JP2004270355A - Levee body concrete excavating method - Google Patents

Levee body concrete excavating method Download PDF

Info

Publication number
JP2004270355A
JP2004270355A JP2003064536A JP2003064536A JP2004270355A JP 2004270355 A JP2004270355 A JP 2004270355A JP 2003064536 A JP2003064536 A JP 2003064536A JP 2003064536 A JP2003064536 A JP 2003064536A JP 2004270355 A JP2004270355 A JP 2004270355A
Authority
JP
Japan
Prior art keywords
hole
concrete
continuous
excavated
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003064536A
Other languages
Japanese (ja)
Other versions
JP4236959B2 (en
Inventor
Hisato Tanaka
久人 田中
Ikuo Jinnai
郁郎 甚内
Fumiaki Kanetani
文昭 金谷
Yoshihisa Ishida
芳久 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LOCK ENG KK
Kajima Corp
Toray Engineering Co Ltd
Original Assignee
NIPPON LOCK ENG KK
Kajima Corp
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LOCK ENG KK, Kajima Corp, Toyo Construction Co Ltd filed Critical NIPPON LOCK ENG KK
Priority to JP2003064536A priority Critical patent/JP4236959B2/en
Publication of JP2004270355A publication Critical patent/JP2004270355A/en
Application granted granted Critical
Publication of JP4236959B2 publication Critical patent/JP4236959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a levee body concrete excavating method, efficiently and economically penetrating and excavating levee body concrete and finishing an excavated wall surface, and making the excavated finished surface smooth even if dam concrete and aggregate have high strengths. <P>SOLUTION: An outer peripheral continuous hole 15 is formed in the vicinity of the outer periphery of a hole planned position 11 of the levee body concrete 3, and isolation is performed for an excavated part. Subsequently, a horizontal continuous cut-hole 17a and a vertical continuous cut-hole 17b are formed in an excavated part surrounded with the outer peripheral continuous hole 15 to divide the excavated part into a plurality of blocks 25. The blocks 25 are crushed by a hydraulic breaker 27 to form a hole 19, and then the axial and circumferential projecting and recessed parts of the wall surface 24 of the hole 18 are sequentially removed by the hydraulic breaker 27 and a twin header. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、堤体コンクリート掘削方法に関するものである。
【0002】
【従来の技術】
従来、ダムの堤体を掘削し、取水口を設けて発電設備を増設する場合がある(例えば、特許文献1参照)。堤体コンクリート貫通掘削工法には、(1)自由断面掘削機等による直接掘削工法と、(2)掘削部分の外周を連続孔で縁切りしてから油圧ブレーカ等で破砕する工法に大別される。(1)は、自由断面掘削機を使用して、1段階で平滑な掘削面を仕上げる施工方法である。(2)は2段階で掘削を行う方法である。いずれの施工工法を用いるかは、掘削断面積や、ダムコンクリートの強度・骨材の性状等から決定される。
【0003】
【特許文献1】特開平9−88044号公報
【0004】
【発明が解決しようとする課題】
しかしながら、(1)の工法では、ダムコンクリートや骨材が高強度の場合には、施工効率が著しく低下する。また、一般にダム貫通部掘削は施工長さが短いため、機械費が割高となり、経済的でない。
【0005】
(2)の工法は、コンクリートや骨材が高強度でも掘削可能で、掘削機械も汎用機を使用できるため、(1)に比べて経済性が高い。しかし、縁切り工のために掘削仕上がり面が不陸となり、水密性が要求されるコンクリート充填等の後工程において、空隙を生じる可能性が高い。
【0006】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、堤体コンクリート貫通掘削から掘削壁面仕上げを効率的かつ経済的に行い、ダムコンクリートや骨材が高強度の場合にも掘削仕上がり面が平滑となる堤体コンクリート掘削方法を提供することにある。
【0007】
【課題を解決するための手段】
前述した目的を達成するための第1の発明は、ダムの堤体コンクリートに孔を掘削する方法であって、孔計画位置の外周部付近に第1の連続孔を削孔する工程(a)と、前記孔計画位置の内部に第2の連続孔を削孔する工程(b)と、前記第1の連続孔および前記第2の連続孔によって縁切りされたコンクリートを破砕して前記孔を形成する工程(c)と、前記孔内の軸方向の凹凸を除去する工程(d)と、前記孔内の周方向の凹凸を除去する工程(e)とを具備することを特徴とする堤体コンクリート掘削方法である。
【0008】
第1の連続孔は、尻位置が掘削開始位置よりも外周側に位置するように斜めに削孔された、複数の小径の孔で構成される。第1の連続孔は、堤体コンクリートと孔計画位置のコンクリートとの縁切りのために設けられる。また、第2の連続孔は、水平に削孔された複数の小径の孔で構成される。第2の連続孔は、孔計画位置のコンクリートを複数に分割し、破砕を容易にするために設けられる。
【0009】
工程(d)では、第1の連続孔の掘削開始位置と尻位置のレベルが同じになるように、孔内の軸方向の凹凸を除去する。工程(e)では、第1の連続孔を構成する複数の小径の孔の外周を包絡するように、孔内の周方向の凹凸を除去する。
【0010】
工程(c)と工程(d)は、例えば、油圧ブレーカを用いて行われる。工程(e)は、例えば、工程(c)および工程(d)で用いた油圧ブレーカと同じベースマシンを使用したツインヘッダを用いて行われる。
【0011】
第1の発明では、孔計画位置の外周部付近に第1の連続孔を削孔し、孔計画位置の内部に第2の連続孔を削孔する。そして、第1の連続孔および第2の連続孔によって縁切りされたコンクリートを破砕して孔を形成した後、孔内の軸方向の凹凸と周方向の凹凸とを順次除去する。
【0012】
【発明の実施の形態】
以下、図面に基づいて、本発明の実施の形態について詳細に説明する。図1は、堤体コンクリート3の断面図、図2は、堤体コンクリート3に孔19を掘削する工程を示す図である。図2は、図1のAに示す部分において、孔19の掘削を開始した際の状態を示す。
【0013】
実施の形態では、稼動中のダム1において、増設水圧鉄管設置用の矩形断面の孔19を掘削する場合について説明する。堤体コンクリート3の孔計画位置11に孔19を掘削する際には、図1に示すように、堤内側面7側に仮締切9が設置される。そして、孔計画位置11の堤内側面7側を遮水した状態で、図2に示すように、堤外側面5側から孔19を掘削していく。
【0014】
図3は、掘削面21付近の孔19の軸方向の拡大断面図、図4は、掘削面21の立面図を示す。図3は、図4のC−Cによる断面図である。図4は、図3の矢印Bに示す方向から見た図である。
【0015】
孔19を掘削する際には、図2、図3に示すように、まず、油圧ジャンボ13(図2)等を用いて、第1の連続孔である外周連続孔15を掘削する。外周連続孔15の削孔工法には、鉄筋などの異物に対しても削孔可能な単一孔削孔工法を採用するのが好ましい。
【0016】
図4に示すように、外周連続孔15は、孔計画位置11の外周部分に掘削された複数の小径の孔で構成される。外周連続孔15によって、孔計画位置11のコンクリートは、堤体コンクリート3本体から縁切りされる。また、孔計画位置11のコンクリートを破砕する際の振動や衝撃が低減される。
【0017】
図3、図4に示すように、外周連続孔15を構成する複数の小径の孔は、尻位置23が掘削開始位置よりも外側に配置されるように、斜めに削孔される。外周連続孔15の掘削開始位置(掘削面21での孔の位置)は、孔19の最終的な壁面24b(図6)よりも内周側に位置する。外周連続孔15の尻位置23は、孔19の最終的な壁面24b付近に位置する。
【0018】
次に、図2、図3に示すように、第2の連続孔である芯抜連続孔17を孔計画位置11の断面内に掘削する。芯抜連続孔17は、孔計画位置11のコンクリート断面内に水平方向に削孔された4本の芯抜連続孔17aと、中心縦方向に削孔された1本の芯抜連続孔17bからなる。芯抜連続孔17は、外周連続孔15と同様の掘削機、削孔工法を用いて掘削される。
【0019】
芯抜連続孔17a、芯抜連続孔17bは、水平に削孔された複数の小径の孔で構成される。芯抜連続孔17a、芯抜連続孔17bによって、外周連続孔15によって縁切りされた孔計画位置11のコンクリートは、複数のブロック25に分割される。芯抜連続孔17は、孔計画位置11の堤体コンクリート3の破砕効率を向上させるためのものである。
【0020】
図5は、孔掘削位置11のコンクリートを破砕する工程を示す図である。外周連続孔15、芯抜連続孔17を掘削して孔計画位置11のコンクリートを複数のブロック25に分割した後、図5に示すように、油圧ブレーカ27を用いて各ブロック25を破砕する。そして、コンクリートガラをホイルローダ(図示せず)等を用いて孔19の外に搬出する。
【0021】
図6は破砕終了後の孔19の軸方向の断面図、図7は一次壁面仕上げ後の孔19の周方向の断面図、図8は二次壁面仕上げ後の孔19の周方向の断面図を示す。図7は、図6に示すD−Dによる断面図、図8は、図6に示すE−Eによる断面図である。
【0022】
ブロック25を破砕し、図6に示すように孔19を形成した後、一次壁面仕上げとして、孔19の壁面24の軸方向の凹凸を除去する。壁面24の軸方向の凹凸とは、外周連続孔15を斜めに掘削したことにより生じた不陸である。この不陸部の掘削には、ブロック25の破砕に用いた油圧ブレーカ27(図5)を用いる。
【0023】
一次壁面仕上げを行った後、図6、図7に示すように、壁面24aには、孔19の周方向の凹凸のみが残る。一次壁面仕上げにより、外周連続孔15の掘削やブロック25の破砕によって緩んだ堤体コンクリート3の不良部は、確実に除去される。
【0024】
次に、二次壁面仕上げとして、図7に示す孔19の壁面24aの周方向の凹凸を除去する。この凹凸の除去には、ツインヘッダ(図示せず)を用いる。ツインヘッダ(図示せず)には、ブロック25の破砕や一次壁面仕上げに用いた油圧ブレーカ27と同じベースマシンを用いることができる。二次壁面仕上げを行った後、図6、図8に示すように、壁面24bは平滑となる。
【0025】
孔19は、孔計画位置11において、外周連続孔15、芯抜連続孔17の掘削、ブロック25の破砕、一次壁面仕上げ、二次壁面仕上げの各工程を複数サイクル繰り返すことにより形成される。外周連続孔15や芯抜連続孔17の1サイクルの削孔長、有効掘削長は、例えば、それぞれ1.1m、1.0mとする。
【0026】
このように、本実施の形態では、外周連続孔15を削孔し、孔計画位置11のコンクリートと堤体コンクリート3本体との縁切りをする。そして、芯抜連続孔17を削孔し、縁切りされた孔計画位置11のコンクリートを複数のブロック25に分割する。掘削部分をブロック25に分割することにより、堤体コンクリート3や骨材が高強度の場合にも、破砕による振動を低減し、短時間で効率的に孔19を掘削することができる。
【0027】
また、ブロック25の破砕と壁面24の仕上げの2段階施工を、同一の汎用機械の機械構成を変えて行うので、経済的に貫通掘削を実施できる。
【0028】
なお、本実施の形態では、堤体コンクリート3に矩形の孔19を掘削する場合について説明したが、同様の掘削方法で、他の形状の孔も掘削できる。1本の孔の断面形状を必要に応じて変化させる場合もある。掘削機械の構成を変えることによって、様々な断面規模の掘削に対応できる。
【0029】
また、孔計画位置11に、図4に示すように4本の水平方向の芯抜連続孔17a、1本の垂直方向の芯抜連続孔17bを掘削したが、芯抜連続孔の配置や設置数はこれに限らない。芯抜連続孔は、孔19の掘削断面の形状や大きさ、堤体コンクリート3の強度等を考慮して、効率的な数や配置を決定する。
【0030】
さらに、図8に示す二次壁面仕上げは、経済性と作業効率を向上させるため、コンクリート充填時の水密性を確保するために必要な施工範囲に限定して行ってもよい。
【0031】
【発明の効果】
以上、詳細に説明したように、本発明によれば、堤体コンクリート貫通掘削から掘削壁面仕上げを効率的かつ経済的に行い、ダムコンクリートや骨材が高強度の場合にも掘削仕上がり面が平滑となる堤体コンクリート掘削方法を提供できる。
【図面の簡単な説明】
【図1】堤体コンクリート3の断面図
【図2】堤体コンクリート3に孔19を掘削する工程を示す図
【図3】掘削面21付近の孔19の軸方向の拡大断面図
【図4】掘削面21の立面図
【図5】孔掘削位置11のコンクリートを破砕する工程を示す図
【図6】破砕終了後の孔19の軸方向の断面図
【図7】一次壁面仕上げ後の孔19の周方向の断面図
【図8】二次壁面仕上げ後の孔19の周方向の断面図
【図9】堤体コンクリート3の断面図
【符号の説明】
1………ダム
3………堤体コンクリート
11………孔計画位置
15………外周連続孔
17………芯抜連続孔
19………孔
23………外周連続孔15の尻位置
24、24a、24b………壁面
25………ブロック
27………油圧ブレーカ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an embankment concrete excavation method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been a case where a bank body of a dam is excavated, an intake port is provided, and power generation facilities are added (for example, see Patent Document 1). The embankment concrete penetrating excavation method is roughly classified into (1) a direct excavation method using a free-section excavator or the like, and (2) a method in which the outer periphery of the excavated portion is cut by a continuous hole and then crushed by a hydraulic breaker or the like. . (1) is a construction method of finishing a smooth excavation surface in one stage using a free-section excavator. (2) is a method of excavating in two stages. Which construction method is used is determined based on the cross-sectional area of the excavation, the strength of the dam concrete, the properties of the aggregate, and the like.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-88044
[Problems to be solved by the invention]
However, in the method (1), when dam concrete or aggregate has high strength, construction efficiency is significantly reduced. Further, in general, the excavation of a dam penetrating portion is short in construction length, so that the machine cost is relatively high and it is not economical.
[0005]
The method (2) can excavate concrete and aggregate even with high strength, and a general-purpose machine can be used as the excavating machine. Therefore, the method is more economical than (1). However, the excavation finish surface becomes uneven due to the edging work, and there is a high possibility that voids will be generated in a post-process such as concrete filling requiring water tightness.
[0006]
The present invention has been made in view of such problems, and it is an object of the present invention to efficiently and economically perform excavation wall finishing from embankment concrete penetration excavation, and that dam concrete and aggregate have high strength. It is also an object of the present invention to provide a concrete excavation method for a levee body in which the finished surface is smooth.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for excavating a hole in concrete of an embankment of a dam, wherein a first continuous hole is formed near an outer peripheral portion of a hole planning position (a). Drilling a second continuous hole inside the hole planning position; and (b) crushing the concrete bounded by the first continuous hole and the second continuous hole to form the hole (C), removing (d) the axial irregularities in the hole, and (e) removing the circumferential irregularities in the hole. Concrete excavation method.
[0008]
The first continuous hole is formed by a plurality of small-diameter holes that are obliquely drilled such that the buttocks position is located on the outer peripheral side of the excavation start position. The first continuous hole is provided for separating the embankment concrete and the concrete at the hole planning position. Further, the second continuous hole is constituted by a plurality of small-diameter holes that are horizontally drilled. The second continuous hole is provided to divide the concrete at the hole planning position into a plurality of pieces to facilitate crushing.
[0009]
In the step (d), the unevenness in the axial direction in the hole is removed so that the level of the excavation start position and the bottom position of the first continuous hole are the same. In the step (e), circumferential irregularities in the holes are removed so as to envelop the outer peripheries of the plurality of small-diameter holes constituting the first continuous hole.
[0010]
Steps (c) and (d) are performed using, for example, a hydraulic breaker. Step (e) is performed, for example, using a twin header using the same base machine as the hydraulic breaker used in steps (c) and (d).
[0011]
In the first invention, a first continuous hole is drilled near the outer peripheral portion of the hole planning position, and a second continuous hole is drilled inside the hole planning position. Then, after the concrete cut by the first continuous hole and the second continuous hole is crushed to form a hole, the axial unevenness and the circumferential unevenness in the hole are sequentially removed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the embankment concrete 3, and FIG. 2 is a diagram illustrating a process of excavating a hole 19 in the embankment concrete 3. FIG. 2 shows a state when the excavation of the hole 19 is started in the portion shown in FIG.
[0013]
In the embodiment, a case will be described in which a hole 19 having a rectangular cross section for installing an additional penstock is excavated in the operating dam 1. When excavating the hole 19 at the hole planning position 11 of the embankment concrete 3, as shown in FIG. 1, a temporary deadline 9 is installed on the inner side surface 7 of the embankment. Then, as shown in FIG. 2, the hole 19 is excavated from the side of the embankment outer surface 5 in a state in which the inner side surface 7 of the embankment at the hole planning position 11 is blocked.
[0014]
FIG. 3 is an enlarged sectional view in the axial direction of the hole 19 near the excavation surface 21, and FIG. 4 is an elevation view of the excavation surface 21. FIG. 3 is a cross-sectional view taken along line CC of FIG. FIG. 4 is a diagram viewed from the direction indicated by arrow B in FIG.
[0015]
When excavating the hole 19, as shown in FIGS. 2 and 3, first, the outer peripheral continuous hole 15 which is the first continuous hole is excavated using the hydraulic jumbo 13 (FIG. 2) or the like. As the drilling method of the outer peripheral continuous hole 15, it is preferable to adopt a single-hole drilling method capable of drilling foreign substances such as reinforcing bars.
[0016]
As shown in FIG. 4, the outer peripheral continuous hole 15 is constituted by a plurality of small-diameter holes excavated in the outer peripheral portion of the hole planning position 11. The concrete at the hole planning position 11 is cut off from the main body of the embankment concrete 3 by the outer peripheral continuous hole 15. Further, vibration and impact when crushing the concrete at the hole planning position 11 are reduced.
[0017]
As shown in FIGS. 3 and 4, a plurality of small-diameter holes constituting the outer peripheral continuous hole 15 are obliquely drilled so that the tail position 23 is located outside the excavation start position. The excavation start position of the outer peripheral continuous hole 15 (the position of the hole on the excavation surface 21) is located on the inner peripheral side with respect to the final wall surface 24b of the hole 19 (FIG. 6). The tail position 23 of the outer peripheral continuous hole 15 is located near the final wall surface 24 b of the hole 19.
[0018]
Next, as shown in FIGS. 2 and 3, a cored continuous hole 17 which is a second continuous hole is excavated in the cross section of the hole planning position 11. The continuous centering hole 17 includes four continuous centering holes 17a drilled horizontally in the concrete section at the hole planning position 11 and one continuous centering hole 17b drilled in the center longitudinal direction. Become. The cored continuous hole 17 is excavated using the same excavator and drilling method as the outer peripheral continuous hole 15.
[0019]
The continuous centering hole 17a and the continuous centering hole 17b are composed of a plurality of small-diameter holes that are horizontally drilled. The concrete at the hole planning position 11 cut off by the outer peripheral continuous hole 15 is divided into a plurality of blocks 25 by the continuous cored hole 17a and the continuous cored hole 17b. The cored continuous hole 17 is for improving the crushing efficiency of the embankment concrete 3 at the hole planning position 11.
[0020]
FIG. 5 is a diagram illustrating a process of crushing the concrete at the hole excavation position 11. After the outer peripheral continuous hole 15 and the cored continuous hole 17 are excavated to divide the concrete at the hole planning position 11 into a plurality of blocks 25, each block 25 is crushed using a hydraulic breaker 27 as shown in FIG. Then, the concrete waste is carried out of the hole 19 using a wheel loader (not shown) or the like.
[0021]
6 is an axial sectional view of the hole 19 after crushing, FIG. 7 is a circumferential sectional view of the hole 19 after finishing the primary wall surface, and FIG. 8 is a circumferential sectional view of the hole 19 after finishing the secondary wall surface. Is shown. 7 is a cross-sectional view taken along the line DD shown in FIG. 6, and FIG. 8 is a cross-sectional view taken along the line EE shown in FIG.
[0022]
After the block 25 is crushed to form the hole 19 as shown in FIG. 6, the wall surface 24 of the hole 19 is removed in the axial direction as a primary wall surface finish. The unevenness in the axial direction of the wall surface 24 is unevenness caused by the outer peripheral continuous hole 15 being excavated obliquely. The hydraulic breaker 27 (FIG. 5) used for crushing the block 25 is used for excavation of the uneven portion.
[0023]
After performing the primary wall surface finishing, only the circumferential irregularities of the hole 19 remain on the wall surface 24a as shown in FIGS. By the primary wall surface finishing, the defective portion of the embankment concrete 3 loosened by the excavation of the outer peripheral continuous hole 15 or the crushing of the block 25 is reliably removed.
