during overcharge, and there was no rupture or ignition.
Comparative Example 3
A battery was assembled in the same manner as in Example 1 except that rayon papermaking (thickness: 58 μm, air permeability: 191 sec / 100 cc) was used as the separator in Example 1, and the capacity and overcharge characteristics were evaluated. Since the separator was thicker than Example 1, the battery thickness was 6.6 mm. In the overcharge test, there was no short circuit during overcharge, and there was no rupture / ignition, but the battery capacity was 14.2 Ah, which was slightly lower than that of Example 1.
[0059]
The air permeability used above is 642 mm in accordance with the Gurley Tester Method (JIS P 8117).2The time required for 100 ml of air to pass through the paper or paperboard.
[0060]
【The invention's effect】
The nonaqueous secondary battery of the present invention is characterized by being inexpensive and highly safe by using a nonwoven fabric or paper having a specific thickness and air permeability as a separator.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a diagram showing a side view of an electrode laminate housed in the battery shown in FIG. 1. FIG.
3 is a plan view of a positive electrode, a negative electrode, and a separator that constitute the electrode laminate shown in FIG. 2. FIG.
4 is a cross-sectional view of an upper lid and a bottom container in the battery shown in FIG.
[Explanation of symbols]
1 Upper lid
2 Bottom container
3 Positive terminal
4 Negative terminal
5 Injection port
6 Sealing film
101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104 separator
105a Positive electrode current collector
105b Negative electrode current collector
106a Positive electrode current collector
106b Negative electrode current collector

Claims (5)

正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を備えた厚さが12mm未満の扁平形状の非水系二次電池であって、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、前記セパレータが、厚み50μm以下20μm以上かつ透気度20sec/100cc以上200sec/100cc以下の不織布又は紙であることを特徴とする非水系二次電池。A flat non-aqueous secondary battery having a thickness of less than 12 mm comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt, having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more A non-aqueous secondary battery, wherein the separator is a nonwoven fabric or paper having a thickness of 50 μm or less and 20 μm or more and an air permeability of 20 sec / 100 cc or more and 200 sec / 100 cc or less. 前記正極が、組成式LiNiMn(Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、かつ1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1)で表されるリチウムニッケルマンガン複合酸化物を活物質とすることを特徴とする請求項1に記載の非水系二次電池。The positive electrode has a composition formula Li a Ni b Mn c M d O 2 (M is at least one element selected from the group consisting of Co, Al and Fe, and 1 ≦ a ≦ 1.1, 0. 3 ≦ b <0.5, 0.3 ≦ c <0.5, 0 <d ≦ 0.4, b ≧ c, b + c + d = 1) is used as the active material. The non-aqueous secondary battery according to claim 1. 前記セパレータが、150℃での熱収縮率が、面に沿う方向のいずれにおいても5%以下であることを特徴とする請求項1又は2に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1, wherein the separator has a thermal shrinkage rate at 150 ° C. of 5% or less in any direction along the surface. 前記電池容器の板厚が、0.2mm以上1mm以下であることを特徴とする請求項1〜3のいずれかに記載の非水系二次電池。The nonaqueous secondary battery according to any one of claims 1 to 3, wherein a plate thickness of the battery container is 0.2 mm or more and 1 mm or less. 前記セパレータが、セルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる不織布、及び/又はセルロース及びレーヨンからなる群から選ばれる少なくとも1種からなる紙であることを特徴とする請求項1〜4のいずれかに記載の非水系二次電池。The separator is a non-woven fabric made of at least one selected from the group consisting of cellulose and rayon, and / or paper made of at least one selected from the group consisting of cellulose and rayon. The non-aqueous secondary battery according to any one of the above.
JP2003088839A 2003-03-27 2003-03-27 Non-aqueous secondary battery Expired - Fee Related JP4403447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088839A JP4403447B2 (en) 2003-03-27 2003-03-27 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088839A JP4403447B2 (en) 2003-03-27 2003-03-27 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2004296325A true JP2004296325A (en) 2004-10-21
JP4403447B2 JP4403447B2 (en) 2010-01-27

Family

ID=33402863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088839A Expired - Fee Related JP4403447B2 (en) 2003-03-27 2003-03-27 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4403447B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120529A (en) * 2004-10-22 2006-05-11 Nec Corp Positive electrode active material for nonaqueous electrolytic solution secondary battery, positive electrode for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2006342474A (en) * 2005-06-10 2006-12-21 Asahi Kasei Chemicals Corp Polyketone nonwoven fabric and polyketone fibrillar material
JP2009054319A (en) * 2007-08-23 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery
JP2010287380A (en) * 2009-06-10 2010-12-24 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery using ionic liquid
EP2410593A1 (en) * 2010-07-13 2012-01-25 Samsung SDI Co., Ltd. Lithium secondary battery
JPWO2012115093A1 (en) * 2011-02-24 2014-07-07 日本電気株式会社 Electric storage device separator and electric storage device
JPWO2012115092A1 (en) * 2011-02-24 2014-07-07 日本電気株式会社 Electric storage device separator and electric storage device
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120529A (en) * 2004-10-22 2006-05-11 Nec Corp Positive electrode active material for nonaqueous electrolytic solution secondary battery, positive electrode for secondary battery, and nonaqueous electrolytic solution secondary battery
JP4549237B2 (en) * 2005-06-10 2010-09-22 旭化成イーマテリアルズ株式会社 Polyketone non-woven fabric and polyketone fiber fibril
JP2006342474A (en) * 2005-06-10 2006-12-21 Asahi Kasei Chemicals Corp Polyketone nonwoven fabric and polyketone fibrillar material
US8728670B2 (en) 2007-08-23 2014-05-20 Kabushiki Kaisha Toshiba Nonaqueous-electrolyte battery containing a negative electrode with a coating film formed by an isocyanate-containing compound in the nonaqueous electrolyte
JP2009054319A (en) * 2007-08-23 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
JP2010287380A (en) * 2009-06-10 2010-12-24 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery using ionic liquid
US9005820B2 (en) 2009-06-10 2015-04-14 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery using ionic liquid
KR101563754B1 (en) * 2009-06-10 2015-10-27 다이이치 고교 세이야쿠 가부시키가이샤 Lithium secondary battery using ionic liquid
EP2410593A1 (en) * 2010-07-13 2012-01-25 Samsung SDI Co., Ltd. Lithium secondary battery
JPWO2012115093A1 (en) * 2011-02-24 2014-07-07 日本電気株式会社 Electric storage device separator and electric storage device
JPWO2012115092A1 (en) * 2011-02-24 2014-07-07 日本電気株式会社 Electric storage device separator and electric storage device
JP5962646B2 (en) * 2011-02-24 2016-08-03 日本電気株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP5962647B2 (en) * 2011-02-24 2016-08-03 日本電気株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4403447B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US8247100B2 (en) Electrochemical device
JP5693982B2 (en) Non-aqueous secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
US20160276652A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPWO2006118279A1 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
CN111095613B (en) Electrode, nonaqueous electrolyte battery and battery pack
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP2013016265A (en) Nonaqueous secondary battery
JP7476936B2 (en) Film-covered battery, battery pack, and method for manufacturing said film-covered battery
JP2005285633A (en) Non-aqueous system secondary battery and its charging method
US20050058896A1 (en) Non-aqueous electrolyte secondary battery
JP4403447B2 (en) Non-aqueous secondary battery
JP2006260990A (en) Stacked battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP2009206081A (en) Manufacturing method for lithium-ion secondary battery, electrolyte, and lithium-ion secondary battery
US20150079448A1 (en) Nonaqueous electrolyte battery
JP4085244B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4092543B2 (en) Non-aqueous secondary battery
JP4168263B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP2001243953A (en) Non-aqueous secondary battery
JP4288472B2 (en) Non-aqueous secondary battery
JP4288471B2 (en) Non-aqueous secondary battery
JP4859277B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees