JP2004288892A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004288892A
JP2004288892A JP2003079385A JP2003079385A JP2004288892A JP 2004288892 A JP2004288892 A JP 2004288892A JP 2003079385 A JP2003079385 A JP 2003079385A JP 2003079385 A JP2003079385 A JP 2003079385A JP 2004288892 A JP2004288892 A JP 2004288892A
Authority
JP
Japan
Prior art keywords
pad
semiconductor device
solder
opening
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003079385A
Other languages
Japanese (ja)
Inventor
Fumihiro Iwami
文宏 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003079385A priority Critical patent/JP2004288892A/en
Publication of JP2004288892A publication Critical patent/JP2004288892A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device improved in connecting reliability between solder and pad, and to provide its manufacturing method. <P>SOLUTION: The semiconductor device 20 is formed of a semiconductor element 14, a tape 4 for the supporting substrate of the semiconductor element, a pad 3 for the electrode of the semiconductor element 14, an opening unit 8 provided on the tape 4 with a predetermined size smaller than the diameter of the pad 3, and slits 6 having a gap and formed on the side surface of the opening unit 8 to expose the pad 3 to the outside of the device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、プリント配線基板への実装効率を高め、高密度実装を可能にし、はんだ接続の信頼性の高い実装を実現できるチップ状の半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
近年、携帯電話に代表されるように、電子機器は、よりコンパクトにより多機能化してきている。これらの電子機器には、多くの半導体装置が使用されている。当該半導体装置のパッケージ化にも軽薄短小の要求に答えるように、ICチップと同程度のサイズでのパッケージであるChip Size Package(以下、CSPと称す。)の方向に進んでいる。
【0003】
パッケージされた複数個のICモジュールは、多層プリント配線基板等に電気的に接続される。この電気的に接続される手段として、小さなはんだボールを多数配置したパッケージの外部端子に用いるBall Grid Array(以下、BGAと称す。)パッケージの方向に進んでいる。
【0004】
通常、BGAパッケージに封止された半導体装置の半導体回路基板には、円形の開口部が2次元アレイ状に形成され、当該開口部から半導体チップに接続された導体の一部を露出してパッドが形成される。吸着器具により、開口部に対応した直径のはんだボールを吸着し、当該はんだボールにフラックスを塗布した後、はんだボールをパッド上に転写する。半導体装置をリフロー炉に入れることにより、所定の大きさの球状の突起電極(以下、はんだ端子と称す。)が形成される。
【0005】
従来の構造では、リフロー工程時、はんだボールの濡れ性が悪く、半導体装置のパッドと接合強度が弱いはんだ端子が発生する。これは、パッドがはんだボールにより閉塞され、リフロー工程時にパッドに残留したフラックスによってはんだボールの濡れ性が悪化するためである。その結果、半導体装置の歩留まりが低下し、コストアップを招いていた。
【0006】
この従来の問題を解決する為、半導体回路基板に2次元アレイ状に形成されパッドを露出してはんだ端子を形成する開口部の側面上端に円弧形状の凹部を形成する。凹部上端には、パッド上に搭載されたはんだボールの表面が接触しないように、はんだボールの表面と凹部の間に通路を形成し、リフロー工程時に蒸発したフラックスが、その通路を介して逃げ出す経路を形成した(例えば、特許文献1参照)。
【0007】
しかしながら、従来の半導体装置では、開口部内でフラックスの充満を防ぐ為、当該半導体回路基板上にはんだボールの表面と凹部の間に形成した通路により、開口部の側面上端にガス抜きのための所定の傾きを設けていた。
【0008】
従来、開口部の側面上端にガス抜きの用傾きは、半導体装置の製造工程で形成されていたが、半導体装置の基板製造工程や製造時の諸条件に影響され、均一な傾きを達成することができなかった。例えば、凹部の傾きが大きすぎた場合、リフロー工程時、融解したはんだボールが凹部から流れ出す結果を招いていた。また、凹部の傾きが小さい、即ち、急進しすぎた場合、リフロー工程時、フラックのガスが十分に凹部から抜けきらず、接続不良を生じていた。
【0009】
更に、半導体装置のはんだ端子をプリント配線基板上のパッドに実装する際、半導体装置のはんだ端子とプリント配線基板のパッドにスクリーン印刷されたはんだの融点がそれぞれ異なる。半導体装置のはんだ端子が所定の温度で融解後、プリント配線基板のクリームはんだに含有するフラックス成分が揮散する。その後、プリント配線基板のはんだが融解し、揮散したフラックス成分が半導体装置の開口部内に充満し、半導体装置のはんだとプリント配線基板のはんだとが十分混ざり合うことなく、プリント配線基板上に形成されたパッドとの接合強度を十分には保つことが出来なかった。
【0010】
【特許文献1】
特開平10−256418号公報(第4頁〜第5、第1図、第2図、第11図)
【0011】
【発明が解決しようとする課題】
上記した従来技術の半導体装置では、半導体装置のパッド上に形成されるはんだ端子との接続不良、及びプリント配線基板上のパッドとの接続不良の点で問題があった。
【0012】
そこで、この発明は上記の問題を解決するためになされたものであり、はんだとパッドとの接続信頼性を高めた半導体装置及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明の半導体装置は、半導体素子と、前記半導体素子の支持基板となるテープと、前記半導体素子の電極となるパッドと、前記パッドを外部に露出するため、前記テープに前記パッドの径よりも小さい所定の大きさを有する開口部を設け、前記開口部の側面上に空隙を有するスリットを形成したことを特徴とする。
【0014】
このような構成によれば、半導体装置のはんだとパッドとの接続信頼性を高めることができる。
【0015】
また、この発明の半導体装置の製造方法は、半導体素子の支持基板となるテープに所定の大きさのスリットを有する開口部を設けるステップと、前記半導体素子の電極となるパッドやパターンを形成するため、銅箔を前記テープに圧着し、前記銅箔をエッチングするステップと、前記半導体素子を支持基板となるテープ上の所定の位置に搭載し、半導体素子の電極と前記パッドとを電気的に接続するステップと、前記半導体素子が搭載されたテープに所定の樹脂を用いて封止し、前記開口部にフラックス成分を含有したクリームはんだを印刷するステップと、前記クリームはんだを融解し、凝固することによりはんだ端子をパッド上に形成するステップとを有し、前記クリームはんだが融解する際、前記フラックスが前記スリットを介して蒸発することを特徴とする。
【0016】
このような構成によれば、半導体装置の製造方法に於いて、はんだとパッドとの接続信頼性を高めることができる。
【0017】
【発明の実施の形態】
以下、図面を参照してこの発明の実施形態を説明する。
【0018】
図1は、この発明の一実施形態に係わるCSP型半導体装置の接合部を示す概略平面図である。図2は、同実施形態に係わり、CSP型半導体装置の接合部がプリント配線基板上のパッドに接合された状態を示すラインAに沿った断面図である。図3は、同実施形態に係わり、CSP型半導体装置の接合部がプリント配線基板上のパッドに接合された状態を示すラインBに沿った断面図である。
【0019】
図1〜図3を参照して、この発明の第一の実施形態を以下の通り説明する。この半導体装置20には、絶縁層を介して半導体素子14及び配線パターン2の一部には、信号入出力端子の一部を成すパッド3が設けられている。テープ4は、この半導体装置20のサブストレート(インターポーザ)として使用され、そのテープ4を上下方向に貫通する開口部8が所定の位置に形成される。半導体装置20の開口部8が図1に例示される。
【0020】
このテープ4は、例えば、ポリミド系樹脂から構成され、前記パッド3の中央部を除いて当該パッド3の中央周辺部および半導体回路基板1の底面全体を覆うようにして当該半導体回路基板1上に接着されている。そして、テープ4と半導体回路基板1により挟まったパッド3の下面一部が開口部8から下方向に露出されている。パッド3の直径は、開口部8の直径よりも大きい。従って、パッド3の外周は、テープ4により押さえ込まれている為、半導体回路基板1からのパッド3の剥離を防止することができる。
【0021】
テープ4により囲まれた領域内のパッド3の中央部には、プリント配線基板10上のパッド9に印刷された印刷はんだ7と電気的結合を行うべく、所定の径を有する球状に形成されたはんだボールにより、はんだ端子5が装備されており、当該はんだ端子5はパッド3に結合されている。この場合、はんだ端子5は、図2及び図3に示された通りテープ4から一部露出した状態でパッド3の中央部に装備され、はんだボールが当該パッド3に、リフローなどの加熱溶着によって固着装備されている。
【0022】
この発明の一実施形態の構成によれば、図1に示す通り、この開口部8の側面に4つのスリット6が対角線上に等間隔で形成されている。このスリット6は、パッド3上に覆い被さった開口部8の側面を半径方向に向かって短冊状に形成されている。従って、はんだ端子5の外表面は、開口部8のスリット6に対して、所定の空隙を形成する。この空隙の長さは、図1に示す通り、半導体置のパッドの半径と開口部8の半径の差分である。
【0023】
図3に示す通り、リフロー工程時に印刷はんだ7に塗布されたフラックス11が蒸発するが、蒸発したフラックス11はスロット6を通って抜けて開口部8の外に逃げて行く。その結果、蒸発したフラックス11の余剰分や残留分が開口部8の内に充満することはく適度な濡れ性となり、リフロー工程時、はんだ端子5は印刷はんだ7と共に順次融解し、凝固して接合強度を向上することができる。同様に、半導体回路基板1のパッド3上にフラックス成分を塗布したはんだボールをスクリーン印刷し、リフロー工程時、塗布されたフラックス成分が当該スリットから効率よく蒸発してくれるので、パッド3上にはんだ端子5を装着することできる。
【0024】
この発明の構成によれば、半導体回路基板1のパッド3上に接続信頼性を高めたはんだ端子5を装着することができ、更に、はんだ端子5を形成するはんだボールは、融解した際、開口部8に設けられたスリット6からははみ出されず、蒸発したフラックス11の余剰分や残留分を当該スリット6を通って外部に自然に排出される。接着剤の残留フラックスが、開口部8の内に閉じ込められることがなくなるので、開口部8の内に残留フラックスにより生じる気泡等が閉じ込められて接合強度を低下するという不具合をほぼ確実に改善できる。
【0025】
次に、図4〜図6を参照して、この発明の一実施形態に係わる半導体装置20の製造方法を説明する。
【0026】
まず、図4(a)に示す通り、インターポーザの樹脂基材(支持基板)として約50〜70マイクロ厚の高耐熱ポリミド樹脂、または、ガラスエポキシ樹脂のテープ4を用意し、半導体回路基板1上に、例えば、0.5mm間隔でアレイ形状に配置される0.3mmφのパッド3の位置にあわせて、0.28mmφのテープ開口部8として穿孔する。
【0027】
ここでの穿孔の方法は、レーザによる穴あけ、まるいは、金型による打ち抜きである。特に、レーザによる穴あけは、炭酸ガスレーザトレーパニング加工により2〜3層のガラスエポキシテープやポリミドテープに0.28mmφの穴をスリット付で順次穴をあけることができる。スリットの位置、間隔や幅(長さ)は、事前にレーザ加工機にプログラミングされている。
【0028】
金型による打ち抜き加工の場合、クリアランスを5マイクロに設計して、超硬ピン型と焼き入れ受け型によるスリット同時形成の金型で、0.28mmφのテープ開口部8を2〜3層のガラスエポキシテープやポリミドテープに打ち抜き加工する。
【0029】
ポリミド樹脂テープ4の片面に絶縁接着剤を介して、図4(b)に示す通り、約18マイクロ厚の銅箔12を圧着する。穿孔されたテープ開口部8上に銅箔12が覆い被さった状態となる。
【0030】
続いて、各パターン2やパッド3に対応する銅箔12に耐エッチング性のレジスト(図示せず)を被覆し、銅箔12をパターニングする。図5(a)に示す通り、パッド3は、テープ開口部8の直径より僅かに大きな直径(0.3mmφ)でパターニングされる。
【0031】
次に、図面では省略しているが、パッドの電極部分にメッキを施し、テープ4の略中央に半導体素子チップ14をダイボンデイングする。ここでのメッキは、ニッケルを用い電解メッキ法、無電解メッキ法、又は、ディプ法で形成され、例えば、1〜20μm程度の薄い膜厚で形成される。
図5(b)に示される通り、半導体素子14の各電極と所定のパッドの電極をボインディングワイヤ13を介して接続する。ここでのボンディングワイヤ4には金線、アルミニウム線、銅線等が使用される。
【0032】
ボインディングワイヤ13が半導体素子14に接続後、図6(a)に示す通り、封止樹脂15で被覆する。この時点では、はんだ端子5ははんだ開口部8には形成されていない。
【0033】
はんだ端子5をはんだ開口部8に形成するため、クリームはんだ18が図6(b)のスクリーン印刷により半導体回路基板1上の所定の接続パッド3上に形成される。まず、半導体回路基板1上に形成されたテープ開口部8のパッド3にメタルマスク16の開口部17を位置あわせし、スキージ19を所定の方向に押圧操作する。メタルマスク16の開口部17にクリームはんだ18が充填され、メタルマスク40とテープ4の厚さ分、クリームはんだ18がパッド3上に堆積される。クリームはんだ18の充填後、メタルマスク16を取り去るとパッド3上にはんだの表面張力によりはんだがボール状、又は、バンプ状に形成される。はんだボールの厚みは、狭ピッチの接続信頼性を基準として設定されている。ここで使用するクリームはんだ18は、例えば、鉛入り共晶はんだの場合、スズ63重量%、鉛37重量%で組成されている。このクリームはんだには、更に、フラックス成分が含有される。
【0034】
その後、図6(c)に示す通り、半導体回路基板1をリフロー炉21に搬入し、約183度で共晶はんだを溶解し、凝固させることにより所定のパッド3上にはんだ端子5を形成することができる。このリフロー工程時、印刷されたクリームはんだから揮散したフラックス成分は、効率よく、スリット6を介して外に排出される。
【0035】
次に、図7を参照して、この発明の一実施形態に係わる半導体装置20をプリント配線基板に接続実装する方法を説明する。
【0036】
図6(b)と同様な印刷工程で、プリント配線基板10上の0.28mmφの開口部8にメタルマスクの開口部を位置あわせし、スキージを所定の方向に押圧操作する。メタルマスクの開口部にクリームはんだが充填され、メタルマスクの厚さ分、クリームはんだがパッド9上に堆積される。クリームはんだ7の充填後、メタルマスクを取り去るとパッド9上にペースト状のクリームはんだ層が形成される。ここでのクリームはんだ7は、例えば、無鉛はんだの場合、スズ93.5重量%、銀3重量%、銅0.5重量%で組成される。このクリームはんだ7には、更に、フラックス成分が含有される。
【0037】
次に、図6で製造された半導体装置20を準備し、図7(a)に示す通り、プリント配線基板10のパッド9上に、半導体装置20のはんだ端子5を精度よく位置合わせして載置する。半導体装置20のはんだ端子5とプリント配線基板10のパッド9とはクリームはんだ7の層を介して仮接着状態となる。
【0038】
図7(b)に示すリフロー炉21において、プリント配線基板10上に仮接着状態の半導体装置20を加熱する。まず、共晶はんだで形成されたはんだ端子5が、約183度で溶解すると共に、鉛フリーで形成されたクリームはんだ7からフラックス成分がテープ開口部8内に向け揮散する。更に、リフロー炉21を加熱し、約219度でクリームはんだが溶解し、融解していたはんだ端子5と混ざり合う。半導体装置20のテープ開口部端子5ではんだが混ざり合う際、この発明の構成によれば、図3に示す通り、フラックスのガスが充満することなく、スリット6を経由して効率よく吐き出すことができる。クリームはんだ7のフラックス成分が蒸発後、それぞれのはんだ合金が熔融して半導体装置20の自重で下方に沈んだ状態で再凝固させることにより、図7(c)に示す通り、良好な接続端子22を形成する。この接続端子22の形成によりプリント配線基板19のパッド9と半導体装置20のパッド3との間が電気的に接続されかつ機械的に接合される。
【0039】
尚、この発明の実施形態では、半導体装置20のパッド3は、図1に示した通り、円形であるが、これに限らず、例えば、図8に示す通り、多角形で構成しても良い。この場合、フラックス成分を抜くためのスリット6は、多角形の頂点に全て、又は、少なくとも1個以上設ける。
【0040】
【発明の効果】
以上説明したように、この発明によれば、はんだとパッドとの接続信頼性を高めることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係わるCSP型半導体装置の接合部を示す概略平面図。
【図2】同実施形態に係わり、CSP型半導体装置の接合部がプリント配線基板上のパッドに接合された状態を示すラインAに沿った断面図。
【図3】同実施形態に係わり、CSP型半導体装置の接合部がプリント配線基板上のパッドに接合された状態を示すラインBに沿った断面図。
【図4】この発明の一実施形態に係わる半導体装置の製造方法を説明する図。
【図5】この発明の一実施形態に係わる半導体装置の製造方法を説明する図。
【図6】この発明の一実施形態に係わる半導体装置の製造方法を説明する図。
【図7】この発明の一実施形態に係わる半導体装置をプリント配線基板に実装する方法を説明する。
【図8】この発明の別の実施形態に係わるCSP型半導体装置の接合部を示す概略平面図。
【符号の説明】
1・・・半導体回路基板、2・・・パターン、3・9・・・パッド、4・・・テープ、
5・・・はんだ端子、6・・・スリット、7・18・・・クリームはんだ、
8・・・テープ開口部、10・・・プリント配線基板、11・・・フラックス揮散、
12・・・銅箔、13・・・ボンディングワイヤー、14・・・半導体素子、
15・・・封止樹脂、16・・・スクリーンマスク、17・・・開口部、19・・・スキージ
20・・・半導体装置、21・・・リフロー炉、22・・・接続端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chip-shaped semiconductor device capable of improving mounting efficiency on a printed wiring board, enabling high-density mounting, and realizing mounting with high reliability of solder connection, and a method of manufacturing the same.
[0002]
[Prior art]
In recent years, as represented by mobile phones, electronic devices have become more compact and multifunctional. Many electronic devices are used in these electronic devices. In order to respond to the demand for lightness, small size and small size in packaging of the semiconductor device, a chip size package (hereinafter, referred to as a CSP), which is a package having a size similar to that of an IC chip, is being developed.
[0003]
The plurality of packaged IC modules are electrically connected to a multilayer printed wiring board or the like. As a means for the electrical connection, a ball grid array (hereinafter, referred to as BGA) package is used which is used as an external terminal of a package in which a large number of small solder balls are arranged.
[0004]
Normally, a circular opening is formed in a two-dimensional array on a semiconductor circuit board of a semiconductor device sealed in a BGA package, and a part of a conductor connected to a semiconductor chip is exposed from the opening to form a pad. Is formed. A solder ball having a diameter corresponding to the opening is sucked by a suction device, a flux is applied to the solder ball, and then the solder ball is transferred onto a pad. By placing the semiconductor device in a reflow furnace, a spherical projecting electrode (hereinafter, referred to as a solder terminal) having a predetermined size is formed.
[0005]
In the conventional structure, during the reflow process, the solder balls have poor wettability, and solder terminals having low bonding strength with pads of the semiconductor device are generated. This is because the pad is closed by the solder ball, and the flux remaining on the pad during the reflow process deteriorates the wettability of the solder ball. As a result, the yield of semiconductor devices has been reduced, leading to an increase in cost.
[0006]
In order to solve this conventional problem, an arc-shaped concave portion is formed at the upper end of the side surface of an opening formed in a two-dimensional array on a semiconductor circuit board to expose pads and form solder terminals. A path is formed between the surface of the solder ball and the concave portion so that the surface of the solder ball mounted on the pad does not contact the upper end of the concave portion, and a path through which the flux evaporated during the reflow process escapes through the path. (See, for example, Patent Document 1).
[0007]
However, in the conventional semiconductor device, in order to prevent the filling of the flux in the opening, a passage formed between the surface of the solder ball and the concave portion on the semiconductor circuit board has a predetermined upper side edge of the opening for venting. The inclination of was provided.
[0008]
Conventionally, the inclination for degassing is formed at the upper end of the side surface of the opening in the manufacturing process of the semiconductor device, but it is affected by various conditions during the manufacturing process of the substrate and the manufacturing process of the semiconductor device, and a uniform inclination is achieved. Could not. For example, when the inclination of the concave portion is too large, the result that the molten solder ball flows out of the concave portion during the reflow process has been caused. In addition, when the inclination of the concave portion is small, that is, when the concave portion is too abrupt, during the reflow step, the gas of the flux cannot be sufficiently removed from the concave portion, and a connection failure has occurred.
[0009]
Further, when mounting the solder terminals of the semiconductor device on the pads on the printed wiring board, the solder terminals of the semiconductor device and the solder printed on the pads of the printed wiring board have different melting points. After the solder terminals of the semiconductor device are melted at a predetermined temperature, the flux component contained in the cream solder on the printed wiring board volatilizes. Thereafter, the solder of the printed wiring board is melted, and the volatilized flux component fills the opening of the semiconductor device, and the solder of the semiconductor device and the solder of the printed wiring board are formed on the printed wiring board without being sufficiently mixed. It was not possible to maintain sufficient bonding strength with the pad.
[0010]
[Patent Document 1]
JP-A-10-256418 (pages 4 to 5, FIG. 1, FIG. 2, FIG. 11)
[0011]
[Problems to be solved by the invention]
The above-described prior art semiconductor device has a problem in terms of poor connection with a solder terminal formed on a pad of the semiconductor device and poor connection with a pad on a printed wiring board.
[0012]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a semiconductor device with improved connection reliability between a solder and a pad and a method of manufacturing the same.
[0013]
[Means for Solving the Problems]
The semiconductor device of the present invention includes a semiconductor element, a tape serving as a support substrate of the semiconductor element, a pad serving as an electrode of the semiconductor element, and the pad being exposed to the outside. An opening having a small predetermined size is provided, and a slit having a gap is formed on a side surface of the opening.
[0014]
According to such a configuration, the connection reliability between the solder and the pad of the semiconductor device can be improved.
[0015]
Further, according to a method of manufacturing a semiconductor device of the present invention, a step of providing an opening having a slit of a predetermined size in a tape serving as a support substrate of a semiconductor element, and forming pads and patterns serving as electrodes of the semiconductor element are provided. Pressing a copper foil on the tape and etching the copper foil, mounting the semiconductor element at a predetermined position on the tape serving as a support substrate, and electrically connecting an electrode of the semiconductor element to the pad. And sealing the tape on which the semiconductor element is mounted with a predetermined resin, printing cream solder containing a flux component in the opening, and melting and solidifying the cream solder. Forming a solder terminal on the pad by melting the cream solder through the slit when the cream solder is melted. Characterized in that it.
[0016]
According to such a configuration, the connection reliability between the solder and the pad can be improved in the method of manufacturing a semiconductor device.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a schematic plan view showing a joint of a CSP type semiconductor device according to one embodiment of the present invention. FIG. 2 is a cross-sectional view taken along a line A showing a state in which a bonding portion of the CSP type semiconductor device is bonded to a pad on a printed wiring board according to the first embodiment. FIG. 3 is a cross-sectional view taken along a line B showing a state in which a bonding portion of the CSP type semiconductor device is bonded to a pad on a printed wiring board according to the first embodiment.
[0019]
A first embodiment of the present invention will be described below with reference to FIGS. In this semiconductor device 20, pads 3 forming a part of signal input / output terminals are provided on a part of the semiconductor element 14 and the wiring pattern 2 via an insulating layer. The tape 4 is used as a substrate (interposer) of the semiconductor device 20, and an opening 8 penetrating the tape 4 in a vertical direction is formed at a predetermined position. The opening 8 of the semiconductor device 20 is illustrated in FIG.
[0020]
The tape 4 is made of, for example, a polyimide resin, and is formed on the semiconductor circuit board 1 so as to cover the central periphery of the pad 3 and the entire bottom surface of the semiconductor circuit board 1 except for the center of the pad 3. Glued. Then, a part of the lower surface of the pad 3 sandwiched between the tape 4 and the semiconductor circuit board 1 is exposed downward from the opening 8. The diameter of the pad 3 is larger than the diameter of the opening 8. Therefore, since the outer periphery of the pad 3 is held down by the tape 4, the separation of the pad 3 from the semiconductor circuit board 1 can be prevented.
[0021]
A spherical portion having a predetermined diameter is formed at a central portion of the pad 3 in an area surrounded by the tape 4 so as to electrically couple with the printed solder 7 printed on the pad 9 on the printed wiring board 10. Solder terminals 5 are provided by solder balls, and the solder terminals 5 are connected to the pads 3. In this case, the solder terminal 5 is provided at the center of the pad 3 in a state where it is partially exposed from the tape 4 as shown in FIGS. 2 and 3, and the solder ball is attached to the pad 3 by heat welding such as reflow. Equipped with anchorage.
[0022]
According to the configuration of the embodiment of the present invention, as shown in FIG. 1, four slits 6 are formed on the side surface of the opening 8 at equal intervals on a diagonal line. The slit 6 is formed in a rectangular shape in the radial direction on the side surface of the opening 8 covering the pad 3. Therefore, the outer surface of the solder terminal 5 forms a predetermined gap with respect to the slit 6 of the opening 8. The length of the gap is a difference between the radius of the pad of the semiconductor device and the radius of the opening 8 as shown in FIG.
[0023]
As shown in FIG. 3, the flux 11 applied to the printed solder 7 during the reflow process evaporates, and the evaporated flux 11 escapes through the slot 6 and out of the opening 8. As a result, the excess or residual portion of the evaporated flux 11 does not fill the opening 8 but has an appropriate wettability. During the reflow process, the solder terminal 5 is sequentially melted and solidified together with the printed solder 7. The joining strength can be improved. Similarly, a solder ball coated with a flux component is screen-printed on the pad 3 of the semiconductor circuit board 1, and the applied flux component evaporates efficiently from the slit during the reflow process. Terminal 5 can be attached.
[0024]
According to the configuration of the present invention, the solder terminals 5 with improved connection reliability can be mounted on the pads 3 of the semiconductor circuit board 1. Further, when the solder balls forming the solder terminals 5 are melted, the solder balls 5 The excess or residual portion of the evaporated flux 11 does not protrude from the slit 6 provided in the portion 8, and is naturally discharged to the outside through the slit 6. Since the residual flux of the adhesive is not confined in the opening 8, it is possible to almost certainly remedy the problem that bubbles and the like generated by the residual flux are confined in the opening 8 and the bonding strength is reduced.
[0025]
Next, a method for manufacturing the semiconductor device 20 according to one embodiment of the present invention will be described with reference to FIGS.
[0026]
First, as shown in FIG. 4A, a tape 4 of a high heat-resistant polyamide resin or a glass epoxy resin having a thickness of about 50 to 70 μm is prepared as a resin base material (supporting substrate) of the interposer. Then, for example, holes are punched as 0.28 mmφ tape openings 8 in accordance with the positions of the 0.3 mmφ pads 3 arranged in an array at 0.5 mm intervals.
[0027]
The method of perforation here is to make a hole by a laser, or to punch by a mold. In particular, when drilling with a laser, a 0.28 mmφ hole can be sequentially drilled with a slit in a glass epoxy tape or a polyimide tape having two or three layers by carbon dioxide laser tray panning. The position, interval and width (length) of the slit are programmed in the laser processing machine in advance.
[0028]
In the case of punching using a die, the clearance is designed to be 5 micron, and a slit is simultaneously formed by a carbide pin type and a quenching receiving type, and a tape opening 8 of 0.28 mmφ is formed by two to three layers of glass. Punched into epoxy tape or polyimide tape.
[0029]
As shown in FIG. 4B, a copper foil 12 having a thickness of about 18 μm is pressure-bonded to one side of the polyimide resin tape 4 via an insulating adhesive. The copper foil 12 covers the perforated tape opening 8.
[0030]
Subsequently, the copper foil 12 corresponding to each pattern 2 and the pad 3 is coated with an etching resistant resist (not shown), and the copper foil 12 is patterned. As shown in FIG. 5A, the pad 3 is patterned with a diameter (0.3 mmφ) slightly larger than the diameter of the tape opening 8.
[0031]
Next, although not shown in the drawing, plating is applied to the electrode portion of the pad, and the semiconductor element chip 14 is die-bonded to substantially the center of the tape 4. The plating here is formed by nickel using an electrolytic plating method, an electroless plating method, or a dip method, for example, with a thin film thickness of about 1 to 20 μm.
As shown in FIG. 5B, each electrode of the semiconductor element 14 is connected to an electrode of a predetermined pad via a binding wire 13. Here, a gold wire, an aluminum wire, a copper wire, or the like is used as the bonding wire 4.
[0032]
After the binding wire 13 is connected to the semiconductor element 14, it is covered with a sealing resin 15 as shown in FIG. At this time, the solder terminal 5 has not been formed in the solder opening 8.
[0033]
In order to form the solder terminals 5 in the solder openings 8, cream solder 18 is formed on predetermined connection pads 3 on the semiconductor circuit board 1 by screen printing of FIG. 6B. First, the opening 17 of the metal mask 16 is aligned with the pad 3 of the tape opening 8 formed on the semiconductor circuit board 1, and the squeegee 19 is pressed in a predetermined direction. The opening 17 of the metal mask 16 is filled with the cream solder 18, and the cream solder 18 is deposited on the pad 3 by the thickness of the metal mask 40 and the tape 4. When the metal mask 16 is removed after the filling of the cream solder 18, the solder is formed in a ball shape or a bump shape on the pad 3 due to the surface tension of the solder. The thickness of the solder ball is set based on the connection reliability at a narrow pitch. The cream solder 18 used here is composed of, for example, 63% by weight of tin and 37% by weight of lead in the case of a eutectic solder containing lead. This cream solder further contains a flux component.
[0034]
After that, as shown in FIG. 6C, the semiconductor circuit board 1 is carried into the reflow furnace 21 and the eutectic solder is melted at about 183 degrees and solidified to form the solder terminals 5 on the predetermined pads 3. be able to. During this reflow process, the flux component volatilized from the printed cream solder is efficiently discharged to the outside through the slit 6.
[0035]
Next, a method of connecting and mounting the semiconductor device 20 according to one embodiment of the present invention on a printed wiring board will be described with reference to FIG.
[0036]
6B, the opening of the metal mask is aligned with the opening 8 of 0.28 mmφ on the printed wiring board 10, and the squeegee is pressed in a predetermined direction. The opening of the metal mask is filled with cream solder, and the cream solder is deposited on the pad 9 by the thickness of the metal mask. When the metal mask is removed after the filling of the cream solder 7, a paste-like cream solder layer is formed on the pad 9. The cream solder 7 here is composed of, for example, 93.5% by weight of tin, 3% by weight of silver, and 0.5% by weight of copper in the case of a lead-free solder. The cream solder 7 further contains a flux component.
[0037]
Next, the semiconductor device 20 manufactured in FIG. 6 is prepared, and as shown in FIG. 7A, the solder terminals 5 of the semiconductor device 20 are accurately positioned and mounted on the pads 9 of the printed wiring board 10. Place. The solder terminals 5 of the semiconductor device 20 and the pads 9 of the printed wiring board 10 are temporarily bonded via the cream solder 7 layer.
[0038]
In a reflow furnace 21 shown in FIG. 7B, the semiconductor device 20 in a temporarily bonded state on the printed wiring board 10 is heated. First, the solder terminal 5 formed of the eutectic solder is melted at about 183 degrees, and the flux component volatilizes from the lead-free cream solder 7 into the tape opening 8. Further, the reflow furnace 21 is heated to melt the cream solder at about 219 degrees and mix with the solder terminal 5 that has been melted. When the solder is mixed at the tape opening terminal 5 of the semiconductor device 20, according to the configuration of the present invention, as shown in FIG. 3, the gas of the flux can be efficiently discharged through the slit 6 without being filled with the gas of the flux. it can. After the flux components of the cream solder 7 evaporate, the respective solder alloys are melted and re-solidified in a state of sinking downward by the weight of the semiconductor device 20, so that, as shown in FIG. To form By forming the connection terminals 22, the pads 9 of the printed wiring board 19 and the pads 3 of the semiconductor device 20 are electrically connected and mechanically joined.
[0039]
In the embodiment of the present invention, the pad 3 of the semiconductor device 20 has a circular shape as shown in FIG. 1, but is not limited to this, and may have a polygonal shape as shown in FIG. . In this case, all or at least one slit 6 for extracting the flux component is provided at the vertex of the polygon.
[0040]
【The invention's effect】
As described above, according to the present invention, the connection reliability between the solder and the pad can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a junction of a CSP type semiconductor device according to one embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along a line A showing a state in which a bonding portion of the CSP type semiconductor device is bonded to a pad on a printed wiring board according to the embodiment;
FIG. 3 is an exemplary cross-sectional view of the CSP type semiconductor device according to the embodiment, taken along line B, showing a state in which a bonding portion of the CSP type semiconductor device is bonded to a pad on a printed wiring board;
FIG. 4 is a diagram illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
FIG. 5 is a diagram illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
FIG. 6 is a diagram illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
FIG. 7 illustrates a method for mounting a semiconductor device according to an embodiment of the present invention on a printed wiring board.
FIG. 8 is a schematic plan view showing a junction of a CSP type semiconductor device according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor circuit board, 2 ... Pattern, 3/9 ... Pad, 4 ... Tape,
5: solder terminal, 6: slit, 7.18: cream solder,
8: tape opening, 10: printed wiring board, 11: flux evaporation,
12: copper foil, 13: bonding wire, 14: semiconductor element,
15 sealing resin, 16 screen mask, 17 opening, 19 squeegee 20 semiconductor device, 21 reflow furnace, 22 connection terminal

Claims (7)

半導体素子と、前記半導体素子の支持基板となるテープと、前記半導体素子の電極となるパッドと、前記パッドを外部に露出するため、前記テープに前記パッドの径よりも小さい所定の大きさを有する開口部を設け、前記開口部の側面上に空隙を有するスリットを形成したことを特徴とする半導体装置。A semiconductor element, a tape serving as a support substrate of the semiconductor element, a pad serving as an electrode of the semiconductor element, and a tape having a predetermined size smaller than a diameter of the pad in order to expose the pad to the outside. An opening is provided, and a slit having a gap is formed on a side surface of the opening. 前記スリットは、前記開口部に対して対角線上に形成されたことを特徴とする特許請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the slit is formed diagonally with respect to the opening. 前記スリットの空隙は、前記パッド上に設けられることを特徴とする特許請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the gap of the slit is provided on the pad. 前記開口部は、前記パッドの形状に合わせて形成されることを特徴とする特許請求項3記載の半導体装置。4. The semiconductor device according to claim 3, wherein the opening is formed in accordance with a shape of the pad. 半導体素子の支持基板となるテープに所定の大きさのスリットを有する開口部を設けるステップと、前記半導体素子の電極となるパッドやパターンを形成するため、銅箔を前記テープに圧着し、前記銅箔をエッチングするステップと、前記半導体素子を支持基板となるテープ上の所定の位置に搭載し、半導体素子の電極と前記パッドとを電気的に接続するステップと、前記半導体素子が搭載されたテープに所定の樹脂を用いて封止し、前記開口部にフラックス成分を含有したクリームはんだを印刷するステップと、前記クリームはんだを融解し、凝固することによりはんだ端子をパッド上に形成するステップとを有し、前記クリームはんだが融解する際、前記フラックスが前記スリットを介して蒸発することを特徴とする半導体装置の製造方法。Providing an opening having a slit of a predetermined size in a tape serving as a support substrate of a semiconductor element, and forming a pad or a pattern serving as an electrode of the semiconductor element by pressing a copper foil on the tape, Etching a foil, mounting the semiconductor element at a predetermined position on a tape serving as a support substrate, and electrically connecting an electrode of the semiconductor element and the pad, and a tape on which the semiconductor element is mounted. Sealing with a predetermined resin, and printing a cream solder containing a flux component in the opening, melting the cream solder, and forming a solder terminal on the pad by solidification, Wherein the flux evaporates through the slit when the cream solder is melted. . 前記パッド上にはんだ端子が形成された半導体装置をプリント配線基板上のパッドに実装接続するため、前記プリント配線基板上のパッドにフラックス成分を含有したクリームはんだを印刷するステップと、前記はんだ端子とクリームはんだを順次融解し、凝固することにより、前記半導体装置のパッドと前記プリント配線基板上のパッド上に接続端子を形成するステップとを有し、前記クリームはんだが融解する際、前記フラックスが前記スリットを介して蒸発することを特徴とする特許請求項5記載の半導体装置の製造方法。In order to mount and connect a semiconductor device having a solder terminal formed on the pad to a pad on a printed wiring board, printing cream solder containing a flux component on the pad on the printed wiring board; and Forming a connection terminal on a pad of the semiconductor device and a pad on the printed wiring board by sequentially melting and solidifying the cream solder, and when the cream solder melts, the flux 6. The method for manufacturing a semiconductor device according to claim 5, wherein the evaporation is performed through a slit. レーザによる穴あけと、又は、金型による打ち抜きの何れかにより、前記開口部を穿孔すると共にスリットを形成することを特徴とする特許請求項5記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5, wherein the opening is pierced and a slit is formed by either drilling using a laser or punching using a die.
JP2003079385A 2003-03-24 2003-03-24 Semiconductor device and its manufacturing method Abandoned JP2004288892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079385A JP2004288892A (en) 2003-03-24 2003-03-24 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079385A JP2004288892A (en) 2003-03-24 2003-03-24 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004288892A true JP2004288892A (en) 2004-10-14

Family

ID=33293508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079385A Abandoned JP2004288892A (en) 2003-03-24 2003-03-24 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004288892A (en)

Similar Documents

Publication Publication Date Title
US20020127839A1 (en) Wiring board and fabricating method thereof, semiconductor device and fabricating method thereof, circuit board and electronic instrument
JP5897584B2 (en) Lead-free structure in semiconductor devices
JP2003273145A (en) Semiconductor device
JP2001339011A (en) Semiconductor device and its manufacturing method
US7271028B1 (en) High density electronic interconnection
JP5157455B2 (en) Semiconductor device
JP2010103161A (en) Semiconductor device and electronic component
JP4051570B2 (en) Manufacturing method of semiconductor device
JP2009049248A (en) Semiconductor device, and its manufacturing method
JP2004281540A (en) Electronic device and its manufacturing method, chip carrier, circuit board and electronic apparatus
JP3838530B2 (en) Manufacturing method of semiconductor device
US20110061907A1 (en) Printed circuit board and method of manufacturing the same
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2003229513A (en) Substrate incorporating element and method of manufacturing the same
KR100348126B1 (en) Semiconductor device and outer connecting terminal structured body, and method of manufacturing the semiconductor device
JP2004200539A (en) Component-connecting terminal and electronic device
JP2004288892A (en) Semiconductor device and its manufacturing method
KR100746365B1 (en) Method for Manufacturing substrate used to mount flip chip
JP3582286B2 (en) Manufacturing method of wiring board
JP2741611B2 (en) Substrate for flip chip bonding
JP3600138B2 (en) Semiconductor device
JP2000294675A (en) Chip carrier, semiconductor device and manufacture of chip carrier
JP2751897B2 (en) Ball grid array mounting structure and mounting method
JP2002043466A (en) Ball grid array package
JPH02252248A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050825

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060816