[0024]
Next, as a secondary wall surface finish, circumferential irregularities of the wall surface 24a of the hole 19 shown in FIG. 7 are removed. A twin header (not shown) is used for removing the unevenness. For a twin header (not shown), the same base machine as the hydraulic breaker 27 used for crushing the block 25 and finishing the primary wall surface can be used. After the secondary wall surface finishing, the wall surface 24b becomes smooth as shown in FIGS.
[0025]
The hole 19 is formed by repeating a plurality of cycles of the excavation of the outer peripheral continuous hole 15 and the cored continuous hole 17, the crushing of the block 25, the primary wall finishing, and the secondary wall finishing at the hole planning position 11. The drilling length and effective excavation length of one cycle of the outer peripheral continuous hole 15 and the centering continuous hole 17 are, for example, 1.1 m and 1.0 m, respectively.
[0026]
As described above, in the present embodiment, the outer peripheral continuous hole 15 is drilled, and the concrete at the hole planning position 11 and the main body of the embankment concrete 3 are cut off. Then, the cored continuous hole 17 is drilled, and the concrete at the planned hole planning position 11 is divided into a plurality of blocks 25. By dividing the excavated portion into blocks 25, even when the embankment concrete 3 and the aggregate have high strength, vibration due to crushing can be reduced, and the hole 19 can be efficiently excavated in a short time.
[0027]
Further, since the two-stage construction of the crushing of the block 25 and the finishing of the wall surface 24 is performed by changing the mechanical configuration of the same general-purpose machine, the penetration excavation can be performed economically.
[0028]
In this embodiment, the case where the rectangular hole 19 is excavated in the embankment concrete 3 has been described. However, holes of other shapes can be excavated by the same excavation method. The cross-sectional shape of one hole may be changed as needed. By changing the configuration of the excavating machine, it is possible to cope with excavation of various sectional scales.
[0029]
In addition, four horizontal centering continuous holes 17a and one vertical centering continuous hole 17b were excavated at the hole planning position 11, as shown in FIG. The number is not limited to this. The number and arrangement of the cored continuous holes are determined in consideration of the shape and size of the excavated cross section of the hole 19, the strength of the embankment concrete 3, and the like.
[0030]
Furthermore, the secondary wall surface finishing shown in FIG. 8 may be performed only in a construction range necessary for ensuring watertightness at the time of filling concrete, in order to improve economy and work efficiency.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, excavation wall finishing is efficiently and economically performed from embankment concrete penetration excavation, and the finished excavated surface is smooth even when dam concrete or aggregate has high strength. And a concrete excavation method for the embankment can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of embankment concrete 3. FIG. 2 is a view showing a step of excavating a hole 19 in embankment concrete 3. FIG. 3 is an enlarged cross-sectional view of hole 19 near excavation surface 21 in an axial direction. FIG. 5 is a view showing a step of crushing concrete at the hole digging position 11; FIG. 6 is an axial sectional view of the hole 19 after crushing is completed; FIG. Circumferential section of hole 19 [FIG. 8] Circumferential section of hole 19 after secondary wall finishing [FIG. 9] Cross section of embankment concrete 3 [Description of symbols]
1 Dam 3 Dam concrete 11 Hole planning position 15 Peripheral continuous hole 17 Centered continuous hole 19 Hole 23 Peripheral continuous hole 15 bottom position 24, 24a, 24b ... wall surface 25 ... block 27 ... hydraulic breaker

Claims (5)

ダムの堤体コンクリートに孔を掘削する方法であって、
孔計画位置の外周部付近に第1の連続孔を削孔する工程(a)と、
前記孔計画位置の内部に第2の連続孔を削孔する工程(b)と、
前記第1の連続孔および前記第2の連続孔によって縁切りされたコンクリートを破砕して前記孔を形成する工程(c)と、
前記孔内の軸方向の凹凸を除去する工程(d)と、
前記孔内の周方向の凹凸を除去する工程(e)と、
を具備することを特徴とする堤体コンクリート掘削方法。
A method of drilling a hole in the dam embankment concrete,
(A) drilling a first continuous hole near the outer peripheral portion of the hole planning position;
(B) drilling a second continuous hole inside the hole planning position;
(C) crushing concrete cut by the first continuous hole and the second continuous hole to form the hole;
(D) removing axial irregularities in the hole;
(E) removing circumferential irregularities in the hole;
A method of digging concrete for embankment bodies, comprising:
前記第1の連続孔は、尻位置が掘削開始位置よりも外周側に位置する複数の小径孔からなることを特徴とする請求項1記載の堤体コンクリート掘削方法。2. The method according to claim 1, wherein the first continuous hole includes a plurality of small-diameter holes whose buttocks are located on the outer peripheral side of the excavation start position. 3. 前記第2の連続孔は、水平に形成された複数の小径孔からなることを特徴とする請求項1記載の堤体コンクリート掘削方法。The method according to claim 1, wherein the second continuous hole comprises a plurality of small-diameter holes formed horizontally. 前記(c)および前記工程(d)では、油圧ブレーカを用いることを特徴とする請求項1記載の堤体コンクリート掘削方法。The method according to claim 1, wherein a hydraulic breaker is used in the steps (c) and (d). 前記工程(e)では、前記油圧ブレーカと同じベースマシンを使用したツインヘッダを用いることを特徴とする請求項4記載の堤体コンクリート掘削方法。The method according to claim 4, wherein in the step (e), a twin header using the same base machine as the hydraulic breaker is used.
JP2003064536A 2003-03-11 2003-03-11 Embankment concrete excavation method Expired - Fee Related JP4236959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064536A JP4236959B2 (en) 2003-03-11 2003-03-11 Embankment concrete excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064536A JP4236959B2 (en) 2003-03-11 2003-03-11 Embankment concrete excavation method

Publications (2)

Publication Number Publication Date
JP2004270355A true JP2004270355A (en) 2004-09-30
JP4236959B2 JP4236959B2 (en) 2009-03-11

Family

ID=33125797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064536A Expired - Fee Related JP4236959B2 (en) 2003-03-11 2003-03-11 Embankment concrete excavation method

Country Status (1)

Country Link
JP (1) JP4236959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144018A (en) * 2011-01-14 2012-08-02 Taisei Corp Method for forming aperture in concrete structure
JP2015143449A (en) * 2014-01-31 2015-08-06 鹿島建設株式会社 Method for forming through-hole in dam body
JP7122203B2 (en) 2018-09-21 2022-08-19 大成建設株式会社 Embankment body drilling method and discharge pipe construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919608A4 (en) 2019-02-15 2023-05-10 TERUMO Kabushiki Kaisha Platelet lysate production method, production system, and bag set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144018A (en) * 2011-01-14 2012-08-02 Taisei Corp Method for forming aperture in concrete structure
JP2015143449A (en) * 2014-01-31 2015-08-06 鹿島建設株式会社 Method for forming through-hole in dam body
JP7122203B2 (en) 2018-09-21 2022-08-19 大成建設株式会社 Embankment body drilling method and discharge pipe construction method

Also Published As

Publication number Publication date
JP4236959B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP2018024982A (en) Reinforcement method and reinforcement structure of existing pile foundation
CN102959157A (en) Method and assembly for constructing a diaphragm wall
JP2004270355A (en) Levee body concrete excavating method
JP2004353264A (en) Construction method of tunnel confluence section and tunnel confluence section
JP2003193495A (en) Underground structure constructing method
JP5154850B2 (en) External reinforcement method for underground structures
JP6765566B1 (en) Construction method of the skeleton and the skeleton
JP2004316284A (en) Tunnel branch work execution method using master and slave shield machine
JP2011241608A (en) Construction method of basement in existing house
JP2010281038A (en) Earth retaining method
JPH0819824B2 (en) Construction method of underground space
JP2016008377A (en) Rectangular cross-section propulsion method
KR200291360Y1 (en) Complex structure of reclamation type of soil guard for pier&#39;s basis
CN113863314B (en) Synchronous construction method for concrete occlusion supporting pile and main engineering pile
JP6756892B1 (en) Underground skeleton and how to build an underground skeleton
JP3930358B2 (en) How to build a tunnel
CN111364447B (en) Permanent multifunctional underground continuous wall and construction method thereof
JPH04309694A (en) Underground space construction method
JP3896540B2 (en) Synthetic underground wall construction method
JP2006057242A (en) Construction method for earth retaining wall
JPH11190022A (en) Working method for foundation pile
JPH11247584A (en) Tunnel construction method
JP2941265B1 (en) Vertical hole construction method
JP4342517B2 (en) Steel plate impermeable wall and construction method of steel plate impermeable wall
JP3440425B2 (en) Concrete injection casting jig for shield machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees