JP4907094B2 - Method for producing fused siliceous refractories - Google Patents

Method for producing fused siliceous refractories Download PDF

Info

Publication number
JP4907094B2
JP4907094B2 JP2005097112A JP2005097112A JP4907094B2 JP 4907094 B2 JP4907094 B2 JP 4907094B2 JP 2005097112 A JP2005097112 A JP 2005097112A JP 2005097112 A JP2005097112 A JP 2005097112A JP 4907094 B2 JP4907094 B2 JP 4907094B2
Authority
JP
Japan
Prior art keywords
fused silica
fused
weight
silica powder
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097112A
Other languages
Japanese (ja)
Other versions
JP2006273675A (en
Inventor
晃史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2005097112A priority Critical patent/JP4907094B2/en
Publication of JP2006273675A publication Critical patent/JP2006273675A/en
Application granted granted Critical
Publication of JP4907094B2 publication Critical patent/JP4907094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は溶融シリカ質耐火物に関するものであり、詳しくは、例えばアルミニウム、マグネシウム、亜鉛、錫、鉛等の低融点溶融金属の鋳造用ライニング材に用いられる溶融シリカ質耐火物に関するものである。   The present invention relates to a fused siliceous refractory, and more particularly, to a fused siliceous refractory used for a casting lining material of a low melting point molten metal such as aluminum, magnesium, zinc, tin, and lead.

溶融シリカ質耐火物は、溶融シリカが焼結した耐火物であり、熱膨張率が低く耐熱衝撃性に優れるものである。このため、例えば、アルミニウム、亜鉛、錫、鉛等の低融点金属の鋳造装置において、溶融金属の移送、給湯、保持等を行う部位に用いられている。具体的には、例えば、注湯ボックス、樋及び保持炉等に用いられるライニング材、フロート、スパウト、ホットトップリング等の付属部位を構成する材料として用いられている。   The fused siliceous refractory is a refractory obtained by sintering fused silica and has a low thermal expansion coefficient and excellent thermal shock resistance. For this reason, for example, in low-melting-point metal casting apparatuses such as aluminum, zinc, tin, lead, etc., they are used for parts for transferring, hot-watering, holding, etc. of molten metal. Specifically, for example, it is used as a material constituting an attached portion such as a lining material, a float, a spout, a hot top ring, and the like used for a pouring box, a jar, a holding furnace, and the like.

このような溶融シリカ質耐火物の製造方法としては、たとえば、特公昭52−43849号公報(特許文献1)には、粗粒溶融シリカ粉末と超微粉末溶融シリカ粉末から泥漿物又は混練物を作製し、成形乾燥後、特定温度で焼成する製造方法が開示されている。該方法によれば、溶融シリカのみを成分とする溶融シリカ質耐火物が得られる。また、特開平11−60330号公報(特許文献2)には、溶融シリカ粉末と、硼素又は燐を含有する化合物とを含む成形用混合物を、成形し、特定条件下で焼成する製造方法が開示されている。該方法によれば、前記化合物として硼酸や燐酸を用いることにより、溶融シリカ中に硼珪酸ガラスや燐珪酸ガラスの相が形成された溶融シリカ質耐火物が得られる。   As a method for producing such a fused siliceous refractory, for example, Japanese Patent Publication No. 52-43849 (Patent Document 1) discloses a slurry or kneaded product from coarse fused silica powder and ultrafine fused silica powder. A manufacturing method is disclosed in which it is manufactured, baked at a specific temperature after being molded and dried. According to this method, a fused siliceous refractory containing only fused silica as a component is obtained. Japanese Patent Laid-Open No. 11-60330 (Patent Document 2) discloses a production method in which a molding mixture containing a fused silica powder and a compound containing boron or phosphorus is molded and fired under specific conditions. Has been. According to this method, a fused siliceous refractory in which a phase of borosilicate glass or phosphosilicate glass is formed in fused silica can be obtained by using boric acid or phosphoric acid as the compound.

しかしながら、特許文献1や特許文献2で得られる耐火物を、例えば、アルミニウム等のイオン化傾向の大きい金属用の運搬容器や樋等のライニング材に用いると、溶融アルミニウムが強い還元作用を有するために、ライニング材中の溶融シリカの一部が次式のように還元されてアルミナに変化する。
4Al+SiO→3Si+2Al
However, when the refractory obtained in Patent Document 1 or Patent Document 2 is used for, for example, a metal container such as aluminum or a lining material such as a basket having a high ionization tendency, molten aluminum has a strong reducing action. In addition, a part of the fused silica in the lining material is reduced as shown in the following formula to change to alumina.
4Al + SiO 2 → 3Si + 2Al 2 O 3

この場合、ライニング材の一部が変質により浸食されることになるため、ライニング材に剥離や亀裂が生じ易いという問題があった。さらに、上記還元反応により生成した不純物が溶湯に混入するという問題もあった。また、特に特許文献2で得られる耐火物では、上記式以外の反応によりライニング材に剥離や亀裂が生じ易くなるという問題もあった。例えば、特許文献2で用いられる硼酸は焼成後も溶融シリカ質耐火物中に残留することがあるが、反応し易い硼酸が溶融アルミニウム等の還元作用の強い溶融金属と接触すると短時間に反応するため、ライニング材に剥離や亀裂が生じ易くなる。   In this case, since a part of the lining material is eroded due to the alteration, there is a problem that the lining material is easily peeled off or cracked. Further, there is a problem that impurities generated by the reduction reaction are mixed into the molten metal. In particular, the refractory obtained in Patent Document 2 also has a problem that the lining material is likely to be peeled off or cracked by a reaction other than the above formula. For example, although boric acid used in Patent Document 2 may remain in the fused siliceous refractory after firing, it reacts in a short time when reactive boric acid comes into contact with molten metal having a strong reducing action such as molten aluminum. Therefore, the lining material is likely to be peeled off or cracked.

これを解決するものとして、特開2004−284859号公報には、溶融シリカ95〜99.99重量%及び窒化ホウ素0.01〜5重量%を含む溶融シリカ質耐火物が開示されている。この溶融シリカ質耐火物は、溶融シリカが還元され難くなり、その結果低融点溶融金属に対する耐食性が高くなる点で有用な技術である。
特公昭52−43849号公報(第2頁第4欄) 特開平11−60330号公報(第2頁第1欄、第4頁第5欄、第4頁第6欄) 特開2004−284859号公報(請求項1)
As a solution to this problem, Japanese Patent Application Laid-Open No. 2004-284859 discloses a fused siliceous refractory containing 95 to 99.99% by weight of fused silica and 0.01 to 5% by weight of boron nitride. This fused siliceous refractory is a useful technique in that the fused silica is difficult to be reduced, and as a result, the corrosion resistance to the low melting point molten metal is increased.
Japanese Patent Publication No. 52-43849 (page 2, column 4) Japanese Patent Laid-Open No. 11-60330 (page 2, column 1, page 4, column 5, page 6, column 6) JP 2004-284859 A (Claim 1)

しかしながら、特開2004−284859号公報記載の溶融シリカ質耐火物は、窒化ホウ素の配合量が増すと、耐食性は向上するものの常温曲げ強度が低下傾向にあり、低融点溶融金属の鋳造用ライニング材に最適な強度を得るという点では改良の余地がある。また、窒化ホウ素の配合は製造コストを上昇させるという問題もある。このため、配合量が増しても常温曲げ強度の低下を抑制し、製造コストを極力抑えることができる窒化ホウ素代替品の登場が望まれていた。   However, the fused siliceous refractory described in Japanese Patent Application Laid-Open No. 2004-284859, when the boron nitride content is increased, the corrosion resistance is improved, but the ordinary temperature bending strength tends to decrease, and the low melting point molten metal casting lining material There is room for improvement in terms of obtaining optimal strength. Moreover, there is a problem that the blending of boron nitride increases the manufacturing cost. For this reason, the advent of a boron nitride substitute that can suppress a decrease in the normal temperature bending strength and suppress the manufacturing cost as much as possible even when the blending amount is increased has been desired.

従って、本発明の目的は、配合量が増しても常温曲げ強度の低下を抑制し、製造コストを極力抑えることができ、且つ還元作用の強い溶融金属に対する耐食性が高い溶融シリカ質耐火物を提供することにある。   Therefore, the object of the present invention is to provide a fused siliceous refractory that can suppress a decrease in normal-temperature bending strength even when the blending amount is increased, can suppress the manufacturing cost as much as possible, and has high corrosion resistance against a molten metal having a strong reducing action. There is to do.

かかる実情において、本発明者らは鋭意検討を行った結果、溶融シリカに特定量の酸化鉄を含有させると、酸化鉄の配合量が増しても常温曲げ強度の低下を抑制し、製造コストを極力抑えることができ、且つ上記耐食性が高い溶融シリカ質耐火物が得られることを見出し、本発明を完成するに至った。   In such a situation, the present inventors have conducted intensive studies, and as a result, when a specific amount of iron oxide is contained in fused silica, a decrease in normal temperature bending strength is suppressed even when the amount of iron oxide is increased, and the manufacturing cost is reduced. The present inventors have found that a fused siliceous refractory that can be suppressed as much as possible and that has high corrosion resistance can be obtained, and the present invention has been completed.

また、本発明は、溶融シリカ粉末95〜99.7重量%及び酸化鉄粉末0.3〜5重量%からなる原料固形分を含むスラリーを生成するスラリー生成工程、該スラリーから成形体を得る成形工程、及び該成形体を1050〜1250℃で焼成する焼成工程を含み、前記溶融シリカ粉末が、平均粒径1〜10μmの第1溶融シリカ粉末50〜90重量%及び平均粒径50〜500μmの第2溶融シリカ粉末10〜50重量%からなることを特徴とする溶融シリカ質耐火物の製造方法を提供するものである。 The present invention also provides a slurry generating step for generating a slurry containing raw material solids composed of 95 to 99.7 % by weight of fused silica powder and 0.3 to 5% by weight of iron oxide powder, and forming a molded body from the slurry. step, and saw including a firing step of firing the shaped body at from 1,050 to 1250 ° C., the fused silica powder, 50 to 90 wt% first fused silica powder having an average particle size of 1~10μm and average particle size 50~500μm A method for producing a fused siliceous refractory, characterized by comprising 10 to 50% by weight of the second fused silica powder .

本発明に係る溶融シリカ質耐火物は、溶融アルミニウム、溶融アルミニウム合金、マグネシウム、亜鉛、錫、鉛等の低融点溶融金属に対して濡れ性が低い酸化鉄を含むため、溶融シリカが還元され難くなり、この結果、低融点溶融金属に対する耐食性が高い。また、酸化鉄の配合量が増しても常温曲げ強度の低下を抑制し、製造コストを極力抑えることができる。また、本発明に係る溶融シリカ質耐火物の製造方法によれば、上記溶融シリカ質耐火物を製造することができる。   Since the fused siliceous refractory according to the present invention contains iron oxide having low wettability with respect to a low melting point molten metal such as molten aluminum, molten aluminum alloy, magnesium, zinc, tin, lead, etc., the fused silica is hardly reduced. As a result, the corrosion resistance against the low melting point molten metal is high. Moreover, even if the compounding quantity of iron oxide increases, the fall of normal temperature bending strength can be suppressed and manufacturing cost can be suppressed as much as possible. Moreover, according to the manufacturing method of the fused siliceous refractory according to the present invention, the fused siliceous refractory can be produced.

本発明に係る溶融シリカ質耐火物の製造方法は、まず、スラリー生成工程として、溶融シリカ粉末及び酸化鉄粉末からなる原料固形分を含むスラリーを生成する。   In the method for producing a fused siliceous refractory according to the present invention, first, as a slurry production step, a slurry containing raw material solids composed of fused silica powder and iron oxide powder is produced.

原料固形分を構成する溶融シリカ粉末は、平均粒径が、通常1〜500μmである。また、該範囲内の平均粒径を有する溶融シリカ粉末を、比較的微粒の第1溶融シリカ粉末と比較的粗粒の第2溶融シリカ粉末との混合物とし、第2溶融シリカ粉末同士間に形成された隙間に第1溶融シリカ粉末が入り込むことができるようにすると、成形体における溶融シリカ粉末の充填性が高くなって焼成後の溶融シリカ質耐火物の組織が緻密化されることにより、耐熱性が高くなるため好ましい。また、このように耐熱性が向上すると、溶融シリカ質耐火物をライニング材等として用いる場合にその厚さを薄くすることができることから、重量が軽くなって作業性が向上し、また比熱(熱容量)が小さくなるため好ましい。   The fused silica powder constituting the raw material solid content has an average particle size of usually 1 to 500 μm. Further, the fused silica powder having an average particle size within the above range is a mixture of relatively fine first fused silica powder and relatively coarse second fused silica powder, and is formed between the second fused silica powders. By allowing the first fused silica powder to enter the gaps formed, the filling of the fused silica powder in the molded body is enhanced, and the structure of the fused siliceous refractory after firing is densified. It is preferable because of its high properties. In addition, when the heat resistance is improved in this way, when the fused siliceous refractory is used as a lining material, the thickness can be reduced, so that the weight is reduced and the workability is improved, and the specific heat (heat capacity) ) Is preferable.

本発明で用いられる第1溶融シリカ粉末の平均粒径は、通常1〜10μm、好ましくは2〜6μmである。また、第2溶融シリカ粉末の平均粒径は、通常50〜500μm、好ましくは100〜300μmである。第1溶融シリカ粉末及び第2溶融シリカ粉末の平均粒径を上記範囲内にすると、成形体における溶融シリカ粉末の充填性がよいため好ましい。   The average particle diameter of the 1st fused silica powder used by this invention is 1-10 micrometers normally, Preferably it is 2-6 micrometers. Moreover, the average particle diameter of the 2nd fused silica powder is 50-500 micrometers normally, Preferably it is 100-300 micrometers. It is preferable that the average particle size of the first fused silica powder and the second fused silica powder be within the above range because the filling property of the fused silica powder in the molded body is good.

溶融シリカ粉末が第1溶融シリカ粉末と第2溶融シリカ粉末との混合物である場合、溶融シリカ粉末中のこれらの配合比率は、通常、第1溶融シリカ粉末50〜90重量%に対し第2溶融シリカ粉末10〜50重量%であり、好ましくは第1溶融シリカ粉末60〜80重量%に対し第2溶融シリカ粉末20〜40重量%である。   When the fused silica powder is a mixture of the first fused silica powder and the second fused silica powder, their blending ratio in the fused silica powder is usually the second molten silica with respect to 50 to 90% by weight of the first fused silica powder. The silica powder is 10 to 50% by weight, preferably 20 to 40% by weight of the second fused silica powder with respect to 60 to 80% by weight of the first fused silica powder.

原料固形分を構成する酸化鉄の価数は2および3どちらでも良く、すなわち FeO、Fe、Feのどの形態でも良いが、原料が安価で安定している3価のFeが望ましい。酸化鉄は、通常平均粒径が1〜10μm、好ましくは2〜6μmの粉末状が好ましい。平均粒径を上記範囲内にすると、酸化鉄粉末が溶融シリカ粉末中に均一に分散し易いため好ましい。特に溶融シリカ粉末が第1溶融シリカ粉末と第2溶融シリカ粉末との混合物である場合には、上記のように酸化鉄粉末を第1溶融シリカ粉末と同程度の粒径のものとすることにより、酸化鉄粉末が第2溶融シリカ粉末同士間に形成された隙間に入り込み易くなり、より均一に分散し易くなるためさらに好ましい。また、酸化鉄は、粉末として添加する以外に金属鉄の水溶液、すなわち、例えば塩化鉄、硫酸鉄、硝酸鉄といった鉄を含む金属塩の水溶液を添加し焼成により酸化鉄に変化させても良い。こうして得られた酸化鉄は、酸化鉄粉末を添加してときと同様の効果を得ることができる。 The valence of iron oxide constituting the raw material solids may be either 2 or 3, that is, any form of FeO, Fe 2 O 3 , Fe 3 O 4 , but the trivalent Fe is stable at low cost. 2 O 3 is desirable. Iron oxide is usually in the form of a powder having an average particle size of 1 to 10 μm, preferably 2 to 6 μm. An average particle size within the above range is preferable because the iron oxide powder is easily dispersed uniformly in the fused silica powder. In particular, when the fused silica powder is a mixture of the first fused silica powder and the second fused silica powder, the iron oxide powder has the same particle size as the first fused silica powder as described above. Further, iron oxide powder is more preferable because it easily enters a gap formed between the second fused silica powders and is more easily dispersed uniformly. In addition to adding iron oxide as a powder, an aqueous solution of metallic iron, that is, an aqueous solution of a metal salt containing iron such as iron chloride, iron sulfate, and iron nitrate may be added and changed to iron oxide by firing. The iron oxide thus obtained can achieve the same effect as when iron oxide powder is added.

原料固形分中における溶融シリカ粉末と酸化鉄粉末との配合比率は、通常溶融シリカ粉末95〜99.99重量%に対し酸化鉄粉末0.01〜5重量%、好ましくは溶融シリカ粉末97〜99.9重量%に対し酸化鉄粉末0.1〜3重量%である。配合比率が上記範囲内にあると、溶融シリカ質耐火物の耐熱衝撃性及び耐食性が共に良好であり、また常温曲げ強度をそれ程低下させることはないため好ましい。   The blending ratio of the fused silica powder and the iron oxide powder in the raw material solid content is usually 0.01 to 5% by weight of the iron oxide powder, preferably 97 to 99% of the fused silica powder with respect to 95 to 99.99% by weight of the fused silica powder. The iron oxide powder is 0.1 to 3% by weight with respect to 9% by weight. It is preferable for the blending ratio to be within the above range because both the thermal shock resistance and corrosion resistance of the fused siliceous refractory are good and the ordinary temperature bending strength is not lowered so much.

スラリーは、上記原料固形分を水と混合して生成される。混合方法としては公知の方法を採用することができる。スラリー中における原料固形分と水との配合比率は、原料固形分100重量部に対し、水が、通常10〜40重量部、好ましくは20〜30重量部である。   The slurry is generated by mixing the raw material solids with water. As a mixing method, a known method can be employed. The mixing ratio of the raw material solids and water in the slurry is usually 10 to 40 parts by weight, preferably 20 to 30 parts by weight of water with respect to 100 parts by weight of the raw material solids.

また、スラリーには、必要により、成形助剤やバインダー等を添加してもよい。本発明に用いられる成形助剤としては、例えば、PVAやCMC(カルボキシメチルセルロース)等が挙げられる。また、本発明に用いられるバインダーとしては、例えば、珪酸ガラス、苛性ソーダ等が挙げられる。成形助剤を用いると成形性がよくなり、バインダーを用いると成形体の保形性がよくなるため好ましい。   Moreover, you may add a shaping | molding adjuvant, a binder, etc. to a slurry if needed. Examples of the molding aid used in the present invention include PVA and CMC (carboxymethylcellulose). Examples of the binder used in the present invention include silicate glass and caustic soda. Use of a molding aid improves the moldability, and use of a binder is preferable because the shape retention of the molded article is improved.

次に、成形工程を行い、上記スラリーから所望の形状の成形体を得る。成形体を得る方法としては特に限定されず、例えば、鋳込み成形、プレス成形、押し出し成形等を用いることができる。このうち、鋳込み成形は、スラリーを鋳型に緻密に充填することができ、得られる成形体が高密度になり易いため好ましい。得られた成形体はこのまま焼成してもよいが、成形体の水分の残存量が多い場合や焼成工程において成形体を急激に昇温させる場合等には、成形体中の水分が急激に蒸発して焼成体に亀裂等が発生するおそれがあるから、必要により焼成工程を行う前に乾燥工程を行ってもよい。乾燥工程は、成形体中の水分が徐々に蒸発する条件で行えばよく、公知の方法を採用することができる。   Next, a molding process is performed to obtain a molded body having a desired shape from the slurry. It does not specifically limit as a method of obtaining a molded object, For example, casting molding, press molding, extrusion molding, etc. can be used. Among these, casting molding is preferable because the slurry can be densely filled in the mold and the resulting molded body tends to have a high density. The obtained molded body may be fired as it is, but when the residual amount of moisture in the molded body is large or when the molded body is rapidly heated in the firing process, the moisture in the molded body is rapidly evaporated. As a result, cracks and the like may occur in the fired body. Therefore, a drying process may be performed before the firing process if necessary. A drying process should just be performed on the conditions which the water | moisture content in a molded object evaporates gradually, and can employ | adopt a well-known method.

次に、焼成工程を行い、上記成形体から溶融シリカ質耐火物を得る。焼成温度は、通常1050〜1250℃、好ましくは1100〜1200℃である。焼成温度が1050℃未満であると、溶融シリカ粉末同士が焼結し難いため好ましくない。また、焼成温度が1250℃を超えると、クリストバライトが生成して溶融シリカ質耐火物の熱膨張係数が増加するため好ましくない。   Next, a firing step is performed to obtain a fused siliceous refractory from the molded body. The firing temperature is usually from 1050 to 1250 ° C, preferably from 1100 to 1200 ° C. If the firing temperature is lower than 1050 ° C., it is not preferable because the fused silica powders are difficult to sinter. On the other hand, when the firing temperature exceeds 1250 ° C., cristobalite is generated and the thermal expansion coefficient of the fused siliceous refractory increases, which is not preferable.

焼成時間は、通常0.5〜20時間、好ましくは1〜5時間である。焼成時間が0.5時間未満であると、十分な焼結強度が得られないため好ましくなく、また、焼成時間が20時間を超えても、焼結効果にほとんど変わりがないからである。   The firing time is usually 0.5 to 20 hours, preferably 1 to 5 hours. This is because if the firing time is less than 0.5 hours, a sufficient sintering strength cannot be obtained, which is not preferable, and if the firing time exceeds 20 hours, the sintering effect is hardly changed.

