JP2004296149A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004296149A
JP2004296149A JP2003083921A JP2003083921A JP2004296149A JP 2004296149 A JP2004296149 A JP 2004296149A JP 2003083921 A JP2003083921 A JP 2003083921A JP 2003083921 A JP2003083921 A JP 2003083921A JP 2004296149 A JP2004296149 A JP 2004296149A
Authority
JP
Japan
Prior art keywords
phase
negative electrode
battery
mass
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003083921A
Other languages
Japanese (ja)
Other versions
JP4561040B2 (en
Inventor
Shigeki Yamate
山手  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003083921A priority Critical patent/JP4561040B2/en
Priority to CNB038173956A priority patent/CN1315208C/en
Priority to US10/520,125 priority patent/US7781099B2/en
Priority to PCT/JP2003/008508 priority patent/WO2004006362A1/en
Publication of JP2004296149A publication Critical patent/JP2004296149A/en
Application granted granted Critical
Publication of JP4561040B2 publication Critical patent/JP4561040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery little in swelling at the time of quick charging by a current density of ≥1.5C rate at a low temperature of ≤0°C, and having a capacity density and a cycle life property not less than that of the conventional one at room temperature. <P>SOLUTION: In a nonaqueous electrolyte secondary battery with a positive electrode, a negative electrode and a nonaqueous electrolyte, the negative electrode contains a material containing an Sn<SB>4</SB>Ni<SB>3</SB>phase and an Sn phase and a carbon material, and in the material containing the Sn<SB>4</SB>Ni<SB>3</SB>phase and the Sn phase in the negative electrode, when the mass of the Sn<SB>4</SB>Ni<SB>3</SB>phase is set to m1, the mass of the Sn phase is set to m2, and Z is set as Z=m1/m2, Z is made to be in the range of 0.2≤Z≤3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、錫を含む材料および炭素材料を含有する負極を用いた非水電解質二次電池に関する。
【0002】
【従来の技術】
電解質に有機電解液や高分子固体電解質を使用した、リチウムイオン電池などの非水電解質二次電池は、携帯電話、パソコン、ビデオカメラなどの電源として、幅広く使用されている。
【0003】
非水電解質二次電池の負極活物質としては、従来から、金属リチウム、リチウム合金、黒鉛をはじめとする炭素材料が用いられてきた。最近では、大容量の負極を得るために、負極活物質として、黒鉛質炭素材料と、錫や錫酸化物とを混合して用いる技術が特開2000−21392号に開示されている。また、高性能、高容量の非水電解質二次電池を得る目的で、少なくともLiと合金化する元素であるSn及びLiと合金化しにくい元素であるNiからなる金属材料を含有する負極活物質を用いる技術が、特開2001−143700号に開示されている。特開2001−143700号には、Liと合金化しにくい元素であるNiからなる金属材料としては、NiSn及び/又はNiSnを含有すること、金属材料中にはSnが単相で含有されていてもよいこと、この金属材料と従来公知の炭素材料とを併用することも可能であること、金属材料75重量部と黒鉛20重量部と結着剤5重量部とを混合して負極合剤とすることが記載されていが、金属材料中のNiSnとSnとの重量比率の最適化や、低温での高率充電特性についての記載はされていない。
【0004】
しかし、近年、携帯電話等の携帯用電子機器は全世界的に普及しつつある。従来、携帯用電子機器は、比較的温暖な地域を中心に使用されてきたが、今後は寒冷な地域でも使用されるものと思われる。寒冷地では携帯用電子機器の充電を低温でおこなわれることが予想される。
【0005】
【発明が解決しようとする課題】
携帯電話などの携帯用電子機器用電源の大部分は、リチウムイオン電池などの、電解液に有機電解液を使用した非水電解質二次電池が用いられている。また、非水電解質二次電池を携帯用電子機器に使用する場合、非水電解質二次電池を単独で使用するのではなく、過充電防止用の保護回路等と組み合わせ、電池と保護回路を筐体に収納した、いわゆる電池パックとして用いられている。
【0006】
しかしながら、従来の非水電解質二次電池を、0℃を下回るような寒冷環境下において1.5C率以上で急速充電すると、電池が膨れ、その結果電池パックが壊れるという問題点があった。
【0007】
本発明は、従来の負極活物質を用いた非水電解質二次電池では、低温で急速充電した場合に、電池が膨れるという課題を解決するもので、その目的は、0℃以下の低温における1.5C率以上の電流密度での急速充電時の電池の膨れが小さく、かつ、常温においては従来と同等以上の容量密度およびサイクル寿命性能を有する電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、正極、負極、および非水電解質を備えた非水電解質二次電池において、前記負極がSnNi相とSn相とを含む材料および炭素材料を含有し、前記負極中のSnNi相とSn相とを含む材料において、SnNi相の質量をm1、Sn相の質量をm2とし、Z=m1/m2とした時、0.2≦Z≦3であることを特徴とする。
【0009】
請求項1の発明によれば、Sn相とSnNi相とを含む材料および炭素材料を負極に用いることによって、低温急速充電時の電池の膨れが小さく、SnNi相とSn相とを含む材料における、SnNi相の質量とSn相の質量との重量比率を限定することで、この材料の粉砕が簡単におこなうことができ、負極の製造時間を短縮でき、かつ、常温においては従来と同等以上の容量密度およびサイクル寿命性能を有する非水電解質二次電池を得ることができる。
【0010】
【発明の実施の形態】
本発明は、非水電解質二次電池の負極が、SnNi相とSn相とを含む材料(以下、この材料を「材料X」とする)および炭素材料を含有し、材料Xにおいて、SnNi相の質量をm1、Sn相の質量をm2とし、Z=m1/m2とした時、0.2≦Z≦3とするものである。
【0011】
材料Xには、SnNi相やSn相以外の結晶相や非結晶相などを含んでもよく、例えば、SnNi相やSn−Niアモルファス相などのSnとNiとを含む相、Cu相やFe相などの他元素単体からなる相、AgSn相やSiNi相などの他元素を含有する相などを含んでもよい。また、この材料は金属間化合物、固溶体およびそれらの混合物のいずれであってもよいし、共晶体または包晶体であってもよい。
【0012】
負極に従来の炭素材料を用いた非水電解質二次電池を0℃で急速充電すると、負極表面への金属リチウムの析出量が多い。一方、本発明のように、負極に材料Xと炭素材料とを含んだ非水電解質二次電池を、同じ条件で急速充電しても、負極の表面への金属リチウムの析出量は著しく少なくなる。負極の表面への金属リチウムの析出量を大幅に低減することができたために、本発明による電池は著しく電池の膨れが小さくなったものと考えられる。
【0013】
材料Xの製造方法は、どのような方法であってもよいが、例えば、SnやNiなどの金属を電弧炉などで溶融させて混合して溶湯を得て、そののち、この溶湯を水冷銅ハース上などで冷却する方法などを用いることができる。
【0014】
この場合、溶湯の冷却速度は1×10℃/sec〜5×10℃/secであることが望ましい。溶湯の冷却速度が5×10℃/secより大きくするためには大掛かりな設備が必要となる。したがって,浴湯の冷却速度は5×10以下であることが望ましい。また、溶湯の冷却速度が1×10℃/sec以上である場合は、微細な結晶組織を均一に含む材料Xを得ることができる。この材料Xに含まれる微細な結晶組織はSn相およびSnNi相である。
【0015】
材料Xに含まれるSn相とSnNi相のうち、Sn相のみがLiの吸蔵放出が可能であって、充放電時に膨張収縮を生じる。微細なSn相およびSnNi相が均一に存在することによって、充放電時に膨張収縮しないSnNi相がSn相を取り囲むマトリックスとして作用し、その結果、材料Xの膨張収縮を抑えられたものと推測される。したがって,電池膨れを抑制するためには溶湯の冷却速度が1×10℃/sec以上であることが好ましい。
【0016】
本発明の材料Xにおいて、SnNi相の質量をm1、Sn相の質量をm2とし、Z=m1/m2とした時、0.2≦Z≦3を満たす場合、この材料の粉砕が簡単におこなえるので、負極の製造時間を短縮できる。その結果、容易に製造可能な非水電解質二次電池を得ることが可能になる。
【0017】
本発明は、非水電解質二次電池において、負極が、材料Xおよび炭素材料を含有することを特徴とするものであるが、材料Xと炭素材料との混合組成は、材料Xの質量をn1とし、炭素材料の質量をn2とし、n2に対するn1の比の値をS(=n1/n2)と定義したとき、0.05≦S≦3.5を満たすことが好ましい。
【0018】
その理由はSの値が0.05より小さい場合には、炭素材料の質量に対して材料Xのそれの割合が著しく小さい。そのため、材料Xによる、低温急速充電時金属リチウム生成抑制効果が充分ではないので、電池が膨れたものと推測される。また、Sの値が3.5より大きい場合には、炭素材料の質量に対して材料Xのそれの割合が大きい。そのために、材料Xの膨張の影響が大きく、負極板内の集電性が低下して、その電流分布が不均一となる。その結果、炭素材料へのLi吸蔵反応と同時に金属リチウム生成反応が生じて、電池が膨れたものと推測される。
【0019】
なお、炭素材料としては、どのようなものを用いてもよいが、たとえば、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、コークス類、熱分解炭素、活性炭などを用いることができる。炭素材料としては天然黒鉛、人造黒鉛などの黒鉛質炭素材料またはこれらの混合物を用いることができる。その形状は、どのようなものであってもよく、たとえば、鱗片状、繊維状、球状、塊状などがあげられる。また、炭素材料にホウ素やアルミニウムなどを添加してもよい。
【0020】
本発明の非水電解質二次電池において、正極および負極の形状はどのようなものであってもよく、たとえば、シート状、ペレット状などがあげられる。シート状の極板の具体例としては、金属箔上に負極活物質を含む合剤層を備えた負極、金属箔上に正極活物質を含む合剤層を備えた正極、金属の発泡体に負極活物質を含む合剤を充填した負極などがあげられる。ペレット状の極板の具体例としては、負極活物質を含む合剤をプレス成形して得られる負極、金属缶に正極活物質を含む合剤を充填した正極、金属缶に負極活物質を含む合剤を充填した負極などがあげられる。
【0021】
また、正・負極は集電体基材を含んでもよく、たとえば、銅、ニッケル、アルミニウムなどの面状体、三次元多孔体、網状体などがあげられる。面状体の具体例としては、たとえば、箔または板などが、三次元多孔体の具体例としてはたとえば、発泡体または焼結体などが、網状体の具体例としては、たとえば、エキスパンド格子、パンチングメタルまたはメッシュなどがそれぞれあげられる。
【0022】
本発明の非水電解質二次電池において、非水電解質としては非水系液体電解質または固体電解質のいずれを用いてもよい。
【0023】
非水系液体電解質を用いる場合は、その溶媒として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、エチルアセテートなどの極性溶媒またはこれらを任意に含む混合溶媒を用いることができる。
【0024】
また、非水系液体電解質の溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCl、LiBr、LiCFCO、LiCFSO、LiCSO、LiN(SOCF、LiN(SOCFCF、LiN(SOCF)(SOCFCFCFCF)、LiN(COCFおよびLiN(COCFCFなどのリチウム塩およびこれらを任意に含む混合物を用いることができる。
【0025】
固体電解質を用いる場合は、たとえば、Li含有カルコゲン化物などの無機固体電解質、Liを含む高分子からなるシングルイオン伝導体、高分子にリチウム塩を含有させた高分子電解質、などを用いることができる。高分子電解質は、非水系液体電解質を高分子に湿潤または膨潤させることによって、高分子にリチウム塩を含有させたものであってもよいし、リチウム塩のみを高分子中に溶解したものであってもよい。
【0026】
高分子電解質に含有させるリチウム塩としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCl、LiBr、LiCFCO、LiCFSO、LiCSO、LiN(SOCF、LiN(SOCFCF、LiN(SOCF)(SOCFCFCFCF)、LiN(COCFおよびLiN(COCFCFなどのリチウム塩およびこれらを任意に含む混合物を用いることができる。さらに、固体電解質を用いる場合は、電池内に複数の電解質が含まれてもよい。たとえば、正極および負極においてそれぞれことなる電解質を用いることができる。
【0027】
高分子電解質に用いる高分子としては、非水系液体電解質によって湿潤または膨潤して良好なイオン伝導性を示すものが好ましく、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などのポリエーテル、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリアクリロニトリル、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン、あるいはこれらの誘導体を、単独であるいは混合して用いることができる。また、上記高分子を構成する各単量体を共重合させたポリマー、たとえばビニリデンフルオライド/ヘキサフルオロプロピレンコポリマー(P(VdF/HFP))、スチレンブタジエンゴム(SBR)などを用いることもできる。
【0028】
これらの高分子電解質を用いる理由は、Liのイオン伝導度および易動度が高くなるために、電池の分極が低減できるからある。また、高分子電解質は形状変化可能なものが好ましい。この理由は、充放電による負極活物質の体積膨張収縮に追随できるので、負極の電子伝導性能およびイオン伝導性能を良好に維持できるからである。
【0029】
本発明の非水電解質二次電池において、負極が高分子電解質を含んでもよい。この高分子電解質はリチウムイオン伝導性および結着性を示すものが好ましい。この理由は、この負極における活物質―活物質間および活物質―高分子電解質間の結着性が良好であるため、ならびに、充放電を繰り返したあとの負極の電子伝導性能およびイオン伝導性能が良好に維持できるためである。とくに、高分子電解質が有孔性であることが好ましい。この理由は、孔中に電解液を保持することにより、高分子電解質のイオン伝導性がさらに向上するからである。
【0030】
本発明の非水電解質二次電池において、正極活物質として、例えば組成式LiMO、LiM’またはLi(ただしMおよびM’は遷移金属、0≦x≦1、0≦y≦2、y+z=1または2)であらわされる複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物などを用いることができる。その具体例としては、LiCoO、LiNiO、LiCo0.2Ni0.8、LiCo0.15Ni0.85、LiNi0.5Mn1.5、LiMn、LiMn 、LiMnO、MnO、FeO、V、V13、TiO、TiS、NiOOH、FeOOH、FeSなどが挙げられる。上記各種活物質を任意に混合して用いてもよい。
【0031】
なお、正極活物質としてMnO、FeO、V、V13、TiO、TiS、NiOOH、FeOOH、FeSなどのLiを含まないものを用いる場合は、正極あるいは負極にLiを化学的に吸蔵させたものを用いて電池を製作してもよい。たとえば、正極または負極と金属リチウムとをLiを含む非水電解質中で接触させたものを適用する方法、正極または負極の表面上に金属Liを貼り付ける方法などがあげられる。
【0032】
本発明の非水電解質二次電池において、正極が高分子電解質を含んでもよい。この高分子電解質はリチウムイオン伝導性および結着性を示すものが好ましい。この理由は、この正極における活物質―活物質間および活物質―高分子電解質間の結着性が良好であるため、ならびに、充放電を繰り返したあとの負極の電子伝導性能およびイオン伝導性能が良好に維持できるためである。とくに、高分子電解質が有孔性であることが好ましい。この理由は、孔中に電解液を保持することにより、高分子電解質のイオン伝導性がさらに向上するからである。
【0033】
また、本発明の非水電解質二次電池にはセパレータを用いてもよい。たとえば、絶縁性のポリオレフィン微多孔膜、無機固体電解質膜、高分子電解質膜などを使用できる。また、絶縁性の微多孔膜を高分子電解質などとをくみあわせて使用してもよい。
【0034】
また、電池ケースの形状は、たとえば角形、円筒形、長円筒形、シート状材質を封筒状に加工したもの、アルミニウムなどの金属シートを樹脂被覆したシートを成形加工したものなどを選択することができる。電池ケースの材質としては、たとえば、鉄、アルミニウムなどを主体とする材料を選択することができる。
【0035】
【実施例】
以下に、好適な実施例を用いて本発明を説明するが、本発明の適用範囲はこれに限定されない。
【0036】
[実施例1]
まず、SnNi相とSn相とを含む材料Xの製造方法について説明する。Sn粉末およびNi粉末を所要量秤取して、これらを乳鉢で予備混合した。この粉末をペレット状にプレス成形したのちに、電弧炉内の水冷銅ハース上に設置した。炉内をAr雰囲気に置換したのちに、アーク放電の照射によってペレットを溶解して、溶融金属が充分に混合したのを確認したのちにアーク放電の照射を停止した。溶融金属は水冷銅ハースにより冷却されて、ボタン状の固体となった。水冷銅ハース上における溶融金属の冷却速度は3×10℃/secであった。
【0037】
得られたボタン状の固体の表面に金属光沢があらわれるまで研磨したのちに、それを粉砕して材料Xを得た。図1に示したXRDパターン(X線源:Cukα、測定範囲:28°≦2θ≦42°)から、この材料にはSn相およびSnNi相だけが含まれることが確認された。
【0038】
この材料Xの元素定量分析をICP発光分析法によりおこなった。出発原料のSnおよびNi元素の質量をそれぞれp質量%およびq質量%、材料X中のSn相およびSnNi相の質量をそれぞれv質量%およびw質量%とする。この材料XがSn相およびSnNi相のみからなるので、これらの間にはつぎの関係式が成立する。
【0039】

Figure 2004296149
元素定量分析から得られたpおよびqの値を用いて、上記の関係式を連立して解くことによって、vおよびwを算出した。さらに、これらの値からZ(=v/w)を計算した結果、0.2であった。
【0040】
つぎに、負極の製造方法について説明する。上記の材料X20質量%と黒鉛80質量%を乳鉢でよく混合して負極活物質とした。この負極活物質ではS=0.25となっている。この負極活物質50質量%、結着材としてのポリフッ化ビニリデン(PVdF)5質量%、および結着材を溶解する溶剤としてのN−メチル−2−ピロリドン(NMP)45質量%とを混合したペーストを、集電体としての、幅27mm、厚さ10μmのCu箔の両面に塗布し、150℃で乾燥してNMPを蒸発させたのちに、プレスして多孔度を調整し、負極合材層を銅箔上に備えた負極を得た。
【0041】
なお、この負極において、負極合材層の、集電体片面の単位面積当たりの質量は、完成した電池の設計容量を695±5mAhとするために、7.23mg/cmとした。ただし、設計容量とは、25℃の恒温槽内において35mAで4.1Vに達するまでの定電流およびそれにつづく4.1Vにおける2時間の定電圧での充電をおこなったのちに、140mAで2.7Vまでの定電流での放電をおこなって得られる放電容量をさす。(以後、単に設計容量と記す)
さらに、正極の製造法について説明する。正極活物質としてのコバルト酸リチウム78質量%、導電材としてのアセチレンブラック3質量%、結着材としてのポリフッ化ビニリデン(PVdF)4質量%、および結着材を溶解する溶剤としてN−メチル−2−ピロリドン(NMP)15質量%を混合したペーストを、集電たいとしての、幅26mm、厚さ15μmのアルミニウム箔の両面に塗布し、150℃で乾燥してNMPを蒸発させたのち、プレスして、正極合材層をアルミニウム箔上に備えた正極を得た。
【0042】
なお、この正極において、正極合材層の、集電体片面の単位面積当たりの質量は、完成した電池の設計容量を695±5mAhとするために、21.79mg/cmとした。
【0043】
これらの正・負極と、幅29mm、厚さ20μmのポリエチレンセパレータとを巻回したのち、高さ47.0mm、幅29.2mm、厚さ4.15mmの角形のアルミニウム製電池ケースに挿入した。このとき、正極合材層と負極合材層とが対向する部分の合計面積が2.40×10cmとなるように調整した。さらに、電池ケースの蓋に位置する正極、負極端子にそれぞれ正極、負極リードを超音波溶着したのち、レーザー溶接によって蓋を電池ケースに接合した。
【0044】
1mol/lのLiPFを含む、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)の体積比率1:1の混合溶液を電解質として用いた。電池ケースに設けた直径1mmの注液口から、この電解液を注液した後、注液口をレーザー溶接によってふさいだ。電池の体積をその外寸から計算したところ、5.72cmであった。電池の組立作業は、25℃のドライルーム内でおこなった。以上のようにして、本発明による電池(A)を2個製作した。
【0045】
[実施例2〜7、比較例1、2]
出発原料のSn粉末およびNi粉末の秤取量を変えることにより、材料XのZの値を0.3〜3とし、正・負極の合材層の、集電体片面の単位面積当たりの質量を変更したこと以外は実施例1と同様にして、実施例2〜7の電池(B)〜(G)をそれぞれ2個ずつ製作した。
【0046】
また、材料XのZの値を0.1とし、正・負極の合材層の、集電体片面の単位面積当たりの質量を変更したこと以外は実施例1と同様にして、比較例1の電池(H)を2個と、材料XのZの値を4.5とし、正・負極の合材層の、集電体片面の単位面積当たりの質量を変更したこと以外は実施例1と同様にして、比較例2の電池(I)を2個作製した。
【0047】
ここで作製した実施例1〜7および比較例1、2の電池の内容を表1にまとめた。
【0048】
【表1】
Figure 2004296149
【0049】
[電池評価試験]
電池(A)〜(I)を各1個ずつ用いて、充電前の電池の厚さt1(mm)を測定した後、0℃の恒温槽内に3時間静置した。これらの電池に、2C率に相当する1400mAで4.1Vに達するまでの定電流およびそれに続く4.1Vにおける2時間の定電圧での充電をおこなった。この充電が終了してから30分後に、充電後の電池の厚さt2(mm)を測定した。以上の測定結果から、低温急速充電時の電池膨れを次式により算出した。その結果を表1に示す。
【0050】
[電池膨れ](mm)=t2(mm)−t1(mm)
電池膨れが0.25mmを超えるものを携帯電話などの携帯用電子機器用電源などの用途に用いると、電池パックが壊れる危険性があるので不適である。したがって、電池膨れは0.25mm以下でなくてはならない。充放電を繰り返すことによって電池が若干膨れるものと予想されるため、電池膨れが0.20mm以下であることが望ましい。
【0051】
上記の試験をおこなったものとは異なる電池(A)〜(I)各1個を用いて、25℃の恒温槽内で充放電試験を実施した。35mAで4.1Vに達するまでの定電流およびそれにつづく4.1Vにおける2時間の定電圧での充電と、140mAで2.7Vまでの定電流での放電とを1サイクルとして、この充放電を50サイクル繰り返した。各電池の1および50サイクル目の放電容量の値を用いて、次式により容量密度と容量維持率とを算出した。
【0052】
[容量密度、mAh/cm]=[1サイクル目の放電容量、mAh]/[電池の体積、cm
[容量維持率、%]=[50サイクル目の放電容量、mAh]/[1サイクル目の放電容量、mAh]
容量維持率が91%未満の場合、サイクル後に利用可能な電池の容量が小さいので、携帯機器用途への適用には適さない。試験結果を表2にまとめた。
【0053】
【表2】
Figure 2004296149
【0054】
また、これらの電池の負極に用いた材料Xにおける、Sn相の質量(m2)に対するSnNi相の質量(m1)の比であるZ値と電池膨れとの関係を図2に示す。表2および図2から、つぎのようなことがわかった。
【0055】
低温急速充電をおこなった時の電池膨れは、実施例1〜7の電池(A)〜(G)ではいずれも0.20mm以下となり、比較例1の電池(H)および比較例2の電池(I)に比べて小さくなった。
【0056】
また、容量維持率は、実施例1〜7の電池(A)〜(G)ではいずれも92.5%以上となり、比較例1の電池(H)および比較例2の電池(I)に比べて大きかった。
【0057】
なお、および実施例1〜7および比較例1、2の電池(A)〜(I)では、11サイクル目の放電容量および容量密度は、ほぼ同等であった。
【0058】
[実施例8、比較例3〜5]
Z=1.1である材料Xを使用した以外は実施例1と同様にして、実施例8の電池(J)を2個作製した。なお、完成した電池の設計容量を695±5mAhとするために、負極における負極合材層の、集電体片面単位面積当たりの質量は8.35mg/cmとし、正極における正極合材層の、集電体片面単位面積当たりの質量は21.62mg/cmとした。
【0059】
比較例3の電池は、負極活物質として黒鉛のみを使用したものである。黒鉛50質量%、結着材としてのポリフッ化ビニリデン(PVdF)5質量%、および結着材を溶解する溶剤としてのN−メチル−2−ピロリドン(NMP)45質量%とを混合したペーストを、幅27mm、厚さ10μmのCu箔の両面に塗布し、150℃で乾燥してNMPを蒸発させたのちに、プレスして多孔度を調整し、負極を得た。この負極を用いたこと以外は実施例1と同様にして、比較例3の電池(K)を2個製作した。
【0060】
比較例4の電池は、負極活物質としてSnNi相のみからなる材料と黒鉛との混合物を使用したものである。SnNi相のみからなる材料20質量%および黒鉛80質量%を乳鉢でよく混合して負極活物質とした。この負極活物質50質量%、結着材としてのポリフッ化ビニリデン(PVdF)5質量%、および結着材を溶解する溶剤としてのN−メチル−2−ピロリドン(NMP)45質量%とを混合したペーストを、幅27mm、厚さ10μmのCu箔の両面に塗布し、150℃で乾燥してNMPを蒸発させたのちに、プレスして多孔度を調整し、負極を得た。この負極を用いたこと以外は実施例1と同様にして、比較例4の電池(L)をそれぞれ2個作製した。
【0061】
比較例5の電池は、負極活物質としてSn相のみからなる材料と黒鉛との混合物を使用したものである。負極活物質以外は比較例4と同様にして、比較例5の電池(M)を2個作製した。
【0062】
ここで作製した実施例8および比較例3〜5の電池の内容を表3および表4にまとめた。
【0063】
【表3】
Figure 2004296149
【0064】
【表4】
Figure 2004296149
【0065】
実施例8および比較例3〜5の電池(J)〜(M)について、実施例1の電池(A)と同じ条件で、電池膨れ、1サイクル目の放電容量、容量密度、容量維持率を測定した。その結果を表5にまとめた。
【0066】
【表5】
Figure 2004296149
【0067】
表5の結果から、つぎのことがわかった。負極活物質に材料Xと黒鉛とを含む実施例8の電池(J)と比較し、負極活物質に黒鉛のみを用いた比較例3の電池(K)では、電池の膨れが大きく、容量維持率も小さくなった。また、負極活物質がSnNi相と黒鉛とを含む比較例4の電池(L)では、電池の膨れが大きかった。さらに、負極活物質がSn相と黒鉛とを含む比較例5の電池(M)では、電池の膨れが非常に大きくなり、容量維持率は非常に小さくなった。
【0068】
これより、低温急速充電時の電池の膨れが小さく、かつ、常温において従来と同等以上の容量密度およびサイクル寿命性能を示すためには、負極がSnNi相とSn相とを含む材料および炭素材料を含有する必要があることが立証された。
【0069】
負極活物質がSnNi相とSn相とを含む材料Xおよび炭素材料とを含む場合、炭素材料単独の場合にくらべてLi吸蔵能に優れるSn相を含むので、単位体積あたりの容量が炭素材料のそれにくらべて大きい。材料XはLiを吸蔵脱離しにくいSnNi相を含み、これが合金材料のLi吸蔵脱離時にその体積膨張収縮やクラック発生を抑止する骨組みとして機能するために、本発明の電池は、時様音において、従来と同等以上の容量密度およびサイクル寿命性能を示したものと考えられる。
【0070】
[実施例9〜13、比較例6、7]
負極活物質に用いる材料XのZ値を1.1とし、材料Xと炭素材料との混合比S値(=n1/n2)を変化させた以外は実施例1と同様にして、実施例9〜13および比較例6、7を、それぞれ2個づつ作製した。作製した電池の内容を表6にまとめた。なお、表6には、実施例8の電池も掲載した。
【0071】
【表6】
Figure 2004296149
【0072】
実施例9〜13および比較例6、7の電池(N)〜(T)について、実施例1の電池(A)と同じ条件で、電池膨れ、1サイクル目の放電容量、容量密度、容量維持率を測定した。その結果を表7にまとめた。
【0073】
【表7】
Figure 2004296149
【0074】
また、これらの電池において、負極における、炭素材料の質量(n2)に対する材料Xの質量(n1)の比のS値と、電池膨れとの関係を図3に示す。
【0075】
表7および図3の結果から、つぎのことがわかった。負極活物質のS値が0.05以上、3.5以下である実施例8〜13の電池(J)、(N)〜(R)では、電池の膨れは0.14mm以下と小さく、容量維持率も大きかった。一方、S値が0.03である比較例6の電池(S)およびS値が0.30である比較例7の電池(T)では、電池の膨れが0.25mm以上となり、容量維持率も小さくなった。
【0076】
その理由として、S<0.05の場合、炭素材料の質量に対して材料Xのそれの割合が著しく小さい。そのため、材料Xによる、低温急速充電時金属リチウム生成抑制効果が充分ではないので、電池が膨れたものと推測される。
S>3.5の場合、炭素材料の質量に対して材料Xのそれの割合が大きい。そのために、材料Xの膨張の影響が大きく、負極板内の集電性が低下して、その電流分布が不均一となる。その結果、炭素材料へのLi吸蔵反応と同時に金属リチウム生成反応が生じて、電池が膨れたものと推測される。
【0077】
[実施例14]
負極活物質として、材料Yと炭素材料との混合物をもちいた電池を作成した。まず、材料Yの製造方法について説明する。Sn粉末、Ni粉末およびAg粉末を、それぞれ88質量%、9質量%、および3質量%秤取して、これらを乳鉢で予備混合した。この粉末をペレット状にプレス成形したのちに、電弧炉内の水冷銅ハース上に設置した。炉内をAr雰囲気に置換したのちに、アーク放電の照射によってペレットを溶解して、溶融金属が充分に混合したのを確認したのちにアーク放電の照射を停止した。溶融金属は水冷銅ハースにより冷却されて、ボタン状の固体となった。水冷銅ハース上における溶融金属の冷却速度は5×10℃/secであった。得られたボタン状の固体の表面に金属光沢があらわれるまで研磨したのちに、それを粉砕して材料Yを得た。
【0078】
図4に示したXRDパターン(X線源:Cukα、測定範囲:28°≦2θ≦42°)から、この合金材料YにはSn相、SnNi相およびAgSn相だけが含まれることが確認された。この合料Yの元素定量分析をICP発光分析法によりおこなった。Sn、NiおよびAg元素の質量をそれぞれp質量%、q質量%およびr質量%、材料Y中のSn相、Sn4Ni3相およびAg3Sn相の質量をそれぞれv質量%、w質量%およびu質量%と定義する。この材料YがSn相、SnNi相およびAgSn相のみからなるので、これらの間にはつぎの関係式が成立する。
【0079】
Figure 2004296149
元素定量分析から得られたp、qおよびrの値を用いて、上記の関係式を連立して解くことによって、v、wおよびuを算出した。さらに、これらの値からZ(=v/w)値を計算した結果、1.9であった。そして、この粉末を用いたこと以外は実施例1と同様(S=0.25)にして、実施例14の電池(U)を製作し、実施例1と同じ条件で、電池膨れ、1サイクル目の放電容量、容量密度、容量維持率を測定した。その結果は以下の通りとなった。
【0080】
負極合材層片面当たりの質量=8.45mg/cm
合材層片面当たりの質量=21.58mg/cm
電池膨れ=0.15mm
1サイクル目の放電容量=695mAh
容量密度=122mAh/cm
容量維持率=95.7%
実施例14の電池(U)の負極に使用した材料Y中にはSn相およびSnNi相以外にAgSn相が存在する。このことから、本発明の非水電解質二次電池の負極に用いられる材料XにはSn相およびSnNi相以外の相が含まれてもよいことが示された。なお、Sn相およびSnNi相以外の相は材料Yの総質量に対して50質量%以下であることが望ましい。これは、上記に示した機構による、放電容量の増加および体積膨張収縮やクラック発生の抑止などの効果が小さくなるものと推測されるからである。
【0081】
[合金材料の粉砕時間の測定]
電池(A)〜(J)に用いた材料Xをボールミル法で粉砕し、材料Xの質量の90%以上の粒径が45μm以下になるのに要した時間を計測し、その時間を製造時間とした。結果を表8に示す。
【0082】
【表8】
Figure 2004296149
【0083】
表8からわかるように、実施例1〜7および比較例2の電池(A)〜(G)および(I)、(J)に用いた材料Xの粉砕時間は、比較例1の電池(H)に用いた材料Xのそれらにくらべて著しく短いことがわかった。
【0084】
以上のことから、材料X中のSnNi相のSn相に対する質量比率Zが0.2以上であるものは、負極の製造時間を短縮することができることがわかった。
【0085】
【発明の効果】
本発明の負極を用いた非水電解質二次電池では、材料X中のSnNi相のSn相に対する質量比率Zを0.2≦Z≦3とすることにより、電池の低温急速充電時の膨れはきわめて小さく、かつ、常温における容量密度およびサイクル寿命性能は、従来から公知の電池と比較し、同等以上にすることができ、加えて、負極の製造時間を短縮することができた。また、負極中の炭素材料に対する材料Xの質量比率Sが0.05≦s≦3.5であるものは、電池の低温急速充電時の膨れをさらに小さくすることができた。したがって、本発明の工業的価値は極めて大である。
【図面の簡単な説明】
【図1】実施例1に用いた材料XのXRDパターン。
【図2】電池膨れとZとの関係をあらわす図。
【図3】電池膨れとSとの関係をあらわす図。
【図4】実施例1に用いた材料YのXRDパターン。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery using a negative electrode containing a material containing tin and a carbon material.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries such as lithium ion batteries using an organic electrolyte or a polymer solid electrolyte as an electrolyte are widely used as power sources for mobile phones, personal computers, video cameras and the like.
[0003]
As a negative electrode active material of a nonaqueous electrolyte secondary battery, a carbon material such as lithium metal, a lithium alloy, and graphite has been conventionally used. Recently, Japanese Patent Application Laid-Open No. 2000-21392 discloses a technique in which a graphite carbon material and tin or tin oxide are used as a negative electrode active material in order to obtain a large capacity negative electrode. Further, for the purpose of obtaining a high-performance, high-capacity non-aqueous electrolyte secondary battery, a negative electrode active material containing a metal material composed of at least Sn which is an alloyable element with Li and Ni which is an element which is difficult to alloy with Li is used. The technique used is disclosed in JP-A-2001-143700. Japanese Patent Application Laid-Open No. 2001-143700 discloses that as a metal material made of Ni, which is an element which is difficult to alloy with Li, Ni3Sn4And / or Ni3Sn2That the metal material may contain Sn in a single phase, that the metal material may be used in combination with a conventionally known carbon material, that 75 parts by weight of the metal material and graphite It is described that 20 parts by weight of a binder and 5 parts by weight of a binder are mixed to form a negative electrode mixture.3Sn4There is no description of the optimization of the weight ratio between Sn and Sn or the high-rate charging characteristics at low temperatures.
[0004]
However, in recent years, portable electronic devices such as mobile phones have become widespread worldwide. Conventionally, portable electronic devices have been used mainly in relatively warm regions, but are expected to be used in cold regions in the future. In cold regions, it is expected that portable electronic devices will be charged at low temperatures.
[0005]
[Problems to be solved by the invention]
Most of the power supplies for portable electronic devices such as mobile phones use non-aqueous electrolyte secondary batteries using an organic electrolyte as an electrolyte, such as lithium ion batteries. When a non-aqueous electrolyte secondary battery is used in a portable electronic device, the non-aqueous electrolyte secondary battery is not used alone, but is combined with a protection circuit for preventing overcharge, and the battery and the protection circuit are encased. It is used as a so-called battery pack housed in the body.
[0006]
However, when a conventional non-aqueous electrolyte secondary battery is rapidly charged at a rate of 1.5 C or more in a cold environment below 0 ° C., the battery swells, and as a result, the battery pack is broken.
[0007]
The present invention solves the problem that a conventional nonaqueous electrolyte secondary battery using a negative electrode active material swells when rapidly charged at a low temperature. It is an object of the present invention to provide a battery which has a small swelling at the time of rapid charging at a current density of 0.5 C or more and has a capacity density and a cycle life performance at room temperature equal to or higher than those of the conventional battery.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode is Sn.4Ni3A material containing a carbon phase and a Sn phase, and a carbon material,4Ni3Phase material and a Sn phase,4Ni3When the mass of the phase is m1, the mass of the Sn phase is m2, and Z = m1 / m2, 0.2 ≦ Z ≦ 3.
[0009]
According to the invention of claim 1, the Sn phase and the Sn phase4Ni3By using a material containing a phase and a carbon material for the negative electrode, swelling of the battery during low-temperature rapid charging is small, and Sn4Ni3Sn in a material containing a phase and a Sn phase4Ni3By limiting the weight ratio between the mass of the phase and the mass of the Sn phase, this material can be easily pulverized, the production time of the negative electrode can be reduced, and the capacity density at room temperature is equal to or higher than that of the conventional one. In addition, a non-aqueous electrolyte secondary battery having cycle life performance can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the negative electrode of the non-aqueous electrolyte secondary battery is Sn4Ni3(Hereinafter, this material is referred to as “material X”) and a carbon material.4Ni3When the mass of the phase is m1, the mass of the Sn phase is m2, and Z = m1 / m2, 0.2 ≦ Z ≦ 3.
[0011]
Material X includes Sn4Ni3Phase or a Sn phase other than a crystalline phase or an amorphous phase.2Ni3Phase including Sn and Ni such as amorphous phase or Sn—Ni amorphous phase, phase composed of other element simple substance such as Cu phase and Fe phase, Ag3Sn phase or Si2A phase containing another element such as a Ni phase may be included. This material may be any of an intermetallic compound, a solid solution, and a mixture thereof, and may be a eutectic or peritectic.
[0012]
When a nonaqueous electrolyte secondary battery using a conventional carbon material for the negative electrode is rapidly charged at 0 ° C., a large amount of lithium metal is deposited on the negative electrode surface. On the other hand, even when the nonaqueous electrolyte secondary battery including the material X and the carbon material in the negative electrode is rapidly charged under the same conditions as in the present invention, the amount of lithium metal deposited on the surface of the negative electrode is significantly reduced. . It is considered that the battery according to the present invention had significantly reduced battery swelling because the amount of metallic lithium deposited on the surface of the negative electrode was significantly reduced.
[0013]
The method of manufacturing the material X may be any method. For example, a metal such as Sn or Ni is melted in an electric arc furnace or the like and mixed to obtain a molten metal. A method of cooling on a hearth or the like can be used.
[0014]
In this case, the cooling rate of the molten metal is 1 × 102° C / sec-5 × 104C./sec is desirable. Cooling rate of molten metal is 5 × 104In order to make the temperature higher than ° C./sec, large-scale equipment is required. Therefore, the cooling rate of bath water is 5 × 104It is desirable that: The cooling rate of the molten metal is 1 × 102When the temperature is at least ° C / sec, it is possible to obtain a material X containing a fine crystal structure uniformly. The fine crystal structure contained in this material X is Sn phase and Sn4Ni3Phase.
[0015]
Sn phase and Sn contained in material X4Ni3Of the phases, only the Sn phase is Li+And expands and contracts during charge and discharge. Fine Sn phase and Sn4Ni3Since the phases exist uniformly, Sn which does not expand and contract during charge and discharge4Ni3It is presumed that the phase acts as a matrix surrounding the Sn phase, and as a result, the expansion and contraction of the material X has been suppressed. Therefore, in order to suppress battery swelling, the cooling rate of the molten metal must be 1 × 102C./sec or more is preferable.
[0016]
In the material X of the present invention, Sn4Ni3When the mass of the phase is m1, the mass of the Sn phase is m2, and Z = m1 / m2, when 0.2 ≦ Z ≦ 3, the material can be easily pulverized, thereby shortening the production time of the negative electrode. it can. As a result, a non-aqueous electrolyte secondary battery that can be easily manufactured can be obtained.
[0017]
According to the present invention, in the nonaqueous electrolyte secondary battery, the negative electrode contains the material X and the carbon material. The mixed composition of the material X and the carbon material is such that the mass of the material X is n1. When the mass of the carbon material is defined as n2 and the value of the ratio of n1 to n2 is defined as S (= n1 / n2), it is preferable to satisfy 0.05 ≦ S ≦ 3.5.
[0018]
The reason is that when the value of S is smaller than 0.05, the ratio of the material X to the mass of the carbon material is remarkably small. Therefore, the effect of suppressing the generation of metallic lithium during low-temperature rapid charging by the material X is not sufficient, and it is assumed that the battery has expanded. When the value of S is larger than 3.5, the ratio of the material X to the mass of the carbon material is large. For this reason, the influence of the expansion of the material X is large, and the current collecting property in the negative electrode plate is reduced, and the current distribution becomes non-uniform. As a result, it is presumed that the lithium occluding reaction to the carbon material and the metal lithium producing reaction occurred at the same time, and the battery swelled.
[0019]
As the carbon material, any material may be used. For example, natural graphite, artificial graphite, acetylene black, ketjen black, vapor grown carbon fiber, cokes, pyrolytic carbon, activated carbon, and the like are used. be able to. As the carbon material, a graphitic carbon material such as natural graphite or artificial graphite or a mixture thereof can be used. The shape may be any shape, for example, flaky, fibrous, spherical, massive and the like. Further, boron, aluminum, or the like may be added to the carbon material.
[0020]
In the nonaqueous electrolyte secondary battery of the present invention, the shapes of the positive electrode and the negative electrode may be any, and examples thereof include a sheet shape and a pellet shape. Specific examples of the sheet-shaped electrode plate include a negative electrode having a mixture layer containing a negative electrode active material on a metal foil, a positive electrode having a mixture layer containing a positive electrode active material on a metal foil, and a metal foam. A negative electrode filled with a mixture containing a negative electrode active material is exemplified. Specific examples of the pellet-shaped electrode plate include a negative electrode obtained by press-forming a mixture containing a negative electrode active material, a positive electrode filled with a mixture containing a positive electrode active material in a metal can, and a negative electrode active material contained in a metal can. Negative electrodes filled with the mixture are mentioned.
[0021]
In addition, the positive and negative electrodes may include a current collector substrate, and examples thereof include a planar body such as copper, nickel, and aluminum, a three-dimensional porous body, and a net body. Specific examples of the planar body include, for example, a foil or a plate, specific examples of the three-dimensional porous body include, for example, a foam or a sintered body, and specific examples of the reticulated body include, for example, an expanded lattice, Perforated metal or mesh can be used.
[0022]
In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte may be either a non-aqueous liquid electrolyte or a solid electrolyte.
[0023]
When a non-aqueous liquid electrolyte is used, the solvent may be ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2- A polar solvent such as dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, ethyl acetate, or a mixed solvent containing any of these can be used.
[0024]
As a solute of the non-aqueous liquid electrolyte, LiPF6, LiBF4, LiAsF6, LiClO4, LiSCN, LiI, LiCl, LiBr, LiCF3CO2, LiCF3SO3, LiC4F9SO3, LiN (SO2CF3)2, LiN (SO2CF2CF3)2, LiN (SO2CF3) (SO2CF2CF2CF2CF3), LiN (COCF3)2And LiN (COCF2CF3)2And a mixture optionally containing these lithium salts.
[0025]
When using a solid electrolyte, for example, an inorganic solid electrolyte such as Li-containing chalcogenide, Li+And a polymer electrolyte containing a lithium salt in a polymer, and the like. The polymer electrolyte may be a polymer in which a lithium salt is contained by wetting or swelling the non-aqueous liquid electrolyte in the polymer, or a polymer electrolyte in which only the lithium salt is dissolved in the polymer. You may.
[0026]
As the lithium salt to be contained in the polymer electrolyte, LiPF6, LiBF4, LiAsF6, LiClO4, LiSCN, LiI, LiCl, LiBr, LiCF3CO2, LiCF3SO3, LiC4F9SO3, LiN (SO2CF3)2, LiN (SO2CF2CF3)2, LiN (SO2CF3) (SO2CF2CF2CF2CF3), LiN (COCF3)2And LiN (COCF2CF3)2And a mixture optionally containing these lithium salts. Further, when a solid electrolyte is used, a plurality of electrolytes may be included in the battery. For example, different electrolytes can be used for the positive electrode and the negative electrode.
[0027]
As the polymer used for the polymer electrolyte, those which exhibit good ionic conductivity when wetted or swelled by a non-aqueous liquid electrolyte are preferable. For example, polyethers such as polyethylene oxide (PEO) and polypropylene oxide (PPO), and polyolefins are preferable. Vinylidene chloride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polyacrylonitrile, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine , Polybutadiene, polystyrene, polyisoprene, or derivatives thereof can be used alone or in combination. Further, a polymer obtained by copolymerizing the respective monomers constituting the polymer, for example, vinylidene fluoride / hexafluoropropylene copolymer (P (VdF / HFP)), styrene-butadiene rubber (SBR) and the like can also be used.
[0028]
The reason for using these polymer electrolytes is that Li+This is because the ionic conductivity and mobility of the battery are increased, so that the polarization of the battery can be reduced. Further, the polymer electrolyte is preferably capable of changing its shape. The reason for this is that it is possible to follow the volume expansion and contraction of the negative electrode active material due to charge and discharge, so that the electron conductivity and ion conductivity of the negative electrode can be favorably maintained.
[0029]
In the nonaqueous electrolyte secondary battery of the present invention, the negative electrode may include a polymer electrolyte. The polymer electrolyte preferably has lithium ion conductivity and binding property. The reason for this is that the active material-active material and the active material-polymer electrolyte in the negative electrode have good binding properties, and that the electron conductivity and ionic conductivity of the negative electrode after repeated charge and discharge are poor. This is because it can be maintained well. In particular, it is preferable that the polymer electrolyte is porous. The reason for this is that the ionic conductivity of the polymer electrolyte is further improved by holding the electrolyte in the pores.
[0030]
In the nonaqueous electrolyte secondary battery of the present invention, as the positive electrode active material, for example, the composition formula LixMO2, LixMyM 'zO2Or LiyM2O4(Where M and M ′ are transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2, y + z = 1 or 2), a composite oxide having tunnel-like vacancies, a metal chalcogen having a layered structure And the like. As a specific example, LiCoO2, LiNiO2, LiCo0.2Ni0.8O2, LiCo0.15Ni0.85O2, LiNi0.5Mn1.5O2, LiMn2O4, Li2Mn2O4  , LiMnO2, MnO2, FeO2, V2O5, V6OThirteen, TiO2, TiS2, NiOOH, FeOOH, FeS and the like. The above-mentioned various active materials may be arbitrarily mixed and used.
[0031]
Note that MnO was used as the positive electrode active material.2, FeO2, V2O5, V6OThirteen, TiO2, TiS2, NiOOH, FeOOH, FeS or the like that does not contain Li, if the positive electrode or the negative electrode is Li+The battery may be manufactured using a material that has been chemically occluded. For example, a positive or negative electrode and metallic lithium are Li+And a method of applying metal Li on the surface of the positive electrode or the negative electrode, and the like.
[0032]
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode may include a polymer electrolyte. The polymer electrolyte preferably has lithium ion conductivity and binding property. The reason for this is that the positive electrode has good binding properties between the active material and the active material and between the active material and the polymer electrolyte, and that the electron conductivity and the ion conductivity of the negative electrode after repeated charge and discharge are poor. This is because it can be maintained well. In particular, it is preferable that the polymer electrolyte is porous. The reason for this is that the ionic conductivity of the polymer electrolyte is further improved by holding the electrolyte in the pores.
[0033]
Further, a separator may be used in the non-aqueous electrolyte secondary battery of the present invention. For example, an insulating polyolefin microporous membrane, an inorganic solid electrolyte membrane, a polymer electrolyte membrane, or the like can be used. Further, an insulating microporous film may be used in combination with a polymer electrolyte or the like.
[0034]
The shape of the battery case may be selected from, for example, a square, a cylinder, a long cylinder, a sheet-like material processed into an envelope, and a sheet formed by processing a resin-coated metal sheet such as aluminum. it can. As the material of the battery case, for example, a material mainly composed of iron, aluminum, or the like can be selected.
[0035]
【Example】
Hereinafter, the present invention will be described using preferred embodiments, but the scope of the present invention is not limited thereto.
[0036]
[Example 1]
First, Sn4Ni3A method for producing a material X containing a phase and a Sn phase will be described. The required amounts of Sn powder and Ni powder were weighed and premixed in a mortar. After this powder was pressed into a pellet, it was placed on a water-cooled copper hearth in an electric arc furnace. After replacing the inside of the furnace with an Ar atmosphere, the pellets were melted by arc discharge irradiation, and after confirming that the molten metal was sufficiently mixed, the arc discharge irradiation was stopped. The molten metal was cooled by a water-cooled copper hearth to become a button-shaped solid. The cooling rate of the molten metal on the water-cooled copper hearth is 3 × 102° C / sec.
[0037]
The resulting button-shaped solid was polished until a metallic luster appeared on the surface, and then crushed to obtain a material X. From the XRD pattern (X-ray source: Cukα, measurement range: 28 ° ≦ 2θ ≦ 42 °) shown in FIG.4Ni3It was determined that only phases were included.
[0038]
Elemental quantitative analysis of this material X was performed by ICP emission spectrometry. The masses of Sn and Ni elements of the starting material are p mass% and q mass%, respectively, and the Sn phase and Sn4Ni3The masses of the phases are respectively v% by weight and w% by weight. This material X is composed of Sn phase and Sn4Ni3Since only the phases are included, the following relational expression holds between them.
[0039]
Figure 2004296149
Using the values of p and q obtained from the elemental quantitative analysis, the above relational expressions were simultaneously solved to calculate v and w. Furthermore, Z (= v / w) was calculated from these values and found to be 0.2.
[0040]
Next, a method for manufacturing the negative electrode will be described. 20% by mass of the above-mentioned material X and 80% by mass of graphite were mixed well in a mortar to obtain a negative electrode active material. In this negative electrode active material, S = 0.25. 50% by mass of this negative electrode active material, 5% by mass of polyvinylidene fluoride (PVdF) as a binder, and 45% by mass of N-methyl-2-pyrrolidone (NMP) as a solvent for dissolving the binder were mixed. The paste was applied to both sides of a Cu foil having a width of 27 mm and a thickness of 10 μm as a current collector, dried at 150 ° C. to evaporate NMP, and then pressed to adjust the porosity. A negative electrode having the layer on a copper foil was obtained.
[0041]
In this negative electrode, the mass per unit area of one side of the current collector of the negative electrode mixture layer was 7.23 mg / cm in order to set the design capacity of the completed battery to 695 ± 5 mAh.2And However, the design capacity is a constant current of 35 mA in a constant temperature bath at 25 ° C. until the voltage reaches 4.1 V, followed by charging at 4.1 V for 2 hours at a constant voltage, and then charging at 140 mA for 2 hours. Discharge capacity obtained by discharging at a constant current up to 7V. (Hereafter simply referred to as design capacity)
Further, a method for manufacturing the positive electrode will be described. 78% by mass of lithium cobalt oxide as a positive electrode active material, 3% by mass of acetylene black as a conductive material, 4% by mass of polyvinylidene fluoride (PVdF) as a binder, and N-methyl- as a solvent for dissolving the binder A paste mixed with 15% by mass of 2-pyrrolidone (NMP) is applied to both surfaces of an aluminum foil having a width of 26 mm and a thickness of 15 μm as a current collector, dried at 150 ° C. to evaporate the NMP, and then pressed. Thus, a positive electrode having the positive electrode mixture layer on an aluminum foil was obtained.
[0042]
In this positive electrode, the mass of the positive electrode mixture layer per unit area of one surface of the current collector was 21.79 mg / cm in order to set the design capacity of the completed battery to 695 ± 5 mAh.2And
[0043]
After winding these positive / negative electrodes and a polyethylene separator having a width of 29 mm and a thickness of 20 μm, it was inserted into a square aluminum battery case having a height of 47.0 mm, a width of 29.2 mm and a thickness of 4.15 mm. At this time, the total area of the portion where the positive electrode mixture layer and the negative electrode mixture layer face each other is 2.40 × 102cm2It was adjusted to be. Further, after the positive electrode and the negative electrode lead were ultrasonically welded to the positive electrode and the negative electrode terminal respectively located on the lid of the battery case, the lid was joined to the battery case by laser welding.
[0044]
1mol / l LiPF6A mixed solution containing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1 was used as an electrolyte. After this electrolyte was injected from a 1 mm diameter injection port provided in the battery case, the injection port was closed by laser welding. When the volume of the battery was calculated from its outer dimensions, it was 5.72 cm.3Met. Battery assembly was performed in a dry room at 25 ° C. As described above, two batteries (A) according to the present invention were manufactured.
[0045]
[Examples 2 to 7, Comparative Examples 1 and 2]
By changing the weighing amounts of the Sn powder and the Ni powder as the starting materials, the value of Z of the material X is set to 0.3 to 3, and the mass of the positive / negative electrode mixture layer per unit area of one surface of the current collector. The batteries (B) to (G) of Examples 2 to 7 were each manufactured in the same manner as in Example 1 except that was changed.
[0046]
Comparative Example 1 was performed in the same manner as in Example 1 except that the value of Z of the material X was set to 0.1, and the mass of the positive / negative electrode mixture layer per unit area of one surface of the current collector was changed. Example 1 except that two batteries (H) were used, the value of Z of the material X was 4.5, and the mass of the positive / negative electrode mixture layer per unit area of one surface of the current collector was changed. Similarly, two batteries (I) of Comparative Example 2 were produced.
[0047]
Table 1 summarizes the contents of the batteries manufactured in Examples 1 to 7 and Comparative Examples 1 and 2.
[0048]
[Table 1]
Figure 2004296149
[0049]
[Battery evaluation test]
Using each of the batteries (A) to (I), the thickness t1 (mm) of the battery before charging was measured, and the battery was allowed to stand in a thermostat at 0 ° C. for 3 hours. These batteries were charged at a constant current of 1400 mA corresponding to a 2C rate until reaching 4.1 V, followed by charging at a constant voltage of 4.1 V for 2 hours. Thirty minutes after this charging was completed, the thickness t2 (mm) of the charged battery was measured. From the above measurement results, the battery swelling at the time of low-temperature rapid charging was calculated by the following equation. Table 1 shows the results.
[0050]
[Battery swelling] (mm) = t2 (mm) -t1 (mm)
It is not suitable to use a battery having a battery swelling exceeding 0.25 mm for a power source for a portable electronic device such as a mobile phone because the battery pack may be broken. Therefore, the swelling of the battery must be 0.25 mm or less. Since the battery is expected to slightly swell due to repeated charge and discharge, the battery swell is preferably 0.20 mm or less.
[0051]
A charge / discharge test was performed in a 25 ° C. constant temperature bath using one battery (A) to (I) different from the one subjected to the above test. This charge / discharge was defined as one cycle consisting of a constant current until reaching 4.1 V at 35 mA, followed by charging at 4.1 V for 2 hours at a constant voltage, and discharging at 140 mA at a constant current up to 2.7 V. Repeated 50 cycles. Using the values of the discharge capacity at the 1st and 50th cycles of each battery, the capacity density and the capacity retention were calculated by the following equations.
[0052]
[Capacity density, mAh / cm3] = [Discharge capacity at first cycle, mAh] / [battery volume, cm3]
[Capacity maintenance rate,%] = [discharge capacity at 50th cycle, mAh] / [discharge capacity at 1st cycle, mAh]
If the capacity retention ratio is less than 91%, the capacity of the battery that can be used after the cycle is small, and thus it is not suitable for application to portable devices. The test results are summarized in Table 2.
[0053]
[Table 2]
Figure 2004296149
[0054]
Further, in the material X used for the negative electrodes of these batteries, the Sn relative to the mass (m2) of the Sn phase4Ni3FIG. 2 shows the relationship between the Z value, which is the ratio of the phase mass (m1), and the battery swelling. From Table 2 and FIG. 2, the following has been found.
[0055]
The battery swelling at the time of performing the low-temperature rapid charging was 0.20 mm or less in all of the batteries (A) to (G) of Examples 1 to 7, and the batteries of Comparative Example 1 (H) and Comparative Example 2 ( It was smaller than I).
[0056]
In addition, the capacity retention ratio was 92.5% or more in all of the batteries (A) to (G) of Examples 1 to 7, which were higher than those of the battery (H) of Comparative Example 1 and the battery (I) of Comparative Example 2. Was big.
[0057]
In addition, in the batteries (A) to (I) of Examples 1 to 7 and Comparative Examples 1 and 2, the discharge capacity and the capacity density at the eleventh cycle were almost equal.
[0058]
[Example 8, Comparative Examples 3 to 5]
Two batteries (J) of Example 8 were produced in the same manner as in Example 1 except that the material X having Z = 1.1 was used. In order to set the design capacity of the completed battery to 695 ± 5 mAh, the mass of the negative electrode mixture layer of the negative electrode per unit area of one surface of the current collector was 8.35 mg / cm.2And the mass of the positive electrode mixture layer in the positive electrode per unit area of one surface of the current collector was 21.62 mg / cm.2And
[0059]
The battery of Comparative Example 3 uses only graphite as the negative electrode active material. A paste obtained by mixing 50% by mass of graphite, 5% by mass of polyvinylidene fluoride (PVdF) as a binder, and 45% by mass of N-methyl-2-pyrrolidone (NMP) as a solvent for dissolving the binder, It was applied to both sides of a Cu foil having a width of 27 mm and a thickness of 10 μm, dried at 150 ° C. to evaporate NMP, and then pressed to adjust the porosity to obtain a negative electrode. Except that this negative electrode was used, two batteries (K) of Comparative Example 3 were produced in the same manner as in Example 1.
[0060]
The battery of Comparative Example 4 had Sn as a negative electrode active material.4Ni3A mixture of a material consisting only of a phase and graphite is used. Sn4Ni320% by mass of a material consisting of only the phase and 80% by mass of graphite were mixed well in a mortar to obtain a negative electrode active material. 50% by mass of this negative electrode active material, 5% by mass of polyvinylidene fluoride (PVdF) as a binder, and 45% by mass of N-methyl-2-pyrrolidone (NMP) as a solvent for dissolving the binder were mixed. The paste was applied to both sides of a Cu foil having a width of 27 mm and a thickness of 10 μm, dried at 150 ° C. to evaporate NMP, and then pressed to adjust the porosity to obtain a negative electrode. Except that this negative electrode was used, two batteries (L) of Comparative Example 4 were produced in the same manner as in Example 1.
[0061]
The battery of Comparative Example 5 uses a mixture of a material consisting of only the Sn phase and graphite as the negative electrode active material. Except for the negative electrode active material, two batteries (M) of Comparative Example 5 were produced in the same manner as Comparative Example 4.
[0062]
Tables 3 and 4 summarize the contents of the batteries of Example 8 and Comparative Examples 3 to 5 manufactured here.
[0063]
[Table 3]
Figure 2004296149
[0064]
[Table 4]
Figure 2004296149
[0065]
Regarding the batteries (J) to (M) of Example 8 and Comparative Examples 3 to 5, under the same conditions as the battery (A) of Example 1, the battery swelled, the discharge capacity at the first cycle, the capacity density, and the capacity retention ratio were determined. It was measured. Table 5 summarizes the results.
[0066]
[Table 5]
Figure 2004296149
[0067]
From the results in Table 5, the following was found. Compared with the battery (J) of Example 8 including the material X and graphite as the negative electrode active material, the battery (K) of Comparative Example 3 using only graphite as the negative electrode active material has a large swelling of the battery and a high capacity retention. The rate has also decreased. The negative electrode active material is Sn4Ni3In the battery (L) of Comparative Example 4 including the phase and graphite, the battery swelled significantly. Furthermore, in the battery (M) of Comparative Example 5 in which the negative electrode active material contained an Sn phase and graphite, the battery swelled significantly, and the capacity retention was extremely small.
[0068]
Thus, in order to minimize the swelling of the battery during low-temperature rapid charging and to exhibit a capacity density and cycle life performance equal to or higher than those of the conventional battery at room temperature, the negative electrode must be made of Sn.4Ni3It was proved that it was necessary to contain a material containing a carbon phase and a Sn phase and a carbon material.
[0069]
The negative electrode active material is Sn4Ni3When the material X containing the carbon phase and the Sn phase and the carbon material are included, Li is compared with the case of the carbon material alone.+Since it contains a Sn phase having excellent storage capacity, the capacity per unit volume is larger than that of a carbon material. Material X is Sn, which does not easily absorb and desorb Li.4Ni3Phase, which is the alloy material Li+It is considered that the battery of the present invention exhibited a capacity density and a cycle life performance equal to or higher than those of the conventional battery in terms of time and sound because it functions as a framework that suppresses volume expansion / contraction and crack generation during occlusion and desorption. .
[0070]
[Examples 9 to 13, Comparative Examples 6 and 7]
Example 9 was repeated in the same manner as in Example 1 except that the Z value of the material X used for the negative electrode active material was set to 1.1 and the mixing ratio S value (= n1 / n2) between the material X and the carbon material was changed. To 13 and Comparative Examples 6 and 7 were produced two each. Table 6 summarizes the contents of the manufactured batteries. Table 6 also shows the battery of Example 8.
[0071]
[Table 6]
Figure 2004296149
[0072]
Regarding the batteries (N) to (T) of Examples 9 to 13 and Comparative Examples 6 and 7, under the same conditions as the battery (A) of Example 1, the battery swollen, the discharge capacity at the first cycle, the capacity density, and the capacity maintenance. The rate was measured. Table 7 summarizes the results.
[0073]
[Table 7]
Figure 2004296149
[0074]
FIG. 3 shows the relationship between the S value of the ratio of the mass (n1) of the material X to the mass (n2) of the carbon material in the negative electrode and the swelling of the battery.
[0075]
From the results in Table 7 and FIG. 3, the following was found. In the batteries (J) and (N) to (R) of Examples 8 to 13 in which the S value of the negative electrode active material was 0.05 or more and 3.5 or less, the swelling of the batteries was as small as 0.14 mm or less, and the capacity was small. The maintenance rate was also large. On the other hand, in the battery (S) of Comparative Example 6 having an S value of 0.03 and the battery (T) of Comparative Example 7 having an S value of 0.30, the swelling of the battery was 0.25 mm or more, and the capacity retention rate was Has also become smaller.
[0076]
The reason is that when S <0.05, the ratio of the material X to the mass of the carbon material is extremely small. Therefore, the effect of suppressing the generation of metallic lithium during low-temperature rapid charging by the material X is not sufficient, and it is assumed that the battery has expanded.
When S> 3.5, the ratio of the material X to the mass of the carbon material is large. For this reason, the influence of the expansion of the material X is large, and the current collecting property in the negative electrode plate is reduced, and the current distribution becomes non-uniform. As a result, it is presumed that the lithium occluding reaction to the carbon material and the metal lithium producing reaction occurred at the same time, and the battery swelled.
[0077]
[Example 14]
A battery using a mixture of the material Y and a carbon material as a negative electrode active material was prepared. First, a method for manufacturing the material Y will be described. The Sn powder, the Ni powder, and the Ag powder were weighed at 88%, 9%, and 3% by mass, respectively, and were premixed in a mortar. After this powder was pressed into a pellet, it was placed on a water-cooled copper hearth in an electric arc furnace. After replacing the inside of the furnace with an Ar atmosphere, the pellets were melted by arc discharge irradiation, and after confirming that the molten metal was sufficiently mixed, the arc discharge irradiation was stopped. The molten metal was cooled by a water-cooled copper hearth to become a button-shaped solid. The cooling rate of the molten metal on the water-cooled copper hearth is 5 × 102° C / sec. The obtained button-shaped solid was polished until a metallic luster appeared on the surface, and then crushed to obtain a material Y.
[0078]
From the XRD pattern (X-ray source: Cukα, measurement range: 28 ° ≦ 2θ ≦ 42 °) shown in FIG. 4, the alloy material Y has Sn phase, Sn4Ni3Phase and Ag3It was confirmed that only the Sn phase was included. Elemental quantitative analysis of this mixture Y was performed by ICP emission spectrometry. The masses of the Sn, Ni, and Ag elements are p mass%, q mass%, and r mass%, respectively, and the masses of the Sn phase, Sn4Ni3 phase, and Ag3Sn phase in the material Y are v mass%, w mass%, and u mass%, respectively. Define. This material Y is Sn phase, Sn4Ni3Phase and Ag3Since only the Sn phase is used, the following relational expression holds between them.
[0079]
Figure 2004296149
Using the values of p, q, and r obtained from the elemental quantitative analysis, the above relational expressions were simultaneously solved to calculate v, w, and u. Further, the Z (= v / w) value calculated from these values was 1.9. Then, a battery (U) of Example 14 was manufactured in the same manner as in Example 1 (S = 0.25) except that this powder was used, and under the same conditions as in Example 1, the battery was swollen for one cycle. Eye discharge capacity, capacity density, and capacity retention were measured. The results were as follows.
[0080]
Mass per side of negative electrode mixture layer = 8.45 mg / cm2
Mass per side of mixture layer = 21.58 mg / cm2
Battery swelling = 0.15mm
First cycle discharge capacity = 695 mAh
Capacity density = 122 mAh / cm3
Capacity maintenance rate = 95.7%
The material Y used for the negative electrode of the battery (U) of Example 14 contained Sn phase and Sn4Ni3Ag in addition to phase3An Sn phase exists. From this, the material X used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention includes Sn phase and Sn4Ni3It was shown that phases other than phases may be included. The Sn phase and Sn phase4Ni3The phase other than the phase is desirably 50% by mass or less based on the total mass of the material Y. This is because it is presumed that effects such as an increase in discharge capacity and suppression of volume expansion / contraction and crack generation by the mechanism described above are reduced.
[0081]
[Measurement of crushing time of alloy material]
The material X used in the batteries (A) to (J) was pulverized by a ball mill method, and the time required for a particle size of 90% or more of the mass of the material X to become 45 μm or less was measured. It was. Table 8 shows the results.
[0082]
[Table 8]
Figure 2004296149
[0083]
As can be seen from Table 8, the grinding time of the material X used in the batteries (A) to (G) and (I) and (J) of Examples 1 to 7 and Comparative Example 2 was the same as that of the battery (H ) Was significantly shorter than those of the material X used in the above.
[0084]
From the above, Sn in the material X4Ni3It was found that when the mass ratio Z of the phase to the Sn phase was 0.2 or more, the production time of the negative electrode could be shortened.
[0085]
【The invention's effect】
In the non-aqueous electrolyte secondary battery using the negative electrode of the present invention, Sn in the material X4Ni3By setting the mass ratio Z of the phase to the Sn phase to be 0.2 ≦ Z ≦ 3, the swelling of the battery at the time of low-temperature rapid charging is extremely small, and the capacity density and the cycle life performance at room temperature are known. As compared with, it could be equal or more, and in addition, the manufacturing time of the negative electrode could be shortened. When the mass ratio S of the material X to the carbon material in the negative electrode was 0.05 ≦ s ≦ 3.5, the swelling at the time of low-temperature rapid charging of the battery could be further reduced. Therefore, the industrial value of the present invention is extremely large.
[Brief description of the drawings]
FIG. 1 is an XRD pattern of a material X used in Example 1.
FIG. 2 is a diagram showing a relationship between battery swelling and Z.
FIG. 3 is a diagram showing a relationship between battery swelling and S.
FIG. 4 is an XRD pattern of a material Y used in Example 1.

Claims (1)

正極、負極、および非水電解質を備えた非水電解質二次電池において、前記負極が、SnNi相とSn相とを含む材料および炭素材料を含有し、前記負極中のSnNi相とSn相とを含む材料において、SnNi相の質量をm1、Sn相の質量をm2とし、Z=m1/m2とした時、0.2≦Z≦3であることを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode contains a material containing a Sn 4 Ni 3 phase and a Sn phase and a carbon material, and the Sn 4 Ni 3 in the negative electrode In a material containing a phase and a Sn phase, the mass of the Sn 4 Ni 3 phase is m1, the mass of the Sn phase is m2, and when Z = m1 / m2, 0.2 ≦ Z ≦ 3. Non-aqueous electrolyte secondary battery.
JP2003083921A 2002-07-04 2003-03-25 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4561040B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003083921A JP4561040B2 (en) 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery
CNB038173956A CN1315208C (en) 2002-07-04 2003-07-03 Nonaqueous electrolyte secondary battery
US10/520,125 US7781099B2 (en) 2002-07-04 2003-07-03 Non-aqueous electrolyte secondary cell
PCT/JP2003/008508 WO2004006362A1 (en) 2002-07-04 2003-07-03 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083921A JP4561040B2 (en) 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004296149A true JP2004296149A (en) 2004-10-21
JP4561040B2 JP4561040B2 (en) 2010-10-13

Family

ID=33399224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083921A Expired - Fee Related JP4561040B2 (en) 2002-07-04 2003-03-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4561040B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236835A (en) * 2005-02-25 2006-09-07 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous system secondary battery and its manufacturing method
JP2013084522A (en) * 2011-10-12 2013-05-09 Tokyo Univ Of Science Electrode mixture for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
JP2014500579A (en) * 2010-10-29 2014-01-09 ユミコア Si negative electrode material
CN107425169A (en) * 2006-02-16 2017-12-01 株式会社Lg化学 The lithium secondary battery of heat resistance enhancing
JP2018073570A (en) * 2016-10-27 2018-05-10 日産自動車株式会社 Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2001006667A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001143700A (en) * 1999-11-16 2001-05-25 Sony Corp Non-aqueous electrolytic secondary cell
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2001006667A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001143700A (en) * 1999-11-16 2001-05-25 Sony Corp Non-aqueous electrolytic secondary cell
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236835A (en) * 2005-02-25 2006-09-07 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous system secondary battery and its manufacturing method
CN107425169A (en) * 2006-02-16 2017-12-01 株式会社Lg化学 The lithium secondary battery of heat resistance enhancing
US10305138B2 (en) 2006-02-16 2019-05-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10879556B2 (en) 2006-02-16 2020-12-29 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
JP2014500579A (en) * 2010-10-29 2014-01-09 ユミコア Si negative electrode material
JP2013084522A (en) * 2011-10-12 2013-05-09 Tokyo Univ Of Science Electrode mixture for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
JP2018073570A (en) * 2016-10-27 2018-05-10 日産自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4561040B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP3726958B2 (en) battery
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
JP5511128B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
US20070202365A1 (en) Lithium secondary battery
JP2004362895A (en) Negative electrode material, and battery using it
JP2001148248A (en) Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2006351516A (en) Anode active material and nonaqueous electrolyte secondary battery
US7781099B2 (en) Non-aqueous electrolyte secondary cell
KR102321261B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
TWI237919B (en) Battery cell
KR101125969B1 (en) Battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
KR101893271B1 (en) Negative electrode material for secondary battery, and secondary battery using same
US8420261B2 (en) Thin film alloy electrodes
JP2004111202A (en) Anode material and battery using the same
US20030013018A1 (en) Negative electrode material and battery using the same
JP4701595B2 (en) Lithium ion secondary battery
KR20060103031A (en) Negative active material for lithium secondary battery and method of preparing same
JP4561040B2 (en) Nonaqueous electrolyte secondary battery
WO2022045128A1 (en) Negative-electrode active material for secondary batteries, and secondary battery
JP2005317447A (en) Battery
JP4582684B2 (en) Non-aqueous secondary battery
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP2007066633A (en) Current collector, negative electrode, and battery
JP2004186035A (en) Nonaqueous electrolytic solution battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees