JPS6119584B2 - - Google Patents

Info

Publication number
JPS6119584B2
JPS6119584B2 JP56170187A JP17018781A JPS6119584B2 JP S6119584 B2 JPS6119584 B2 JP S6119584B2 JP 56170187 A JP56170187 A JP 56170187A JP 17018781 A JP17018781 A JP 17018781A JP S6119584 B2 JPS6119584 B2 JP S6119584B2
Authority
JP
Japan
Prior art keywords
graphite
refractory
weight
parts
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170187A
Other languages
Japanese (ja)
Other versions
JPS5874579A (en
Inventor
Shigeo Yoshino
Hideaki Nishio
Kazuyo Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP56170187A priority Critical patent/JPS5874579A/en
Priority to KR1019830000541A priority patent/KR860001649B1/en
Publication of JPS5874579A publication Critical patent/JPS5874579A/en
Publication of JPS6119584B2 publication Critical patent/JPS6119584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は炭素含有耐火物の酸化防止を図り、同
時に熱間強度、耐スポール性、耐食性等耐火物と
して重要な特性を向上させたAl2O3−C、MgO−
C、MgO−Al2O3−C質の焼成ならびに不焼成耐
火物に関するものである。 黒鉛を含む耐火物は治金用の耐火物として広く
用いられて、溶銑、溶鋼、スラグ等と接する場合
の化学的侵食に対しては極めて優れた耐食性を示
す。これは黒鉛自身が特にスラグに対して濡れ難
く、そのため耐火物内へのスラグの侵入が抑えら
れることによる。更に黒鉛の存在により耐火物が
過焼結しないため熱的なスポーリングが起り難い
ことも黒鉛含有耐火物の耐火性の高いことに寄与
している。 しかし当然ながら黒鉛は雰囲気中の酸素の存在
下で極めて容易に酸化する。黒鉛の酸化は上記黒
鉛含有耐火物の優れた特性を失うことになる。こ
のことからこの種耐火物の一層の耐用向上のため
には黒鉛の酸化を極力おさえることが重要であ
る。耐酸化性向上という要求に対する試みも今ま
でに種々行なわれてきてはいるが、未だに満足な
ものは提供されていないのが現状である。 炭素含有成形物の表面を被覆する手段として例
えば特開昭50−69106号公報には炭素成形物の表
面を珪素の窒化物または炭火物で被覆し更にその
上を炭化硼素および二酸化珪素の硼珪酸ガラスで
被覆した炭素成形物は公知であるが、溶銑、溶
鋼、スラグ等に接する使用場所においては該被覆
層が侵食された後は酸化防止効果はなく、酸化防
止手段としては好ましくないものである。また炭
素含有成形物中に金属粉末を均一分散させ耐酸化
性とした炭素含有耐火物としては例えば特開昭55
−107749号公報にマグネシウム粉末、アルミニウ
ム粉末とシリコン粉末を添加したカーボン含有耐
火れんが、また特開昭54−39422号公報には炭素
より酸素親和力の大きい金属粉末のAl、Si、
Cr、Ti、Mgの1種以上を添加した炭素含有耐火
物は公知である。しかし、これらの炭素含有耐火
物は耐酸化性とと熱間強度の両特性をまだ十分に
満足するものではない。 本発明者らは性酸化性と熱間強度の特性を同時
に発輝する炭素含有耐火物を開発すべく種々の添
加物について検討した結果、Al、Si、Fe、Niの
金属粉末と炭化硼素を添加した炭素含有耐火物は
耐酸化性と熱間強度の優れた特性を見出し本発明
を完成するに至つたものである。 本発明は黒鉛3〜30重量部、耐火原料70〜97重
量部に金属粉末AlおよびSiを1〜7重量部および
炭化硼素0.3〜5重量部を含有することを特徴と
する炭素含有耐火物である。 本発明の特徴とする耐火原料と黒鉛に金属粉末
と炭化硼素を添加することによつて結合形態の詳
細は未だ十分に明らかにされていないが、酸素が
乏しいと考えられる耐火物の微粉部は加熱によつ
て金属粉末と炭化硼素および耐火原料、黒鉛等と
強固な結合を形成していると考えられる。また炭
化硼素粉末表面の一部は耐火物気孔中に含まれる
酸素によつて酸化硼素となり耐火原料の焼結を促
進し、緻密で強固な結合組織を形成していると考
えられる。なお金属粉末がアルミニウムの場合
800〜1400℃の温度域で炭化アルミニウム
(Al4C3)を生成する欠点がある。この炭化アルミ
ニウムは周知の如く水あるいは空気中の水分によ
り分解し組織の脆化を起こす性質を有する。しか
し金属粉末Siはこのような性質を示さない。しか
も本発明者らの実験で1500℃還元雰囲気3時間保
持後のX線分析結果によれば炭化アルミニウムの
生成は認められず、炭化硼素と共存することによ
つて炭化アルミニウムの生成が抑制され、また金
属Alと金属Siの共存によつて強固な結合を形成す
るものと考えられる。また耐火原料と黒鉛に炭化
硼素単独添加の場合は熱間強度および加熱後の強
度は低く、本発明においては金属粉末と炭化硼素
を添加することが必須条件である。一方、耐火物
表面の使用面において炭化硼素は酸化して酸化硼
素となり、金属粉末の酸化物および耐火原料等か
らなる粘性の高い融液を形成して耐火物表面を被
覆し、黒鉛の酸化を防止するものである。 本発明に使用する耐火物原料としてはマグネシ
ア、スピネル、アルミナ、シリカ、ジルコン、ジ
ルコニア等の酸化物や炭化珪素、窒化珪素、窒化
硼素等非酸化物が使用され、特に限定するもので
はないが、マグネシア、スピネル、アルミナを主
体とするものが好ましい。また黒鉛としては土状
黒鉛、鱗状黒鉛の天然黒鉛ないし電極屑、石油コ
ークス、カーボンブラツク等の人造黒鉛が任意に
使用可能であるが不純物の少ない鱗状黒鉛の使用
が好ましい。該黒鉛の配合割合は耐火原料の種
類、該炭素含有耐火物の使用目的によつても異な
るが、黒鉛と耐火原料からなる耐火骨材100重量
に対して3〜30重量部が好ましい。配合割合を規
制した理由は黒鉛が3重量部未満になると黒鉛の
溶鋼スラグに対する濡れにくいという特性が十分
発揮できない。また該耐火物全体としてスラグに
濡れやすく耐スラグ性も不十分となる。また30重
量部を越えると強度的にも十分なものが望めなく
組織の緻密なものが得られ難い。 本発明に使用される炭化硼素としては研磨材と
し一般に市販されているものでも可で、粒度は反
応性および均一分散性の点から0.125mm以下のも
のを使用するのが好ましい。該炭化硼素の配合割
合は耐火骨材100重量部に対し0.3〜5重量部が配
合されるものであるが0.3重量部未満では添加す
る効果が少なく、また5重量部を越えると耐酸化
性はあるが熱間強度が低下し耐用性が低下する。
また金属粉末としてはAl、Siを混合使用する。金
属粉末の配合割合は耐火骨材100重量部に対し1
〜7重量部が配合されるものであるが、1重量部
未満では添加する効果が少なく、また、7重量部
を越えると耐食性が低下する。 本発明の炭素含有耐火物はこれらの粒度調整し
た耐火骨材と炭化硼素および金属粉を所定の配合
割合で調整し、タール、ピツチ、フエノール樹
脂、フラン樹脂などの結合剤を加え常法によつて
混練成形し、200℃程度に乾燥すれば不焼成のも
のが得られる。また900〜1500℃程度の還元雰囲
気で焼成し、焼成耐火物として使用に供すること
ができる。 次にこの発明を実施例により具体的に示す、な
お配合は重量部で示す。 実施例 1 第1表に示す配合物にレゾール型フエノール樹
脂5重量部を添加混練後、1000Kg/cm2の成型で
230×114×65mmの並形に成形してから200℃にて
5時間乾燥した。 得られた不焼成炭素含有耐火物の特性を第1表
に示す如く、本発明品は比較品に比し耐酸化性を
有しかつ熱間強度が優れていることがわかる。 【表】
Detailed Description of the Invention The present invention aims to prevent oxidation of carbon-containing refractories, and at the same time improve important properties as refractories such as hot strength, spalling resistance, and corrosion resistance.
The present invention relates to fired and unfired refractories made of C, MgO-Al 2 O 3 -C. Refractories containing graphite are widely used as refractories for metallurgy, and exhibit extremely excellent corrosion resistance against chemical attack when in contact with hot metal, molten steel, slag, and the like. This is because graphite itself is particularly difficult to wet with slag, which prevents slag from penetrating into the refractory. Furthermore, due to the presence of graphite, the refractory is not oversintered, so thermal spalling is less likely to occur, which also contributes to the high fire resistance of the graphite-containing refractory. However, graphite naturally oxidizes very easily in the presence of oxygen in the atmosphere. Oxidation of graphite results in the loss of the excellent properties of the graphite-containing refractories. Therefore, in order to further improve the durability of this type of refractory, it is important to suppress oxidation of graphite as much as possible. Although various attempts have been made to meet the demand for improved oxidation resistance, the current situation is that nothing satisfactory has yet been provided. As a means for coating the surface of a carbon-containing molded article, for example, JP-A-50-69106 discloses coating the surface of a carbon molded article with silicon nitride or charcoal, and then coating the surface with borosilicate of boron carbide and silicon dioxide. Carbon molded products coated with glass are known, but in places where they are used in contact with hot metal, molten steel, slag, etc., after the coating layer is eroded, they have no oxidation-preventing effect and are not preferred as an oxidation-preventing means. . In addition, as a carbon-containing refractory made by uniformly dispersing metal powder in a carbon-containing molded product and made oxidation resistant, for example, JP-A-55
-107749 discloses carbon-containing refractory bricks containing magnesium powder, aluminum powder and silicon powder, and JP-A-54-39422 discloses metal powders such as Al, Si, which have a higher affinity for oxygen than carbon.
Carbon-containing refractories to which one or more of Cr, Ti, and Mg are added are known. However, these carbon-containing refractories do not yet fully satisfy both oxidation resistance and hot strength properties. The present inventors investigated various additives in order to develop a carbon-containing refractory that exhibits properties of oxidation resistance and hot strength at the same time. It was discovered that the added carbon-containing refractory has excellent properties of oxidation resistance and hot strength, which led to the completion of the present invention. The present invention is a carbon-containing refractory characterized by containing 3 to 30 parts by weight of graphite, 70 to 97 parts by weight of a refractory raw material, 1 to 7 parts by weight of metal powders Al and Si, and 0.3 to 5 parts by weight of boron carbide. be. By adding metal powder and boron carbide to the refractory raw material and graphite, which is a feature of the present invention, the details of the bonding form have not yet been fully clarified, but the fine powder part of the refractory, which is thought to be oxygen-poor, It is thought that the metal powder forms a strong bond with boron carbide, refractory raw material, graphite, etc. by heating. It is also believed that a part of the surface of the boron carbide powder becomes boron oxide due to the oxygen contained in the refractory pores, promoting sintering of the refractory raw material and forming a dense and strong connective tissue. In addition, if the metal powder is aluminum
It has the disadvantage of producing aluminum carbide (Al 4 C 3 ) in the temperature range of 800 to 1400°C. As is well known, aluminum carbide has the property of being decomposed by water or moisture in the air, causing the structure to become brittle. However, metal powder Si does not exhibit such properties. Moreover, according to the X-ray analysis results after holding the reducing atmosphere at 1500°C for 3 hours in experiments conducted by the present inventors, no formation of aluminum carbide was observed, and the formation of aluminum carbide was suppressed by coexisting with boron carbide. It is also thought that a strong bond is formed due to the coexistence of metallic Al and metallic Si. Further, when boron carbide is added alone to the refractory raw material and graphite, the hot strength and the strength after heating are low, and in the present invention, it is essential to add metal powder and boron carbide. On the other hand, when used on the surface of refractories, boron carbide oxidizes to boron oxide, forming a highly viscous melt consisting of metal powder oxides and refractory raw materials, which coats the refractory surface and prevents the oxidation of graphite. It is intended to prevent The refractory raw materials used in the present invention include oxides such as magnesia, spinel, alumina, silica, zircon, and zirconia, and non-oxides such as silicon carbide, silicon nitride, and boron nitride, but are not particularly limited. Those mainly composed of magnesia, spinel, and alumina are preferable. As the graphite, natural graphite such as earthy graphite, scale graphite, or artificial graphite such as electrode waste, petroleum coke, carbon black, etc. can be used as desired, but scale graphite with few impurities is preferably used. The blending ratio of the graphite varies depending on the type of refractory raw material and the purpose of use of the carbon-containing refractory, but is preferably 3 to 30 parts by weight based on 100 parts by weight of the refractory aggregate composed of graphite and the refractory raw material. The reason for regulating the blending ratio is that if the graphite content is less than 3 parts by weight, graphite's property of being difficult to wet with molten steel slag cannot be fully exhibited. Moreover, the refractory as a whole tends to get wet with slag and has insufficient slag resistance. Moreover, if it exceeds 30 parts by weight, sufficient strength cannot be expected and it is difficult to obtain a dense structure. The boron carbide used in the present invention may be any commercially available abrasive material, and from the viewpoint of reactivity and uniform dispersibility, it is preferable to use boron carbide having a particle size of 0.125 mm or less. The blending ratio of boron carbide is 0.3 to 5 parts by weight per 100 parts by weight of the refractory aggregate, but if it is less than 0.3 parts by weight, the effect of adding it will be small, and if it exceeds 5 parts by weight, the oxidation resistance will decrease. However, hot strength decreases and durability decreases.
Also, a mixture of Al and Si is used as the metal powder. The mixing ratio of metal powder is 1 part by weight for 100 parts by weight of refractory aggregate.
-7 parts by weight is added, but if it is less than 1 part by weight, the effect of adding it will be small, and if it exceeds 7 parts by weight, corrosion resistance will decrease. The carbon-containing refractory of the present invention is prepared by adjusting the particle size-adjusted refractory aggregate, boron carbide, and metal powder in a predetermined mixing ratio, adding a binder such as tar, pitch, phenolic resin, or furan resin, and then using a conventional method. An unfired product can be obtained by kneading, molding, and drying at about 200°C. It can also be fired in a reducing atmosphere at about 900 to 1500°C and used as fired refractories. Next, this invention will be specifically illustrated by examples, and the formulations are shown in parts by weight. Example 1 After adding 5 parts by weight of resol type phenolic resin to the formulation shown in Table 1 and kneading it, it was molded at 1000 kg/cm 2 .
It was molded into a regular size of 230 x 114 x 65 mm and dried at 200°C for 5 hours. As shown in Table 1, the properties of the obtained unfired carbon-containing refractories show that the products of the present invention have better oxidation resistance and hot strength than comparative products. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 黒鉛3〜30重量部、耐火原料70〜97重量部に
金属粉末AlおよびSiを1〜7重量部および炭火硼
素0.3〜5重量部を含有することを特徴とする炭
素含有耐火物。
1. A carbon-containing refractory comprising 3 to 30 parts by weight of graphite, 70 to 97 parts by weight of a refractory raw material, 1 to 7 parts by weight of metal powders Al and Si, and 0.3 to 5 parts by weight of boron charcoal.
JP56170187A 1981-10-26 1981-10-26 Carbon-containing refractories Granted JPS5874579A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56170187A JPS5874579A (en) 1981-10-26 1981-10-26 Carbon-containing refractories
KR1019830000541A KR860001649B1 (en) 1981-10-26 1983-02-10 Refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170187A JPS5874579A (en) 1981-10-26 1981-10-26 Carbon-containing refractories

Publications (2)

Publication Number Publication Date
JPS5874579A JPS5874579A (en) 1983-05-06
JPS6119584B2 true JPS6119584B2 (en) 1986-05-17

Family

ID=15900290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170187A Granted JPS5874579A (en) 1981-10-26 1981-10-26 Carbon-containing refractories

Country Status (2)

Country Link
JP (1) JPS5874579A (en)
KR (1) KR860001649B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987103A (en) * 1986-04-09 1991-01-22 Nippon Pillar Packing Co., Ltd. Slider composed of a high-density silicon carbide sintered compact
JPH06661B2 (en) * 1988-02-12 1994-01-05 品川白煉瓦株式会社 Refractory bricks containing silicon nitride for hot metal treatment
KR100446871B1 (en) * 1999-12-21 2004-09-04 주식회사 포스코 Batch composition of refractories for preventing oxidation of back surface in carbon contained basic refractory brick
KR100446872B1 (en) * 1999-12-21 2004-09-04 주식회사 포스코 Batch composition of refractories for preventing oxidation of back surface in carbon contained acidic and neutral refractory brick
KR100601086B1 (en) * 2001-12-22 2006-07-14 주식회사 포스코 Refractory mortar for basic refractory bricks
KR100938727B1 (en) * 2003-03-05 2010-01-26 레프라테크니크 홀딩 게엠베하 Refractory wall and refractory bricks for building said wall
JP4865636B2 (en) * 2007-05-18 2012-02-01 品川リフラクトリーズ株式会社 Baking repair material
KR101270932B1 (en) * 2010-08-05 2013-06-11 한화케미칼 주식회사 Highly Efficient Heat Radiant Paint Using Carbon Materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140080A (en) * 1980-04-02 1981-11-02 Harima Refractories Co Ltd Sliding nozzle plate
JPS57156370A (en) * 1981-03-19 1982-09-27 Kurosaki Refractories Co Continuous casting refractories

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140080A (en) * 1980-04-02 1981-11-02 Harima Refractories Co Ltd Sliding nozzle plate
JPS57156370A (en) * 1981-03-19 1982-09-27 Kurosaki Refractories Co Continuous casting refractories

Also Published As

Publication number Publication date
KR860001649B1 (en) 1986-10-15
JPS5874579A (en) 1983-05-06
KR840003593A (en) 1984-09-15

Similar Documents

Publication Publication Date Title
JPS6343342B2 (en)
JPS6119584B2 (en)
EP0116194B1 (en) A carbon-containing refractory
JP2771613B2 (en) Carbon containing refractories
JPS627658A (en) Carbon-containing refractories
JPS6152099B2 (en)
JP2001072474A (en) Magnesia-carbonaceous unburned refractory brick and apparatus for degassing molten steel under vacuum, lined by using the same brick
JP2676227B2 (en) Carbon containing refractories
JPH01294582A (en) Carbon-containing castable refractory
JP2701901B2 (en) Carbon containing refractories
JPH01286950A (en) Carbon-containing refractory
JPS6152100B2 (en)
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JP2687214B2 (en) Carbon containing refractories
JP2947390B2 (en) Carbon containing refractories
JPS63288968A (en) Composite refractories
JPS63134571A (en) Zrb2-graphite-containing refractories
JPH02141480A (en) Castable refractory
JPH01249645A (en) Refractory material containing carbon
JP2765458B2 (en) Magnesia-carbon refractories
CA1189093A (en) Carbon-containing refractory
JPH05170519A (en) Magnesia-carbonaceous refractory
JPH0725587B2 (en) Alumina-Magnesia-Carbon refractory
JPS59131563A (en) Carbon containing refractories
JPH05319902A (en) Carbon-containing basic refractory