本発明に係る溶融シリカ質耐火物は、溶融シリカ粉末が焼結して得られる非晶質の溶融シリカの相と、該溶融シリカ相中に分散する酸化鉄とからなるものである。酸化鉄は、原料固形分として配合した酸化鉄粉末と組成が同一であり、溶融シリカ質耐火物における溶融シリカの相中に略均一に分散して存在する。本発明に係る溶融シリカ質耐火物は、低融点溶融金属に対して濡れ性が低い酸化鉄を含むため、溶融シリカが還元され難くなり、この結果、低融点溶融金属に対する耐食性が高いものである。本発明において、低融点溶融金属とは、融点が800℃以下の金属又は合金をいう。低融点溶融金属としては、例えば、溶融アルミニウム、溶融アルミニウム合金、マグネシウム、亜鉛、錫、鉛等が挙げられる。   The fused siliceous refractory according to the present invention comprises an amorphous fused silica phase obtained by sintering fused silica powder and iron oxide dispersed in the fused silica phase. The iron oxide has the same composition as the iron oxide powder blended as the raw material solids, and is present in a substantially uniform dispersion in the fused silica phase of the fused siliceous refractory. Since the fused siliceous refractory according to the present invention contains iron oxide having low wettability with respect to the low melting point molten metal, it is difficult to reduce the fused silica, and as a result, the corrosion resistance to the low melting point molten metal is high. . In the present invention, the low melting point molten metal means a metal or alloy having a melting point of 800 ° C. or lower. Examples of the low melting point molten metal include molten aluminum, molten aluminum alloy, magnesium, zinc, tin, and lead.

溶融シリカ質耐火物中における溶融シリカと酸化鉄との含有比率は、通常溶融シリカ95〜99.99重量%に対し酸化鉄0.01〜5重量%、好ましくは溶融シリカ97〜99.9重量%に対し酸化鉄0.1〜3重量%である。含有比率が上記範囲内にあると、耐熱衝撃性及び耐食性が共に良好であり、また常温曲げ強度をそれ程低下させることはないため好ましい。   The content ratio of the fused silica and iron oxide in the fused siliceous refractory is usually 0.01 to 5% by weight of iron oxide, preferably 97 to 99.9% by weight of fused silica with respect to 95 to 99.99% by weight of fused silica. %, Iron oxide is 0.1 to 3% by weight. When the content ratio is in the above range, both the thermal shock resistance and the corrosion resistance are good, and the normal temperature bending strength is not lowered so much, which is preferable.

本発明に係る溶融シリカ質耐火物は、嵩密度が通常1.3〜2.2g/cm、好ましくは1.4〜1.8g/cmである。嵩密度が1.3g/cm未満であると強度が低下するため好ましくなく、また、2.2g/cmを超えると重量が大きくなるため好ましくない。 The fused siliceous refractory according to the present invention has a bulk density of usually 1.3 to 2.2 g / cm 3 , preferably 1.4 to 1.8 g / cm 3 . If the bulk density is less than 1.3 g / cm 3 , the strength decreases, which is not preferable, and if it exceeds 2.2 g / cm 3 , the weight increases, which is not preferable.

本発明に係る溶融シリカ質耐火物は、曲げ強度が6MPa以上、好ましくは7MPa以上である。曲げ強度が該範囲内にあると、低融点溶融金属の鋳造用ライニング材に用いることができる十分な強度があるため好ましい。従来の例えば窒化ホウ素を配合した溶融シリカ質耐火物は窒化ホウ素の配合により、曲げ強度の低下傾向が大きいのに対して、本発明の溶融シリカ質耐火物は曲げ強度の低下傾向が小さい。本発明に係る溶融シリカ質耐火物は、熱膨張係数が1.50×10−6−1以下である。 The fused siliceous refractory according to the present invention has a bending strength of 6 MPa or more, preferably 7 MPa or more. It is preferable that the bending strength is within the above range because there is sufficient strength that can be used for a casting lining material of a low melting point molten metal. The conventional fused siliceous refractory blended with boron nitride, for example, has a large tendency to decrease the bending strength due to the blending of boron nitride, whereas the fused siliceous refractory according to the present invention has a small tendency to decrease the bending strength. The fused siliceous refractory according to the present invention has a thermal expansion coefficient of 1.50 × 10 −6 ° C. −1 or less.

本発明に係る溶融シリカ質耐火物は、例えば、低融点溶融金属の鋳造用ライニング材、フロート、スパウト、ホットトップリング等の付属部位を構成する材料として使用することができる。   The fused siliceous refractory according to the present invention can be used, for example, as a material that constitutes an attached portion such as a casting lining material of a low melting point molten metal, a float, a spout, or a hot top ring.

実施例
以下に実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
EXAMPLES The present invention will be described more specifically with reference to the following examples. However, this is merely an example and does not limit the present invention.

実施例1〜参考例1〜2、比較例1
平均粒径5μmの溶融シリカ粉末80重量部、平均粒径200μmの溶融シリカ粉末20重量部及び平均粒径3μmの酸化鉄粉末0〜5重量部を混合し、この混合物に水20重量部を加え、混練してスリップを得た。このスリップを公知の石膏型に流し込んで鋳込み成形した。得られた成形体を窒素ガス雰囲気中で、1150℃で3時間焼成し、長さ150mm×幅20mm×厚さ7mmの平板状の溶融シリカ質耐火物を得た。この溶融シリカ質耐火物の嵩比重、常温曲げ強さ及び熱間線膨張率を測定し、耐食性を評価した。その結果を表1及び2に示す。熱間線膨張率はJIS−R1601に従って測定したものであり、1000℃での測定値である。耐食性は、アルミニウム合金(AC4C)を800℃で溶融し、その溶湯中に長さ150mm×幅20mm×厚さ7mmの短冊状試験片の下約半分(70mm程度)を溶湯アルミニウム合金に浸漬し8時間後、浸漬部の断面を切断し、黒色に変色した浸食部の深さおよび面積を求めて、浸食の程度を評価した。
Examples 1-5 , Reference Examples 1-2, Comparative Example 1
80 parts by weight of fused silica powder having an average particle diameter of 5 μm, 20 parts by weight of fused silica powder having an average particle diameter of 200 μm, and 0 to 5 parts by weight of iron oxide powder having an average particle diameter of 3 μm are mixed, and 20 parts by weight of water is added to the mixture. And kneaded to obtain a slip. This slip was cast into a known gypsum mold. The obtained molded body was fired at 1150 ° C. for 3 hours in a nitrogen gas atmosphere to obtain a plate-like fused siliceous refractory having a length of 150 mm × width of 20 mm × thickness of 7 mm. The bulk specific gravity, room temperature bending strength and hot linear expansion coefficient of this fused siliceous refractory were measured to evaluate the corrosion resistance. The results are shown in Tables 1 and 2. The hot linear expansion coefficient is measured according to JIS-R1601, and is a measured value at 1000 ° C. Corrosion resistance is obtained by melting an aluminum alloy (AC4C) at 800 ° C. and immersing the lower half (about 70 mm) of a strip-shaped test piece 150 mm long × 20 mm wide × 7 mm thick into the molten aluminum alloy. After the time, the cross section of the immersion part was cut and the depth and area of the erosion part discolored to black were determined to evaluate the degree of erosion.

実施例10
平均粒径5μmの溶融シリカ粉末50〜100重量部、平均粒径200μmの溶融シリカ粉末0〜50重量部及び平均粒径3μmの酸化鉄粉末0.3重量部を混合し、この混合物に水20重量部を加え、混練してスリップを得た。このスリップを公知の石膏型に流し込んで鋳込み成形した。焼成条件、評価条件は実施例1〜と同様である。その結果を表3に示す。
Examples 6 to 10
50 to 100 parts by weight of fused silica powder having an average particle diameter of 5 μm, 0 to 50 parts by weight of fused silica powder having an average particle diameter of 200 μm, and 0.3 part by weight of iron oxide powder having an average particle diameter of 3 μm are mixed. A weight part was added and kneaded to obtain a slip. This slip was cast into a known gypsum mold. Firing conditions and evaluation conditions are the same as in Examples 1-5 . The results are shown in Table 3.

本発明に係る溶融シリカ質耐火物は、溶融アルミニウム、溶融アルミニウム合金、マグネシウム、亜鉛、錫、鉛等の低融点溶融金属に対して濡れ性が低い酸化鉄を含むため、溶融シリカが還元され難くなり、この結果、低融点溶融金属に対する耐食性が高い。また、酸化鉄の配合量が増しても常温曲げ強度の低下を抑制し、製造コストを極力抑えることができる。また、本発明に係る溶融シリカ質耐火物の製造方法によれば、上記溶融シリカ質耐火物を製造することができる。   Since the fused siliceous refractory according to the present invention contains iron oxide having low wettability with respect to a low melting point molten metal such as molten aluminum, molten aluminum alloy, magnesium, zinc, tin, lead, etc., the fused silica is hardly reduced. As a result, the corrosion resistance against the low melting point molten metal is high. Moreover, even if the compounding quantity of iron oxide increases, the fall of normal temperature bending strength can be suppressed and manufacturing cost can be suppressed as much as possible. Moreover, according to the manufacturing method of the fused siliceous refractory according to the present invention, the fused siliceous refractory can be produced.

Claims (3)

溶融シリカ粉末95〜99.7重量%及び酸化鉄0.3〜5重量%からなる原料固形分を含むスラリーを生成するスラリー生成工程、該スラリーから成形体を得る成形工程、及び該成形体を1050〜1250℃で焼成する焼成工程を含み
前記溶融シリカ粉末が、平均粒径1〜10μmの第1溶融シリカ粉末50〜90重量%及び平均粒径50〜500μmの第2溶融シリカ粉末10〜50重量%からなる
ことを特徴とする溶融シリカ質耐火物の製造方法。
Slurry producing step of producing a slurry containing raw material solid matter comprising a fused silica powder from 95 to 99.7% by weight and iron oxide 0.3 to 5% by weight, the molding step of obtaining a molded body from the slurry, and the molded article Including a firing step of firing at 1050 to 1250 ° C. ,
The fused silica powder comprises 50 to 90% by weight of a first fused silica powder having an average particle size of 1 to 10 [mu] m and 10 to 50% by weight of a second fused silica powder having an average particle size of 50 to 500 [mu] m. A method for producing a fused siliceous refractory.
前記酸化鉄は粉末状であって、平均粒径1〜10μmであることを特徴とする請求項1に記載の溶融シリカ質耐火物の製造方法。 The method for producing a fused siliceous refractory according to claim 1, wherein the iron oxide is in a powder form and has an average particle diameter of 1 to 10 μm. 前記スラリーが、前記原料固形分100重量部及び水10〜40重量部からなることを特徴とする請求項1または請求項2に記載の溶融シリカ質耐火物の製造方法。 The method for producing a fused siliceous refractory according to claim 1 or 2, wherein the slurry comprises 100 parts by weight of the raw material solids and 10 to 40 parts by weight of water.
JP2005097112A 2005-03-30 2005-03-30 Method for producing fused siliceous refractories Expired - Fee Related JP4907094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097112A JP4907094B2 (en) 2005-03-30 2005-03-30 Method for producing fused siliceous refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097112A JP4907094B2 (en) 2005-03-30 2005-03-30 Method for producing fused siliceous refractories

Publications (2)

Publication Number Publication Date
JP2006273675A JP2006273675A (en) 2006-10-12
JP4907094B2 true JP4907094B2 (en) 2012-03-28

Family

ID=37208773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097112A Expired - Fee Related JP4907094B2 (en) 2005-03-30 2005-03-30 Method for producing fused siliceous refractories

Country Status (1)

Country Link
JP (1) JP4907094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049634A1 (en) 2007-10-17 2009-04-23 Technische Universität Bergakademie Freiberg Method for increasing the corrosion resistance of refractory materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103074A (en) * 1983-11-04 1985-06-07 品川白煉瓦株式会社 Silica brick
JPH09301782A (en) * 1996-05-09 1997-11-25 Nakanihon Rokogyo Kk Ceramic fiber formed article excellent in molten nonferrous metal resistance and its manufacture
JP2001192261A (en) * 2000-11-21 2001-07-17 Kurosaki Harima Corp Dense silica brick
JP4292016B2 (en) * 2003-03-20 2009-07-08 ニチアス株式会社 Method for producing fused siliceous refractories

Also Published As

Publication number Publication date
JP2006273675A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JPS59111985A (en) Composite body of ceramic material and metal
EP1840101B1 (en) Fused siliceous refractory and production method thereof
JP5774135B2 (en) Sintered materials based on doped chromium oxide
CN103339300A (en) Crucible body and method of forming same
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
US7101821B2 (en) Silicon composition
CN1208285C (en) Refractory for cupola furnace
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
JP4907094B2 (en) Method for producing fused siliceous refractories
KR20160064163A (en) Refractory product with a SiAlON matrix
JP2821748B2 (en) BN normal pressure sintered ceramics with excellent erosion resistance
JP5126984B2 (en) Method for producing SiC-containing castable refractory
JP4292016B2 (en) Method for producing fused siliceous refractories
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3327883B2 (en) Refractories containing massive graphite
JP3944871B2 (en) Carbon-containing ceramic sintered body
JP4217278B2 (en) Method for producing metal-ceramic composite material
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
JPH03170367A (en) Refractory for continuous casting and its production
JP2000094121A (en) Manufacture of plate for slide gate
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
JPH1160330A (en) Production of fused silica-based refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees