JP2004284859A - Molten siliceous refractory and method of manufacturing the same - Google Patents

Molten siliceous refractory and method of manufacturing the same Download PDF

Info

Publication number
JP2004284859A
JP2004284859A JP2003077720A JP2003077720A JP2004284859A JP 2004284859 A JP2004284859 A JP 2004284859A JP 2003077720 A JP2003077720 A JP 2003077720A JP 2003077720 A JP2003077720 A JP 2003077720A JP 2004284859 A JP2004284859 A JP 2004284859A
Authority
JP
Japan
Prior art keywords
fused silica
weight
fused
refractory
silica powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003077720A
Other languages
Japanese (ja)
Other versions
JP4292016B2 (en
Inventor
Yuji Kamimura
裕司 上村
Akishi Sakamoto
晃史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003077720A priority Critical patent/JP4292016B2/en
Publication of JP2004284859A publication Critical patent/JP2004284859A/en
Application granted granted Critical
Publication of JP4292016B2 publication Critical patent/JP4292016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provided a molten siliceous refractory having high corrosion resistance against a molten metal having strong reducing action. <P>SOLUTION: The molten siliceous refractory contains 95-99.9 wt.% molten silica and 0.1-5 wt.% boron nitride. The method of manufacturing the molten siliceous refractory includes a slurry preparing process for preparing slurry containing a raw material solid portion composed of 95-99.9 wt.% molten silica powder and 0.1-5 wt.% boron nitride powder, a molding process for obtaining a molding from the slurry and a firing process for firing the molding at 1,050-1,250°C. In the manufacturing method, it is preferable that the molten silica powder is composed of 50-90 wt.% 1st molten silica powder having 1-10 μm average particle diameter and 10-50 wt.% 2nd molten silica powder having 50-500 μm average particle diameter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は溶融シリカ質耐火物に関するものであり、詳しくは、例えばアルミニウム、マグネシウム、亜鉛、錫、鉛等の低融点溶融金属の鋳造用ライニング材に用いられる溶融シリカ質耐火物に関するものである。
【0002】
【従来の技術】
溶融シリカ質耐火物は、溶融シリカが燒結した耐火物であり、熱膨張率が低く耐熱衝撃性に優れるものである。このため、例えば、アルミニウム、亜鉛、錫、鉛等の低融点金属の鋳造装置において、溶融金属の移送、給湯、保持等を行う部位に用いられている。具体的には、例えば、注湯ボックス、樋及び保持炉等に用いられるライニング材、フロート、スパウト、ホットトップリング等の付属部位を構成する材料として用いられている。
【0003】
このような溶融シリカ質耐火物の製造方法としては、たとえば、特公昭52−43849号公報(特許文献1)には、粗粒溶融シリカ粉末と超微粉末溶融シリカ粉末から泥漿物又は混練物を作製し、成形乾燥後、特定温度で焼成する製造方法が開示されている。該方法によれば、溶融シリカのみを成分とする溶融シリカ質耐火物が得られる。また、特開平11−60330号公報(特許文献2)には、溶融シリカ粉末と、硼素又は燐を含有する化合物とを含む成形用混合物を、成形し、特定条件下で焼成する製造方法が開示されている。該方法によれば、前記化合物として硼酸や燐酸を用いることにより、溶融シリカ中に硼珪酸ガラスや燐珪酸ガラスの相が形成された溶融シリカ質耐火物が得られる。
【0004】
【特許文献1】
特公昭52−43849号公報(第2頁第4欄)
【特許文献2】
特開平11−60330号公報(第2頁第1欄、第4頁第5欄、第4頁第6欄)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1や特許文献2で得られる耐火物を、例えば、アルミニウム等のイオン化傾向の大きい金属用の運搬容器や樋等のライニング材に用いると、溶融アルミニウムが強い還元作用を有するために、ライニング材中の溶融シリカの一部が次式のように還元されてアルミナに変化する。
【数1】
4Al+SiO→3Si+2Al
【0006】
この場合、ライニング材の一部が変質により浸食されることになるため、ライニング材に剥離や亀裂が生じ易いという問題があった。さらに、上記還元反応により生成した不純物が溶湯に混入するという問題もあった。
【0007】
また、特に特許文献2で得られる耐火物では、上記式以外の反応によりライニング材に剥離や亀裂が生じ易くなるという問題もあった。例えば、特許文献2で用いられる硼酸は焼成後も溶融シリカ質耐火物中に残留することがあるが、反応し易い硼酸が溶融アルミニウム等の還元作用の強い溶融金属と接触すると短時間に反応するため、ライニング材に剥離や亀裂が生じ易くなる。
【0008】
従って、本発明の目的は、還元作用の強い溶融金属に対する耐食性が高い溶融シリカ質耐火物を提供することにある。
【0009】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、溶融シリカに特定量の窒化硼素を含有させると、上記耐食性が高い溶融シリカ質耐火物が得られることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、溶融シリカ95〜99.9重量%及び窒化硼素0.1〜5重量%を含むことを特徴とする溶融シリカ質耐火物を提供するものである。
【0011】
また、本発明は、溶融シリカ粉末95〜99.9重量%及び窒化硼素粉末0.1〜5重量%からなる原料固形分を含むスラリーを生成するスラリー生成工程、該スラリーから成形体を得る成形工程、及び該成形体を1050〜1250℃で焼成する焼成工程を含むことを特徴とする溶融シリカ質耐火物の製造方法を提供するものである。
【0012】
【発明の実施の形態】
本発明に係る溶融シリカ質耐火物の製造方法は、まず、スラリー生成工程として、溶融シリカ粉末及び窒化硼素粉末からなる原料固形分を含むスラリーを生成する。
【0013】
原料固形分を構成する溶融シリカ粉末は、平均粒径が、通常1〜500μmである。また、該範囲内の平均粒径の平均粒径を有する溶融シリカ粉末を、比較的微粒の第1溶融シリカ粉末と比較的粗粒の第2溶融シリカ粉末との混合物とし、第2溶融シリカ粉末同士間に形成された隙間に第1溶融シリカ粉末が入り込むことができるようにすると、成形体における溶融シリカ粉末の充填性が高くなって焼成後の溶融シリカ質耐火物の組織が緻密化されることにより、耐熱性が高くなるため好ましい。また、このように耐熱性が向上すると、溶融シリカ質耐火物をライニング材等として用いる場合にその厚さを薄くすることができることから、重量が軽くなって作業性が向上し、また比熱(熱容量)が小さくなるため好ましい。
【0014】
本発明で用いられる第1溶融シリカ粉末の平均粒径は、通常1〜10μm、好ましくは2〜6μmである。また、第2溶融シリカ粉末の平均粒径は、通常50〜500μm、好ましくは100〜300μmである。第1溶融シリカ粉末及び第2溶融シリカ粉末の平均粒径を上記範囲内にすると、成形体における溶融シリカ粉末の充填性がよいため好ましい。
【0015】
溶融シリカ粉末が第1溶融シリカ粉末と第2溶融シリカ粉末との混合物である場合、溶融シリカ粉末中のこれらの配合比率は、通常、第1溶融シリカ粉末50〜90重量%に対し第2溶融シリカ粉末10〜50重量%であり、好ましくは第1溶融シリカ粉末60〜80重量%に対し第2溶融シリカ粉末20〜40重量%である。
【0016】
原料固形分を構成する窒化硼素粉末は、平均粒径が、通常1〜10μm、好ましくは2〜6μmである。平均粒径を上記範囲内にすると、窒化硼素粉末が溶融シリカ粉末中に均一に分散し易いため好ましい。特に溶融シリカ粉末が第1溶融シリカ粉末と第2溶融シリカ粉末との混合物である場合には、上記のように窒化硼素粉末を第1溶融シリカ粉末と同程度の粒径のものとすることにより、窒化硼素粉末が第2溶融シリカ粉末同士間に形成された隙間に入り込み易くなり、より均一に分散し易くなるためさらに好ましい。
【0017】
原料固形分中における溶融シリカ粉末と窒化硼素粉末との配合比率は、通常溶融シリカ粉末95〜99.9重量%に対し窒化硼素粉末0.1〜5重量%、好ましくは溶融シリカ粉末97〜99.9重量%に対し窒化硼素粉末0.1〜3重量%である。配合比率が上記範囲内にあると、溶融シリカ質耐火物の耐熱衝撃性及び耐食性が共に良好であるため好ましい。
【0018】
スラリーは、上記原料固形分を水と混合して生成される。混合方法としては公知の方法を採用することができる。スラリー中における原料固形分と水との配合比率は、原料固形分100重量部に対し、水が、通常10〜40重量部、好ましくは20〜30重量部である。
【0019】
また、スラリーには、必要により、成形助剤やバインダー等を添加してもよい。本発明に用いられる成形助剤としては、例えば、PVAやCMC(カルボキシメチルセルロース)等が挙げられる。また、本発明に用いられるバインダーとしては、例えば、珪酸ガラス、苛性ソーダ等が挙げられる。成形助剤を用いると成形性がよくなり、バインダーを用いると成形体の保形性がよくなるため好ましい。
【0020】
次に、成形工程を行い、上記スラリーから所望の形状の成形体を得る。成形体を得る方法としては特に限定されず、例えば、鋳込み成形、プレス成形、押し出し成形等を用いることができる。このうち、鋳込み成形は、スラリーを鋳型に緻密に充填することができ、得られる成形体が高密度になり易いため好ましい。得られた成形体はこのまま焼成してもよいが、成形体の水分の残存量が多い場合や焼成工程において成形体を急激に昇温させる場合等には、成形体中の水分が急激に蒸発して焼成体に亀裂等が発生するおそれがあるから、必要により焼成工程を行う前に乾燥工程を行ってもよい。乾燥工程は、成形体中の水分が徐々に蒸発する条件で行えばよく、公知の方法を採用することができる。
【0021】
次に、焼成工程を行い、上記成形体から溶融シリカ質耐火物を得る。焼成温度は、通常1050〜1250℃、好ましくは1100〜1200℃である。焼成温度が1050℃未満であると、溶融シリカ粉末同士が燒結し難いため好ましくない。また、焼成温度が1250℃を超えると、クリストバライトが生成して溶融シリカ質耐火物の熱膨張係数が増加するため好ましくない。
【0022】
焼成時間は、通常0.5〜20時間、好ましくは1〜5時間である。焼成時間が0.5時間未満であると、十分な燒結強度が得られないため好ましくなく、また、焼成時間が20時間を超えても、燒結効果にほとんど変わりがないからである。
【0023】
本発明において、焼成は、非酸化雰囲気で行われることが好ましい。本発明において、非酸化雰囲気とは酸素が実質的に存在しない雰囲気をいう。非酸化雰囲気を形成するのに用いられるガスとしては、例えば、都市ガス、窒素ガス、アルゴンガス等が挙げられる。このうち、都市ガスは入手が容易で低コストであるため、好ましい。非酸化雰囲気が好ましい理由は、酸化雰囲気で焼成すると、雰囲気中の酸素と成形体中の窒化硼素とが反応して硼酸が生成されるおそれがあり、硼酸は溶融アルミニウム等と短時間で反応して溶融シリカ質耐火物の耐食性を低下させるからである。焼成工程終了後、適宜冷却すると本発明に係る溶融シリカ質耐火物が得られる。
【0024】
本発明に係る溶融シリカ質耐火物は、溶融シリカ粉末が溶融し燒結して得られる非晶質の溶融シリカの相と、該溶融シリカ相中に分散する窒化硼素とからなるものである。窒化硼素は、原料固形分として配合した窒化硼素粉末と組成が同一であり、溶融シリカ質耐火物における溶融シリカの相中に略均一に分散して存在する。本発明に係る溶融シリカ質耐火物は、低融点溶融金属に対して濡れ性が低い窒化硼素を含むため、溶融シリカが還元され難くなり、この結果、低融点溶融金属に対する耐食性が高いものである。本発明において、低融点溶融金属とは、融点が800℃以下の金属又は合金をいう。低融点溶融金属としては、例えば、溶融アルミニウム、溶融アルミニウム合金、マグネシウム、亜鉛、錫、鉛等が挙げられる。
【0025】
溶融シリカ質耐火物中における溶融シリカと窒化硼素との含有比率は、通常溶融シリカ95〜99.9重量%に対し窒化硼素0.1〜5重量%、好ましくは溶融シリカ97〜99.9重量%に対し窒化硼素0.1〜3重量%である。含有比率が上記範囲内にあると、耐熱衝撃性及び耐食性が共に良好であるため好ましい。
【0026】
本発明に係る溶融シリカ質耐火物は、嵩密度が通常1.3〜2.2g/cm、好ましくは1.4〜1.8g/cmである。嵩密度が1.3g/cm未満であると強度が低下するため好ましくなく、また、2.2g/cmを超えると重量が大きくなるため好ましくない。
【0027】
本発明に係る溶融シリカ質耐火物は、曲げ強度が3MPa以上、好ましくは6MPa以上である。曲げ強度が該範囲内にあると、低融点溶融金属の鋳造用ライニング材に用いることができる十分な強度があるため好ましい。本発明に係る溶融シリカ質耐火物は、熱膨張係数が1.50×10−6−1以下である。
【0028】
本発明に係る溶融シリカ質耐火物は、例えば、低融点溶融金属の鋳造用ライニング材、フロート、スパウト、ホットトップリング等の付属部位を構成する材料として使用することができる。
【0029】
【実施例】
以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
【0030】
実施例1
平均粒径5μmの溶融シリカ粉末80重量部、平均粒径200μmの溶融シリカ粉末20重量部及び平均粒径3μmの窒化硼素粉末0.1重量部を混合し、この混合物に水20重量部を加え、混練してスリップを得た。このスリップを公知の石膏型に流し込んで鋳込み成形した。得られた成形体を窒素ガス雰囲気中で、1150℃で3時間焼成し、長さ150mm×幅20mm×厚さ7mmの平板状の溶融シリカ質耐火物を得た。この溶融シリカ質耐火物の嵩比重、常温曲げ強さ及び熱間線膨張率を測定し、耐食性を評価した。熱間線膨張率は、JIS−R1601に従って測定したものであり、1000℃での測定値である。耐食性は、以下の回転浸食試験により評価した。結果を表1に示す。
【0031】
(回転浸食試験)
図1に、回転浸食試験に用いる公転式動的溶湯試験機を説明する概略図を示す。公転式動的溶湯試験機10は、筐体8外のモーター6で駆動されることにより水平方向に回転可能になっているφ150mmの円盤状の公転冶具3が筐体8内に収納されている。公転冶具3はその下面内の略周辺近傍に不図示の孔部が穿設されており、該孔部に、一端が試験片1を耐熱クリップで把持可能で且つ剛性の高い材料からなる略棒状の把持冶具2の他端が、取り付けられるようになっている。これにより、公転式動的溶湯試験機10は、把持冶具2及びこれに把持された試験片1が公転冶具3に略垂直に取り付けられるようになっている。このため、モーター6を駆動すると、公転冶具3に取り付けられた把持冶具2及びこれに把持された試験片1が、公転冶具3の孔部と同様に駆動軸9の延長線を中心軸として略水平方向に回転できるようになっている。また、公転冶具3の下方には、内部に溶湯アルミニウム合金5を収容可能で且つ上方が開放された形態の黒鉛坩堝4が配置され、黒鉛坩堝4は回転する試験片1を内部に収容することができる位置に配置される。さらに、試験片1、把持冶具2及び黒鉛坩堝4は電気炉7内に収容されるようになっており、これにより黒鉛坩堝4内の溶湯アルミニウム合金5が所定温度に保たれるようになっている。
回転浸食試験は、まず、長さ150mm×幅20mm×厚さ7mmの短冊状の試験片1を、その長手方向の一端を把持冶具2の耐熱クリップで把持して吊り下げ、さらに試験片1の平面が回転方向と垂直になるように試験片1の向きを調節した。これにより、試験片1は、モーター6を駆動すると試験片1の平面が溶湯アルミニウム合金5をかき回すことができるように配置された。
次に、黒鉛坩堝4内に800℃の溶湯アルミニウム合金5(組成はJIS規格のAV7ACである。)を注ぎ込み、試験片1をその下略半分(70mm程度)が溶湯アルミニウム合金5に浸漬するように投入した。その後速やかにモーター6を6.4rpmで駆動し、さらに電気炉7の温度を調節して溶湯アルミニウム合金5が700〜850℃に保たれるようにし、このまま試験片1を4時間回転させた。その後、試験片1を取り出し、試験片1が溶湯アルミニウム合金5に浸漬されて黒色に変色した部分の面積を求めて、浸食の程度を評価した。
【0032】
実施例2〜10、比較例1〜3
スラリーの組成又は焼雰囲気を表1〜表3のように変更した以外は、実施例1と同様にして溶融シリカ質耐火物を得、嵩比重、常温曲げ強さ及び熱間線膨張率を測定し、耐食性を評価した。結果を表1〜表3に示す。
【0033】
【表1】

Figure 2004284859
【0034】
【表2】
Figure 2004284859
【0035】
【表3】
Figure 2004284859
【0036】
【発明の効果】
本発明に係る溶融シリカ質耐火物は、溶融アルミニウム、溶融アルミニウム合金、マグネシウム、亜鉛、錫、鉛等の低融点溶融金属に対して濡れ性が低い窒化硼素を含むため、溶融シリカが還元され難くなり、この結果、低融点溶融金属に対する耐食性が高い。また、本発明に係る溶融シリカ質耐火物の製造方法によれば、上記溶融シリカ質耐火物を製造することができる。
【図面の簡単な説明】
【図1】回転浸食試験に用いる公転式動的溶湯試験機を説明する概略図である。
【符号の説明】
1 試験片
2 把持冶具
3 公転冶具
4 黒鉛坩堝
5 溶湯アルミニウム合金
6 モーター
7 電気炉
8 筐体
9 駆動軸
10 公転式動的溶湯試験機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fused siliceous refractory, and more particularly, to a fused siliceous refractory used for a lining material for casting a low melting point molten metal such as aluminum, magnesium, zinc, tin, and lead.
[0002]
[Prior art]
The fused silica refractory is a refractory obtained by sintering fused silica and has a low coefficient of thermal expansion and excellent thermal shock resistance. For this reason, for example, in a casting apparatus of a low melting point metal such as aluminum, zinc, tin, and lead, it is used for a portion for transferring, supplying hot water, holding, and the like of a molten metal. Specifically, for example, it is used as a material constituting an attached part such as a lining material used for a pouring box, a gutter, a holding furnace, and the like, a float, a spout, a hot top ring, and the like.
[0003]
As a method for producing such a fused siliceous refractory, for example, Japanese Patent Publication No. 52-43849 (Patent Literature 1) discloses a method of producing a slurry or a kneaded material from a coarse fused silica powder and an ultrafine fused silica powder. A production method is disclosed in which the material is formed, molded, dried, and then fired at a specific temperature. According to this method, a fused silica refractory containing only fused silica as a component can be obtained. JP-A-11-60330 (Patent Document 2) discloses a production method in which a molding mixture containing a fused silica powder and a compound containing boron or phosphorus is molded and fired under specific conditions. Have been. According to this method, by using boric acid or phosphoric acid as the compound, a fused silica refractory in which a phase of borosilicate glass or phosphosilicate glass is formed in fused silica is obtained.
[0004]
[Patent Document 1]
JP-B-52-43849 (page 2, column 4)
[Patent Document 2]
JP-A-11-60330 (page 2, column 1, column 4, page 5, column 4, page 6, column 6)
[0005]
[Problems to be solved by the invention]
However, when the refractory obtained in Patent Literature 1 or Patent Literature 2 is used as a lining material for a metal transport container such as aluminum or the like and a gutter, for example, since molten aluminum has a strong reducing action, In addition, a part of the fused silica in the lining material is reduced as shown in the following formula to change to alumina.
(Equation 1)
4Al + SiO 2 → 3Si + 2Al 2 O 3
[0006]
In this case, since a part of the lining material is eroded due to deterioration, there is a problem that the lining material is liable to peel or crack. Further, there is a problem that impurities generated by the reduction reaction are mixed in the molten metal.
[0007]
In addition, the refractory obtained in Patent Document 2 has a problem that the lining material is liable to peel or crack due to a reaction other than the above formula. For example, boric acid used in Patent Literature 2 may remain in the fused siliceous refractory after firing, but reacts in a short time when easily reactable boric acid comes into contact with a molten metal such as molten aluminum which has a strong reducing action. Therefore, the lining material is likely to be peeled or cracked.
[0008]
Accordingly, an object of the present invention is to provide a fused silica refractory having high corrosion resistance to a molten metal having a strong reducing action.
[0009]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies, and found that when a specific amount of boron nitride is contained in fused silica, a fused silica-based refractory having high corrosion resistance can be obtained, thereby completing the present invention. Reached.
[0010]
That is, the present invention provides a fused silica refractory comprising 95 to 99.9% by weight of fused silica and 0.1 to 5% by weight of boron nitride.
[0011]
Further, the present invention provides a slurry producing step of producing a slurry containing a raw material solid content consisting of 95 to 99.9 wt% of fused silica powder and 0.1 to 5 wt% of boron nitride powder, and forming a compact from the slurry. The present invention provides a method for producing a fused silica refractory, which comprises a step of firing the molded body at 1050 to 1250 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a fused siliceous refractory according to the present invention, first, as a slurry producing step, a slurry containing a raw material solid content composed of a fused silica powder and a boron nitride powder is produced.
[0013]
The average particle size of the fused silica powder constituting the raw material solid content is usually 1 to 500 μm. Further, the fused silica powder having an average particle diameter within the above range is a mixture of a relatively fine first fused silica powder and a relatively coarse second fused silica powder, and a second fused silica powder When the first fused silica powder is allowed to enter the gaps formed therebetween, the filling property of the fused silica powder in the molded body is increased, and the structure of the fused siliceous refractory after firing is densified. This is preferable because the heat resistance increases. In addition, when the heat resistance is improved as described above, when the fused silica refractory is used as a lining material or the like, the thickness can be reduced, so that the weight is reduced, the workability is improved, and the specific heat (heat capacity) is improved. ) Is preferred because it is smaller.
[0014]
The average particle size of the first fused silica powder used in the present invention is usually 1 to 10 μm, preferably 2 to 6 μm. The average particle size of the second fused silica powder is usually 50 to 500 μm, preferably 100 to 300 μm. It is preferable that the average particle size of the first fused silica powder and the second fused silica powder be within the above range, since the filling of the fused silica powder in the molded product is good.
[0015]
When the fused silica powder is a mixture of the first fused silica powder and the second fused silica powder, the mixing ratio of these in the fused silica powder is usually from 50 to 90% by weight of the first fused silica powder to the second fused silica powder. The content of the silica powder is 10 to 50% by weight, preferably the content of the second fused silica powder is 20 to 40% by weight with respect to the content of the first fused silica powder 60 to 80% by weight.
[0016]
The average particle diameter of the boron nitride powder constituting the raw material solid is usually 1 to 10 μm, preferably 2 to 6 μm. It is preferable that the average particle size is in the above range because the boron nitride powder is easily dispersed uniformly in the fused silica powder. In particular, when the fused silica powder is a mixture of the first fused silica powder and the second fused silica powder, by setting the boron nitride powder to have a particle size similar to that of the first fused silica powder as described above. Further, the boron nitride powder is more preferable because it easily enters the gap formed between the second fused silica powders and is more easily dispersed.
[0017]
The mixing ratio of the fused silica powder and the boron nitride powder in the raw material solid content is usually from 95 to 99.9% by weight of the fused silica powder to from 0.1 to 5% by weight, preferably from 97 to 99% by weight of the fused silica powder. 0.1 to 3% by weight of boron nitride powder with respect to 0.9% by weight. It is preferable that the compounding ratio be within the above range because both the thermal shock resistance and the corrosion resistance of the fused silica refractory are good.
[0018]
The slurry is formed by mixing the raw material solids with water. A known method can be employed as the mixing method. The mixing ratio of the raw material solids and water in the slurry is such that water is usually 10 to 40 parts by weight, preferably 20 to 30 parts by weight, based on 100 parts by weight of the raw material solids.
[0019]
If necessary, a molding aid, a binder, or the like may be added to the slurry. Examples of the molding aid used in the present invention include PVA and CMC (carboxymethylcellulose). Examples of the binder used in the present invention include silicate glass and caustic soda. The use of a molding aid improves the moldability, and the use of a binder improves the shape retention of the molded product, which is preferable.
[0020]
Next, a molding step is performed to obtain a molded body having a desired shape from the slurry. The method for obtaining the molded body is not particularly limited, and for example, cast molding, press molding, extrusion molding, and the like can be used. Of these, cast molding is preferable because the slurry can be densely filled in the mold and the resulting molded body tends to have a high density. The obtained molded body may be calcined as it is, but when the residual amount of moisture in the molded body is large, or when the temperature of the molded body is rapidly increased in the firing step, the moisture in the molded body evaporates rapidly. As a result, cracks and the like may be generated in the fired body, and if necessary, a drying step may be performed before the firing step. The drying step may be performed under the condition that the water in the molded body evaporates gradually, and a known method can be adopted.
[0021]
Next, a firing step is performed to obtain a fused siliceous refractory from the molded body. The firing temperature is usually from 1,050 to 1,250 ° C, preferably from 1,100 to 1,200 ° C. If the sintering temperature is lower than 1050 ° C., it is not preferable because the fused silica powders are hardly sintered. On the other hand, if the firing temperature exceeds 1250 ° C., cristobalite is generated, and the thermal expansion coefficient of the fused siliceous refractory increases, which is not preferable.
[0022]
The firing time is usually 0.5 to 20 hours, preferably 1 to 5 hours. If the firing time is less than 0.5 hour, sufficient sintering strength cannot be obtained, which is not preferable, and if the firing time exceeds 20 hours, the sintering effect hardly changes.
[0023]
In the present invention, firing is preferably performed in a non-oxidizing atmosphere. In the present invention, a non-oxidizing atmosphere refers to an atmosphere in which oxygen does not substantially exist. Examples of the gas used to form the non-oxidizing atmosphere include city gas, nitrogen gas, and argon gas. Of these, city gas is preferable because it is easily available and low in cost. The reason why a non-oxidizing atmosphere is preferable is that when firing in an oxidizing atmosphere, oxygen in the atmosphere and boron nitride in the molded body may react with each other to generate boric acid, and boric acid reacts with molten aluminum or the like in a short time. This is because the corrosion resistance of the fused silica refractory decreases. After completion of the firing step, if appropriately cooled, the fused silica refractory according to the present invention is obtained.
[0024]
The fused siliceous refractory according to the present invention comprises an amorphous fused silica phase obtained by melting and sintering a fused silica powder, and boron nitride dispersed in the fused silica phase. The boron nitride has the same composition as the boron nitride powder blended as the raw material solids, and is substantially uniformly dispersed in the fused silica phase in the fused silica refractory. Since the fused silica refractory according to the present invention contains boron nitride having low wettability with respect to the low melting point molten metal, the fused silica is hardly reduced, and as a result, the corrosion resistance to the low melting point molten metal is high. . In the present invention, the low melting point metal refers to a metal or an alloy having a melting point of 800 ° C. or less. Examples of the low melting point molten metal include molten aluminum, a molten aluminum alloy, magnesium, zinc, tin, and lead.
[0025]
The content ratio of fused silica to boron nitride in the fused silica refractory is usually 0.1 to 5% by weight of boron nitride to 95 to 99.9% by weight of fused silica, preferably 97 to 99.9% by weight of fused silica. % To 0.1% by weight of boron nitride. It is preferable that the content ratio be within the above range because both thermal shock resistance and corrosion resistance are good.
[0026]
The fused siliceous refractory according to the present invention generally has a bulk density of 1.3 to 2.2 g / cm 3 , preferably 1.4 to 1.8 g / cm 3 . If the bulk density is less than 1.3 g / cm 3 , the strength is unfavorably reduced, and if it is more than 2.2 g / cm 3 , the weight is undesirably increased.
[0027]
The fused silica refractory according to the present invention has a bending strength of 3 MPa or more, preferably 6 MPa or more. It is preferable that the bending strength is within the above range because there is a sufficient strength that can be used for a lining material for casting a low melting point molten metal. The fused silica refractory according to the present invention has a coefficient of thermal expansion of 1.50 × 10 −6 ° C. −1 or less.
[0028]
The fused siliceous refractory according to the present invention can be used, for example, as a material forming an attached part such as a lining material for casting a low melting point molten metal, a float, a spout, and a hot top ring.
[0029]
【Example】
Examples are shown below, but the present invention is not construed as being limited thereto.
[0030]
Example 1
80 parts by weight of a fused silica powder having an average particle diameter of 5 μm, 20 parts by weight of a fused silica powder having an average particle diameter of 200 μm, and 0.1 part by weight of boron nitride powder having an average particle diameter of 3 μm were mixed, and 20 parts by weight of water was added to this mixture. And kneaded to obtain a slip. This slip was poured into a known gypsum mold and cast. The obtained molded body was fired in a nitrogen gas atmosphere at 1150 ° C. for 3 hours to obtain a plate-shaped fused silica refractory having a length of 150 mm × a width of 20 mm × a thickness of 7 mm. The bulk specific gravity, room temperature bending strength and hot linear expansion coefficient of this fused siliceous refractory were measured, and the corrosion resistance was evaluated. The coefficient of linear thermal expansion is measured according to JIS-R1601, and is a value measured at 1000 ° C. The corrosion resistance was evaluated by the following rotational erosion test. Table 1 shows the results.
[0031]
(Rotary erosion test)
FIG. 1 is a schematic diagram illustrating a revolution type dynamic molten metal tester used for a rotary erosion test. The revolving type dynamic molten metal tester 10 has a disk-shaped revolving jig 3 of φ150 mm, which is rotatable in a horizontal direction when driven by a motor 6 outside the housing 8, housed in the housing 8. . The revolving jig 3 is formed with a hole (not shown) in the lower surface thereof substantially in the vicinity of the periphery thereof. The hole is formed in a substantially rod-like shape at one end of which can hold the test piece 1 with a heat-resistant clip and has high rigidity. The other end of the gripping jig 2 is attached. Thereby, in the revolution type dynamic molten metal testing machine 10, the gripping jig 2 and the test piece 1 gripped by the gripping jig 2 are attached to the revolving jig 3 substantially vertically. Therefore, when the motor 6 is driven, the gripping jig 2 attached to the revolving jig 3 and the test piece 1 held by the revolving jig 3 are substantially aligned with the extension of the driving shaft 9 as the center axis similarly to the hole of the revolving jig 3. It can be rotated horizontally. Below the revolving jig 3, a graphite crucible 4 capable of accommodating the molten aluminum alloy 5 therein and having an open top is disposed, and the graphite crucible 4 accommodates the rotating test piece 1 therein. It is arranged at the position where it can be done. Further, the test piece 1, the gripping jig 2 and the graphite crucible 4 are accommodated in an electric furnace 7, whereby the molten aluminum alloy 5 in the graphite crucible 4 is maintained at a predetermined temperature. I have.
In the rotary erosion test, first, a strip-shaped test piece 1 having a length of 150 mm × a width of 20 mm × a thickness of 7 mm was suspended by holding one end in the longitudinal direction with a heat-resistant clip of a gripping jig 2. The direction of the test piece 1 was adjusted so that the plane was perpendicular to the rotation direction. Thus, the test piece 1 was arranged such that when the motor 6 was driven, the plane of the test piece 1 could stir the molten aluminum alloy 5.
Next, a molten aluminum alloy 5 (composition is JIS standard AV7AC) at 800 ° C. is poured into the graphite crucible 4, and approximately half (about 70 mm) of the test piece 1 is immersed in the molten aluminum alloy 5. Was introduced. Thereafter, the motor 6 was immediately driven at 6.4 rpm, and the temperature of the electric furnace 7 was adjusted so that the molten aluminum alloy 5 was maintained at 700 to 850 ° C., and the test piece 1 was rotated for 4 hours. Thereafter, the test piece 1 was taken out, the area of the portion where the test piece 1 was immersed in the molten aluminum alloy 5 and changed to black was obtained, and the degree of erosion was evaluated.
[0032]
Examples 2 to 10, Comparative Examples 1 to 3
Except that the composition of the slurry or the baking atmosphere was changed as shown in Tables 1 to 3, a fused siliceous refractory was obtained in the same manner as in Example 1, and the bulk specific gravity, room-temperature bending strength and hot linear expansion coefficient were measured. Then, the corrosion resistance was evaluated. The results are shown in Tables 1 to 3.
[0033]
[Table 1]
Figure 2004284859
[0034]
[Table 2]
Figure 2004284859
[0035]
[Table 3]
Figure 2004284859
[0036]
【The invention's effect】
The fused siliceous refractory according to the present invention contains molten aluminum, a molten aluminum alloy, magnesium, zinc, tin, and boron nitride having low wettability with respect to a low melting point molten metal such as lead, so that the fused silica is hardly reduced. As a result, the corrosion resistance to the low melting point molten metal is high. Further, according to the method for producing a fused siliceous refractory according to the present invention, the above fused siliceous refractory can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a revolution type dynamic molten metal tester used for a rotary erosion test.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 test piece 2 gripping jig 3 revolving jig 4 graphite crucible 5 molten aluminum alloy 6 motor 7 electric furnace 8 housing 9 drive shaft 10 revolving dynamic molten metal testing machine

Claims (9)

溶融シリカ95〜99.9重量%及び窒化硼素0.1〜5重量%を含むことを特徴とする溶融シリカ質耐火物。A fused silica refractory comprising 95 to 99.9% by weight of fused silica and 0.1 to 5% by weight of boron nitride. 嵩密度が1.3〜2.2g/cmであることを特徴とする請求項1記載の溶融シリカ質耐火物。Fused siliceous refractory according to claim 1, wherein the bulk density is characterized by a 1.3~2.2g / cm 3. 曲げ強度が3MPa以上であることを特徴とする請求項1又は2記載の溶融シリカ質耐火物。The fused siliceous refractory according to claim 1 or 2, having a bending strength of 3 MPa or more. 熱膨張係数が1.50×10−6−1以下であることを特徴とする請求項1〜3のいずれか1項記載の溶融シリカ質耐火物。The fused silica refractory according to any one of claims 1 to 3, wherein the coefficient of thermal expansion is 1.50 x 10-6C- 1 or less. 溶融シリカ粉末95〜99.9重量%及び窒化硼素粉末0.1〜5重量%からなる原料固形分を含むスラリーを生成するスラリー生成工程、該スラリーから成形体を得る成形工程、及び該成形体を1050〜1250℃で焼成する焼成工程を含むことを特徴とする溶融シリカ質耐火物の製造方法。A slurry generating step of generating a slurry containing a raw material solid content consisting of 95 to 99.9% by weight of fused silica powder and 0.1 to 5% by weight of boron nitride powder, a forming step of obtaining a formed body from the slurry, and the formed body A method for producing a fused siliceous refractory, comprising a firing step of firing at a temperature of 1050 to 1250 ° C. 前記溶融シリカ粉末が、平均粒径1〜10μmの第1溶融シリカ粉末50〜90重量%及び平均粒径50〜500μmの第2溶融シリカ粉末10〜50重量%からなることを特徴とする請求項5記載の溶融シリカ質耐火物の製造方法。The said fused silica powder consists of 50-90 weight% of 1st fused silica powders with an average particle diameter of 1-10 micrometers, and 10-50 weight% of the 2nd fused silica powders with an average particle diameter of 50-500 micrometers. 6. The method for producing a fused silica refractory according to claim 5. 前記窒化硼素粉末が、平均粒径1〜10μmであることを特徴とする請求項5又は6記載の溶融シリカ質耐火物の製造方法。The method for producing a fused silica refractory according to claim 5, wherein the boron nitride powder has an average particle size of 1 to 10 μm. 前記スラリーが、前記原料固形分100重量部及び水10〜40重量部からなることを特徴とする請求項5〜7のいずれか1項記載の溶融シリカ質耐火物の製造方法。The method for producing a fused siliceous refractory according to any one of claims 5 to 7, wherein the slurry comprises 100 parts by weight of the raw material solids and 10 to 40 parts by weight of water. 前記焼成工程が、非酸化雰囲気中で行われることを特徴とする請求項5〜8のいずれか1項記載の溶融シリカ質耐火物の製造方法。The method for producing a fused siliceous refractory according to any one of claims 5 to 8, wherein the firing step is performed in a non-oxidizing atmosphere.
JP2003077720A 2003-03-20 2003-03-20 Method for producing fused siliceous refractories Expired - Fee Related JP4292016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077720A JP4292016B2 (en) 2003-03-20 2003-03-20 Method for producing fused siliceous refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077720A JP4292016B2 (en) 2003-03-20 2003-03-20 Method for producing fused siliceous refractories

Publications (2)

Publication Number Publication Date
JP2004284859A true JP2004284859A (en) 2004-10-14
JP4292016B2 JP4292016B2 (en) 2009-07-08

Family

ID=33292402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077720A Expired - Fee Related JP4292016B2 (en) 2003-03-20 2003-03-20 Method for producing fused siliceous refractories

Country Status (1)

Country Link
JP (1) JP4292016B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273675A (en) * 2005-03-30 2006-10-12 Nichias Corp Fused siliceous refractory and method of manufacturing the same
JP2007269605A (en) * 2006-03-31 2007-10-18 Nichias Corp Molten siliceous refractory and method for manufacturing the same
JP2009537431A (en) * 2006-05-16 2009-10-29 ベスビウス クルーシブル カンパニー Refractory and manufacturing method thereof
JP2011500493A (en) * 2007-10-17 2011-01-06 テーウー・ベルクアカデミエ・フライベルク Porous refractory material suitable for glass production, production method thereof and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149513A (en) * 2015-10-13 2015-12-16 河北钢铁股份有限公司邯郸分公司 Water gap capable of automatically sealing holes in casting process and manufacturing method of water gap

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273675A (en) * 2005-03-30 2006-10-12 Nichias Corp Fused siliceous refractory and method of manufacturing the same
JP2007269605A (en) * 2006-03-31 2007-10-18 Nichias Corp Molten siliceous refractory and method for manufacturing the same
JP2009537431A (en) * 2006-05-16 2009-10-29 ベスビウス クルーシブル カンパニー Refractory and manufacturing method thereof
US9388081B2 (en) 2006-05-16 2016-07-12 Vesuvius Crucible Company Refractory article and production process thereof
JP2011500493A (en) * 2007-10-17 2011-01-06 テーウー・ベルクアカデミエ・フライベルク Porous refractory material suitable for glass production, production method thereof and use thereof
US9193633B2 (en) 2007-10-17 2015-11-24 Tu Bergakademie Freiberg Porous fireproof material suitable for glass production, method for the production thereof, and uses

Also Published As

Publication number Publication date
JP4292016B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US20110021340A1 (en) Refractory
WO2018079324A1 (en) Magnesia carbon brick and production method therefor
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
CN105174974B (en) Alumina fused cast refractory and method for producing same
WO2012092369A2 (en) Crucible body and method of forming same
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN101386542A (en) SiC refractory materials and producing method thereof
JP4292016B2 (en) Method for producing fused siliceous refractories
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
CN111620675A (en) High-strength aluminum-permeation-resistant castable and preparation method thereof
JP2006514912A (en) Silicon carbide ceramic member having an oxide layer
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP4394080B2 (en) Zirconia refractories
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
EP1595858A1 (en) METHOD OF OBTAINING SURFACE COATINGS OF SILICON NITRIDE (SI sb 3 /sb N sb 4 /sb ) ON CERAMIC COMPONENTS AND PARTS
JPS6119584B2 (en)
JP4068825B2 (en) Method for producing sintered silicon carbide
JP4399579B2 (en) Castable molded product and method for producing the same
CN101665352A (en) Aluminum oxide sintered product and method for producing the same
CN107324790B (en) Forsterite-silicon carbide composite ceramic material and synthesis method thereof
JP4897163B2 (en) Method for producing alumina sintered body
JP2607963B2 (en) Pouring refractories
JP4907094B2 (en) Method for producing fused siliceous refractories
AU2004232516B2 (en) Use of a silicon carbide-based ceramic material in aggressive environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees