JP2004285239A - Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film - Google Patents

Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film Download PDF

Info

Publication number
JP2004285239A
JP2004285239A JP2003079889A JP2003079889A JP2004285239A JP 2004285239 A JP2004285239 A JP 2004285239A JP 2003079889 A JP2003079889 A JP 2003079889A JP 2003079889 A JP2003079889 A JP 2003079889A JP 2004285239 A JP2004285239 A JP 2004285239A
Authority
JP
Japan
Prior art keywords
polyethylene terephthalate
copolymerized polyethylene
particles
inert particles
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079889A
Other languages
Japanese (ja)
Inventor
Tatsuya Ogawa
達也 小川
Nobuo Minobe
信夫 見延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003079889A priority Critical patent/JP2004285239A/en
Publication of JP2004285239A publication Critical patent/JP2004285239A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide methods for producing a copolymerized polyethylene terephthalate and a copolymerized polyethylene terephthalate film in which inactive particles are uniformly dispersed without including crude particles in a copolymerized polyethylene terephthalate resin and voids generating on the interface between the copolymerized polyethylene terephthalate and inactive particles are slight and to provide the copolymerized polyethylene terephthalate film excellent in surface smoothness by using these production methods. <P>SOLUTION: The method for producing the copolymerized polyethylene terephthalate resin composition comprises a first step for keeping the copolymerized polyethylene terephthalate resin in melted state by heating the resin, a second step for adding inert particles to the copolymerized polyethylene terephthalate resin in melted state and a third step for kneading the polyethylene terephthalate resin in melted state with the inactive particles and when the inactive particles are added in the second step, polyethylene-2,6-naphthalate resin fine powder having 10-1,000 μm average particle and the inactive particles are simultaneously added. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、共重合ポリエチレンテレフタレート樹脂組成物および共重合ポリエチレンテレフタレートフィルムの製造方法ならびにそれらの製造方法によって得られた共重合ポリエチレンテレフタレートフィルムに関する。さらに詳しくは、共重合ポリエチレンテレフタレート樹脂に不活性粒子を均一に混錬する共重合ポリエチレンテレフタレート樹脂組成物の製造方法、不活性粒子を均一に混練された共重合ポリエチレンテレフタレート樹脂組成物を用いた共重合ポリエチレンテレフタレートフィルムの製造方法ならびにボイドや凝集粒子の少ない共重合ポリエチレンテレフタレートフィルムに関する。
【0002】
【従来の技術】
ポリエチレンテレフタレート(以下、PETと略記することがある。)樹脂は優れた物理的および化学的性質を有することから、繊維、樹脂、フィルムなどに大量に使用されており、また、PET樹脂の成形加工性や耐熱性の改良のために特定の成分を共重合させるなどの方法がとられることは広く知られるところである。PET樹脂をフィルムにする場合、フィルムを得る工程や得られたフィルムを取り扱う工程における取り扱い性の向上およびしわなどの品質トラブルの発生防止を目的として、PET樹脂は不活性粒子が添加される。この不活性粒子の存在によって、フィルム表面に適度な凹凸が付与され、結果としてフィルムの滑り性が向上し、前述の問題を解消できる。このような不活性粒子としては、例えばシリカ、カオリン、二酸化チタンなどに代表される無機粒子やシリコーン、ポリスチレンなどに代表される有機粒子が挙げられる。
【0003】
ところで、これらの不活性粒子には、粗大粒子が混在していたり、PET樹脂に分散させる際に凝集による粗大粒子が発生したりすることがある。このような粗大粒子がフィルム中にあると、フィルム製品のうちでも特に平坦性が求められる用途、例えば磁気記録用テープなどにそのフィルムを用いると、得られる磁気記録テープの電磁変換特性が低下したり、ドロップアウトなどの欠点が発生するなど品質を損なう問題があった。
【0004】
そこで、このような粗大粒子の混入を抑制するために、種々の方法が採用されている。例えば、分散スラリー化、分級、濾過などの操作を行い粗大粒子を予め除去した不活性粒子を、PET樹脂を製造する溶融重縮合の反応系へ添加して、粒子の分散性を向上する方法がある。しかし、この方法では、各工程の単位操作に多大な時間と労力が必要であること、また溶融重縮合反応系に添加された後、不活性粒子が再凝集を起こすといった問題があった。
【0005】
一方、溶融重縮合反応系へ添加する以外の方法としては、例えば特開平1−157806号公報(特許文献1)に、単軸や二軸の混練押出機を用いて、重縮合して得られたポリエステル樹脂に、直接不活性粒子を混練分散させる方法が、また、特開平6−91635号公報(特許文献2)に押出機を用いた混練分散方法で不活性粒子の分散性を向上させるために、添加する粒子を媒体に分散させたスラリー状態で添加する方法が提案されている。しかしながら、このようなスラリーを混練押出機を用いて混練させる方法を、溶融加工温度が250℃を越える比較的高融点のポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートなどに代表されるポリエステル樹脂に採用すると、スラリー化した不活性粒子を添加する際に、ヒートショックによる粒子の再凝集が発生し、凝集粗大粒子が増加する問題が潜在していた。
【0006】
また、上述の粗大粒子は、PET樹脂をフィルムとした際、PET樹脂との界面にボイドと呼ばれる空隙を生じ易く、フィルムの透明性を損なわせたり、あるいは磁気記録テープとしてビデオデッキで走行させた時に、ボイドが原因となって不活性粒子の脱落が起こり、削れ性を悪化させるといった問題も潜在していた。
【0007】
さらに、上述の凝集粗大粒子の存在は、例えば特定の成分を共重合させ成形加工性を改良した共重合PET樹脂を用いた場合でも、フィルム成形加工の際にピンホールなどの欠点を生じさせやすいといった問題が潜在していた。なお、特開平9−272793号公報(特許文献3)で、ポリマーのチップを粉チップにして不活性粒子と二軸混錬押し出し機で混錬する方法が提案されているが、それでも依然として上記のような問題は解消されていなかった。
【0008】
そのため、PETフィルム中に粗大粒子を存在させることなく不活性粒子を均一に分散させ、かつ不活性粒子とPET樹脂との界面にボイドなどが生じ難い親和性を有するPET樹脂組成物の製造方法を確立すること、およびそれらの製造方法を用いて表面平滑性に優れたPETフィルムを得ることが強く望まれていた。
【0009】
【特許文献1】
特開平1−157806号公報
【0010】
【特許文献2】
特開平6−91635号公報
【0011】
【特許文献3】
特開平9−272793号公報
【0012】
【発明が解決しようとする課題】
本発明の目的は、上述の従来技術の有する問題を解消し、多大な労力をかけなくても、共重合PET樹脂組成物中に粗大粒子を存在させることなく不活性粒子を均一に分散させ、しかも不活性粒子と共重合PET樹脂との界面にボイドなどの空隙が生じにくい共重合PET樹脂組成物の製造方法を提供し、これらの製造方法を用いて表面平滑性に優れ、成形加工性等にも優れた共重合PETフィルムを提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意検討した結果、共重合ポリエチレンテレフタレート樹脂を加熱して溶融状態にする第1の工程、溶融状態の共重合ポリエチレンテレフタレート樹脂に不活性粒子を添加する第2の工程および溶融状態の共重合ポリエチレンテレフタレート樹脂と不活性粒子とを混練する第3の工程とからなり、該第2の工程において不活性粒子を添加する際に、平均粒径が10〜1000μmのポリエチレン−2,6−ナフタレート(以下、PENと略記することがある。)樹脂微粉末を不活性粒子と同時に添加する製造方法を用いることによって、共重合PET樹脂組成物中に粗大粒子を存在させることなく不活性粒子が均一に分散され、しかも、不活性粒子と共重合PET樹脂との界面にボイドなどの空隙が生じにくくなり、表面平滑性に優れ、成形加工性等にも優れた共重合PETフィルムが得られることを見出し、本発明を完成するに至った。
【0014】
また、本発明は共重合PET樹脂が2,6−ナフタレンジカルボン酸を共重合した共重合PET樹脂からなり、かつ、テレフタル酸成分と2,6−ナフタレンジカルボン酸成分とのモル比が82/18〜97/3であること、ポリエチレン−2,6−ナフタレート樹脂微粉末の70重量%以上が、該ポリエチレン−2,6−ナフタレート樹脂微粉末の平均粒径に対して0.2〜2倍の範囲内の粒径を有すること、不活性粒子の添加量が共重合PET樹脂組成物の重量を基準として0.01〜20重量%であること、ポリエチレン−2,6−ナフタレート樹脂微粉末の添加量が共重合PET樹脂組成物の重量を基準として0.001〜40重量%であること、不活性粒子が無機粒子であること、不活性粒子が有機粒子であること、不活性粒子の平均粒径が0.03〜10μmであること、および溶融状態での混練が、ベント付二軸混練押出機にて行われ、シリンダー温度がポリエチレン−2,6−ナフタレート樹脂の融点より少なくとも10℃高いことのいずれかを具備する共重合ポリエチレンテレフタレート樹脂組成物の製造方法を包含するものである。
【0015】
また、本発明の他の課題は、上述の本発明の共重合ポリエチレンテレフタレート樹脂組成物の製造方法によって得られた共重合ポリエチレンテレフタレート樹脂組成物を、溶融状態でシート状に押出し、少なくとも一軸方向に延伸する共重合ポリエチレンテレフタレートフィルムの製造方法によって達成される。
【0016】
さらにまた、本発明の他の課題は、上述の本発明の共重合ポリエチレンテレフタレートフィルムの製造方法によって得られた、2個以上の不活性粒子が凝集した凝集粒子がフィルム面1.2mmあたりに10個以下で、かつ下記式(I)で表されるボイド比が3以下である共重合ポリエチレンテレフタレートフィルムによって達成される。
【0017】
【数2】
ボイド比=(不活性粒子を含むボイド面積)/(不活性粒子面積)・・・(I)
【0018】
【発明の実施の形態】
以下、本発明の構成をさらに詳細に説明する。
[共重合ポリエチレンテレフタレート樹脂]
本発明の共重合ポリエチレンテレフタレート樹脂組成物を構成する共重合ポリエチレンテレフタレート樹脂は、全ジカルボン酸成分の80モル%以上がテレフタル酸、全グリコール成分の80モル%以上がエチレングリコールからなる。また、共重合成分としては、ジカルボン酸成分としてコハク酸、アジピン酸、セバシン酸、フタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムジカルボン酸などが好ましく挙げられ、グリコール成分として、トリメチレングリコール、ジエチレングリコール、プロピレングリコール、1,4ブタンジオールなどのアルキレングリコール、1,4シクロヘキサンジメタノールなどが好ましく挙げられる。なお、これらの共重合成分は1種のみでなく2種以上を併用してもよい。
【0019】
本発明における共重合PET樹脂は、上記の共重合成分の中でも、ジカルボン酸成分として2,6−ナフタレンジカルボン酸を共重合させ、かつ、テレフタル酸と2,6−ナフタレンジカルボン酸とのモル比が82/18〜97/3の範囲であることが、ポリエチレン−2,6−ナフタレート樹脂微粉末との親和性やボイド抑制効果の観点から最も好ましい。
【0020】
本発明における共重合PET樹脂の固有粘度は、オルトクロロフェノール溶媒下、35℃で0.4dl/g〜0.8dl/gであることが好ましく、より好ましくは0.5dl/g〜0.7dl/gである。固有粘度が0.4dl/g未満の場合は、フィルムに製膜後、各製品に使用する際に要求される機械強度が不足することがある。他方、固有粘度が0.8dl/gを超える場合は、溶融重合工程およびフィルム製膜工程における溶融混練時の生産性が損なわれることがある。
【0021】
[不活性粒子]
本発明の共重合PET樹脂組成物は、製膜性やしわ等の品質トラブルの発生防止を目的に不活性粒子を含有する。かかる不活性粒子としては、共重合PET樹脂の溶融状態の温度に対して、十分な耐熱性を有するものであれば特に限定されず、溶融縮重合の反応系へスラリーとして添加すると凝集しやすい不活性粒子、または、溶融混練押出機にて添加・混練した際に、ヒートショックを受けて再凝集を起こしやすい不活性粒子も好適に用いることができる。本発明で用いられる不活性粒子として、耐熱性に優れる点から無機粒子が挙げられ、シリカ、炭酸カルシウム、酸化アルミニウム、二酸化チタン、カオリンからなる群より選ばれる少なくとも一種であることが好ましい。また、本発明で用いられる不活性粒子として、凝集粒子を抑制する効果が出やすい点から、有機粒子が挙げられ、シリコーンおよび/または架橋ポリスチレンであることが好ましい。なお、本発明で使用する不活性粒子は、無機粒子と有機粒子の組み合わせであってもよく、さらに溶融した時の耐熱性に問題が生じなければ、共重合PETとの親和性を向上させるような表面処理方法、例えばシランカップリング剤で表面処理した不活性粒子であっても良い。
【0022】
本発明で用いられる不活性粒子の平均粒径は、好ましくは0.03〜10μm、より好ましくは0.1〜5μmの範囲である。不活性粒子の平均粒径が下限未満の場合は、フィルムにした時の滑り性が不十分であり、不活性粒子の平均粒径が上限を超える場合は、フィルム表面粗さが過度に粗くなる。
【0023】
本発明における不活性粒子の添加量は、フィルムに製膜後、各製品に使用する際の使用目的により適宜調整すれば良い。好ましくはフィルム製膜性を安定に維持しやすいことから、共重合PET樹脂組成物の重量を基準として、高々20重量%である。20重量%を超えた場合、製膜性が困難になることがある。本発明における不活性粒子の添加量は、製膜時における不活性粒子の分散性を高度に維持しやすいことから、共重合PET樹脂組成物の重量を基準として、10重量%以下、さらに5重量%以下、特に1重量%以下であることが好ましい。なお、不活性粒子の添加量の下限は特に制限されないが、得られるフィルムの取扱い性を維持しやすいことから、少なくとも0.01重量%であることが好ましい。
【0024】
本発明における不活性粒子は、共重合PETフィルム中の凝集粒子数が1.2mmあたり10個以下であることが、フィルムの表面平滑性の点から好ましい。更に好ましい凝集粒子数は1.2mmあたり5個以下、特に好ましくは1個以下である。ここで、「凝集粒子」とは、不活性粒子が2個以上凝集して形成される凝集粒子を指す。具体的には、フィルム表面にプラズマ処理(ヤマト科学製プラズマリアクター−PR−31型)を施して不活性粒子をフィルム表面に露出させ、走査型電子顕微鏡を用いて1000倍の倍率のもと、1.2mmの面積に存在する凝集粒子数を測定して、その値をもって「凝集粒子数」とする。凝集粒子数が10個を超えた場合、フィルム表面粗さが過度に粗くなる。なお、凝集粒子数の下限は、特に制限されないが、通常120mmの面積において1個以上である。
【0025】
本発明における不活性粒子は、下記式(I)で表される共重合PETフィルム中のボイド比が3以下の状態で共重合PETフィルム中に存在していることが、フィルムの表面平滑性の点から好ましい。
【0026】
【数3】
ボイド比=(不活性粒子を含むボイド面積)/(不活性粒子面積)・・・(I)
【0027】
ここで「ボイド」とは、不活性粒子と共重合PET樹脂との界面に形成されるボイドと呼ばれる空隙を指す。具体的には、フィルム表面にプラズマ処理(ヤマト科学製プラズマリアクター−PR−31型)を施し、フィルム表面に不活性粒子を露出させた後、走査型電子顕微鏡を用いて、不活性粒子の粒径に応じて5000倍〜20000倍の倍率にて不活性粒子および不活性粒子の周囲のボイド(空隙)を観察する。その観察像を画像解析装置を用いて、不活性粒子面積と、不活性粒子とボイドとを合わせた面積をそれぞれ測定し、(不活性粒子を含むボイド面積)/(不活性粒子面積)の比をもって「ボイド比」とする。なお、「不活性粒子を含むボイド面積」とは、不活性粒子部分の面積とボイド部分の面積とを合わせた面積を指す。ボイド比が3を超えた場合、フィルム表面粗さが粗くなったり、フィルムの透明性が低下したり、あるいは磁気記録テープとしてビデオデッキで走行させた時にボイドが原因となって不活性粒子の脱落が生じ、削れ性が低下したりする。なお、ボイド比の下限は、特に制限されないが、通常1.001以上である。
【0028】
[ポリエチレン−2,6−ナフタレート樹脂微粉末]
本発明の製造方法における最大の特徴は、不活性粒子を添加する際にポリエチレン−2,6−ナフタレート樹脂の微粉末を同時に添加することにあり、以下に詳述する。
【0029】
本発明におけるポリエチレン−2,6−ナフタレート(以下、PENと略記することがある。)樹脂微粉末は、その平均粒径が10〜1000μmであることが必要である。PEN樹脂微粉末の平均粒径は、10〜500μmであることがより好ましく、更には10〜300μmであることが好ましい。PEN樹脂微粉末の平均粒径が10μm未満であると、該微粉末が嵩高くなるため、二軸混練押出機に投入させるフィーダー内での流動性が悪くなり、溶融状態の共重合PET樹脂に連続添加する際、均一に添加することが困難となる。一方、PEN樹脂微粉末の平均粒径が上限を超えると、不活性粒子との混合状態が不均一となり、PEN樹脂微粉末を添加する効果が半減する。
このような平均粒径を有するPEN樹脂微粉末は、例えば、PEN樹脂ペレットをガラス転移点以上、融点以下の温度で加熱して結晶化させたあと、液体窒素などを加えた冷却状態で粉砕する方法で得られる。
【0030】
なお、本発明で用いられるPEN樹脂微粉末は、全ジカルボン酸成分の80モル%以上が2,6−ナフタレンジカルボン酸成分、全グリコール成分の80モル%以上がエチレングリコール成分からなるものである。
【0031】
また、本発明において、PEN樹脂微粉末のうち70重量%以上は、該微粉末の平均粒径に対して0.2〜2倍の範囲内の粒径を有していることが好ましい。PEN樹脂微粉末の70重量%以上がこの範囲を満たすことによって、不活性粒子と混合する際の均一混合性、該微粉末を二軸混練押出機に投入させるフィーダー内での流動性、共重合PET樹脂中での不活性粒子の分散性等の点で、より優れた効果が得られる。
【0032】
本発明におけるPEN樹脂微粉末の添加量は、共重合PET樹脂組成物全体の重量を基準として、0.001〜40重量%が好ましく、より好ましくは0.001〜20重量%、さらに好ましくは0.01〜10重量%、特に好ましくは0.05〜5重量%である。PEN樹脂微粉末の添加量が下限より少ない場合、不活性粒子の分散性が悪くなったり、不活性粒子の周囲にボイドが発生しやすくなる。一方、PEN樹脂微粉末の添加量が上限を超える場合、共重合PET樹脂の有する優れた透明性や機械的特性を損なうことがある。
【0033】
また、本発明におけるPEN樹脂微粉末の添加量は、不活性粒子の重量を基準として、10重量%以上が好ましく、より好ましくは50重量%以上、特に好ましくは70重量%以上である。PEN樹脂微粉末の添加量が10重量%より少ないと、不活性粒子の分散性が低下したり、不活性粒子の周囲にボイドが発生しやすくなる。なお、PEN樹脂微粉末の添加量の上限は、不活性粒子の重量を基準として、高々500重量%であることが共重合PET樹脂の有する優れた透明性や機械的特性を維持しやすい点から好ましい。
【0034】
[製造方法]
本発明の共重合PET樹脂組成物の製造方法は、共重合PET樹脂を加熱して溶融状態にする第1の工程、溶融状態の共重合PET樹脂に不活性粒子を添加する第2の工程および溶融状態の共重合PET樹脂と不活性粒子とを混練する第3の工程とからなり、これらの工程は、通常同じ混練押出機内にて行われる。
【0035】
本発明で使用する混練押出機としては、1軸混練押出機、2軸混練押出機のいずれでも良いが、均一な混練状態を形成しやすいことからベントを有する2軸混練押出機が好ましく用いられる。
【0036】
かかる2軸混練押出機としては、例えば、ニーディングディスクおよび逆ねじといった混練を高めるエレメントを配したスクリュー構成を有するベント式2軸混練押出機やロータ型2軸連続混練機(例えば「合成樹脂」Vol.41(7)P.9.7(1995)に記載)が挙げられる。
【0037】
以下、図面を用いて本発明で使用する混練押出機を説明する。図1は、本発明で使用するベント付二軸混練押出機を例示した側面図である。図1において、1は押出機本体、2は加熱シリンダー、3はスクリュー、4はポリマーの吐出口、5は定量フィーダーをそれぞれ示す。なお、該押出機には、上流側からポリマーの吐出口4に向かって、ポリマー投入口6、不活性粒子および微粉末ポリマーの投入口7、ベント口8、9が、この順で設けられている。
【0038】
以上のようなベント付二軸混練押出機1において、共重合PET樹脂は、チップとしてポリマー投入口6から押出機のシリンダー2中へ投入され、吐出口4へ向けてスクリュー3によって移送される。投入されたチップは、その後加熱軟化される。
【0039】
この際、不活性粒子および微粉末ポリマーの投入口7は、共重合PET樹脂の70重量%以上、好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは全てが軟化する位置よりも下流側に設けられる。この位置よりも上流側に投入口7を設けた場合、共重合PET樹脂が未溶融状態であるため、共重合PET樹脂中で、不活性粒子とPEN樹脂微粉末とが分離し、不活性粒子が混練押出機内で凝集し、フィルムに延伸する際、凝集粒子によるボイドが発生したりする。ここで、共重合PET樹脂の70重量%以上が軟化する位置とは、押出機内の共重合PET樹脂の断面を見たときに、チップの形状を維持している樹脂の割合が重量比で30重量%未満になる位置を意味する。共重合PET樹脂の70重量%以上が軟化する位置よりも下流側であれば、投入口7の位置は特に制限されないが、不活性粒子および微粉末ポリマーを均一に混練しやすいという観点から、不活性粒子とPEN樹脂微粉末の分離が起こらない範囲で、より上流側に設置されることが好ましく、具体的には、不活性粒子を添加した後、40秒以上、さらには60秒以上溶融混練し得る位置であることが好ましい。
【0040】
本発明における不活性粒子とPEN樹脂微粉末との添加方法は、混練押出機に供給する前に予め混合してから添加する方法が複雑な装置を要しない点から好ましい。不活性粒子とPEN樹脂微粉末の添加速度を一定に保つことができ、同じ投入位置から添加することができる装置であれば、予め混合することなく別々に供給してもよい。
【0041】
なお、溶融混練温度は、シリンダー温度として、ポリエチレン−2,6−ナフタレート樹脂の融点より少なくとも10℃高いことが好ましい。溶融混練温度が下限より低い場合は、PEN樹脂微粉末の溶融が十分でない場合があり、またPEN樹脂微粉末の溶融速度が低下する結果、不活性粒子の分散性が低下することがある。また、溶融混練温度は、シリンダー温度として、好ましくは300℃未満である。溶融混練温度が上限を超える場合、熱劣化によって得られるフィルムの機械強度が低下しやすくなる。
【0042】
次に、本発明の共重合PETフィルムおよびその製造方法について説明する。本発明の共重合PETフィルムは、上述の本発明の共重合PET樹脂組成物の製造方法によって得られた共重合PET樹脂組成物を溶融状態でシート状に押出し、これを少なくとも一軸方向に延伸することで製造できる。このようにして得られた本発明の共重合PETフィルムは、フィルム中の不活性粒子の凝集粒子数が1.2mmあたり10個以下、好ましくは5個以下、特に好ましくは1個以下である。また、同様にフィルムの表面平滑性の点から、下記式(I)で表されるフィルム中のボイド比が3以下であることが好ましい。
【0043】
【数4】
ボイド比=(不活性粒子を含むボイド面積)/(不活性粒子面積)・・・(I)
【0044】
本発明の共重合PETフィルムの製造方法をさらに詳述する。フィルムの製膜方法は、少なくとも1軸に延伸するだけでも良いが、より実用に適したフィルムを得られることから、直交する2軸方向に延伸することが好ましい。具体的な2軸方向への延伸としては、逐次二軸延伸法、同時二軸延伸法、インフレーション法などのそれ自体公知の方法を好適に用いることができる。延伸倍率は、使用される用途の要求特性にもよるが、通常縦方向ならびに横方向それぞれ2.0倍以上4.5倍以下の範囲で延伸処理が施され、その後必要に応じて熱固定処理が行われる。具体的には、不活性粒子を含有させた共重合PET樹脂組成物を溶融、高精度ろ過したのち、口金より共重合PET樹脂の融点(Tm)〜(Tm+70)℃の温度でフィルム状に押出したのち、40〜90℃の冷却ロールで急冷固化し、未延伸フィルムを得る。その後、上記未延伸フィルムを常法に従い、一軸方向(縦方向または横方向)に(Tg−10)〜(Tg+70)℃の温度(ただし、Tg:共重合PET樹脂のガラス転移温度)で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸し、次いで上記延伸方向とは直角方向(一段目延伸が縦方向の場合には、二段目延伸は横方向となる)に(Tg)〜(Tg+70)℃の温度で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸する。さらに、必要に応じて、縦方向および/または横方向に再度延伸してもよい。すなわち、2段、3段、4段あるいは多段の延伸を行うとよい。全延伸倍率としては、通常9倍以上、好ましくは10〜35倍、さらに好ましくは12〜30倍である。
【0045】
さらに、上記二軸配向フィルムは(Tg+70)〜(Tm−10)℃の温度、例えば、180〜250℃で熱固定結晶化すること(以下、熱固定処理と称することがある。)によって、優れた寸法安定性が付与できる。その際、熱固定時間は1〜60秒が好ましい。
【0046】
本発明の共重合PETフィルムはその少なくとも片面に皮膜層を設けてもよく、その場合、皮膜層は水性塗液を塗布する方法で形成するのが好ましい。塗布は最終延伸処理を施す以前の共重合PETフィルムの表面に行い、塗布後にはフィルムを少なくとも一軸方向に延伸するのが好ましい。この延伸の前ないし途中で塗膜は乾燥される。その中で、塗布は、未延伸フィルムまたは縦(一軸)延伸フィルム、特に縦(一軸)延伸フィルムに行うのが好ましい。塗布方法としては特に限定されないが、例えば、ロールコート法、ダイコート法などが挙げられる。上記塗液、特に水性塗液の固形分濃度は、0.2〜8重量%、さらに0.3〜6重量%、特に0.5〜4重量%であることが好ましい。そして、水性塗液には、本発明の効果を妨げない範囲で、他の成分、例えば他の界面活性剤、安定剤、分散剤、紫外線吸収剤、増粘剤などを添加することができる。なお、得られたフィルムの厚みは、0.5μm〜250μmであることが好ましい。
【0047】
このようにして本発明の方法を用いて製造された共重合PET樹脂組成物は、従来のような多大な労力をかけて不活性粒子の分散性を向上させた、溶融重縮合の反応系へ添加する方法と同等、もしくはそれ以上に均一な不活性粒子の分散性を、混練押出機を用い、より簡便な工程による混練で達成することができる。
【0048】
その結果、本発明により製造された共重合PET樹脂組成物を単層または積層形態のフィルムにした場合、表面に均一な凹凸が得られ、粗大突起の少ない、耐摩耗性、すべり性に優れる共重合PETフィルムを得ることができ、磁気記録用テープなどに好適に用いることができる。
【0049】
本発明における不活性粒子の分散性向上のメカニズムについては、PEN樹脂が微粉末状であることから溶融速度が早く、不活性粒子は押出機内の混練過程で、溶融する微粉末に運ばれる形で分散すること、さらに溶融した直後のベースの共重合PET樹脂に対し、PEN樹脂が高度の親和性を有することから混練効果を受けやすく、分散性が向上すると推定される。すなわちPEN樹脂微粉末は、不活性粒子の分散剤的役割を果たしていると推定される。
【0050】
また、本発明における不活性粒子の周囲のボイド抑制については、共重合PET樹脂に不活性粒子とPEN樹脂微粉末とが同時に添加されるため、不活性粒子の周囲にPEN樹脂が優先的に存在し、PEN樹脂が共重合PET樹脂と高度の親和性を有するため、共重合PET樹脂と不活性粒子の間でPEN樹脂が緩衝剤として機能し、ボイドの発生が抑制されるのではないかと考えられる。
【0051】
【実施例】
以下、本発明を実施例により、さらに詳細に説明する。なお、実施例における各特性値は、以下の方法にて測定または評価した。
(1)不活性粒子の平均粒子径
島津製作所製レーザー散乱式粒度分布測定装置、SALD−2000にて、エチレングリコールに不活性粒子を分散させた状態で不活性粒子の粒子径分布を測定し、得られた粒子径分布の50体積%時点の粒子径を平均粒子径とした。
(2)PEN樹脂微粉末の平均粒径および粒径分布
セイシン企業(株)製音波振動式全自動フルイ分け測定器、RPS−85Pを使用し、PEN樹脂微粉末の平均粒径および粒径分布を測定した。まず前記測定器を用い粒径の重量累積分布を測定し、得られた重量累積分布より50重量%時点の粒径を平均粒径とした。
(3)共重合PET樹脂およびPEN樹脂の固有粘度
それぞれ、O−クロロフェノール溶媒下、35℃の雰囲気下で測定した。
(4)共重合PET樹脂およびPEN樹脂の融点
DuPont社製示差走査熱量計(DSC MODEL2200)を用い測定した。試料10mgを装置にセットし、300℃で5分間溶融した後、液体窒素中で冷却する。冷却した試料を昇温速度5℃/min.で昇温し、ガラス転移点、結晶化発熱ピークを検知した後、さらに昇温を続け結晶融解ピークを検知した温度をもって融点とする。
(5)共重合PET樹脂組成物中の不活性粒子の分散性
溶融混練後、冷却して得られた共重合PET樹脂組成物の表面にプラズマ処理(ヤマト科学製プラズマリアクターPR−31型)を施し、該表面に不活性粒子を露出させ、走査型電子顕微鏡を用いて1000倍の倍率のもと、1.2mmの面積に存在する凝集粒子数を数え、次の基準で分散性を判定した。なお、本測定における凝集粒子とは、4個以上の不活性粒子が凝集したものである。
◎:凝集粒子が観察されない。
○:凝集粒子が3個未満である。
△:凝集粒子が3個以上9個以下である。
×:凝集粒子が10個以上である。
【0052】
(6)共重合PETフィルム中の不活性粒子の分散性
得られた共重合PETフィルム表面にプラズマ処理(ヤマト科学製プラズマリアクターPR−31型)を施し、フィルム表面に露出した不活性粒子を、走査型電子顕微鏡を用いて1000倍の倍率のもと、1.2mmの面積に存在する凝集粒子数を数え、次の基準で分散性を判定した。
なお、本測定における凝集粒子とは、2個以上の不活性粒子が凝集したものである。
◎:凝集粒子が5個以下である。
○:凝集粒子が6〜10個である。
△:凝集粒子が11〜50個である。
×:凝集粒子が51個以上である。
(7)共重合PETフィルムのボイド比
得られた共重合PETフィルム表面にプラズマ処理(ヤマト科学製プラズマリアクターPR−31型)を施し、該フィルム表面に不活性粒子を露出させた後、走査型電子顕微鏡を用い、不活性粒子の粒径に応じて5000倍〜20000倍の倍率にて不活性粒子および不活性粒子の周囲のボイド(空隙)を観察する。その観察像を画像解析装置を用いて、不活性粒子面積と、不活性粒子とボイドとを合わせた面積をそれぞれ測定し、(不活性粒子を含むボイド面積)/(不活性粒子面積)の比をもってボイド比とする。この際、凝集している不活性粒子はそれを一つの粒子として見なす。この測定を無作為に不活性粒子100個について実施し、その平均値を共重合PETフィルムのボイド比とした。
(8)共重合PETフィルムの静摩擦係数(μs)
ASTM−D−1894−63に従い、スリップテスターを用いて測定した。
(9)フィルム中の不活性粒子の含有量
(9−1)総含有量
共重合PETフィルムからポリマーを100g程度削り取ってサンプリングし、共重合PETは溶解し、不活性粒子は溶解させない溶媒を選択して、サンプルを溶解した後、不活性粒子を共重合PETから遠心分離し、サンプル重量に対する不活性粒子の比率(重量%)をもって不活性粒子総含有量とする。
(9−2)無機粒子の総含有量
フィルムから100g程度削り取ってサンプリングし、これを白金ルツボ中にて1,000℃の炉の中で3時間以上燃焼させ、次いでルツボ中の燃焼物をテレフタル酸(粉体)と混合し、50gの錠型のプレートを作成する。このプレートを波長分散型蛍光X線を用いて各元素のカウント値をあらかじめ作成してある元素毎の検量線より換算し、フィルム中の無機粒子の総含有量を決定する。蛍光X線を測定する際のX線管はCr管が好ましくRh管で測定しても良い。X線出力は4KWと設定し分光結晶は測定する元素ごとに変更する。材質の異なる無機粒子が複数種類存在する場合は、この測定により各材質の無機粒子の含有量を決定する。
(9−3)有機粒子の総含有量
前記(9−1)で求めた粒子の総含有量から前記(9−2)で求めた無機粒子の総含有量を差し引いて有機粒子の含有量を求める。
【0053】
[実施例1]
表1に示す共重合PET樹脂チップ(固有粘度0.70、融点228℃)を水分率0.4%以下になるように乾燥した状態で、ポリマー投入口6より、振動式定量フィーダー5を用いて20Kg/hの吐出速度で、ニーディングディスクバドルをスクリュー構成要素として有する、同方向回転噛合せ型の図1に示すベント付き2軸混練押出機に供給した。この押出機は、ポリマー投入口6とポリマーの吐出口4との距離が1200mmで、ポリマーの投入口6から下流側300mmの位置に不活性粒子とPEN樹脂微粉末の投入口7を有し、ポリマーの投入口6から下流側500mmおよび900mmの位置にベン口8およびベント口9を有する。
【0054】
つぎに、PEN樹脂(固有粘度0.65、融点268℃)を粉砕して平均粒径295μm、およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が72重量%の微粉末状にしたPEN樹脂微粉末50部および不活性粒子としてシリコーン樹脂微粒子(東芝シリコーン(株)製、商品名「トスパール120」、平均粒子径2μm)50部とを予め均一に混合させた混合物を、前述の押出機のPEN樹脂微粉末の投入口7から振動式定量フィーダーを用いて添加した。なお、該混合物の吐出速度は、得られる共重合PET樹脂組成物を基準としてシリコーン樹脂微粒子の濃度が0.4重量%となるように調整した。この際、ベント口の真空度は100Pa、シリンダー温度は280℃、共重合PET樹脂は全て軟化(チップ形状を保持したポリマーはなし)、共重合PET樹脂の押出機内の滞留時間は2分であった。投入口7でシリコーン樹脂微粒子およびPEN樹脂微粉末を添加した後、共重合PET樹脂、シリコーン樹脂微粒子およびPEN樹脂微粉末は混練され、溶融状態でポリマー吐出口4から押出され、ペレット化されて共重合PET樹脂組成物が得られた。得られた共重合PET樹脂組成物の特性を表1に示す。
【0055】
また、得られたシリコーン樹脂微粒子含有共重合PET樹脂組成物(固有粘度0.63)と、シリコーン樹脂微粒子を含まない共重合PET樹脂(固有粘度0.70)とを、シリコーン樹脂微粒子の濃度が0.02重量%になるように混合し、160℃で3時間乾燥後、溶融押出機にて溶融温度270℃で溶融し、ダイから押出して未延伸フィルムを得た。この未延伸フィルムを75℃に予熱し、低速ローラーと高速ローラーの間で15mm上方より900℃の表面温度の赤外線ヒーター1本にて加熱して製膜方向に3.0倍に延伸後急冷し、続いてステンターに供給し、120℃にて横方向に3.2倍に延伸した。得られた二軸配向延伸フィルムを210℃の熱固定温度で5秒間熱固定処理し、厚み14μmの2軸配向延伸フィルムを得た。得られた共重合PETフィルムの特性を表1に示す。
【0056】
[実施例2]
PEN樹脂微粉末と混合する不活性粒子を球状シリカ粒子(日本触媒(株)製、商品名「シーホスター」、平均粒径1.5μm)とした以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0057】
[実施例3]
PEN樹脂(固有粘度0.65)を粉砕して平均粒径285μm、およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が80重量%の微粉末状とし、不活性粒子をシリコーン樹脂微粒子(東芝シリコーン(株)製、商品名「トスパール105」:平均粒径0.5μm)とし、また、PEN樹脂微粉末とシリコーン樹脂微粒子の混合比や、フィルム中のシリコーン樹脂微粒子の濃度を表1に示すように変更した以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0058】
[実施例4]
PEN樹脂(固有粘度0.65)を粉砕して平均粒径800μm、およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が75重量%の微粉末状とした以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0059】
[実施例5]
PEN樹脂微粉末とシリコーン樹脂微粒子の混合比を表1に示すように変更した以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0060】
[実施例6および7]
PEN樹脂微粉末とシリコーン樹脂微粒子の添加量を表1に示すように変更した以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0061】
[比較例1]
PEN樹脂(固有粘度0.65)を粉砕して平均粒径1150μm、およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が60重量%の微粉末状とした以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0062】
[比較例2]
粉砕したPEN樹脂微粉末を添加しなかった以外は、実施例1と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0063】
[比較例3]
粉砕したPEN樹脂微粉末を添加しなかった以外は、実施例2と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0064】
[比較例4]
不活性粒子およびPEN樹脂微粉末を、二軸混練押出機のポリマー投入口6から投入した以外は、実施例7と同様な操作を繰り返した。得られた共重合PET樹脂組成物および共重合PETフィルムの特性を表1に示す。
【0065】
【表1】

Figure 2004285239
【0066】
ここで、表1に記載の「特定粒径の微粉末割合」は、平均粒径の0.2〜2倍の粒径を有するPEN樹脂微粉末の全微粉末に占める重量割合をさす。
また、表1中、共重合PET樹脂の構成成分の略号である、TAはテレフタル酸、NDCは2,6−ナフタレンジカルボン酸、およびEGはエチレングリコールを示す。
【0067】
表1に示すように、実施例1〜7の共重合PET樹脂組成物および共重合PETフィルムはいずれも、PEN樹脂微粉末の平均粒径およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が適切であり、かつ不活性粒子とPEN樹脂微粉末とが同時添加された結果、共重合PET樹脂組成物中ならびに共重合PETフィルム中の不活性粒子の凝集が抑制され、分散性が良好であった。また、適切なボイド比が得られ、ボイドが抑制された結果、表面平滑性に優れ、静摩擦係数が小さい共重合PETフィルムが得られた。
【0068】
一方、比較例1はPEN樹脂微粉末の平均粒径およびPEN樹脂微粉末中における該微粉末平均粒径の0.2〜2倍の粒径を有する微粉末の割合が不適切であった結果、共重合PET樹脂組成物中ならびに共重合PETフィルム中、不活性粒子の凝集が生じ、十分な分散性が得られず、共重合PETフィルムの静摩擦係数は、磁気記録テープなどとして使用するのに十分とはいえないレベルであった。また、比較例2および比較例3は、PEN樹脂微粉末を添加しなかった結果、共重合PET樹脂組成物中ならびに共重合PETフィルム中、不活性粒子の凝集が大量に生じ、十分な分散性が得られなかった。また、ボイドの抑制も十分ではなく、得られた共重合PETフィルムの静摩擦係数は、磁気記録テープなどとして使用するのに十分とはいえないレベルであった。さらにまた、比較例4は、PEN樹脂微粉末と不活性粒子を混錬前に添加した結果、共重合PET樹脂組成物中ならびに共重合PETフィルム中、不活性粒子の凝集が生じ、十分な分散性が得られなかった。また、ボイドの抑制も十分ではなかった。
【0069】
【発明の効果】
本発明によれば、溶融混練工程において不活性粒子を添加する際に、PEN樹脂微粉末を同時に添加することによって、共重合PET樹脂組成物中に不活性粒子が凝集して形成される粗大粒子を存在させることなく、極めて均一に分散させることができ、さらに共重合PET樹脂と不活性粒子との界面に、ボイドの発生が少ない共重合PET樹脂組成物を極めて簡便に製造することができる。そして、本発明の製造方法によって得られた共重合PET樹脂組成物をフィルムにした場合、不活性粒子が均一にかつボイドの少ない状態で分散していることから、表面が平滑でありながらすべり性に優れ、しかも透明性や耐削れ性にも優れる、成形加工性に優れた共重合PETフィルムとして磁気記録用テープなどに好適に使用される。
【図面の簡単な説明】
【図1】本発明に使用するベント付二軸混錬押出機を例示した側断面図である。
【符号の説明】
1 押出機本体
2 加熱シリンダー
3 スクリュー
4 ポリマーの吐出口
5 定量フィーダー
6 ポリマー投入口
7 不活性粒子およびPEN樹脂微粉末の投入口
8、9 ベント口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copolymerized polyethylene terephthalate resin composition, a method for producing a copolymerized polyethylene terephthalate film, and a copolymerized polyethylene terephthalate film obtained by the production method. More specifically, a method for producing a copolymerized polyethylene terephthalate resin composition in which inert particles are uniformly kneaded with a copolymerized polyethylene terephthalate resin, and a method using a copolymerized polyethylene terephthalate resin composition in which inert particles are uniformly kneaded. The present invention relates to a method for producing a polymerized polyethylene terephthalate film and a copolymerized polyethylene terephthalate film having few voids and agglomerated particles.
[0002]
[Prior art]
Polyethylene terephthalate (hereinafter sometimes abbreviated as PET) resin is used in a large amount in fibers, resins, films, etc. because of its excellent physical and chemical properties. It is widely known that a method such as copolymerization of a specific component is used to improve the heat resistance and heat resistance. When a PET resin is used as a film, inert particles are added to the PET resin for the purpose of improving the handleability in the step of obtaining the film and the step of handling the obtained film and preventing the occurrence of quality problems such as wrinkles. Due to the presence of the inert particles, appropriate irregularities are provided on the film surface, and as a result, the slipperiness of the film is improved, and the above-mentioned problem can be solved. Examples of such inert particles include, for example, inorganic particles such as silica, kaolin, and titanium dioxide, and organic particles such as silicone and polystyrene.
[0003]
By the way, coarse particles may be mixed in these inert particles, or coarse particles may be generated by aggregation when dispersed in a PET resin. When such coarse particles are present in a film, the use of the film in a film product is particularly required for flatness, for example, when the film is used for a magnetic recording tape or the like, the electromagnetic conversion characteristics of the obtained magnetic recording tape deteriorate. There is a problem that the quality is impaired, such as drawbacks and dropouts.
[0004]
Therefore, various methods have been adopted to suppress the mixing of such coarse particles. For example, a method of improving the dispersibility of particles by adding inert particles obtained by previously removing coarse particles by performing operations such as dispersion slurrying, classification, and filtration to a melt polycondensation reaction system for producing a PET resin. is there. However, this method has a problem that a great deal of time and labor is required for the unit operation of each step, and that after addition to the melt polycondensation reaction system, the inert particles reaggregate.
[0005]
On the other hand, as a method other than addition to the melt polycondensation reaction system, for example, JP-A-1-157806 (Patent Document 1) discloses a method obtained by polycondensation using a single-screw or twin-screw kneading extruder. A method of directly kneading and dispersing inert particles in a polyester resin produced is described in Japanese Patent Application Laid-Open No. Hei 6-91635 (Patent Document 2), in order to improve the dispersibility of inert particles by a kneading and dispersing method using an extruder. A method has been proposed in which particles to be added are added in a slurry state in which the particles are dispersed in a medium. However, a method in which such a slurry is kneaded using a kneading extruder is employed for a polyester resin typified by polyethylene terephthalate or polyethylene-2,6-naphthalate having a relatively high melting point whose melt processing temperature exceeds 250 ° C. Then, when adding the inert particles in the form of slurry, reaggregation of the particles due to heat shock occurs, and there is a potential problem that the aggregated coarse particles increase.
[0006]
In addition, when the above-described coarse particles are made of a PET resin film, voids called voids are easily generated at the interface with the PET resin, and the transparency of the film is impaired, or the film is run on a VCR as a magnetic recording tape. Occasionally, the voids cause the inert particles to fall off, thereby causing a problem that the abrasion is deteriorated.
[0007]
Furthermore, the presence of the above-described aggregated coarse particles is likely to cause defects such as pinholes during film forming even when using a copolymerized PET resin in which a specific component is copolymerized to improve moldability. Such a problem was latent. Japanese Patent Application Laid-Open No. 9-272793 (Patent Document 3) proposes a method in which polymer chips are made into powder chips and kneaded with inert particles using a twin-screw kneading extruder. Such a problem was not solved.
[0008]
Therefore, a method for producing a PET resin composition having an affinity in which inactive particles are uniformly dispersed without causing coarse particles in the PET film and in which voids and the like hardly occur at the interface between the inactive particles and the PET resin. It has been strongly desired to establish and to obtain a PET film having excellent surface smoothness by using these production methods.
[0009]
[Patent Document 1]
JP-A-1-157806
[Patent Document 2]
JP-A-6-91635
[Patent Document 3]
JP-A-9-272793
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art, and to disperse the inert particles uniformly without the presence of coarse particles in the copolymerized PET resin composition without much effort. In addition, the present invention provides a method for producing a copolymerized PET resin composition in which voids or the like are less likely to be formed at the interface between the inert particles and the copolymerized PET resin, and provides excellent surface smoothness, moldability, etc. Another object of the present invention is to provide an excellent copolymerized PET film.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, the first step of heating the copolymerized polyethylene terephthalate resin to a molten state, adding inert particles to the copolymerized polyethylene terephthalate resin in the molten state. And a third step of kneading the copolymerized polyethylene terephthalate resin in a molten state and the inert particles. When the inert particles are added in the second step, the average particle diameter is 10%. By using a manufacturing method in which fine particles of polyethylene-2,6-naphthalate (hereinafter sometimes abbreviated as PEN) resin of up to 1000 μm are added simultaneously with inert particles, coarse particles are added to the copolymerized PET resin composition. The inert particles are uniformly dispersed without the presence of the resin, and voids such as voids are formed at the interface between the inert particles and the copolymerized PET resin. Becomes Nikuku, excellent surface smoothness, found that copolymerization PET film excellent in moldability and the like is obtained, and have completed the present invention.
[0014]
In the present invention, the copolymerized PET resin comprises a copolymerized PET resin obtained by copolymerizing 2,6-naphthalenedicarboxylic acid, and the molar ratio of the terephthalic acid component to the 2,6-naphthalenedicarboxylic acid component is 82/18. 9797/3, and 70% by weight or more of the polyethylene-2,6-naphthalate resin fine powder is 0.2 to 2 times the average particle size of the polyethylene-2,6-naphthalate resin fine powder. Having a particle size within the range, the amount of inert particles to be added is 0.01 to 20% by weight based on the weight of the copolymerized PET resin composition, and the addition of fine polyethylene-2,6-naphthalate resin powder The amount is 0.001 to 40% by weight based on the weight of the copolymerized PET resin composition, the inert particles are inorganic particles, the inert particles are organic particles, Kneading in a molten state is performed by using a vented twin-screw kneading extruder having a uniform particle size of 0.03 to 10 μm and a cylinder temperature at least 10 ° C. lower than the melting point of the polyethylene-2,6-naphthalate resin. The present invention also includes a method for producing a copolymerized polyethylene terephthalate resin composition having any of the above advantages.
[0015]
Further, another object of the present invention is to extrude a copolymerized polyethylene terephthalate resin composition obtained by the above-described method for producing a copolymerized polyethylene terephthalate resin composition of the present invention into a sheet in a molten state, and at least uniaxially. This is achieved by a method for producing a stretched copolymerized polyethylene terephthalate film.
[0016]
Still another object of the present invention is to provide a method for producing a copolymerized polyethylene terephthalate film of the present invention described above, wherein the aggregated particles obtained by aggregating two or more inert particles per 1.2 mm 2 of the film surface. This is achieved by a copolymerized polyethylene terephthalate film having 10 or less and having a void ratio represented by the following formula (I) of 3 or less.
[0017]
(Equation 2)
Void ratio = (Void area including inert particles) / (Inert particle area) (I)
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in more detail.
[Copolymerized polyethylene terephthalate resin]
In the copolymerized polyethylene terephthalate resin constituting the copolymerized polyethylene terephthalate resin composition of the present invention, at least 80 mol% of all dicarboxylic acid components are composed of terephthalic acid, and at least 80 mol% of all glycol components are composed of ethylene glycol. Further, as the copolymerization component, succinic acid, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium dicarboxylic acid, etc. are preferably exemplified as dicarboxylic acid components, and as the glycol component, Preferable examples include alkylene glycols such as trimethylene glycol, diethylene glycol, propylene glycol, and 1,4 butanediol, and 1,4 cyclohexanedimethanol. These copolymer components may be used alone or in combination of two or more.
[0019]
The copolymerized PET resin in the present invention, among the above copolymerized components, is obtained by copolymerizing 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component, and has a molar ratio of terephthalic acid to 2,6-naphthalenedicarboxylic acid. The range of 82/18 to 97/3 is most preferable from the viewpoint of the affinity with the polyethylene-2,6-naphthalate resin fine powder and the effect of suppressing voids.
[0020]
The intrinsic viscosity of the copolymerized PET resin in the present invention is preferably 0.4 dl / g to 0.8 dl / g at 35 ° C. in an orthochlorophenol solvent, more preferably 0.5 dl / g to 0.7 dl. / G. When the intrinsic viscosity is less than 0.4 dl / g, the mechanical strength required for use in each product after forming into a film may be insufficient. On the other hand, when the intrinsic viscosity exceeds 0.8 dl / g, productivity during melt-kneading in the melt polymerization step and the film forming step may be impaired.
[0021]
[Inert particles]
The copolymerized PET resin composition of the present invention contains inert particles for the purpose of preventing quality problems such as film forming properties and wrinkles. Such inert particles are not particularly limited as long as they have sufficient heat resistance to the temperature of the molten state of the copolymerized PET resin, and are not easily aggregated when added as a slurry to the reaction system for melt condensation polymerization. Active particles, or inert particles that are likely to undergo re-agglomeration due to heat shock when added and kneaded in a melt-kneading extruder, can also be suitably used. Inert particles used in the present invention include inorganic particles in terms of excellent heat resistance, and are preferably at least one selected from the group consisting of silica, calcium carbonate, aluminum oxide, titanium dioxide, and kaolin. In addition, as the inert particles used in the present invention, organic particles can be mentioned from the viewpoint that the effect of suppressing aggregated particles is easily obtained, and silicone and / or crosslinked polystyrene are preferable. Incidentally, the inert particles used in the present invention may be a combination of inorganic particles and organic particles, and if there is no problem in heat resistance when melted, improve the affinity with the copolymerized PET. Any surface treatment method, for example, inert particles surface-treated with a silane coupling agent may be used.
[0022]
The average particle size of the inert particles used in the present invention is preferably in the range of 0.03 to 10 μm, more preferably 0.1 to 5 μm. When the average particle size of the inert particles is less than the lower limit, the slipperiness when formed into a film is insufficient, and when the average particle size of the inert particles exceeds the upper limit, the film surface roughness becomes excessively rough. .
[0023]
The amount of the inert particles to be added in the present invention may be appropriately adjusted according to the purpose of use in each product after forming the film. Preferably, the content is at most 20% by weight based on the weight of the copolymerized PET resin composition, since the film-forming property is easily maintained stably. If it exceeds 20% by weight, the film-forming properties may be difficult. The addition amount of the inert particles in the present invention is 10% by weight or less, and further 5% by weight, based on the weight of the copolymerized PET resin composition, since the dispersibility of the inert particles during film formation is easily maintained at a high level. %, Particularly preferably 1% by weight or less. The lower limit of the amount of the inert particles is not particularly limited, but is preferably at least 0.01% by weight because the handleability of the obtained film is easily maintained.
[0024]
In the present invention, the number of agglomerated particles in the copolymerized PET film is preferably 10 or less per 1.2 mm 2 in terms of the surface smoothness of the film. A more preferred number of aggregated particles is 5 or less, particularly preferably 1 or less per 1.2 mm 2 . Here, “aggregated particles” refer to aggregated particles formed by aggregating two or more inert particles. Specifically, the surface of the film is subjected to a plasma treatment (Plasma Reactor-PR-31 type manufactured by Yamato Scientific Co., Ltd.) to expose the inert particles to the surface of the film. The number of aggregated particles existing in an area of 1.2 mm 2 is measured, and the value is defined as “the number of aggregated particles”. When the number of agglomerated particles exceeds 10, the film surface roughness becomes excessively rough. The lower limit of the number of aggregated particles is not particularly limited, but is usually one or more in an area of 120 mm 2 .
[0025]
The inert particles in the present invention are present in the copolymerized PET film represented by the following formula (I) in a state where the void ratio in the copolymerized PET film is 3 or less. Preferred from the point.
[0026]
[Equation 3]
Void ratio = (Void area including inert particles) / (Inert particle area) (I)
[0027]
Here, the “void” refers to a void called a void formed at the interface between the inert particles and the copolymerized PET resin. Specifically, after performing a plasma treatment (Plasma Reactor-PR-31 type manufactured by Yamato Scientific Co., Ltd.) on the film surface to expose the inert particles on the film surface, the particles of the inactive particles are scanned using a scanning electron microscope. Observe the inert particles and the voids (voids) around the inert particles at a magnification of 5000 to 20,000 times depending on the diameter. Using the image analyzer, the observed image is measured for the area of the inert particles and the area of the combined inert particles and voids, and the ratio of (the area of the voids containing the inert particles) / (the area of the inert particles) Is referred to as “void ratio”. The “void area including inert particles” refers to the total area of the area of the inert particles and the area of the void. When the void ratio exceeds 3, the surface roughness of the film becomes rough, the transparency of the film decreases, or the inert particles fall off due to voids when the tape is run on a VCR as a magnetic recording tape. Is generated, and the shaving property is reduced. The lower limit of the void ratio is not particularly limited, but is usually 1.001 or more.
[0028]
[Polyethylene-2,6-naphthalate resin fine powder]
The most significant feature of the production method of the present invention resides in that a fine powder of polyethylene-2,6-naphthalate resin is added simultaneously when adding inert particles, which will be described in detail below.
[0029]
The polyethylene-2,6-naphthalate (hereinafter sometimes abbreviated as PEN) resin fine powder in the present invention needs to have an average particle diameter of 10 to 1000 μm. The average particle size of the fine PEN resin powder is more preferably 10 to 500 μm, and further preferably 10 to 300 μm. When the average particle size of the PEN resin fine powder is less than 10 μm, the fine powder becomes bulky, so that the flowability in a feeder to be fed into a twin-screw kneading extruder becomes poor, and the copolymerized PET resin in a molten state is formed. During continuous addition, it becomes difficult to add uniformly. On the other hand, when the average particle size of the fine PEN resin powder exceeds the upper limit, the mixing state with the inert particles becomes uneven, and the effect of adding the fine PEN resin powder is reduced by half.
The PEN resin fine powder having such an average particle size is, for example, crystallized by heating a PEN resin pellet at a temperature equal to or higher than the glass transition point and equal to or lower than the melting point, and then pulverized in a cooled state to which liquid nitrogen or the like is added. Obtained by the method.
[0030]
In the PEN resin fine powder used in the present invention, at least 80 mol% of the total dicarboxylic acid component is composed of a 2,6-naphthalenedicarboxylic acid component, and at least 80 mol% of the total glycol component is composed of an ethylene glycol component.
[0031]
In the present invention, 70% by weight or more of the fine PEN resin powder preferably has a particle diameter in the range of 0.2 to 2 times the average particle diameter of the fine powder. When 70% by weight or more of the fine PEN resin powder satisfies this range, uniform mixing when mixing with the inert particles, fluidity in a feeder for feeding the fine powder into a twin-screw kneading extruder, copolymerization More excellent effects can be obtained in terms of the dispersibility of the inert particles in the PET resin.
[0032]
The addition amount of the fine PEN resin powder in the present invention is preferably 0.001 to 40% by weight, more preferably 0.001 to 20% by weight, and still more preferably 0 to 40% by weight, based on the weight of the whole copolymerized PET resin composition. 0.01 to 10% by weight, particularly preferably 0.05 to 5% by weight. When the addition amount of the fine PEN resin powder is smaller than the lower limit, the dispersibility of the inert particles is deteriorated, and voids are easily generated around the inert particles. On the other hand, if the amount of the PEN resin fine powder exceeds the upper limit, the excellent transparency and mechanical properties of the copolymerized PET resin may be impaired.
[0033]
Further, the addition amount of the fine PEN resin powder in the present invention is preferably at least 10% by weight, more preferably at least 50% by weight, particularly preferably at least 70% by weight, based on the weight of the inert particles. If the amount of the PEN resin fine powder is less than 10% by weight, the dispersibility of the inert particles is reduced, and voids are likely to be generated around the inert particles. The upper limit of the amount of the PEN resin fine powder to be added is at most 500% by weight, based on the weight of the inert particles, because the excellent transparency and mechanical properties of the copolymerized PET resin are easily maintained. preferable.
[0034]
[Production method]
The method for producing a copolymerized PET resin composition of the present invention includes a first step of heating the copolymerized PET resin to a molten state, a second step of adding inert particles to the copolymerized PET resin in a molten state, and It comprises a third step of kneading the copolymerized PET resin in a molten state and the inert particles, and these steps are usually performed in the same kneading extruder.
[0035]
The kneading extruder used in the present invention may be either a single-screw kneading extruder or a twin-screw kneading extruder, but a twin-screw kneading extruder having a vent is preferably used because a uniform kneading state is easily formed. .
[0036]
As such a twin-screw kneading extruder, for example, a vented twin-screw kneading extruder or a rotor-type twin-screw continuous kneader having a screw configuration in which elements for increasing kneading such as a kneading disk and a reverse screw are arranged (for example, “synthetic resin”) Vol.41 (7) P.9.7 (1995)).
[0037]
Hereinafter, the kneading extruder used in the present invention will be described with reference to the drawings. FIG. 1 is a side view illustrating a twin-screw kneading extruder with a vent used in the present invention. In FIG. 1, reference numeral 1 denotes an extruder main body, 2 denotes a heating cylinder, 3 denotes a screw, 4 denotes a polymer discharge port, and 5 denotes a quantitative feeder. The extruder is provided with a polymer inlet 6, an inlet 7 for inert particles and fine powder polymer, and vents 8, 9 in this order from the upstream side toward the polymer outlet 4. I have.
[0038]
In the above-described vented twin-screw kneading extruder 1, the copolymerized PET resin is charged as chips into the cylinder 2 of the extruder from the polymer charging port 6 and transferred to the discharging port 4 by the screw 3. The inserted chips are then softened by heating.
[0039]
In this case, the inlet 7 for the inert particles and the fine powder polymer is located at 70% by weight or more, preferably 80% by weight or more, particularly preferably 90% by weight or more, and most preferably the position where all of the copolymerized PET resin is softened. Is also provided on the downstream side. When the charging port 7 is provided upstream of this position, since the copolymerized PET resin is in an unmelted state, the inert particles and the PEN resin fine powder are separated in the copolymerized PET resin, and the inert particles are separated. Are agglomerated in a kneading extruder, and when the film is stretched, voids are generated due to agglomerated particles. Here, the position where 70% by weight or more of the copolymerized PET resin is softened means that the ratio of the resin maintaining the shape of the chip is 30% by weight when the cross section of the copolymerized PET resin in the extruder is viewed. It means a position that becomes less than the weight%. As long as 70% by weight or more of the copolymerized PET resin is on the downstream side from the softening position, the position of the inlet 7 is not particularly limited, but from the viewpoint that the inert particles and the fine powder polymer are easily kneaded uniformly, It is preferable to be installed on the upstream side as long as the active particles and the PEN resin fine powder do not separate from each other. Specifically, after adding the inert particles, the mixture is melt-kneaded for 40 seconds or more, further 60 seconds or more. It is preferable that it is a position that can be performed.
[0040]
The method of adding the inert particles and the fine PEN resin powder in the present invention is preferable because the method of mixing and adding beforehand before supplying to the kneading extruder does not require a complicated apparatus. As long as the addition rate of the inert particles and the PEN resin fine powder can be kept constant and can be added from the same charging position, they may be separately supplied without being mixed in advance.
[0041]
The melt kneading temperature is preferably at least 10 ° C. higher than the melting point of the polyethylene-2,6-naphthalate resin as the cylinder temperature. When the melt-kneading temperature is lower than the lower limit, the melting of the PEN resin fine powder may not be sufficient, and the dispersibility of the inert particles may be reduced as a result of a reduction in the melting rate of the PEN resin fine powder. The melt-kneading temperature is preferably lower than 300 ° C. as a cylinder temperature. If the melt-kneading temperature exceeds the upper limit, the mechanical strength of the film obtained by thermal deterioration tends to decrease.
[0042]
Next, the copolymerized PET film of the present invention and a method for producing the same will be described. The copolymerized PET film of the present invention is obtained by extruding the copolymerized PET resin composition obtained by the above-described method for producing the copolymerized PET resin composition of the present invention into a sheet in a molten state, and stretching it at least uniaxially. Can be manufactured. In the thus obtained copolymerized PET film of the present invention, the number of agglomerated particles of inert particles in the film is 10 or less, preferably 5 or less, particularly preferably 1 or less per 1.2 mm 2. . Similarly, from the viewpoint of the surface smoothness of the film, the void ratio in the film represented by the following formula (I) is preferably 3 or less.
[0043]
(Equation 4)
Void ratio = (Void area including inert particles) / (Inert particle area) (I)
[0044]
The method for producing the copolymerized PET film of the present invention will be described in more detail. The film may be formed in at least uniaxial stretching, but is preferably stretched in orthogonal biaxial directions in order to obtain a more practical film. As specific stretching in the biaxial direction, a method known per se, such as a sequential biaxial stretching method, a simultaneous biaxial stretching method, or an inflation method, can be suitably used. Although the stretching ratio depends on the required characteristics of the intended use, the stretching process is usually performed in the range of 2.0 times or more and 4.5 times or less in the vertical and horizontal directions, and then, if necessary, heat-set. Is performed. Specifically, the copolymerized PET resin composition containing the inert particles is melted, filtered with high precision, and then extruded from a die into a film at a temperature of from the melting point (Tm) to (Tm + 70) ° C. of the copolymerized PET resin. Then, it is rapidly cooled and solidified by a cooling roll at 40 to 90 ° C. to obtain an unstretched film. Thereafter, the unstretched film is uniaxially (longitudinal or transverse) at a temperature of (Tg-10) to (Tg + 70) ° C (where Tg is the glass transition temperature of the copolymerized PET resin) according to a conventional method. The film is stretched at a magnification of 5 to 8.0 times, preferably at a magnification of 3.0 to 7.5 times, and then in a direction perpendicular to the above stretching direction (when the first stage stretching is longitudinal, the second stage stretching is performed). Is stretched at a temperature of (Tg) to (Tg + 70) ° C. at a magnification of 2.5 to 8.0 times, and preferably at a magnification of 3.0 to 7.5 times. Further, if necessary, the film may be stretched again in the machine direction and / or the cross direction. That is, stretching in two, three, four, or multiple stages may be performed. The total stretching ratio is usually 9 times or more, preferably 10 to 35 times, and more preferably 12 to 30 times.
[0045]
Further, the biaxially oriented film is heat-set and crystallized at a temperature of (Tg + 70) to (Tm-10) ° C, for example, 180 to 250 ° C (hereinafter, may be referred to as a heat-setting treatment), and thus is excellent. Dimensional stability can be imparted. At that time, the heat fixing time is preferably 1 to 60 seconds.
[0046]
The copolymerized PET film of the present invention may be provided with a coating layer on at least one surface, and in that case, the coating layer is preferably formed by a method of applying an aqueous coating solution. The coating is preferably performed on the surface of the copolymerized PET film before the final stretching treatment, and after the coating, the film is preferably stretched in at least one direction. Before or during this stretching, the coating film is dried. Among them, the coating is preferably performed on an unstretched film or a longitudinally (uniaxially) stretched film, particularly a longitudinally (uniaxially) stretched film. The application method is not particularly limited, and examples thereof include a roll coating method and a die coating method. The solid content of the coating liquid, particularly the aqueous coating liquid, is preferably 0.2 to 8% by weight, more preferably 0.3 to 6% by weight, and particularly preferably 0.5 to 4% by weight. Then, other components, for example, other surfactants, stabilizers, dispersants, ultraviolet absorbers, thickeners, and the like can be added to the aqueous coating liquid as long as the effects of the present invention are not impaired. In addition, it is preferable that the thickness of the obtained film is 0.5 μm to 250 μm.
[0047]
Thus, the copolymerized PET resin composition produced by the method of the present invention can be converted into a melt polycondensation reaction system in which the dispersibility of inert particles has been improved with a great deal of effort as in the prior art. Dispersibility of the inert particles which is equal to or more than that of the method of adding can be achieved by kneading in a simpler process using a kneading extruder.
[0048]
As a result, when the copolymerized PET resin composition produced according to the present invention is formed into a single-layer or laminated film, uniform unevenness can be obtained on the surface, and there are few coarse projections, abrasion resistance, and excellent slip properties. A polymerized PET film can be obtained and can be suitably used for a magnetic recording tape or the like.
[0049]
Regarding the mechanism of improving the dispersibility of the inert particles in the present invention, the melting rate is high because the PEN resin is in the form of fine powder, and the inert particles are transported to the melted fine powder in the kneading process in the extruder. It is presumed that the PEN resin has a high degree of affinity with the base copolymerized PET resin immediately after being melted and melted, so that it is easily affected by the kneading effect and the dispersibility is improved. That is, it is assumed that the PEN resin fine powder plays a role of a dispersant for the inert particles.
[0050]
In addition, regarding the suppression of voids around the inert particles in the present invention, since the inert particles and the fine powder of the PEN resin are simultaneously added to the copolymerized PET resin, the PEN resin preferentially exists around the inert particles. However, since the PEN resin has a high affinity with the copolymerized PET resin, the PEN resin functions as a buffer between the copolymerized PET resin and the inert particles, and it is thought that the generation of voids may be suppressed. Can be
[0051]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. In addition, each characteristic value in an Example was measured or evaluated by the following method.
(1) Average particle size of inert particles The particle size distribution of the inert particles is measured by dispersing the inert particles in ethylene glycol using a laser scattering particle size distribution analyzer manufactured by Shimadzu Corporation, SALD-2000. The particle size at the time of 50% by volume of the obtained particle size distribution was defined as the average particle size.
(2) Average particle size and particle size distribution of PEN resin fine powder Average particle size and particle size distribution of PEN resin fine powder using RPS-85P, a sonic vibration type fully automatic sieving measuring instrument manufactured by Seishin Enterprise Co., Ltd. Was measured. First, the weight cumulative distribution of the particle size was measured using the measuring instrument, and the particle size at 50% by weight was determined as the average particle size from the obtained weight cumulative distribution.
(3) Intrinsic viscosities of the copolymerized PET resin and the PEN resin were each measured in an O-chlorophenol solvent at 35 ° C.
(4) Melting point of copolymerized PET resin and PEN resin Measured using a differential scanning calorimeter (DSC MODEL2200) manufactured by DuPont. A sample (10 mg) is set in the apparatus, melted at 300 ° C. for 5 minutes, and then cooled in liquid nitrogen. The cooled sample was heated at a rate of 5 ° C./min. After detecting the glass transition point and the crystallization exothermic peak, the temperature is further increased, and the temperature at which the crystal melting peak is detected is defined as the melting point.
(5) After the dispersible melt-kneading of the inert particles in the copolymerized PET resin composition, the surface of the copolymerized PET resin composition obtained by cooling was subjected to plasma treatment (Yamato Scientific Plasma Reactor PR-31 type). To expose the inert particles on the surface, count the number of agglomerated particles in an area of 1.2 mm 2 under a magnification of 1000 using a scanning electron microscope, and determine the dispersibility based on the following criteria. did. In addition, the aggregated particles in this measurement are those in which four or more inert particles are aggregated.
A: No aggregated particles are observed.
:: Less than 3 aggregated particles.
Δ: The number of aggregated particles is 3 or more and 9 or less.
×: 10 or more aggregated particles.
[0052]
(6) Dispersibility of Inert Particles in Copolymerized PET Film The obtained copolymerized PET film surface is subjected to plasma treatment (Yamato Scientific Co., Ltd., Plasma Reactor PR-31 type), and the inactive particles exposed on the film surface are removed. Using a scanning electron microscope, the number of agglomerated particles existing in an area of 1.2 mm 2 was counted under a magnification of 1000 times, and the dispersibility was determined according to the following criteria.
Note that the aggregated particles in the present measurement are those in which two or more inert particles are aggregated.
A: Five or less agglomerated particles.
:: 6 to 10 aggregated particles.
Δ: 11 to 50 aggregated particles.
×: 51 or more aggregated particles.
(7) Void ratio of copolymerized PET film The surface of the obtained copolymerized PET film is subjected to plasma treatment (Plasma Reactor PR-31 type manufactured by Yamato Scientific Co., Ltd.) to expose inert particles on the film surface, and then to a scanning type. Using an electron microscope, the inert particles and the voids around the inert particles are observed at a magnification of 5,000 to 20,000 times according to the particle size of the inert particles. Using the image analyzer, the observed image is measured for the area of the inert particles and the area of the combined inert particles and voids, and the ratio of (the area of the voids containing the inert particles) / (the area of the inert particles) Is defined as the void ratio. In this case, the aggregated inert particles are regarded as one particle. This measurement was performed at random on 100 inert particles, and the average value was defined as the void ratio of the copolymerized PET film.
(8) Static friction coefficient (μs) of copolymerized PET film
It measured using the slip tester according to ASTM-D-1894-63.
(9) Content of inert particles in the film (9-1) Total content Around 100 g of the polymer is scraped off from the copolymerized PET film and sampled, and the copolymerized PET is dissolved, and a solvent that does not dissolve the inert particles is selected. After dissolving the sample, the inert particles are centrifuged from the copolymerized PET, and the ratio of the inert particles to the sample weight (% by weight) is defined as the total inert particle content.
(9-2) Total content of inorganic particles About 100 g was scraped off from the film, sampled, burned in a furnace at 1,000 ° C. for 3 hours or more in a platinum crucible, and then the burned material in the crucible was terephthalated. Mix with acid (powder) to make 50g tablet-shaped plate. Using this plate, the count value of each element is converted from a calibration curve for each element prepared in advance using wavelength-dispersive fluorescent X-rays to determine the total content of inorganic particles in the film. The X-ray tube for measuring the fluorescent X-ray is preferably a Cr tube, and may be measured by an Rh tube. The X-ray output is set to 4 KW, and the spectral crystal is changed for each element to be measured. When there are a plurality of types of inorganic particles having different materials, the content of the inorganic particles of each material is determined by this measurement.
(9-3) Total Content of Organic Particles The content of organic particles is obtained by subtracting the total content of inorganic particles obtained in (9-2) from the total content of particles obtained in (9-1). Ask.
[0053]
[Example 1]
Using a vibrating quantitative feeder 5 from the polymer inlet 6 in a state where the copolymerized PET resin chip (intrinsic viscosity 0.70, melting point 228 ° C.) shown in Table 1 was dried so as to have a water content of 0.4% or less. At a discharge rate of 20 kg / h, the mixture was fed to a twin screw kneading extruder equipped with a kneading disk paddle as a screw component and having the same direction as shown in FIG. This extruder has a distance of 1200 mm between the polymer inlet 6 and the polymer outlet 4 and has an inlet 7 for inert particles and fine PEN resin powder at a position 300 mm downstream from the polymer inlet 6. A vent 8 and a vent 9 are provided at positions 500 mm and 900 mm downstream from the polymer inlet 6.
[0054]
Next, the PEN resin (having an intrinsic viscosity of 0.65 and a melting point of 268 ° C.) is pulverized to have an average particle diameter of 295 μm and a particle diameter of 0.2 to 2 times the average particle diameter of the PEN resin fine powder. 50 parts of fine PEN resin powder having a fine powder ratio of 72% by weight and 50 parts of silicone resin fine particles (trade name “Tospearl 120”, manufactured by Toshiba Silicone Co., Ltd., average particle size 2 μm) as inert particles Was previously mixed uniformly using a vibrating quantitative feeder from the input port 7 of the PEN resin fine powder of the extruder described above. The discharge speed of the mixture was adjusted so that the concentration of the silicone resin fine particles was 0.4% by weight based on the obtained copolymerized PET resin composition. At this time, the degree of vacuum at the vent port was 100 Pa, the cylinder temperature was 280 ° C., the copolymerized PET resin was all softened (there was no polymer maintaining the chip shape), and the residence time of the copolymerized PET resin in the extruder was 2 minutes. . After adding the silicone resin fine particles and the PEN resin fine powder at the charging port 7, the copolymerized PET resin, the silicone resin fine particles and the PEN resin fine powder are kneaded, extruded from the polymer discharge port 4 in a molten state, pelletized, and mixed. A polymerized PET resin composition was obtained. Table 1 shows the properties of the obtained copolymerized PET resin composition.
[0055]
Further, the obtained silicone resin fine particle-containing copolymerized PET resin composition (intrinsic viscosity 0.63) and the copolymerized PET resin containing no silicone resin fine particles (intrinsic viscosity 0.70) were mixed with silicone resin fine particles having a concentration of silicone resin fine particles. After mixing at 0.02% by weight and drying at 160 ° C for 3 hours, the mixture was melted at a melting temperature of 270 ° C by a melt extruder and extruded from a die to obtain an unstretched film. The unstretched film is preheated to 75 ° C., heated by a single infrared heater having a surface temperature of 900 ° C. from 15 mm above the low-speed roller and the high-speed roller, stretched 3.0 times in the film forming direction, and quenched. Then, it was supplied to a stenter and stretched 3.2 times in the transverse direction at 120 ° C. The obtained biaxially oriented stretched film was heat set at 210 ° C. for 5 seconds to obtain a 14 μm thick biaxially oriented stretched film. Table 1 shows the properties of the obtained copolymerized PET film.
[0056]
[Example 2]
The same operation as in Example 1 was repeated except that the inert particles to be mixed with the PEN resin fine powder were spherical silica particles (trade name “Sea Hostar”, manufactured by Nippon Shokubai Co., Ltd., average particle size: 1.5 μm). . Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0057]
[Example 3]
The PEN resin (having an intrinsic viscosity of 0.65) is pulverized to have an average particle size of 285 μm and a ratio of fine powder having a particle size of 0.2 to 2 times the average particle size of the fine powder in the PEN resin fine powder is 80% by weight. % Fine powder, and the inert particles are silicone resin fine particles (trade name “Tospearl 105”, manufactured by Toshiba Silicone Co., Ltd .; average particle size: 0.5 μm), and a mixture of PEN resin fine powder and silicone resin fine particles. The same operation as in Example 1 was repeated, except that the ratio and the concentration of the silicone resin fine particles in the film were changed as shown in Table 1. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0058]
[Example 4]
The PEN resin (intrinsic viscosity: 0.65) is pulverized to have an average particle diameter of 800 μm, and a ratio of fine powder having a particle diameter of 0.2 to 2 times the average particle diameter of the fine powder in the PEN resin fine powder is 75% by weight. %, Except that it was in the form of fine powder. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0059]
[Example 5]
The same operation as in Example 1 was repeated except that the mixing ratio between the fine PEN resin powder and the fine silicone resin particles was changed as shown in Table 1. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0060]
[Examples 6 and 7]
The same operation as in Example 1 was repeated, except that the amounts of the fine PEN resin powder and the fine silicone resin particles were changed as shown in Table 1. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0061]
[Comparative Example 1]
The PEN resin (having an intrinsic viscosity of 0.65) is pulverized to have an average particle size of 1150 μm, and the proportion of the fine powder having a particle size of 0.2 to 2 times the average particle size of the fine powder in the PEN resin fine powder is 60 weight%. %, Except that it was in the form of fine powder. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0062]
[Comparative Example 2]
The same operation as in Example 1 was repeated except that the pulverized PEN resin fine powder was not added. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0063]
[Comparative Example 3]
The same operation as in Example 2 was repeated except that the pulverized PEN resin fine powder was not added. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0064]
[Comparative Example 4]
The same operation as in Example 7 was repeated, except that the inert particles and the fine PEN resin powder were introduced from the polymer inlet 6 of the twin-screw kneading extruder. Table 1 shows the properties of the obtained copolymerized PET resin composition and copolymerized PET film.
[0065]
[Table 1]
Figure 2004285239
[0066]
Here, "the ratio of fine powder having a specific particle size" in Table 1 refers to the weight ratio of the PEN resin fine powder having a particle size of 0.2 to 2 times the average particle size to the total fine powder.
In Table 1, TA is terephthalic acid, NDC is 2,6-naphthalenedicarboxylic acid, and EG is ethylene glycol, which are abbreviations of the constituent components of the copolymerized PET resin.
[0067]
As shown in Table 1, each of the copolymerized PET resin compositions and the copolymerized PET films of Examples 1 to 7 had an average particle diameter of the PEN resin fine powder and an average particle diameter of the fine powder in the PEN resin fine powder. The ratio of the fine powder having a particle size of 0.2 to 2 times is appropriate, and the inert particles and the PEN resin fine powder are added at the same time, resulting in the copolymerized PET resin composition and the copolymerized PET film. Of the inert particles was suppressed, and the dispersibility was good. Further, as a result of obtaining an appropriate void ratio and suppressing voids, a copolymerized PET film having excellent surface smoothness and a small static friction coefficient was obtained.
[0068]
On the other hand, in Comparative Example 1, the average particle size of the fine PEN resin powder and the proportion of the fine powder having a particle size of 0.2 to 2 times the average particle size of the fine powder in the fine PEN resin powder were inappropriate. In the copolymerized PET resin composition and the copolymerized PET film, the aggregation of inert particles occurs, and sufficient dispersibility cannot be obtained, and the static friction coefficient of the copolymerized PET film is difficult to use as a magnetic recording tape. The level was not enough. In Comparative Example 2 and Comparative Example 3, as a result of not adding the PEN resin fine powder, a large amount of inactive particles were aggregated in the copolymerized PET resin composition and the copolymerized PET film, and sufficient dispersibility was obtained. Was not obtained. Further, the suppression of voids was not sufficient, and the coefficient of static friction of the obtained copolymerized PET film was at a level that was not sufficient for use as a magnetic recording tape or the like. Furthermore, in Comparative Example 4, as a result of adding the PEN resin fine powder and the inert particles before kneading, aggregation of the inert particles occurred in the copolymerized PET resin composition and the copolymerized PET film, and sufficient dispersion was achieved. Sex was not obtained. Further, the suppression of voids was not sufficient.
[0069]
【The invention's effect】
According to the present invention, when the inert particles are added in the melt-kneading step, coarse particles are formed by aggregating the inert particles in the copolymerized PET resin composition by simultaneously adding the PEN resin fine powder. Can be dispersed very uniformly without the presence of, and a copolymerized PET resin composition with less generation of voids at the interface between the copolymerized PET resin and the inert particles can be produced very easily. When the copolymerized PET resin composition obtained by the production method of the present invention is formed into a film, the inert particles are dispersed uniformly and with few voids. It is suitable for use in magnetic recording tapes and the like as a copolymerized PET film having excellent moldability, and excellent transparency and abrasion resistance.
[Brief description of the drawings]
FIG. 1 is a side sectional view illustrating a twin-screw kneading extruder with a vent used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Extruder main body 2 Heating cylinder 3 Screw 4 Polymer discharge port 5 Quantitative feeder 6 Polymer input port 7 Input port for inert particles and fine powder of PEN resin 8, 9 Vent port

Claims (11)

共重合ポリエチレンテレフタレート樹脂を加熱して溶融状態にする第1の工程、溶融状態の共重合ポリエチレンテレフタレート樹脂に不活性粒子を添加する第2の工程および溶融状態の共重合ポリエチレンテレフタレート樹脂と不活性粒子とを混練する第3の工程からなり、該第2の工程において不活性粒子を添加する際に、平均粒径が10〜1000μmのポリエチレン−2,6−ナフタレート樹脂微粉末を不活性粒子と同時に添加することを特徴とする共重合ポリエチレンテレフタレート樹脂組成物の製造方法。A first step of heating the copolymerized polyethylene terephthalate resin to a molten state, a second step of adding inert particles to the copolymerized polyethylene terephthalate resin in a molten state, and a step of adding the copolymerized polyethylene terephthalate resin in a molten state and the inert particles And kneading the fine particles of the polyethylene-2,6-naphthalate resin having an average particle diameter of 10 to 1000 μm simultaneously with the inert particles when the inert particles are added in the second step. A method for producing a copolymerized polyethylene terephthalate resin composition, characterized by comprising adding. 共重合ポリエチレンテレフタレート樹脂が、2,6−ナフタレンジカルボン酸を共重合した共重合ポリエチレンテレフタレート樹脂からなり、かつ、テレフタル酸成分と2,6−ナフタレンジカルボン酸成分とのモル比が82/18〜97/3である請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The copolymerized polyethylene terephthalate resin is composed of a copolymerized polyethylene terephthalate resin obtained by copolymerizing 2,6-naphthalenedicarboxylic acid, and the molar ratio of the terephthalic acid component to the 2,6-naphthalenedicarboxylic acid component is 82/18 to 97. The method for producing a copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the ratio is / 3. ポリエチレン−2,6−ナフタレート樹脂微粉末の70重量%以上が、該ポリエチレン−2,6−ナフタレート樹脂微粉末の平均粒径に対して0.2〜2倍の範囲内の粒径を有する請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。70% by weight or more of the polyethylene-2,6-naphthalate resin fine powder has a particle size in the range of 0.2 to 2 times the average particle size of the polyethylene-2,6-naphthalate resin fine powder. Item 6. A method for producing the copolymerized polyethylene terephthalate resin composition according to Item 1. 不活性粒子の添加量が、共重合ポリエチレンテレフタレート樹脂組成物の重量を基準として、0.01〜20重量%である請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The method for producing a copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the amount of the inert particles added is 0.01 to 20% by weight based on the weight of the copolymerized polyethylene terephthalate resin composition. ポリエチレン−2,6−ナフタレート樹脂微粉末の添加量が、共重合ポリエチレンテレフタレート樹脂組成物の重量を基準として、0.001〜40重量%である請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the amount of the polyethylene-2,6-naphthalate resin fine powder added is 0.001 to 40% by weight based on the weight of the copolymerized polyethylene terephthalate resin composition. Manufacturing method. 不活性粒子が無機粒子である請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The method for producing a copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the inert particles are inorganic particles. 不活性粒子が有機粒子である請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The method for producing a copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the inert particles are organic particles. 不活性粒子の平均粒径が、0.03〜10μmである請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。The method for producing a copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the average particle size of the inert particles is 0.03 to 10 m. 溶融状態での混練が、ベント付二軸混練押出機によって行われ、シリンダー温度がポリエチレン−2,6−ナフタレート樹脂の融点より少なくとも10℃高い、請求項1に記載の共重合ポリエチレンテレフタレート樹脂組成物の製造方法。2. The copolymerized polyethylene terephthalate resin composition according to claim 1, wherein the kneading in a molten state is performed by a vented twin-screw kneading extruder, and a cylinder temperature is at least 10 ° C. higher than a melting point of the polyethylene-2,6-naphthalate resin. Manufacturing method. 請求項1〜9のいずれかに記載の方法によって得られた共重合ポリエチレンテレフタレート樹脂組成物を、溶融状態でシート状に押出し、少なくとも一軸方向に延伸することを特徴とする共重合ポリエチレンテレフタレートフィルムの製造方法。A copolymerized polyethylene terephthalate film obtained by extruding the copolymerized polyethylene terephthalate resin composition obtained by the method according to any one of claims 1 to 9 in a molten state and stretching at least uniaxially. Production method. 請求項10に記載の製造方法によって得られた、2個以上の不活性粒子が凝集した凝集粒子がフィルム面1.2mmあたりに10個以下で、かつ下記式(I)で表されるボイド比が3以下であることを特徴とする共重合ポリエチレンテレフタレートフィルム。
Figure 2004285239
A void represented by the following formula (I), wherein the number of aggregated particles obtained by aggregating two or more inert particles obtained by the production method according to claim 10 is 10 or less per 1.2 mm 2 of the film surface. A copolymerized polyethylene terephthalate film having a ratio of 3 or less.
Figure 2004285239
JP2003079889A 2003-03-24 2003-03-24 Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film Pending JP2004285239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079889A JP2004285239A (en) 2003-03-24 2003-03-24 Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079889A JP2004285239A (en) 2003-03-24 2003-03-24 Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film

Publications (1)

Publication Number Publication Date
JP2004285239A true JP2004285239A (en) 2004-10-14

Family

ID=33293893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079889A Pending JP2004285239A (en) 2003-03-24 2003-03-24 Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film

Country Status (1)

Country Link
JP (1) JP2004285239A (en)

Similar Documents

Publication Publication Date Title
JP5298414B2 (en) Shading polyester film
JP5018358B2 (en) Light reflection film
EP3321085B1 (en) Cavity-containing polyester film and method for producing same
JP2004174788A (en) Biaxially oriented laminated polyester film
JP4141264B2 (en) Method for producing polyethylene-2,6-naphthalate film
JP4141263B2 (en) Method for producing polyethylene terephthalate film
JP3869752B2 (en) Method for producing polyethylene-2,6-naphthalate resin composition and polyethylene-2,6-naphthalate film
JP4137570B2 (en) Method for producing polyethylene terephthalate resin composition
JP4141273B2 (en) Method for producing copolymerized polyethylene terephthalate film
JP2004285239A (en) Method for producing copolymerized polyethylene terephthalate resin composition and copolymerized polyethylene terephthalate film and copolymerized polyethylene terephthalate film
JP2008251920A (en) Polyester film for liquid resist photomask protective tape
JP3551120B2 (en) Void-containing polyester film
JP4137509B2 (en) Method for producing polytrimethylene-2,6-naphthalate resin composition
JP3820139B2 (en) Method for producing polyester resin composition
JP2009234165A (en) Laminated polyester film
JP4121434B2 (en) Method for producing polyethylene-2,6-naphthalate resin composition
JP3776048B2 (en) Method for producing polyethylene-2,6-naphthalenedicarboxylate resin composition
JP4734692B2 (en) Cavity-containing polyester coating film for label printing
JP3776034B2 (en) Method for producing polyethylene terephthalate resin composition
JP3326033B2 (en) Laminated polyester film containing fine bubbles for photographic paper
JP3718649B2 (en) Method for producing polyethylene terephthalate resin composition
JP5310894B2 (en) Light reflection film
JPH11269283A (en) Biaxially oriented polyester film
JP2001072471A (en) Release film for producing ceramic sheet and production of the film
JP2005138538A (en) Method for producing thermoplastic aromatic polyester resin composition and polyester film